In the compacted form, XSAVES may save only the XMM+SSE state but skip
FP (x87 state).
This is denoted by header->xfeatures = 6. The fastpath
(copy_fpregs_to_sigframe()) does that but _also_ initialises the FP
state (cwd to 0x37f, mxcsr as we do, remaining fields to 0).
The slowpath (copy_xstate_to_user()) leaves most of the FP
state untouched. Only mxcsr and mxcsr_flags are set due to
xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set
unconditionally, see
04944b793e ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"),
on return from the signal, random garbage is loaded as the FP state.
Instead of utilizing copy_xstate_to_user(), fault-in the user memory
and retry the fast path. Ideally, the fast path succeeds on the second
attempt but may be retried again if the memory is swapped out due
to memory pressure. If the user memory can not be faulted-in then
get_user_pages() returns an error so we don't loop forever.
Fault in memory via get_user_pages_unlocked() so
copy_fpregs_to_sigframe() succeeds without a fault.
Fixes: 69277c98f5 ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()")
Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: "linux-mm@kvack.org" <linux-mm@kvack.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
Pull perf fixes from Ingo Molnar:
"I'd like to apologize for this very late pull request: I was dithering
through the week whether to send the fixes, and then yesterday Jiri's
crash fix for a regression introduced in this cycle clearly marked
perf/urgent as 'must merge now'.
Most of the commits are tooling fixes, plus there's three kernel fixes
via four commits:
- race fix in the Intel PEBS code
- fix an AUX bug and roll back a previous attempt
- fix AMD family 17h generic HW cache-event perf counters
The largest diffstat contribution comes from the AMD fix - a new event
table is introduced, which is a fairly low risk change but has a large
linecount"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Fix race in intel_pmu_disable_event()
perf/x86/intel/pt: Remove software double buffering PMU capability
perf/ring_buffer: Fix AUX software double buffering
perf tools: Remove needless asm/unistd.h include fixing build in some places
tools arch uapi: Copy missing unistd.h headers for arc, hexagon and riscv
tools build: Add -ldl to the disassembler-four-args feature test
perf cs-etm: Always allocate memory for cs_etm_queue::prev_packet
perf cs-etm: Don't check cs_etm_queue::prev_packet validity
perf report: Report OOM in status line in the GTK UI
perf bench numa: Add define for RUSAGE_THREAD if not present
tools lib traceevent: Change tag string for error
perf annotate: Fix build on 32 bit for BPF annotation
tools uapi x86: Sync vmx.h with the kernel
perf bpf: Return value with unlocking in perf_env__find_btf()
MAINTAINERS: Include vendor specific files under arch/*/events/*
perf/x86/amd: Update generic hardware cache events for Family 17h
Pull x86 fix from Ingo Molnar:
"Disable function tracing during early SME setup to fix a boot crash on
SME-enabled kernels running distro kernels (some of which have
function tracing enabled)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/mem_encrypt: Disable all instrumentation for early SME setup
Poking-mm initialization might require to duplicate the PGD in early
stage. Initialize the PGD cache earlier to prevent boot failures.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4fc19708b1 ("x86/alternatives: Initialize temporary mm for patching")
Link: http://lkml.kernel.org/r/20190505011124.39692-1-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
New race in x86_pmu_stop() was introduced by replacing the
atomic __test_and_clear_bit() of cpuc->active_mask by separate
test_bit() and __clear_bit() calls in the following commit:
3966c3feca ("x86/perf/amd: Remove need to check "running" bit in NMI handler")
The race causes panic for PEBS events with enabled callchains:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
...
RIP: 0010:perf_prepare_sample+0x8c/0x530
Call Trace:
<NMI>
perf_event_output_forward+0x2a/0x80
__perf_event_overflow+0x51/0xe0
handle_pmi_common+0x19e/0x240
intel_pmu_handle_irq+0xad/0x170
perf_event_nmi_handler+0x2e/0x50
nmi_handle+0x69/0x110
default_do_nmi+0x3e/0x100
do_nmi+0x11a/0x180
end_repeat_nmi+0x16/0x1a
RIP: 0010:native_write_msr+0x6/0x20
...
</NMI>
intel_pmu_disable_event+0x98/0xf0
x86_pmu_stop+0x6e/0xb0
x86_pmu_del+0x46/0x140
event_sched_out.isra.97+0x7e/0x160
...
The event is configured to make samples from PEBS drain code,
but when it's disabled, we'll go through NMI path instead,
where data->callchain will not get allocated and we'll crash:
x86_pmu_stop
test_bit(hwc->idx, cpuc->active_mask)
intel_pmu_disable_event(event)
{
...
intel_pmu_pebs_disable(event);
...
EVENT OVERFLOW -> <NMI>
intel_pmu_handle_irq
handle_pmi_common
TEST PASSES -> test_bit(bit, cpuc->active_mask))
perf_event_overflow
perf_prepare_sample
{
...
if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
data->callchain = perf_callchain(event, regs);
CRASH -> size += data->callchain->nr;
}
</NMI>
...
x86_pmu_disable_event(event)
}
__clear_bit(hwc->idx, cpuc->active_mask);
Fixing this by disabling the event itself before setting
off the PEBS bit.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Arcari <darcari@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Lendacky Thomas <Thomas.Lendacky@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 3966c3feca ("x86/perf/amd: Remove need to check "running" bit in NMI handler")
Link: http://lkml.kernel.org/r/20190504151556.31031-1-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Fix old Windows versions on AMD (recent regression)
* Fix old Linux versions on processors without EPT
* Fixes for LAPIC timer optimizations
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAlzMc18UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNE0ggAj4c9FVC5aFeiBAj1YIcDijT3UtmG
AjhoESE61rZI3PkZ5vcj2GC8eS7sKxExpCrQLsB5rLCF+7X90+tW155BHTHGU0ey
ZgfGj23vlbZpvwZ4B5ujQ/Lmpry76pmy8EYekQogPP/eJxOB3oMk06tjh1mfSdIn
D4Gj8jvYBB2ygAfmW91+YLLZos56id0N+Hyn/s95w4I1o6hKlkdpTOURAJKSGTb1
2t0+XADUt4ZwPM6+2X/eOBMGpeZP0/eR7H3kdyPy3ydm0sFjMiAAs0NbNp3eblB6
oqnytnGUPt8EEoq+wdZahLTbgJst2Ds++XAvVdBZED7zwGaBSETfg03eCg==
=YP4M
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- PPC and ARM bugfixes from submaintainers
- Fix old Windows versions on AMD (recent regression)
- Fix old Linux versions on processors without EPT
- Fixes for LAPIC timer optimizations
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (21 commits)
KVM: nVMX: Fix size checks in vmx_set_nested_state
KVM: selftests: make hyperv_cpuid test pass on AMD
KVM: lapic: Check for in-kernel LAPIC before deferencing apic pointer
KVM: fix KVM_CLEAR_DIRTY_LOG for memory slots of unaligned size
x86/kvm/mmu: reset MMU context when 32-bit guest switches PAE
KVM: x86: Whitelist port 0x7e for pre-incrementing %rip
Documentation: kvm: fix dirty log ioctl arch lists
KVM: VMX: Move RSB stuffing to before the first RET after VM-Exit
KVM: arm/arm64: Don't emulate virtual timers on userspace ioctls
kvm: arm: Skip stage2 huge mappings for unaligned ipa backed by THP
KVM: arm/arm64: Ensure vcpu target is unset on reset failure
KVM: lapic: Convert guest TSC to host time domain if necessary
KVM: lapic: Allow user to disable adaptive tuning of timer advancement
KVM: lapic: Track lapic timer advance per vCPU
KVM: lapic: Disable timer advancement if adaptive tuning goes haywire
x86: kvm: hyper-v: deal with buggy TLB flush requests from WS2012
KVM: x86: Consider LAPIC TSC-Deadline timer expired if deadline too short
KVM: PPC: Book3S: Protect memslots while validating user address
KVM: PPC: Book3S HV: Perserve PSSCR FAKE_SUSPEND bit on guest exit
KVM: arm/arm64: vgic-v3: Retire pending interrupts on disabling LPIs
...
Now that all AUX allocations are high-order by default, the software
double buffering PMU capability doesn't make sense any more, get rid
of it. In case some PMUs choose to opt out, we can re-introduce it.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Link: http://lkml.kernel.org/r/20190503085536.24119-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new amd_hw_cache_event_ids_f17h assignment structure set
for AMD families 17h and above, since a lot has changed. Specifically:
L1 Data Cache
The data cache access counter remains the same on Family 17h.
For DC misses, PMCx041's definition changes with Family 17h,
so instead we use the L2 cache accesses from L1 data cache
misses counter (PMCx060,umask=0xc8).
