linux_dsm_epyc7002/drivers/clk/sunxi/clk-sunxi.c

1130 lines
26 KiB
C
Raw Normal View History

/*
* Copyright 2013 Emilio López
*
* Emilio López <emilio@elopez.com.ar>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/reset-controller.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/log2.h>
#include "clk-factors.h"
static DEFINE_SPINLOCK(clk_lock);
/* Maximum number of parents our clocks have */
#define SUNXI_MAX_PARENTS 5
/**
* sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
* PLL1 rate is calculated as follows
* rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
* parent_rate is always 24Mhz
*/
static void sun4i_get_pll1_factors(struct factors_request *req)
{
u8 div;
/* Normalize value to a 6M multiple */
div = req->rate / 6000000;
req->rate = 6000000 * div;
/* m is always zero for pll1 */
req->m = 0;
/* k is 1 only on these cases */
if (req->rate >= 768000000 || req->rate == 42000000 ||
req->rate == 54000000)
req->k = 1;
else
req->k = 0;
/* p will be 3 for divs under 10 */
if (div < 10)
req->p = 3;
/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
else if (div < 20 || (div < 32 && (div & 1)))
req->p = 2;
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
* of divs between 40-62 */
else if (div < 40 || (div < 64 && (div & 2)))
req->p = 1;
/* any other entries have p = 0 */
else
req->p = 0;
/* calculate a suitable n based on k and p */
div <<= req->p;
div /= (req->k + 1);
req->n = div / 4;
}
/**
* sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
* PLL1 rate is calculated as follows
* rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
* parent_rate should always be 24MHz
*/
static void sun6i_a31_get_pll1_factors(struct factors_request *req)
{
/*
* We can operate only on MHz, this will make our life easier
* later.
*/
u32 freq_mhz = req->rate / 1000000;
u32 parent_freq_mhz = req->parent_rate / 1000000;
/*
* Round down the frequency to the closest multiple of either
* 6 or 16
*/
u32 round_freq_6 = round_down(freq_mhz, 6);
u32 round_freq_16 = round_down(freq_mhz, 16);
if (round_freq_6 > round_freq_16)
freq_mhz = round_freq_6;
else
freq_mhz = round_freq_16;
req->rate = freq_mhz * 1000000;
/* If the frequency is a multiple of 32 MHz, k is always 3 */
if (!(freq_mhz % 32))
req->k = 3;
/* If the frequency is a multiple of 9 MHz, k is always 2 */
else if (!(freq_mhz % 9))
req->k = 2;
/* If the frequency is a multiple of 8 MHz, k is always 1 */
else if (!(freq_mhz % 8))
req->k = 1;
/* Otherwise, we don't use the k factor */
else
req->k = 0;
/*
* If the frequency is a multiple of 2 but not a multiple of
* 3, m is 3. This is the first time we use 6 here, yet we
* will use it on several other places.
* We use this number because it's the lowest frequency we can
* generate (with n = 0, k = 0, m = 3), so every other frequency
* somehow relates to this frequency.
*/
if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
req->m = 2;
/*
* If the frequency is a multiple of 6MHz, but the factor is
* odd, m will be 3
*/
else if ((freq_mhz / 6) & 1)
req->m = 3;
/* Otherwise, we end up with m = 1 */
else
req->m = 1;
/* Calculate n thanks to the above factors we already got */
req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
- 1;
/*
* If n end up being outbound, and that we can still decrease
* m, do it.
