Commit Graph

18 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Steven King
2d24b532f9 m68knommu: platform support for i2c devices on ColdFire SoC
These changes based on work by Steven King <sfking@fdwdc.com> to support
the i2c hardware modules on ColdFire SoC family devices.

This is the per SoC hardware support. Contains a common platform device
setup. Each of the SoC family members tends to have some minor local
setup required to initialize the module. But all ColdFire family members
use the same i2c hardware module.

This i2c hardware module is the same as used in the Freescale iMX ARM
based family of SoC devices. Steven's original patches were based on using
a new and different i2c-coldfire.c driver. But this is not neccessary as
we can use the existing Linux i2c-imx.c driver with no change required to
it. And this patch is now based on using the existing i2c-imx driver.

This patch only contains the ColdFire platform changes.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Tested-by: Angelo Dureghello <angelo@sysam.it>
2016-12-05 08:53:27 +10:00
Greg Ungerer
8cf4a973b4 m68k: generalize io memory region setup for ColdFire ACR registers
The ACR registers of the ColdFire define at a macro level what regions
of the addresses space should have caching or other attribute types applied.

Currently for the MMU enabled setups we map the interal IO peripheral addres
space as uncachable based on the define for the MBAR address (CONFIG_MBAR).
Not all ColdFire SoC use a programmable MBAR register address. Some parts
have fixed addressing for their internal peripheral registers.

Generalize the way we get the internal peripheral base address so all types
can be accomodated in the ACR definitions. Each ColdFire SoC type now sets
its IO memory base and size definitions (which may be based on MBAR) which
are then used in the ACR definitions.

Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2016-09-26 12:02:58 +10:00
Greg Ungerer
cbd5b982f6 m68k: report correct FPU type on ColdFire MMU platforms
Not all ColdFire SoC parts that have an MMU also have an FPU - so set
an FPU type (via m68k_fputype) appropriate for the configured platform.

With this set correctly /proc/cpuinfo will report FPU "none" on devices
that don't have one. And kernel code paths that initialize FPU hardware
will now only execute if an FPU is actually present.

Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2016-09-26 12:02:58 +10:00
Greg Ungerer
81d33350ba m68k: set appropriate machine type for m5411x SoC platforms
Create a new machine type for platforms based around the ColdFire 5441x
SoC family. Set that machine type on startup when building for this
platform type.

Currently the ColdFire head.S hard codes a M54xx machine type at startup -
since that is the only platform type currently supported with MMU enabled.
The m5441x has an MMU and this change forms part of the support required
to run it with the MMU enabled.

Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2016-09-26 12:02:58 +10:00
Steven King
83c6bdb827 m68knommu: Implement gpio support for m54xx.
Singed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2014-05-26 13:28:38 +10:00
Greg Ungerer
632306f245 m68knommu: clean up Pin Assignment definitions for the 54xx ColdFire CPU
The Pin Assignment register definitions for the ColdFire 54xx CPU family are
inconsistently named and defined compared to the other ColdFire part
definitions. Rename them with the same prefix as used on other parts,
MCFGPIO_PAR_, and make their definitions include the MCF_MBAR periphperal
region offset.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27 23:34:02 +10:00
Greg Ungerer
f2f41c68ea m68knommu: move ColdFire slice timer address defiens to 54xx header
Move the base address defines of the ColdFire 54xx CPU slice timers into the
54xx specific header (m54xxsim.h). They are CPU specific, and belong with the
CPU specific defines. Also make them relative to the MBAR peripheral region,
making the define the absolute address.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27 23:34:01 +10:00
Greg Ungerer
32be2acc7c m68k: add PCI bus support definitions for the ColdFire M54xx SoC family
Add all the required definitoins to support the ColdFire M54xx SoC PCI
hardware unit. These are strait out of the MCF5475 Reference Manual.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-07-17 15:49:42 +10:00
Greg Ungerer
bbbeeaf2f7 m68knommu: make 54xx UART platform addressing consistent
If we make all UART addressing consistent across all ColdFire family members
then we will be able to remove the duplicated plaform data and use a single
setup for all.

So modify the ColdFire 54xx UART addressing so that:

. UARTs are numbered from 0 up
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-03-05 09:43:06 +10:00
Greg Ungerer
57b481436f m68knommu: external interrupt support to ColdFire intc-2 controller
The EDGE Port module of some ColdFire parts using the intc-2 interrupt
controller provides support for 7 external interrupts. These interrupts
go off-chip (that is they are not for internal peripherals). They need
some special handling and have some extra setup registers. Add code to
support them.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15 21:01:57 +10:00
Greg Ungerer
ce3de78a1c m68knommu: remove ColdFire CLOCK_DIV config option
The reality is that you do not need the abiltity to configure the
clock divider for ColdFire CPUs. It is a fixed ratio on any given
ColdFire family member. It is not the same for all ColdFire parts,
but it is always the same in a model range. So hard define the divider
for each supported ColdFire CPU type and remove the Kconfig option.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15 21:01:57 +10:00
Greg Ungerer
254eef7464 m68knommu: remove kludge seting of MCF_IPSBAR for ColdFire 54xx
The ColdFire 54xx family shares the same interrupt controller used
on the 523x, 527x and 528x ColdFire parts, but it isn't offset
relative to the IPSBAR register. The 54xx doesn't have an IPSBAR
register.

By including the base address of the peripheral registers in the register
definitions (MCFICM_INTC0 and MCFICM_INTC1 in this case) we can avoid
having to define a fake IPSBAR for the 54xx. And this makes the register
address definitions of these more consistent, the majority of the other
register address defines include the peripheral base address already.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15 21:01:53 +10:00
Greg Ungerer
3d461401eb m68knommu: move inclusion of ColdFire v4 cache registers
Move the inclusion of the version 4 cache controller registers so that
it is with all the other register bit flag definitions. This makes it
consistent with the other version core inclusion points, and means we
don't need "#ifdef"ery in odd-ball places for these definitions.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:18 +10:00
Greg Ungerer
57015421d3 m68knommu: move UART addressing to part specific includes
The ColdFire UART base addresses varies between the different ColdFire
family members. Instead of keeping the base addresses with the UART
definitions keep them with the other addresses definitions for each
ColdFire part.

The motivation for this move is so that when we add new ColdFire
part definitions, they are all in a single file (and we shouldn't
normally need to modify the UART definitions in mcfuart.h at all).

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:17 +10:00
Greg Ungerer
733f31b764 m68knommu: fix clock rate value reported for ColdFire 54xx parts
The instruction timings of the ColdFire 54xx family parts are
different to other version 4 parts (or version 2 or 3 parts for
that matter too).

Move the instruction timing setting into the ColdFire part
specific headers, and set the 54xx value appropriately.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:17 +10:00
Greg Ungerer
7fc82b655a m68knommu: move ColdFire CPU names into their headers
Move the ColdFire CPU names out of setup.c and into their repsective
headers. That way when we add new ones we won't need to modify
setup.c any more.

Add the missing 548x CPU name.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:17 +10:00
Greg Ungerer
5b2e6555ac m68knommu: make Coldfire 548x support more generic
The ColdFire 547x family of processors is very similar to the ColdFire
548x series. Almost all of the support for them is the same. Make the
code supporting the 548x more gneric, so it will be capable of
supporting both families.

For the most part this is a renaming excerise to make the support
code more obviously apply to both families.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05 15:19:17 +10:00