For DC hardware prefetch events, Family 17h breaks compatibility
for PMCx067 "Data Prefetcher", so instead, we use PMCx05a "Hardware
Prefetch DC Fills."
L1 Instruction Cache
PMCs 0x80 and 0x81 (32-byte IC fetches and misses) are backward
compatible on Family 17h.
For prefetches, we remove the erroneous PMCx04B assignment which
counts how many software data cache prefetch load instructions were
dispatched.
LL - Last Level Cache
Removing PMCs 7D, 7E, and 7F assignments, as they do not exist
on Family 17h, where the last level cache is L3. L3 counters
can be accessed using the existing AMD Uncore driver.
Data TLB
On Intel machines, data TLB accesses ("dTLB-loads") are assigned
to counters that count load/store instructions retired. This
is inconsistent with instruction TLB accesses, where Intel
implementations report iTLB misses that hit in the STLB.
Ideally, dTLB-loads would count higher level dTLB misses that hit
in lower level TLBs, and dTLB-load-misses would report those
that also missed in those lower-level TLBs, therefore causing
a page table walk. That would be consistent with instruction
TLB operation, remove the redundancy between dTLB-loads and
L1-dcache-loads, and prevent perf from producing artificially
low percentage ratios, i.e. the "0.01%" below:
42,550,869 L1-dcache-loads
41,591,860 dTLB-loads
4,802 dTLB-load-misses # 0.01% of all dTLB cache hits
7,283,682 L1-dcache-stores
7,912,392 dTLB-stores
310 dTLB-store-misses
On AMD Families prior to 17h, the "Data Cache Accesses" counter is
used, which is slightly better than load/store instructions retired,
but still counts in terms of individual load/store operations
instead of TLB operations.
So, for AMD Families 17h and higher, this patch assigns "dTLB-loads"
to a counter for L1 dTLB misses that hit in the L2 dTLB, and
"dTLB-load-misses" to a counter for L1 DTLB misses that caused
L2 DTLB misses and therefore also caused page table walks. This
results in a much more accurate view of data TLB performance:
60,961,781 L1-dcache-loads
4,601 dTLB-loads
963 dTLB-load-misses # 20.93% of all dTLB cache hits
Note that for all AMD families, data loads and stores are combined
in a single accesses counter, so no 'L1-dcache-stores' are reported
separately, and stores are counted with loads in 'L1-dcache-loads'.
Also note that the "% of all dTLB cache hits" string is misleading
because (a) "dTLB cache": although TLBs can be considered caches for
page tables, in this context, it can be misinterpreted as data cache
hits because the figures are similar (at least on Intel), and (b) not
all those loads (technically accesses) technically "hit" at that
hardware level. "% of all dTLB accesses" would be more clear/accurate.
Instruction TLB
On Intel machines, 'iTLB-loads' measure iTLB misses that hit in the
STLB, and 'iTLB-load-misses' measure iTLB misses that also missed in
the STLB and completed a page table walk.
For AMD Family 17h and above, for 'iTLB-loads' we replace the
erroneous instruction cache fetches counter with PMCx084
"L1 ITLB Miss, L2 ITLB Hit".
For 'iTLB-load-misses' we still use PMCx085 "L1 ITLB Miss,
L2 ITLB Miss", but set a 0xff umask because without it the event
does not get counted.
Branch Predictor (BPU)
PMCs 0xc2 and 0xc3 continue to be valid across all AMD Families.
Node Level Events
Family 17h does not have a PMCx0e9 counter, and corresponding counters
have not been made available publicly, so for now, we mark them as
unsupported for Families 17h and above.
Reference:
"Open-Source Register Reference For AMD Family 17h Processors Models 00h-2Fh"
Released 7/17/2018, Publication #56255, Revision 3.03:
https://www.amd.com/system/files/TechDocs/56255_OSRR.pdf
[ mingo: tidied up the line breaks. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Cc: <stable@vger.kernel.org> # v4.9+
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Liška <mliska@suse.cz>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Cc: linux-perf-users@vger.kernel.org
Fixes: e40ed1542d ("perf/x86: Add perf support for AMD family-17h processors")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current method to compare 64-bit numbers for conditional jump is:
1) Compare the high 32-bit first.
2) If the high 32-bit isn't the same, then goto step 4.
3) Compare the low 32-bit.
4) Check the desired condition.
This method is right for unsigned comparison, but it is buggy for signed
comparison, because it does signed comparison for low 32-bit too.
There is only one sign bit in 64-bit number, that is the MSB in the 64-bit
number, it is wrong to treat low 32-bit as signed number and do the signed
comparison for it.
This patch fixes the bug and adds a testcase in selftests/bpf for such bug.
Signed-off-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The pvlock_page and hvclock_page variables are (as the name implies)
addresses to pages, created by the linker script.
But we declared them as just "extern u8" variables, which _works_, but
now that gcc does some more bounds checking, it causes warnings like
warning: array subscript 1 is outside array bounds of ‘u8[1]’
when we then access more than one byte from those variables.
Fix this by simply making the declaration of the variables match
reality, which makes the compiler happy too.
Signed-off-by: Linus Torvalds <torvalds@-linux-foundation.org>
The size checks in vmx_nested_state are wrong because the calculations
are made based on the size of a pointer to a struct kvm_nested_state
rather than the size of a struct kvm_nested_state.
Reported-by: Felix Wilhelm <fwilhelm@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Drew Schmitt <dasch@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Fixes: 8fcc4b5923
Cc: stable@ver.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use specific inline functions for RIP and RSP instead of
going through kvm_register_read and kvm_register_write,
which are quite a mouthful. kvm_rsp_read and kvm_rsp_write
did not exist, so add them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... now that there is no overhead when using dedicated accessors.
Opportunistically remove a bogus "FIXME" in handle_rdmsr() regarding
the upper 32 bits of RAX and RDX. Zeroing the upper 32 bits is
architecturally correct as 32-bit writes in 64-bit mode unconditionally
clear the upper 32 bits.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Except for RSP and RIP, which are held in VMX's VMCS, GPRs are always
treated "available and dirtly" on both VMX and SVM, i.e. are
unconditionally loaded/saved immediately before/after VM-Enter/VM-Exit.
Eliminating the unnecessary caching code reduces the size of KVM by a
non-trivial amount, much of which comes from the most common code paths.
E.g. on x86_64, kvm_emulate_cpuid() is reduced from 342 to 182 bytes and
kvm_emulate_hypercall() from 1362 to 1143, with the total size of KVM
dropping by ~1000 bytes. With CONFIG_RETPOLINE=y, the numbers are even
more pronounced, e.g.: 353->182, 1418->1172 and well over 2000 bytes.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pfn_valid check is not sufficient because it only checks if a page has a struct
page or not, if "mem=" was passed to the kernel some valid pages won't have a
struct page. This means that if guests were assigned valid memory that lies
after the mem= boundary it will be passed uncached to the guest no matter what
the guest caching attributes are for this memory.
Introduce a new function e820__mapped_raw_any which is equivalent to
e820__mapped_any but uses the original e820 unmodified and use it to
identify real *RAM*.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use page_address_valid in a few more locations that is already checking for
a page aligned address that does not cross the maximum physical address.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map for accessing the enlightened VMCS since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map for accessing the shadow VMCS since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzessutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the new mapping API for mapping guest memory to avoid depending on
"struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map in emulator_cmpxchg_emulated since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <kjonrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map when mapping the posted interrupt descriptor table since
using kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory
that has a "struct page".
One additional semantic change is that the virtual host mapping lifecycle
has changed a bit. It now has the same lifetime of the pinning of the
interrupt descriptor table page on the host side.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map when mapping the virtual APIC page since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
One additional semantic change is that the virtual host mapping lifecycle
has changed a bit. It now has the same lifetime of the pinning of the
virtual APIC page on the host side.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map when mapping the L1 MSR bitmap since using
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_map to the map the VMCS12 from guest memory because
kvm_vcpu_gpa_to_page() and kmap() will only work for guest memory that has
a "struct page".
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
cmpxchg_gpte() calls get_user_pages_fast() to retrieve the number of
pages and the respective struct page to map in the kernel virtual
address space.
This doesn't work if get_user_pages_fast() is invoked with a userspace
virtual address that's backed by PFNs outside of kernel reach (e.g., when
limiting the kernel memory with mem= in the command line and using
/dev/mem to map memory).
If get_user_pages_fast() fails, look up the VMA that back the userspace
virtual address, compute the PFN and the physical address, and map it in
the kernel virtual address space with memremap().
Signed-off-by: Filippo Sironi <sironi@amazon.de>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update the PML table without mapping and unmapping the page. This also
avoids using kvm_vcpu_gpa_to_page(..) which assumes that there is a "struct
page" for guest memory.