*/
if ((req->n + 1) > 31 && (req->m + 1) > 1) {
req->n = (req->n + 1) / 2 - 1;
req->m = (req->m + 1) / 2 - 1;
}
}
/**
* sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
* PLL1 rate is calculated as follows
* rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
* parent_rate is always 24Mhz
*/
static void sun8i_a23_get_pll1_factors(struct factors_request *req)
{
u8 div;
/* Normalize value to a 6M multiple */
div = req->rate / 6000000;
req->rate = 6000000 * div;
/* m is always zero for pll1 */
req->m = 0;
/* k is 1 only on these cases */
if (req->rate >= 768000000 || req->rate == 42000000 ||
req->rate == 54000000)
req->k = 1;
else
req->k = 0;
/* p will be 2 for divs under 20 and odd divs under 32 */
if (div < 20 || (div < 32 && (div & 1)))
req->p = 2;
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
* of divs between 40-62 */
else if (div < 40 || (div < 64 && (div & 2)))
req->p = 1;
/* any other entries have p = 0 */
else
req->p = 0;
/* calculate a suitable n based on k and p */
div <<= req->p;
div /= (req->k + 1);
req->n = div / 4 - 1;
}
/**
* sun4i_get_pll5_factors() - calculates n, k factors for PLL5
* PLL5 rate is calculated as follows
* rate = parent_rate * n * (k + 1)
* parent_rate is always 24Mhz
*/
static void sun4i_get_pll5_factors(struct factors_request *req)
{
u8 div;
/* Normalize value to a parent_rate multiple (24M) */
div = req->rate / req->parent_rate;
req->rate = req->parent_rate * div;
if (div < 31)
req->k = 0;
else if (div / 2 < 31)
req->k = 1;
else if (div / 3 < 31)
req->k = 2;
else
req->k = 3;
req->n = DIV_ROUND_UP(div, (req->k + 1));
}
/**
* sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
* PLL6x2 rate is calculated as follows
* rate = parent_rate * (n + 1) * (k + 1)
* parent_rate is always 24Mhz
*/
static void sun6i_a31_get_pll6_factors(struct factors_request *req)
{
u8 div;
/* Normalize value to a parent_rate multiple (24M) */
div = req->rate / req->parent_rate;
req->rate = req->parent_rate * div;
req->k = div / 32;
if (req->k > 3)
req->k = 3;
req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
}
/**
* sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
* AHB rate is calculated as follows
* rate = parent_rate >> p
*/
static void sun5i_a13_get_ahb_factors(struct factors_request *req)
{
u32 div;
/* divide only */
if (req->parent_rate < req->rate)
req->rate = req->parent_rate;
/*
* user manual says valid speed is 8k ~ 276M, but tests show it
* can work at speeds up to 300M, just after reparenting to pll6
*/
if (req->rate < 8000)
req->rate = 8000;
if (req->rate > 300000000)
req->rate = 300000000;
div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
/* p = 0 ~ 3 */
if (div > 3)
div = 3;
req->rate = req->parent_rate >> div;
req->p = div;
}
#define SUN6I_AHB1_PARENT_PLL6 3
/**
* sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
* AHB rate is calculated as follows
* rate = parent_rate >> p
*
* if parent is pll6, then
* parent_rate = pll6 rate / (m + 1)
*/
static void sun6i_get_ahb1_factors(struct factors_request *req)
{
u8 div, calcp, calcm = 1;
/*
* clock can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency
*/
if (req->parent_rate && req->rate > req->parent_rate)
req->rate = req->parent_rate;
div = DIV_ROUND_UP(req->parent_rate, req->rate);
/* calculate pre-divider if parent is pll6 */
if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
if (div < 4)
calcp = 0;
else if (div / 2 < 4)
calcp = 1;
else if (div / 4 < 4)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
} else {
calcp = __roundup_pow_of_two(div);
calcp = calcp > 3 ? 3 : calcp;
}
req->rate = (req->parent_rate / calcm) >> calcp;
req->p = calcp;
req->m = calcm - 1;
}
/**
* sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
* parent index
*/
static void sun6i_ahb1_recalc(struct factors_request *req)
{
req->rate = req->parent_rate;
/* apply pre-divider first if parent is pll6 */
if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
req->rate /= req->m + 1;
/* clk divider */
req->rate >>= req->p;
}
/**
* sun4i_get_apb1_factors() - calculates m, p factors for APB1
* APB1 rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun4i_get_apb1_factors(struct factors_request *req)
{
u8 calcm, calcp;
int div;
if (req->parent_rate < req->rate)
req->rate = req->parent_rate;
div = DIV_ROUND_UP(req->parent_rate, req->rate);
/* Invalid rate! */
if (div > 32)
return;