As a side-effect of using kvm_write_guest_page the page is also properly
marked as dirty.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Read the data directly from guest memory instead of the map->read->unmap
sequence. This also avoids using kvm_vcpu_gpa_to_page() and kmap() which
assumes that there is a "struct page" for guest memory.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hardware configuration register has some useful bits which can be
used by guests. Implement McStatusWrEn which can be used by guests when
injecting MCEs with the in-kernel mce-inject module.
For that, we need to set bit 18 - McStatusWrEn - first, before writing
the MCi_STATUS registers (otherwise we #GP).
Add the required machinery to do so.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: KVM <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The capabilities header depends on asm/vmx.h but doesn't explicitly
include said file. This currently doesn't cause problems as all users
of capbilities.h first include asm/vmx.h, but the issue often results in
build errors if someone starts moving things around the VMX files.
Fixes: 3077c19108 ("KVM: VMX: Move capabilities structs and helpers to dedicated file")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Smatch complains about this:
arch/x86/kvm/vmx/vmx.c:5730 dump_vmcs()
warn: KERN_* level not at start of string
The code should be using pr_cont() instead of pr_err().
Fixes: 9d609649bb ("KVM: vmx: print more APICv fields in dump_vmcs")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ten percent of nothin' is... let me do the math here. Nothin' into
nothin', carry the nothin'...
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Checking for a pending non-periodic interrupt in start_hv_timer() leads
to restart_apic_timer() making an unnecessary call to start_sw_timer()
due to start_hv_timer() returning false.
Alternatively, start_hv_timer() could return %true when there is a
pending non-periodic interrupt, but that approach is less intuitive,
i.e. would require a beefy comment to explain an otherwise simple check.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor kvm_x86_ops->set_hv_timer to use an explicit parameter for
stating that the timer has expired. Overloading the return value is
unnecessarily clever, e.g. can lead to confusion over the proper return
value from start_hv_timer() when r==1.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly call cancel_hv_timer() instead of returning %false to coerce
restart_apic_timer() into canceling it by way of start_sw_timer().
Functionally, the existing code is correct in the sense that it doesn't
doing anything visibily wrong, e.g. generate spurious interrupts or miss
an interrupt. But it's extremely confusing and inefficient, e.g. there
are multiple extraneous calls to apic_timer_expired() that effectively
get dropped due to @timer_pending being %true.
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that VMX's preemption timer, i.e. the hv_timer, also adjusts its
programmed time based on lapic_timer_advance_ns. Without the delay, a
guest can see a timer interrupt arrive before the requested time when
KVM is using the hv_timer to emulate the guest's interrupt.
Fixes: c5ce8235cf ("KVM: VMX: Optimize tscdeadline timer latency")
Cc: <stable@vger.kernel.org>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commits 668fffa3f8 ("kvm: better MWAIT emulation for guestsâ€)
and 4d5422cea3 ("KVM: X86: Provide a capability to disable MWAIT interceptsâ€),
KVM was modified to allow an admin to configure certain guests to execute
MONITOR/MWAIT inside guest without being intercepted by host.
This is useful in case admin wishes to allocate a dedicated logical
processor for each vCPU thread. Thus, making it safe for guest to
completely control the power-state of the logical processor.
The ability to use this new KVM capability was introduced to QEMU by
commits 6f131f13e68d ("kvm: support -overcommit cpu-pm=on|offâ€) and
2266d4431132 ("i386/cpu: make -cpu host support monitor/mwaitâ€).
However, exposing MONITOR/MWAIT to a Linux guest may cause it's intel_idle
kernel module to execute c1e_promotion_disable() which will attempt to
RDMSR/WRMSR from/to MSR_IA32_POWER_CTL to manipulate the "C1E Enable"
bit. This behaviour was introduced by commit
32e9518005 ("intel_idle: export both C1 and C1Eâ€).
Becuase KVM doesn't emulate this MSR, running KVM with ignore_msrs=0
will cause the above guest behaviour to raise a #GP which will cause
guest to kernel panic.
Therefore, add support for nop emulation of MSR_IA32_POWER_CTL to
avoid #GP in guest in this scenario.
Future commits can optimise emulation further by reflecting guest
MSR changes to host MSR to provide guest with the ability to
fine-tune the dedicated logical processor power-state.
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let guests clear the Intel PT ToPA PMI status (bit 55 of
MSR_CORE_PERF_GLOBAL_OVF_CTRL).
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it
to 'gpte_size'") introduced a regression: 32-bit PAE guests stopped
working. The issue appears to be: when guest switches (enables) PAE we need
to re-initialize MMU context (set context->root_level, do
reset_rsvds_bits_mask(), ...) but init_kvm_tdp_mmu() doesn't do that
because we threw away is_pae(vcpu) flag from mmu role. Restore it to
kvm_mmu_extended_role (as we now don't need it in base role) to fix
the issue.
Fixes: 47c42e6b41 ("KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM's recent bug fix to update %rip after emulating I/O broke userspace
that relied on the previous behavior of incrementing %rip prior to
exiting to userspace. When running a Windows XP guest on AMD hardware,
Qemu may patch "OUT 0x7E" instructions in reaction to the OUT itself.
Because KVM's old behavior was to increment %rip before exiting to
userspace to handle the I/O, Qemu manually adjusted %rip to account for
the OUT instruction.
Arguably this is a userspace bug as KVM requires userspace to re-enter
the kernel to complete instruction emulation before taking any other
actions. That being said, this is a bit of a grey area and breaking
userspace that has worked for many years is bad.
Pre-increment %rip on OUT to port 0x7e before exiting to userspace to
hack around the issue.
Fixes: 45def77ebf ("KVM: x86: update %rip after emulating IO")
Reported-by: Simon Becherer <simon@becherer.de>
Reported-and-tested-by: Iakov Karpov <srid@rkmail.ru>
Reported-by: Gabriele Balducci <balducci@units.it>
Reported-by: Antti Antinoja <reader@fennosys.fi>
Cc: stable@vger.kernel.org
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enablement of AMD's Secure Memory Encryption feature is determined very
early after start_kernel() is entered. Part of this procedure involves
scanning the command line for the parameter 'mem_encrypt'.
To determine intended state, the function sme_enable() uses library
functions cmdline_find_option() and strncmp(). Their use occurs early
enough such that it cannot be assumed that any instrumentation subsystem
is initialized.
For example, making calls to a KASAN-instrumented function before KASAN
is set up will result in the use of uninitialized memory and a boot
failure.
When AMD's SME support is enabled, conditionally disable instrumentation
of these dependent functions in lib/string.c and arch/x86/lib/cmdline.c.
[ bp: Get rid of intermediary nostackp var and cleanup whitespace. ]
Fixes: aca20d5462 ("x86/mm: Add support to make use of Secure Memory Encryption")
Reported-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Gary R Hook <gary.hook@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Boris Brezillon <bbrezillon@kernel.org>
Cc: Coly Li <colyli@suse.de>
Cc: "dave.hansen@linux.intel.com" <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: "luto@kernel.org" <luto@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "mingo@redhat.com" <mingo@redhat.com>
Cc: "peterz@infradead.org" <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/155657657552.7116.18363762932464011367.stgit@sosrh3.amd.com
Add a comment to clarify that users of text_poke() must ensure that
no races with module removal take place.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-22-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-21-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-20-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make hibernate handle unmapped pages on the direct map when
CONFIG_ARCH_HAS_SET_ALIAS=y is set. These functions allow for setting pages
to invalid configurations, so now hibernate should check if the pages have
valid mappings and handle if they are unmapped when doing a hibernate
save operation.
Previously this checking was already done when CONFIG_DEBUG_PAGEALLOC=y
was configured. It does not appear to have a big hibernating performance
impact. The speed of the saving operation before this change was measured
as 819.02 MB/s, and after was measured at 813.32 MB/s.
Before:
[ 4.670938] PM: Wrote 171996 kbytes in 0.21 seconds (819.02 MB/s)
After:
[ 4.504714] PM: Wrote 178932 kbytes in 0.22 seconds (813.32 MB/s)
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-16-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add two new functions set_direct_map_default_noflush() and
set_direct_map_invalid_noflush() for setting the direct map alias for the
page to its default valid permissions and to an invalid state that cannot
be cached in a TLB, respectively. These functions do not flush the TLB.
Note, __kernel_map_pages() does something similar but flushes the TLB and
doesn't reset the permission bits to default on all architectures.
Also add an ARCH config ARCH_HAS_SET_DIRECT_MAP for specifying whether
these have an actual implementation or a default empty one.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-15-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are only two types of text poking: early and breakpoint based. The use
of a function pointer to perform text poking complicates the code and is
probably inefficient due to the use of indirect branches.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-13-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When modules and BPF filters are loaded, there is a time window in
which some memory is both writable and executable. An attacker that has
already found another vulnerability (e.g., a dangling pointer) might be
able to exploit this behavior to overwrite kernel code. Prevent having
writable executable PTEs in this stage.
In addition, avoiding having W+X mappings can also slightly simplify the
patching of modules code on initialization (e.g., by alternatives and
static-key), as would be done in the next patch. This was actually the
main motivation for this patch.
To avoid having W+X mappings, set them initially as RW (NX) and after
they are set as RO set them as X as well. Setting them as executable is
done as a separate step to avoid one core in which the old PTE is cached
(hence writable), and another which sees the updated PTE (executable),
which would break the W^X protection.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lkml.kernel.org/r/20190426001143.4983-12-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Set the page as executable after allocation. This patch is a
preparatory patch for a following patch that makes module allocated
pages non-executable.
While at it, do some small cleanup of what appears to be unnecessary
masking.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-11-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since alloc_module() will not set the pages as executable soon, set
ftrace trampoline pages as executable after they are allocated.
For the time being, do not change ftrace to use the text_poke()
interface. As a result, ftrace still breaks W^X.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-10-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() already ensures that the written value is the correct one
and fails if that is not the case. There is no need for an additional
comparison. Remove it.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-9-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() can potentially compromise security as it sets temporary
PTEs in the fixmap. These PTEs might be used to rewrite the kernel code
from other cores accidentally or maliciously, if an attacker gains the
ability to write onto kernel memory.
Moreover, since remote TLBs are not flushed after the temporary PTEs are
removed, the time-window in which the code is writable is not limited if
the fixmap PTEs - maliciously or accidentally - are cached in the TLB.
To address these potential security hazards, use a temporary mm for
patching the code.
Finally, text_poke() is also not conservative enough when mapping pages,
as it always tries to map 2 pages, even when a single one is sufficient.
So try to be more conservative, and do not map more than needed.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-8-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To prevent improper use of the PTEs that are used for text patching, the
next patches will use a temporary mm struct. Initailize it by copying
the init mm.
The address that will be used for patching is taken from the lower area
that is usually used for the task memory. Doing so prevents the need to
frequently synchronize the temporary-mm (e.g., when BPF programs are
installed), since different PGDs are used for the task memory.
Finally, randomize the address of the PTEs to harden against exploits
that use these PTEs.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: ard.biesheuvel@linaro.org
Cc: deneen.t.dock@intel.com
Cc: kernel-hardening@lists.openwall.com
Cc: kristen@linux.intel.com
Cc: linux_dti@icloud.com
Cc: will.deacon@arm.com
Link: https://lkml.kernel.org/r/20190426232303.28381-8-nadav.amit@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prevent user watchpoints from mistakenly firing while the temporary mm
is being used. As the addresses of the temporary mm might overlap those
of the user-process, this is necessary to prevent wrong signals or worse
things from happening.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-5-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using a dedicated page-table for temporary PTEs prevents other cores
from using - even speculatively - these PTEs, thereby providing two
benefits:
(1) Security hardening: an attacker that gains kernel memory writing
abilities cannot easily overwrite sensitive data.
(2) Avoiding TLB shootdowns: the PTEs do not need to be flushed in
remote page-tables.
To do so a temporary mm_struct can be used. Mappings which are private
for this mm can be set in the userspace part of the address-space.
During the whole time in which the temporary mm is loaded, interrupts
must be disabled.
The first use-case for temporary mm struct, which will follow, is for
poking the kernel text.
[ Commit message was written by Nadav Amit ]
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-4-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no apparent reason not to use text_poke_early() during
early-init, since no patching of code that might be on the stack is done
and only a single core is running.
This is required for the next patches that would set a temporary mm for
text poking, and this mm is only initialized after some static-keys are
enabled/disabled.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-3-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86 has an nmi_uaccess_okay(), but other architectures do not.
Arch-independent code might need to know whether access to user
addresses is ok in an NMI context or in other code whose execution
context is unknown. Specifically, this function is needed for
bpf_probe_write_user().
Add a default implementation of nmi_uaccess_okay() for architectures
that do not have such a function.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-23-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_mutex is currently expected to be held before text_poke() is
called, but kgdb does not take the mutex, and instead *supposedly*
ensures the lock is not taken and will not be acquired by any other core
while text_poke() is running.
The reason for the "supposedly" comment is that it is not entirely clear
that this would be the case if gdb_do_roundup is zero.
Create two wrapper functions, text_poke() and text_poke_kgdb(), which do
or do not run the lockdep assertion respectively.
While we are at it, change the return code of text_poke() to something
meaningful. One day, callers might actually respect it and the existing
BUG_ON() when patching fails could be removed. For kgdb, the return
value can actually be used.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9222f60650 ("x86/alternatives: Lockdep-enforce text_mutex in text_poke*()")
Link: https://lkml.kernel.org/r/20190426001143.4983-2-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This doesn't really do anything, but at least we now parse teh
ZERO_PAGE() address argument so that we'll catch the most obvious errors
in usage next time they'll happen.
See commit 6a5c5d26c4 ("rdma: fix build errors on s390 and MIPS due to
bad ZERO_PAGE use") what happens when we don't have any use of the macro
argument at all.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently perf callchain doesn't work well with ORC unwinder
when sampling from trace point. We'll get useless in kernel callchain
like this:
perf 6429 [000] 22.498450: kmem:mm_page_alloc: page=0x176a17 pfn=1534487 order=0 migratetype=0 gfp_flags=GFP_KERNEL
ffffffffbe23e32e __alloc_pages_nodemask+0x22e (/lib/modules/5.1.0-rc3+/build/vmlinux)
7efdf7f7d3e8 __poll+0x18 (/usr/lib64/libc-2.28.so)
5651468729c1 [unknown] (/usr/bin/perf)
5651467ee82a main+0x69a (/usr/bin/perf)
7efdf7eaf413 __libc_start_main+0xf3 (/usr/lib64/libc-2.28.so)
5541f689495641d7 [unknown] ([unknown])
The root cause is that, for trace point events, it doesn't provide a
real snapshot of the hardware registers. Instead perf tries to get
required caller's registers and compose a fake register snapshot
which suppose to contain enough information for start a unwinding.
However without CONFIG_FRAME_POINTER, if failed to get caller's BP as the
frame pointer, so current frame pointer is returned instead. We get
a invalid register combination which confuse the unwinder, and end the
stacktrace early.
So in such case just don't try dump BP, and let the unwinder start
directly when the register is not a real snapshot. Use SP
as the skip mark, unwinder will skip all the frames until it meet
the frame of the trace point caller.
Tested with frame pointer unwinder and ORC unwinder, this makes perf
callchain get the full kernel space stacktrace again like this:
perf 6503 [000] 1567.570191: kmem:mm_page_alloc: page=0x16c904 pfn=1493252 order=0 migratetype=0 gfp_flags=GFP_KERNEL
ffffffffb523e2ae __alloc_pages_nodemask+0x22e (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52383bd __get_free_pages+0xd (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52fd28a __pollwait+0x8a (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb521426f perf_poll+0x2f (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52fe3e2 do_sys_poll+0x252 (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52ff027 __x64_sys_poll+0x37 (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb500418b do_syscall_64+0x5b (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb5a0008c entry_SYSCALL_64_after_hwframe+0x44 (/lib/modules/5.1.0-rc3+/build/vmlinux)
7f71e92d03e8 __poll+0x18 (/usr/lib64/libc-2.28.so)
55a22960d9c1 [unknown] (/usr/bin/perf)
55a22958982a main+0x69a (/usr/bin/perf)
7f71e9202413 __libc_start_main+0xf3 (/usr/lib64/libc-2.28.so)
5541f689495641d7 [unknown] ([unknown])
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Young <dyoung@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190422162652.15483-1-kasong@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
- Fix an early boot crash in the RSDP parsing code by effectively
turning off the parsing call - we ran out of time but want to fix the
regression. The more involved fix is being worked on.
- Fix a crash that can trigger in the kmemlek code.
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Fix a crash with kmemleak_scan()
x86/boot: Disable RSDP parsing temporarily
The not-so-recent change to move VMX's VM-Exit handing to a dedicated
"function" unintentionally exposed KVM to a speculative attack from the
guest by executing a RET prior to stuffing the RSB. Make RSB stuffing
happen immediately after VM-Exit, before any unpaired returns.
Alternatively, the VM-Exit path could postpone full RSB stuffing until
its current location by stuffing the RSB only as needed, or by avoiding
returns in the VM-Exit path entirely, but both alternatives are beyond
ugly since vmx_vmexit() has multiple indirect callers (by way of
vmx_vmenter()). And putting the RSB stuffing immediately after VM-Exit
makes it much less likely to be re-broken in the future.