if (div <= 4)
calcp = 0;
else if (div <= 8)
calcp = 1;
else if (div <= 16)
calcp = 2;
else
calcp = 3;
calcm = (req->parent_rate >> calcp) - 1;
req->rate = (req->parent_rate >> calcp) / (calcm + 1);
req->m = calcm;
req->p = calcp;
}
/**
* sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
* CLK_OUT rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sun7i_a20_get_out_factors(struct factors_request *req)
{
u8 div, calcm, calcp;
/* These clocks can only divide, so we will never be able to achieve
* frequencies higher than the parent frequency */
if (req->rate > req->parent_rate)
req->rate = req->parent_rate;
div = DIV_ROUND_UP(req->parent_rate, req->rate);
if (div < 32)
calcp = 0;
else if (div / 2 < 32)
calcp = 1;
else if (div / 4 < 32)
calcp = 2;
else
calcp = 3;
calcm = DIV_ROUND_UP(div, 1 << calcp);
req->rate = (req->parent_rate >> calcp) / calcm;
req->m = calcm - 1;
req->p = calcp;
}
/**
* sunxi_factors_clk_setup() - Setup function for factor clocks
*/
static const struct clk_factors_config sun4i_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.pshift = 16,
.pwidth = 2,
};
static const struct clk_factors_config sun6i_a31_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.n_start = 1,
};
static const struct clk_factors_config sun8i_a23_pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.pshift = 16,
.pwidth = 2,
.n_start = 1,
};
static const struct clk_factors_config sun4i_pll5_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
};
static const struct clk_factors_config sun6i_a31_pll6_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.n_start = 1,
};
static const struct clk_factors_config sun5i_a13_ahb_config = {
.pshift = 4,
.pwidth = 2,
};
static const struct clk_factors_config sun6i_ahb1_config = {
.mshift = 6,
.mwidth = 2,
.pshift = 4,
.pwidth = 2,
};
static const struct clk_factors_config sun4i_apb1_config = {
.mshift = 0,
.mwidth = 5,
.pshift = 16,
.pwidth = 2,
};
/* user manual says "n" but it's really "p" */
static const struct clk_factors_config sun7i_a20_out_config = {
.mshift = 8,
.mwidth = 5,
.pshift = 20,
.pwidth = 2,
};
static const struct factors_data sun4i_pll1_data __initconst = {
.enable = 31,
.table = &sun4i_pll1_config,
.getter = sun4i_get_pll1_factors,
};
static const struct factors_data sun6i_a31_pll1_data __initconst = {
.enable = 31,
.table = &sun6i_a31_pll1_config,
.getter = sun6i_a31_get_pll1_factors,
};
static const struct factors_data sun8i_a23_pll1_data __initconst = {
.enable = 31,
.table = &sun8i_a23_pll1_config,
.getter = sun8i_a23_get_pll1_factors,
};
static const struct factors_data sun7i_a20_pll4_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
};
static const struct factors_data sun4i_pll5_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
.name = "pll5",
};
static const struct factors_data sun4i_pll6_data __initconst = {
.enable = 31,
.table = &sun4i_pll5_config,
.getter = sun4i_get_pll5_factors,
.name = "pll6",
};
static const struct factors_data sun6i_a31_pll6_data __initconst = {
.enable = 31,
.table = &sun6i_a31_pll6_config,
.getter = sun6i_a31_get_pll6_factors,
.name = "pll6x2",
};
static const struct factors_data sun5i_a13_ahb_data __initconst = {
.mux = 6,
.muxmask = BIT(1) | BIT(0),
.table = &sun5i_a13_ahb_config,
.getter = sun5i_a13_get_ahb_factors,
};
static const struct factors_data sun6i_ahb1_data __initconst = {
.mux = 12,
.muxmask = BIT(1) | BIT(0),
.table = &sun6i_ahb1_config,
.getter = sun6i_get_ahb1_factors,
.recalc = sun6i_ahb1_recalc,
};
static const struct factors_data sun4i_apb1_data __initconst = {
.mux = 24,
.muxmask = BIT(1) | BIT(0),
.table = &sun4i_apb1_config,
.getter = sun4i_get_apb1_factors,
};
static const struct factors_data sun7i_a20_out_data __initconst = {
.enable = 31,
.mux = 24,
.muxmask = BIT(1) | BIT(0),
.table = &sun7i_a20_out_config,
.getter = sun7i_a20_get_out_factors,
};
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
const struct factors_data *data)
{
void __iomem *reg;
reg = of_iomap(node, 0);
if (!reg) {
pr_err("Could not get registers for factors-clk: %s\n",
node->name);
return NULL;
}
return sunxi_factors_register(node, data, &clk_lock, reg);
}
static void __init sun4i_pll1_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun4i_pll1_data);
}
CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
sun4i_pll1_clk_setup);
static void __init sun6i_pll1_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
}
CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
sun6i_pll1_clk_setup);
static void __init sun8i_pll1_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
}
CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
sun8i_pll1_clk_setup);
static void __init sun7i_pll4_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
}
CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
sun7i_pll4_clk_setup);
static void __init sun5i_ahb_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
}
CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
sun5i_ahb_clk_setup);
static void __init sun6i_ahb1_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
}
CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
sun6i_ahb1_clk_setup);
static void __init sun4i_apb1_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun4i_apb1_data);
}
CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
sun4i_apb1_clk_setup);
static void __init sun7i_out_clk_setup(struct device_node *node)
{
sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
}
CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
sun7i_out_clk_setup);
/**
* sunxi_mux_clk_setup() - Setup function for muxes
*/
#define SUNXI_MUX_GATE_WIDTH 2
struct mux_data {
u8 shift;
};
static const struct mux_data sun4i_cpu_mux_data __initconst = {
.shift = 16,
};
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
.shift = 12,
};
static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
.shift = 0,
};
static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
const struct mux_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *parents[SUNXI_MAX_PARENTS];
void __iomem *reg;
int i;
reg = of_iomap(node, 0);
if (!reg) {
pr_err("Could not map registers for mux-clk: %s\n",
of_node_full_name(node));
return NULL;
}
i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
if (of_property_read_string(node, "clock-output-names", &clk_name)) {
pr_err("%s: could not read clock-output-names from \"%s\"\n",
__func__, of_node_full_name(node));
goto out_unmap;
}
clk: add CLK_SET_RATE_NO_REPARENT flag Add a CLK_SET_RATE_NO_REPARENT clock flag, which will prevent muxes being reparented during clk_set_rate. To avoid breaking existing platforms, all callers of clk_register_mux() are adjusted to pass the new flag. Platform maintainers are encouraged to remove the flag if they wish to allow mux reparenting on set_rate. Signed-off-by: James Hogan <james.hogan@imgtec.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Cc: Mike Turquette <mturquette@linaro.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: Viresh Kumar <viresh.linux@gmail.com> Cc: Kukjin Kim <kgene.kim@samsung.com> Cc: Haojian Zhuang <haojian.zhuang@linaro.org> Cc: Chao Xie <xiechao.mail@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Emilio López" <emilio@elopez.com.ar> Cc: Gregory CLEMENT <gregory.clement@free-electrons.com> Cc: Maxime Ripard <maxime.ripard@free-electrons.com> Cc: Prashant Gaikwad <pgaikwad@nvidia.com> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Peter De Schrijver <pdeschrijver@nvidia.com> Cc: Pawel Moll <pawel.moll@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrew Chew <achew@nvidia.com> Cc: Doug Anderson <dianders@chromium.org> Cc: Heiko Stuebner <heiko@sntech.de> Cc: Paul Walmsley <pwalmsley@nvidia.com> Cc: Sylwester Nawrocki <s.nawrocki@samsung.com> Cc: Thomas Abraham <thomas.abraham@linaro.org> Cc: Tomasz Figa <t.figa@samsung.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-samsung-soc@vger.kernel.org Cc: spear-devel@list.st.com Cc: linux-tegra@vger.kernel.org Tested-by: Haojian Zhuang <haojian.zhuang@gmail.com> Acked-by: Stephen Warren <swarren@nvidia.com> [tegra] Acked-by: Maxime Ripard <maxime.ripard@free-electrons.com> [sunxi] Acked-by: Sören Brinkmann <soren.brinkmann@xilinx.com> [Zynq] Signed-off-by: Mike Turquette <mturquette@linaro.org>
2013-07-29 18:25:01 +07:00
clk = clk_register_mux(NULL, clk_name, parents, i,
CLK_SET_RATE_PARENT, reg,
data->shift, SUNXI_MUX_GATE_WIDTH,
0, &clk_lock);
if (IS_ERR(clk)) {
pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
clk_name, PTR_ERR(clk));
goto out_unmap;
}
if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
pr_err("%s: failed to add clock provider for %s\n",
__func__, clk_name);
clk_unregister_divider(clk);
goto out_unmap;
}
return clk;