Note, the cost of PUSH/POP could be avoided in the normal flow by
pairing the PUSH RAX with the POP RAX in __vmx_vcpu_run() and adding an
a POP to nested_vmx_check_vmentry_hw(), but such a weird/subtle
dependency is likely to cause problems in the long run, and PUSH/POP
will take all of a few cycles, which is peanuts compared to the number
of cycles required to fill the RSB.
Fixes: 453eafbe65 ("KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines")
Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move flush_tlb_info variables off the stack. This allows to align
flush_tlb_info to cache-line and avoid potentially unnecessary cache
line movements. It also allows to have a fixed virtual-to-physical
translation of the variables, which reduces TLB misses.
Use per-CPU struct for flush_tlb_mm_range() and
flush_tlb_kernel_range(). Add debug assertions to ensure there are
no nested TLB flushes that might overwrite the per-CPU data. For
arch_tlbbatch_flush() use a const struct.
Results when running a microbenchmarks that performs 10^6 MADV_DONTEED
operations and touching a page, in which 3 additional threads run a
busy-wait loop (5 runs, PTI and retpolines are turned off):
base off-stack
---- ---------
avg (usec/op) 1.629 1.570 (-3%)
stddev 0.014 0.009
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190425230143.7008-1-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are problems with running time_cpufreq_notifier() on SMP
systems.
First off, the rdtsc() called from there runs on the CPU executing
that code and not necessarily on the CPU whose sched_clock() rate is
updated which is questionable at best.
Second, in the cases when the frequencies of all CPUs in an SMP
system are always in sync, it is not sufficient to update just
one of them or the set associated with a given cpufreq policy on
frequency changes - all CPUs in the system should be updated and
that would require more than a simple transition notifier.
Note, however, that the underlying issue (the TSC rate depending on
the CPU frequency) has not been present in hardware shipping for the
last few years and in quite a few relevant cases (acpi-cpufreq in
particular) running time_cpufreq_notifier() will cause the TSC to
be marked as unstable anyway.
For this reason, make time_cpufreq_notifier() simply mark the TSC
as unstable and give up when run on SMP and only try to carry out
any adjustments otherwise.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Local APIC timer clockevent parameters can be calculated based on platform
specific methods. However the code is mostly duplicated with the interrupt
based calibration. The commit which increased the max_delta parameter
updated only one place and made the implementations diverge.
Unify it to prevent further damage.
[ tglx: Rename function to lapic_init_clockevent() and adjust changelog a bit ]
Fixes: 4aed89d6b5 ("x86, lapic-timer: Increase the max_delta to 31 bits")
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/1556213272-63568-1-git-send-email-jacob.jun.pan@linux.intel.com
This involves initializing the boot params EFI related fields and the
efi global variable.
Without this fix a PVH dom0 doesn't detect when booted from EFI, and
thus doesn't support accessing any of the EFI related data.
Reported-by: PGNet Dev <pgnet.dev@gmail.com>
Signed-off-by: Roger Pau Monné <roger.pau@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: stable@vger.kernel.org # 4.19+
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.
With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP. These would all need to be fixed if any shash algorithm
actually started sleeping. For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API. However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.
Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk. It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.
Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Mel Gorman says:
"32-bit NUMA systems should be non-existent in practice. The last NUMA
system I'm aware of that was both NUMA and 32-bit only died somewhere
between 2004 and 2007. If someone is running a 64-bit capable system in
32-bit mode with NUMA, they really are just punishing themselves for fun."
Mark DISCONTIGMEM broken for now as suggested by Christoph Hellwig,
and (hopefully) remove it in a couple of releases.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1556112252-9339-3-git-send-email-rppt@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sparsemem has been a default memory model for x86-64 for over a decade,
since:
b263295dbf ("x86: 64-bit, make sparsemem vmemmap the only memory model").
Make it the default for 32-bit NUMA systems (if there any left) as well.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/1556112252-9339-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kaby Lake (and Coffee Lake) has PC8/PC9/PC10 residency counters.
This patch updates the list of Kaby/Coffee Lake PMU event counters
from the snb_cstates[] list of events to the hswult_cstates[]
list of events, which keeps all previously supported events and
also adds the PKG_C8, PKG_C9 and PKG_C10 residency counters.
This allows user space tools to profile them through the perf interface.
Signed-off-by: Harry Pan <harry.pan@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: gs0622@gmail.com
Link: http://lkml.kernel.org/r/20190424145033.1924-1-harry.pan@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have supported per-device dma_map_ops in generic code for a long
time, and this symbol just guards the inclusion of the dma_map_ops
registry used for vmd. Stop enabling it for anything but vmd.
No change in functionality intended.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190410080220.21705-3-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building x86 with Clang LTO and CFI, CFI jump regions are
automatically added to the end of the .text section late in linking. As a
result, the _etext position was being labelled before the appended jump
regions, causing confusion about where the boundaries of the executable
region actually are in the running kernel, and broke at least the fault
injection code. This moves the _etext mark to outside (and immediately
after) the .text area, as it already the case on other architectures
(e.g. arm64, arm).
Reported-and-tested-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190423183827.GA4012@beast
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In-NMI warnings have been added to vmalloc_fault() via:
ebc8827f75 ("x86: Barf when vmalloc and kmemcheck faults happen in NMI")
back in the time when our NMI entry code could not cope with nested NMIs.
These days, it's perfectly fine to take a fault in NMI context and we
don't have to care about the fact that IRET from the fault handler might
cause NMI nesting.
This warning has already been removed from 32-bit implementation of
vmalloc_fault() in:
6863ea0cda ("x86/mm: Remove in_nmi() warning from vmalloc_fault()")
but the 64-bit version was omitted.
Remove the bogus warning also from 64-bit implementation of vmalloc_fault().
Reported-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6863ea0cda ("x86/mm: Remove in_nmi() warning from vmalloc_fault()")
Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1904240902280.9803@cbobk.fhfr.pm
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The __put_user() macro evaluates it's @ptr argument inside the
__uaccess_begin() / __uaccess_end() region. While this would normally
not be expected to be an issue, an UBSAN bug (it ignored -fwrapv,
fixed in GCC 8+) would transform the @ptr evaluation for:
drivers/gpu/drm/i915/i915_gem_execbuffer.c: if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
into a signed-overflow-UB check and trigger the objtool AC validation.
Finish this commit:
2a418cf3f5 ("x86/uaccess: Don't leak the AC flag into __put_user() value evaluation")
and explicitly evaluate all 3 arguments early.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@kernel.org
Fixes: 2a418cf3f5 ("x86/uaccess: Don't leak the AC flag into __put_user() value evaluation")
Link: http://lkml.kernel.org/r/20190424072208.695962771@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The first kmemleak_scan() call after boot would trigger the crash below
because this callpath:
kernel_init
free_initmem
mem_encrypt_free_decrypted_mem
free_init_pages
unmaps memory inside the .bss when DEBUG_PAGEALLOC=y.
kmemleak_init() will register the .data/.bss sections and then
kmemleak_scan() will scan those addresses and dereference them looking
for pointer references. If free_init_pages() frees and unmaps pages in
those sections, kmemleak_scan() will crash if referencing one of those
addresses:
BUG: unable to handle kernel paging request at ffffffffbd402000
CPU: 12 PID: 325 Comm: kmemleak Not tainted 5.1.0-rc4+ #4
RIP: 0010:scan_block
Call Trace:
scan_gray_list
kmemleak_scan
kmemleak_scan_thread
kthread
ret_from_fork
Since kmemleak_free_part() is tolerant to unknown objects (not tracked
by kmemleak), it is fine to call it from free_init_pages() even if not
all address ranges passed to this function are known to kmemleak.