out_unmap:
iounmap(reg);
return NULL;
}
static void __init sun4i_cpu_clk_setup(struct device_node *node)
{
struct clk *clk;
clk = sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data);
if (!clk)
return;
/* Protect CPU clock */
__clk_get(clk);
clk_prepare_enable(clk);
}
CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
sun4i_cpu_clk_setup);
static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
{
sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data);
}
CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
sun6i_ahb1_mux_clk_setup);
static void __init sun8i_ahb2_clk_setup(struct device_node *node)
{
sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data);
}
CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
sun8i_ahb2_clk_setup);
/**
* sunxi_divider_clk_setup() - Setup function for simple divider clocks
*/
struct div_data {
u8 shift;
u8 pow;
u8 width;
const struct clk_div_table *table;
};
static const struct div_data sun4i_axi_data __initconst = {
.shift = 0,
.pow = 0,
.width = 2,
};
static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
{ .val = 0, .div = 1 },
{ .val = 1, .div = 2 },
{ .val = 2, .div = 3 },
{ .val = 3, .div = 4 },
{ .val = 4, .div = 4 },
{ .val = 5, .div = 4 },
{ .val = 6, .div = 4 },
{ .val = 7, .div = 4 },
{ } /* sentinel */
};
static const struct div_data sun8i_a23_axi_data __initconst = {
.width = 3,
.table = sun8i_a23_axi_table,
};
static const struct div_data sun4i_ahb_data __initconst = {
.shift = 4,
.pow = 1,
.width = 2,
};
static const struct clk_div_table sun4i_apb0_table[] __initconst = {
{ .val = 0, .div = 2 },
{ .val = 1, .div = 2 },
{ .val = 2, .div = 4 },
{ .val = 3, .div = 8 },
{ } /* sentinel */
};
static const struct div_data sun4i_apb0_data __initconst = {
.shift = 8,
.pow = 1,
.width = 2,
.table = sun4i_apb0_table,
};
static void __init sunxi_divider_clk_setup(struct device_node *node,
const struct div_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *clk_parent;
void __iomem *reg;
reg = of_iomap(node, 0);
if (!reg) {
pr_err("Could not map registers for mux-clk: %s\n",
of_node_full_name(node));
return;
}
clk_parent = of_clk_get_parent_name(node, 0);
if (of_property_read_string(node, "clock-output-names", &clk_name)) {
pr_err("%s: could not read clock-output-names from \"%s\"\n",
__func__, of_node_full_name(node));
goto out_unmap;
}
clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
reg, data->shift, data->width,
data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
data->table, &clk_lock);
if (IS_ERR(clk)) {
pr_err("%s: failed to register divider clock %s: %ld\n",
__func__, clk_name, PTR_ERR(clk));
goto out_unmap;
}
if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
pr_err("%s: failed to add clock provider for %s\n",
__func__, clk_name);
goto out_unregister;
}
if (clk_register_clkdev(clk, clk_name, NULL)) {
of_clk_del_provider(node);
goto out_unregister;
}
return;
out_unregister:
clk_unregister_divider(clk);
out_unmap:
iounmap(reg);
}
static void __init sun4i_ahb_clk_setup(struct device_node *node)
{
sunxi_divider_clk_setup(node, &sun4i_ahb_data);
}
CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
sun4i_ahb_clk_setup);
static void __init sun4i_apb0_clk_setup(struct device_node *node)
{
sunxi_divider_clk_setup(node, &sun4i_apb0_data);
}
CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
sun4i_apb0_clk_setup);
static void __init sun4i_axi_clk_setup(struct device_node *node)
{
sunxi_divider_clk_setup(node, &sun4i_axi_data);
}
CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
sun4i_axi_clk_setup);
static void __init sun8i_axi_clk_setup(struct device_node *node)
{
sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
}
CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
sun8i_axi_clk_setup);
/**
* sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
*/
#define SUNXI_GATES_MAX_SIZE 64
struct gates_data {
DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
};
/**
* sunxi_divs_clk_setup() helper data
*/
#define SUNXI_DIVS_MAX_QTY 4
#define SUNXI_DIVISOR_WIDTH 2
struct divs_data {
const struct factors_data *factors; /* data for the factor clock */
int ndivs; /* number of outputs */
/*
* List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
* self or base factor clock refers to the output from the pll
* itself. The remaining refer to fixed or configurable divider
* outputs.