[ bp: Massage. ]
Fixes: b3f0907c71 ("x86/mm: Add .bss..decrypted section to hold shared variables")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190423165811.36699-1-cai@lca.pw
UAPI Changes:
- uAPI "Fixes:" patch for the upcoming kernel 5.1, included here too
We have an Ack from the media folks (only current user) for this
late tweak
Cross-subsystem Changes:
- ALSA: hda: Fix racy display power access (Takashi, Chris)
Driver Changes:
- DDI and MIPI-DSI clocks fixes for Icelake (Vandita)
- Fix Icelake frequency change/locking (RPS) (Mika)
- Temporarily disable ppGTT read-only bit on Icelake (Mika)
- Add missing Icelake W/As (Mika)
- Enable 12 deep CSB status FIFO on Icelake (Mika)
- Inherit more Icelake code for Elkhartlake (Bob, Jani)
- Handle catastrophic error on engine reset (Mika)
- Shortcut readiness to reset check (Mika)
- Regression fix for GEM_BUSY causing us to report a mixed uabi-class request as not busy (Chris)
- Revert back to max link rate and lane count on eDP (Jani)
- Fix pipe BPP readout for BXT/GLK DSI (Ville)
- Set DP min_bpp to 8*3 for non-RGB output formats (Ville)
- Enable coarse preemption boundaries for Gen8 (Chris)
- Do not enable FEC without DSC (Ville)
- Restore correct BXT DDI latency optim setting calculation (Ville)
- Always reset context's RING registers to avoid running workload twice during reset (Chris)
- Set GPU wedged on driver unload (Janusz)
- Consolidate two similar barries from timeline into one (Chris)
- Only reset the pinned kernel contexts on resume (Chris)
- Wakeref tracking improvements (Chris, Imre)
- Lockdep fixes for shrinker interactions (Chris)
- Bump ready tasks ahead of busywaits in prep of semaphore use (Chris)
- Huge step in splitting display code into fine grained files (Jani)
- Refactor the IRQ init/reset macros for code saving (Paulo)
- Convert IRQ initialization code to uncore MMIO access (Paulo)
- Convert workarounds code to use uncore MMIO access (Chris)
- Nuke drm_crtc_state and use intel_atomic_state instead (Manasi)
- Update SKL clock-gating WA (Radhakrishna, Ville)
- Isolate GuC reset code flow (Chris)
- Expose force_dsc_enable through debugfs (Manasi)
- Header standalone compile testing framework (Jani)
- Code cleanups to reduce driver footprint (Chris)
- PSR code fixes and cleanups (Jose)
- Sparse and kerneldoc updates (Chris)
- Suppress spurious combo PHY B warning (Vile)
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190418080426.GA6409@jlahtine-desk.ger.corp.intel.com
AMD family 17h Models 10h-2Fh may report a high number of L1 BTB MCA
errors under certain conditions. The errors are benign and can safely be
ignored. However, the high error rate may cause the MCA threshold
counter to overflow causing a high rate of thresholding interrupts.
In addition, users may see the errors reported through the AMD MCE
decoder module, even with the interrupt disabled, due to MCA polling.
Clear the "Counter Present" bit in the Instruction Fetch bank's
MCA_MISC0 register. This will prevent enabling MCA thresholding on this
bank which will prevent the high interrupt rate due to this error.
Define an AMD-specific function to filter these errors from the MCE
event pool so that they don't get reported during early boot.
Rename filter function in EDAC/mce_amd to avoid a naming conflict, while
at it.
[ bp: Move function prototype to the internal header and
massage/cleanup, fix typos. ]
Reported-by: Rafał Miłecki <rafal@milecki.pl>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "clemej@gmail.com" <clemej@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Shirish S <Shirish.S@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: <stable@vger.kernel.org> # 5.0.x: c95b323dcd: x86/MCE/AMD: Turn off MC4_MISC thresholding on all family 0x15 models
Cc: <stable@vger.kernel.org> # 5.0.x: 30aa3d26ed: x86/MCE/AMD: Carve out the MC4_MISC thresholding quirk
Cc: <stable@vger.kernel.org> # 5.0.x: 9308fd4074: x86/MCE: Group AMD function prototypes in <asm/mce.h>
Cc: <stable@vger.kernel.org> # 5.0.x
Link: https://lkml.kernel.org/r/20190325163410.171021-2-Yazen.Ghannam@amd.com
Some systems may report spurious MCA errors. In general, spurious MCA
errors may be disabled by clearing a particular bit in MCA_CTL. However,
clearing a bit in MCA_CTL may not be recommended for some errors, so the
only option is to ignore them.
An MCA error is printed and handled after it has been added to the MCE
event pool. So an MCA error can be ignored by not adding it to that pool
in the first place.
Add such a filtering function.
[ bp: Move function prototype to the internal header and massage. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "clemej@gmail.com" <clemej@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: "rafal@milecki.pl" <rafal@milecki.pl>
Cc: Shirish S <Shirish.S@amd.com>
Cc: <stable@vger.kernel.org> # 5.0.x
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190325163410.171021-1-Yazen.Ghannam@amd.com
Add a new command-line option "xen_timer_slop=<INT>" that sets the
minimum delta of virtual Xen timers. This commit does not change the
default timer slop value for virtual Xen timers.
Lowering the timer slop value should improve the accuracy of virtual
timers (e.g., better process dispatch latency), but it will likely
increase the number of virtual timer interrupts (relative to the
original slop setting).
The original timer slop value has not changed since the introduction
of the Xen-aware Linux kernel code. This commit provides users an
opportunity to tune timer performance given the refinements to
hardware and the Xen event channel processing. It also mirrors
a feature in the Xen hypervisor - the "timer_slop" Xen command line
option.
[boris: updated comment describing TIMER_SLOP]
Signed-off-by: Ryan Thibodeaux <ryan.thibodeaux@starlab.io>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
INVALIDATE_TLB_VECTOR_START has been removed by:
52aec3308db8("x86/tlb: replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR")
while VSYSCALL_EMU_VECTO(204) has also been removed, by:
3ae36655b97a("x86-64: Rework vsyscall emulation and add vsyscall= parameter")
so update the comments in <asm/irq_vectors.h> accordingly.
Signed-off-by: Jiang Biao <benbjiang@tencent.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Link: http://lkml.kernel.org/r/20190422024943.71918-1-benbjiang@tencent.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The original intention to move RDSP parsing very early, before KASLR
does its ranges selection, was to accommodate movable memory regions
machines (CONFIG_MEMORY_HOTREMOVE) to still be able to do memory
hotplug.
However, that broke kexec'ing a kernel on EFI machines because depending
on where the EFI systab was mapped, on at least one machine it isn't
present in the kexec mapping of the second kernel, leading to a triple
fault in the early code.
Fixing this properly requires significantly involved surgery and we
cannot allow ourselves to do that, that close to the merge window.
So disable the RSDP parsing code temporarily until it is fixed properly
in the next release cycle.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: indou.takao@jp.fujitsu.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kasong@redhat.com
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: msys.mizuma@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190419141952.GE10324@zn.tnic
crashkernel=xM tries to reserve memory for the crash kernel under 4G,
which is enough, usually. But this could fail sometimes, for example
when one tries to reserve a big chunk like 2G, for example.
So let the crashkernel=xM just fall back to use high memory in case it
fails to find a suitable low range. Do not set the ,high as default
because it allocates extra low memory for DMA buffers and swiotlb, and
this is not always necessary for all machines.
Typically, crashkernel=128M usually works with low reservation under 4G,
so keep <4G as default.
[ bp: Massage. ]
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: "Paul E. McKenney" <paulmck@linux.ibm.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thymo van Beers <thymovanbeers@gmail.com>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190422031905.GA8387@dhcp-128-65.nay.redhat.com
The kdump crashkernel low reservation is limited to under 896M even for
X86_64. This obscure and miserable limitation exists for compatibility
with old kexec-tools but the reason is not documented anywhere.
Some more tests/investigations about the background:
a) Previously, old kexec-tools could only load purgatory to memory under
2G. Eric removed that limitation in 2012 in kexec-tools:
b4f9f8599679 ("kexec x86_64: Make purgatory relocatable anywhere
in the 64bit address space.")
b) Back in 2013 Yinghai removed all the limitations in new kexec-tools,
bzImage64 can be loaded anywhere:
82c3dd2280d2 ("kexec, x86_64: Load bzImage64 above 4G")
c) Test results with old kexec-tools with old and latest kernels:
1. Old kexec-tools can not build with modern toolchain anymore,
I built it in a RHEL6 vm.
2. 2.0.0 kexec-tools does not work with the latest kernel even with
memory under 896M and gives an error:
"ELF core (kcore) parse failed"
For that it needs below kexec-tools fix:
ed15ba1b9977 ("build_mem_phdrs(): check if p_paddr is invalid")
3. Even with patched kexec-tools which fixes 2), it still needs some
other fixes to work correctly for KASLR-enabled kernels.
So the situation is:
* Old kexec-tools is already broken with latest kernels.
* We can not keep these limitations forever just for compatibility with very
old kexec-tools.
* If one must use old tools then he/she can choose crashkernel=X@Y.
* People have reported bugs where crashkernel=384M failed because KASLR
makes the 0-896M space sparse.
* Crashkernel can reserve in low or high area, it is natural to understand
low as memory under 4G.
Hence drop the 896M limitation and change crashkernel low reservation to
reserve under 4G by default.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190421035058.943630505@redhat.com
So we are going to be staring at those in the next years, let's make
them more succinct. In particular:
- change "address = " to "address: "
- "-privileged" reads funny. It should be simply "kernel" or "user"
- "from kernel code" reads funny too. "kernel mode" or "user mode" is
more natural.
An actual example says more than 1000 words, of course:
[ 0.248370] BUG: kernel NULL pointer dereference, address: 00000000000005b8
[ 0.249120] #PF: supervisor write access in kernel mode
[ 0.249717] #PF: error_code(0x0002) - not-present page
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave.hansen@linux.intel.com
Cc: luto@kernel.org
Cc: riel@surriel.com
Cc: sean.j.christopherson@intel.com
Cc: yu-cheng.yu@intel.com
Link: http://lkml.kernel.org/r/20190421183524.GC6048@zn.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf fixes from Ingo Molnar:
"Misc fixes:
- various tooling fixes
- kretprobe fixes
- kprobes annotation fixes
- kprobes error checking fix
- fix the default events for AMD Family 17h CPUs
- PEBS fix
- AUX record fix
- address filtering fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Avoid kretprobe recursion bug
kprobes: Mark ftrace mcount handler functions nokprobe
x86/kprobes: Verify stack frame on kretprobe
perf/x86/amd: Add event map for AMD Family 17h
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_btf()
perf tools: Fix map reference counting
perf evlist: Fix side band thread draining
perf tools: Check maps for bpf programs
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_bpf_prog_info()
tools include uapi: Sync sound/asound.h copy
perf top: Always sample time to satisfy needs of use of ordered queuing
perf evsel: Use hweight64() instead of hweight_long(attr.sample_regs_user)
tools lib traceevent: Fix missing equality check for strcmp
perf stat: Disable DIR_FORMAT feature for 'perf stat record'
perf scripts python: export-to-sqlite.py: Fix use of parent_id in calls_view
perf header: Fix lock/unlock imbalances when processing BPF/BTF info
perf/x86: Fix incorrect PEBS_REGS
perf/ring_buffer: Fix AUX record suppression
perf/core: Fix the address filtering fix
kprobes: Fix error check when reusing optimized probes
Pull x86 fixes from Ingo Molnar:
"Misc fixes all over the place: a console spam fix, section attributes
fixes, a KASLR fix, a TLB stack-variable alignment fix, a reboot
quirk, boot options related warnings fix, an LTO fix, a deadlock fix
and an RDT fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/intel: Lower the "ENERGY_PERF_BIAS: Set to normal" message's log priority
x86/cpu/bugs: Use __initconst for 'const' init data
x86/mm/KASLR: Fix the size of the direct mapping section
x86/Kconfig: Fix spelling mistake "effectivness" -> "effectiveness"
x86/mm/tlb: Revert "x86/mm: Align TLB invalidation info"
x86/reboot, efi: Use EFI reboot for Acer TravelMate X514-51T
x86/mm: Prevent bogus warnings with "noexec=off"
x86/build/lto: Fix truncated .bss with -fdata-sections
x86/speculation: Prevent deadlock on ssb_state::lock
x86/resctrl: Do not repeat rdtgroup mode initialization
ia64, parisc and sparc just use a copy of the generic version
of asm/sockios.h, and x86 is a redirect to the same file, so we
can just let the header file be generated.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The go32() and go64() functions has an argument and a local variable called ‘name’.
Rename both to clarify the code and to fix a warning with -Wshadow.
Signed-off-by: Leonardo Brás <leobras.c@gmail.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David.Laight@aculab.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Marek <michal.lkml@markovi.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: helen@koikeco.de
Cc: linux-kbuild@vger.kernel.org
Cc: lkcamp@lists.libreplanetbr.org
Link: http://lkml.kernel.org/r/20181023011022.GA6574@WindFlash
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In case when the number of entries in the section header table is larger
then or equal to SHN_LORESERVE the size of the table is held in the sh_size
member of the initial entry in section header table instead of e_shnum.
Same with the string table index which is located in sh_link instead of
e_shstrndx.
This case is easily reproducible with KCFLAGS="-ffunction-sections",
bzImage build fails with "String table index out of bounds" error.
Signed-off-by: Artem Savkov <asavkov@redhat.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Eric W . Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181129155615.2594-1-asavkov@redhat.com
[ Simplify the die() lines. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
DEBUG_HOTPLUG_CPU0 debug feature offlines a CPU as early as possible
allowing userspace to boot up without that CPU (so that it is possible
to check for unwanted dependencies towards the offlined CPU). After
doing so it emits a "CPU %u is now offline" pr_info, which is not enough
descriptive of why the CPU was offlined (e.g., one might be running with
a config that triggered some problem, not being aware that CONFIG_DEBUG_
HOTPLUG_CPU0 is set).
Add a bit more of informative text to the pr_info, so that it is
immediately obvious why a CPU has been offlined in early boot stages.
Background:
Got to scratch my head a bit while debugging a WARNING splat related to
the offlining of CPU0. Without being aware yet of this debug option it
wasn't immediately obvious why CPU0 was being offlined by the kernel.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Link: http://lkml.kernel.org/r/20181219151647.15073-1-juri.lelli@redhat.com
[ Merge line-broken line. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Linus pointed out that deciphering the raw #PF error code and printing
a more human readable message are two different things, and also that
printing the negative cases is mostly just noise[1]. For example, the
USER bit doesn't mean the fault originated in user code and stating
that an oops wasn't due to a protection keys violation isn't interesting
since an oops on a keys violation is a one-in-a-million scenario.
Remove the per-bit decoding of the error code and instead print:
- the raw error code
- why the fault occurred
- the effective privilege level of the access
- the type of access
- whether the fault originated in user code or kernel code
This provides the user with the information needed to triage 99.9% of
oopses without polluting the log with useless information or conflating
the error_code with the CPL.
Sample output:
BUG: kernel NULL pointer dereference, address = 0000000000000008
#PF: supervisor-privileged instruction fetch from kernel code
#PF: error_code(0x0010) - not-present page
BUG: unable to handle page fault for address = ffffbeef00000000
#PF: supervisor-privileged instruction fetch from kernel code
#PF: error_code(0x0010) - not-present page
BUG: unable to handle page fault for address = ffffc90000230000
#PF: supervisor-privileged write access from kernel code
#PF: error_code(0x000b) - reserved bit violation
[1] https://lkml.kernel.org/r/CAHk-=whk_fsnxVMvF1T2fFCaP2WrvSybABrLQCWLJyCvHw6NKA@mail.gmail.com
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20181221213657.27628-3-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reword the NULL pointer dereference case to simply state that a NULL
pointer was dereferenced, i.e. drop "unable to handle" as that implies
that there are instances where the kernel actual does handle NULL
pointer dereferences, which is not true barring funky exception fixup.
For the non-NULL case, replace "kernel paging request" with "page fault"
as the kernel can technically oops on faults that originated in user
code. Dropping "kernel" also allows future patches to provide detailed
information on where the fault occurred, e.g. user vs. kernel, without
conflicting with the initial BUG message.
In both cases, replace "at address=" with wording more appropriate to
the oops, as "at" may be interpreted as stating that the address is the
RIP of the instruction that faulted.
Last, and probably least, further qualify the NULL-pointer path by
checking that the fault actually originated in kernel code. It's
technically possible for userspace to map address 0, and not printing
a super specific message is the least of our worries if the kernel does
manage to oops on an actual NULL pointer dereference from userspace.
Before:
BUG: unable to handle kernel NULL pointer dereference at ffffbeef00000000
BUG: unable to handle kernel paging request at ffffbeef00000000
After:
BUG: kernel NULL pointer dereference, address = 0000000000000008
BUG: unable to handle page fault for address = ffffbeef00000000
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20181221213657.27628-2-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For new Centaur CPUs the ucode will take care of the preservation of cache coherence
between CPU cores in C-states regardless of how deep the C-states are. So, it is not
necessary to flush the caches in software befor entering C3. This useless operation
will cause performance drop for the cores which share some caches with the idling core.
Signed-off-by: David Wang <davidwang@zhaoxin.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: brucechang@via-alliance.com
Cc: cooperyan@zhaoxin.com
Cc: len.brown@intel.com
Cc: linux-pm@kernel.org
Cc: qiyuanwang@zhaoxin.com
Cc: rjw@rjwysocki.net
Cc: timguo@zhaoxin.com
Link: http://lkml.kernel.org/r/1545900110-2757-1-git-send-email-davidwang@zhaoxin.com
[ Tidy up the comment. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "ENERGY_PERF_BIAS: Set to 'normal', was 'performance'" message triggers
on pretty much every Intel machine. The purpose of log messages with
a warning level is to notify the user of something which potentially is
a problem, or at least somewhat unexpected.
This message clearly does not match those criteria, so lower its log
priority from warning to info.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181230172715.17469-1-hdegoede@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
LTO will happily inline __const_udelay() everywhere it is used. Forcing it
noinline saves ~44k text in a LTO build.
13999560 1740864 1499136 17239560 1070e08 vmlinux-with-udelay-inline
13954764 1736768 1499136 17190668 1064f0c vmlinux-wo-udelay-inline
Even without LTO this function should never be inlined.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-4-andi@firstfloor.org
The "vide" inline assembler is only needed on 32bit kernels for old
32bit only CPUs.