*/
struct {
u8 self; /* is it the base factor clock? (only one) */
u8 fixed; /* is it a fixed divisor? if not... */
struct clk_div_table *table; /* is it a table based divisor? */
u8 shift; /* otherwise it's a normal divisor with this shift */
u8 pow; /* is it power-of-two based? */
u8 gate; /* is it independently gateable? */
} div[SUNXI_DIVS_MAX_QTY];
};
static struct clk_div_table pll6_sata_tbl[] = {
{ .val = 0, .div = 6, },
{ .val = 1, .div = 12, },
{ .val = 2, .div = 18, },
{ .val = 3, .div = 24, },
{ } /* sentinel */
};
static const struct divs_data pll5_divs_data __initconst = {
.factors = &sun4i_pll5_data,
.ndivs = 2,
.div = {
{ .shift = 0, .pow = 0, }, /* M, DDR */
{ .shift = 16, .pow = 1, }, /* P, other */
/* No output for the base factor clock */
}
};
static const struct divs_data pll6_divs_data __initconst = {
.factors = &sun4i_pll6_data,
.ndivs = 4,
.div = {
{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
{ .fixed = 2 }, /* P, other */
{ .self = 1 }, /* base factor clock, 2x */
{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
}
};
static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
.factors = &sun6i_a31_pll6_data,
.ndivs = 2,
.div = {
{ .fixed = 2 }, /* normal output */
{ .self = 1 }, /* base factor clock, 2x */
}
};
/**
* sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
*
* These clocks look something like this
* ________________________
* | ___divisor 1---|----> to consumer
* parent >--| pll___/___divisor 2---|----> to consumer
* | \_______________|____> to consumer
* |________________________|
*/
static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
const struct divs_data *data)
{
struct clk_onecell_data *clk_data;
const char *parent;
const char *clk_name;
struct clk **clks, *pclk;
struct clk_hw *gate_hw, *rate_hw;
const struct clk_ops *rate_ops;
struct clk_gate *gate = NULL;
struct clk_fixed_factor *fix_factor;
struct clk_divider *divider;
void __iomem *reg;
int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
int flags, clkflags;
/* if number of children known, use it */
if (data->ndivs)
ndivs = data->ndivs;
/* Set up factor clock that we will be dividing */
pclk = sunxi_factors_clk_setup(node, data->factors);
if (!pclk)
return NULL;
parent = __clk_get_name(pclk);
reg = of_iomap(node, 0);
if (!reg) {
pr_err("Could not map registers for divs-clk: %s\n",
of_node_full_name(node));
return NULL;
}
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
if (!clk_data)
goto out_unmap;
clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
if (!clks)
goto free_clkdata;
clk_data->clks = clks;
/* It's not a good idea to have automatic reparenting changing
* our RAM clock! */
clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
for (i = 0; i < ndivs; i++) {
if (of_property_read_string_index(node, "clock-output-names",
i, &clk_name) != 0)
break;
/* If this is the base factor clock, only update clks */
if (data->div[i].self) {
clk_data->clks[i] = pclk;
continue;
}
gate_hw = NULL;
rate_hw = NULL;
rate_ops = NULL;
/* If this leaf clock can be gated, create a gate */
if (data->div[i].gate) {
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate)
goto free_clks;
gate->reg = reg;
gate->bit_idx = data->div[i].gate;
gate->lock = &clk_lock;
gate_hw = &gate->hw;
}
/* Leaves can be fixed or configurable divisors */
if (data->div[i].fixed) {
fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
if (!fix_factor)
goto free_gate;
fix_factor->mult = 1;
fix_factor->div = data->div[i].fixed;
rate_hw = &fix_factor->hw;
rate_ops = &clk_fixed_factor_ops;
} else {
divider = kzalloc(sizeof(*divider), GFP_KERNEL);
if (!divider)
goto free_gate;
flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
divider->reg = reg;
divider->shift = data->div[i].shift;
divider->width = SUNXI_DIVISOR_WIDTH;
divider->flags = flags;
divider->lock = &clk_lock;
divider->table = data->div[i].table;
rate_hw = &divider->hw;
rate_ops = &clk_divider_ops;
}
/* Wrap the (potential) gate and the divisor on a composite
* clock to unify them */
clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
NULL, NULL,
rate_hw, rate_ops,
gate_hw, &clk_gate_ops,
clkflags);
WARN_ON(IS_ERR(clk_data->clks[i]));
}
/* Adjust to the real max */
clk_data->clk_num = i;
if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
pr_err("%s: failed to add clock provider for %s\n",
__func__, clk_name);
goto free_gate;
}
return clks;
free_gate:
kfree(gate);
free_clks:
kfree(clks);
free_clkdata:
kfree(clk_data);
out_unmap:
iounmap(reg);
return NULL;
}
static void __init sun4i_pll5_clk_setup(struct device_node *node)
{
struct clk **clks;
clks = sunxi_divs_clk_setup(node, &pll5_divs_data);
if (!clks)
return;
/* Protect PLL5_DDR */
__clk_get(clks[0]);
clk_prepare_enable(clks[0]);
}
CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
sun4i_pll5_clk_setup);
static void __init sun4i_pll6_clk_setup(struct device_node *node)
{
sunxi_divs_clk_setup(node, &pll6_divs_data);
}
CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
sun4i_pll6_clk_setup);
static void __init sun6i_pll6_clk_setup(struct device_node *node)
{
sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
}
CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
sun6i_pll6_clk_setup);