Guard it with an #ifdef so it's not included in 64bit builds.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-2-andi@firstfloor.org
With gcc toplevel assembler statements that do not mark themselves as .text
may end up in other sections. This causes LTO boot crashes because various
assembler statements ended up in the middle of the initcall section. It's
also a latent problem without LTO, although it's currently not known to
cause any real problems.
According to the gcc team it's expected behavior.
Always mark all the top level assembler statements as text so that they
switch to the right section.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-1-andi@firstfloor.org
Avoid kretprobe recursion loop bg by setting a dummy
kprobes to current_kprobe per-CPU variable.
This bug has been introduced with the asm-coded trampoline
code, since previously it used another kprobe for hooking
the function return placeholder (which only has a nop) and
trampoline handler was called from that kprobe.
This revives the old lost kprobe again.
With this fix, we don't see deadlock anymore.
And you can see that all inner-called kretprobe are skipped.
event_1 235 0
event_2 19375 19612
The 1st column is recorded count and the 2nd is missed count.
Above shows (event_1 rec) + (event_2 rec) ~= (event_2 missed)
(some difference are here because the counter is racy)
Reported-by: Andrea Righi <righi.andrea@gmail.com>
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: c9becf58d9 ("[PATCH] kretprobe: kretprobe-booster")
Link: http://lkml.kernel.org/r/155094064889.6137.972160690963039.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Verify the stack frame pointer on kretprobe trampoline handler,
If the stack frame pointer does not match, it skips the wrong
entry and tries to find correct one.
This can happen if user puts the kretprobe on the function
which can be used in the path of ftrace user-function call.
Such functions should not be probed, so this adds a warning
message that reports which function should be blacklisted.
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/155094059185.6137.15527904013362842072.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make the anon_inodes facility unconditional so that it can be used by core
VFS code and pidfd code.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[christian@brauner.io: adapt commit message to mention pidfds]
Signed-off-by: Christian Brauner <christian@brauner.io>
The "event counter" was removed from rseq before it was merged upstream.
However, a few comments in the source code still refer to it. Adapt the
comments to match reality.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20190305194755.2602-2-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On x86 systems, only MSDOS and GPT partition tables are typically
encountered. Remove all the rest.
Note, CONFIG_EFI_PARTITION is also removed since it defaults to `y'.
Signed-off-by: Ahmed S. Darwish <darwish.07@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190306004425.GA30537@darwi-home-pc
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Syntax only, no functional or semantic change.
This routine matches packages, not die, so name it thus.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/7ca18c4ae7816a1f9eda37414725df676e63589d.1551160674.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The XO-1 and XO-1.5 batteries apparently differ in an ability to report
ambient temperature. We need to use a different compatible string for the
XO-1.5 battery.
Previously olpc_dt_fixup() used the presence of the battery node's
compatible property to decide whether the DT is up to date. Now we need
to look for a particular value in the compatible string, to decide
Signed-off-by: Lubomir Rintel <lkundrak@v3.sk>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
This makes the following patch more concise.
Signed-off-by: Lubomir Rintel <lkundrak@v3.sk>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
It was pointed out in a review, and checkpatch.pl complains about this.
Breaking it down into multiple ofw evaluations works just as well and
reads better.
Signed-off-by: Lubomir Rintel <lkundrak@v3.sk>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. In
the event that the adjustments are too aggressive, i.e. the timer fires
earlier than the guest expects, KVM busy waits immediately prior to
entering the guest.
Currently, KVM manually converts the delay from nanoseconds to clock
cycles. But, the conversion is done in the guest's time domain, while
the delay occurs in the host's time domain. This is perfectly ok when
the guest and host are using the same TSC ratio, but if the guest is
using a different ratio then the delay may not be accurate and could
wait too little or too long.
When the guest is not using the host's ratio, convert the delay from
guest clock cycles to host nanoseconds and use ndelay() instead of
__delay() to provide more accurate timing. Because converting to
nanoseconds is relatively expensive, e.g. requires division and more
multiplication ops, continue using __delay() directly when guest and
host TSCs are running at the same ratio.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The introduction of adaptive tuning of lapic timer advancement did not
allow for the scenario where userspace would want to disable adaptive
tuning but still employ timer advancement, e.g. for testing purposes or
to handle a use case where adaptive tuning is unable to settle on a
suitable time. This is epecially pertinent now that KVM places a hard
threshold on the maximum advancment time.
Rework the timer semantics to accept signed values, with a value of '-1'
being interpreted as "use adaptive tuning with KVM's internal default",
and any other value being used as an explicit advancement time, e.g. a
time of '0' effectively disables advancement.
Note, this does not completely restore the original behavior of
lapic_timer_advance_ns. Prior to tracking the advancement per vCPU,
which is necessary to support autotuning, userspace could adjust
lapic_timer_advance_ns for *running* vCPU. With per-vCPU tracking, the
module params are snapshotted at vCPU creation, i.e. applying a new
advancement effectively requires restarting a VM.
Dynamically updating a running vCPU is possible, e.g. a helper could be
added to retrieve the desired delay, choosing between the global module
param and the per-VCPU value depending on whether or not auto-tuning is
(globally) enabled, but introduces a great deal of complexity. The
wrapper itself is not complex, but understanding and documenting the
effects of dynamically toggling auto-tuning and/or adjusting the timer
advancement is nigh impossible since the behavior would be dependent on
KVM's implementation as well as compiler optimizations. In other words,
providing stable behavior would require extremely careful consideration
now and in the future.
Given that the expected use of a manually-tuned timer advancement is to
"tune once, run many", use the vastly simpler approach of recognizing
changes to the module params only when creating a new vCPU.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Automatically adjusting the globally-shared timer advancement could
corrupt the timer, e.g. if multiple vCPUs are concurrently adjusting
the advancement value. That could be partially fixed by using a local
variable for the arithmetic, but it would still be susceptible to a
race when setting timer_advance_adjust_done.
And because virtual_tsc_khz and tsc_scaling_ratio are per-vCPU, the
correct calibration for a given vCPU may not apply to all vCPUs.
Furthermore, lapic_timer_advance_ns is marked __read_mostly, which is
effectively violated when finding a stable advancement takes an extended
amount of timer.
Opportunistically change the definition of lapic_timer_advance_ns to
a u32 so that it matches the style of struct kvm_timer. Explicitly
pass the param to kvm_create_lapic() so that it doesn't have to be
exposed to lapic.c, thus reducing the probability of unintentionally
using the global value instead of the per-vCPU value.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To minimize the latency of timer interrupts as observed by the guest,
KVM adjusts the values it programs into the host timers to account for
the host's overhead of programming and handling the timer event. Now
that the timer advancement is automatically tuned during runtime, it's
effectively unbounded by default, e.g. if KVM is running as L1 the
advancement can measure in hundreds of milliseconds.
Disable timer advancement if adaptive tuning yields an advancement of
more than 5000ns, as large advancements can break reasonable assumptions
of the guest, e.g. that a timer configured to fire after 1ms won't
arrive on the next instruction. Although KVM busy waits to mitigate the
case of a timer event arriving too early, complications can arise when
shifting the interrupt too far, e.g. kvm-unit-test's vmx.interrupt test
will fail when its "host" exits on interrupts as KVM may inject the INTR
before the guest executes STI+HLT. Arguably the unit test is "broken"
in the sense that delaying a timer interrupt by 1ms doesn't technically
guarantee the interrupt will arrive after STI+HLT, but it's a reasonable
assumption that KVM should support.
Furthermore, an unbounded advancement also effectively unbounds the time
spent busy waiting, e.g. if the guest programs a timer with a very large
delay.
5000ns is a somewhat arbitrary threshold. When running on bare metal,
which is the intended use case, timer advancement is expected to be in
the general vicinity of 1000ns. 5000ns is high enough that false
positives are unlikely, while not being so high as to negatively affect
the host's performance/stability.
Note, a future patch will enable userspace to disable KVM's adaptive
tuning, which will allow priveleged userspace will to specifying an
advancement value in excess of this arbitrary threshold in order to
satisfy an abnormal use case.
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Fixes: 3b8a5df6c4 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was reported that with some special Multi Processor Group configuration,
e.g:
bcdedit.exe /set groupsize 1
bcdedit.exe /set maxgroup on
bcdedit.exe /set groupaware on
for a 16-vCPU guest WS2012 shows BSOD on boot when PV TLB flush mechanism
is in use.
Tracing kvm_hv_flush_tlb immediately reveals the issue:
kvm_hv_flush_tlb: processor_mask 0x0 address_space 0x0 flags 0x2
The only flag set in this request is HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES,
however, processor_mask is 0x0 and no HV_FLUSH_ALL_PROCESSORS is specified.
We don't flush anything and apparently it's not what Windows expects.
TLFS doesn't say anything about such requests and newer Windows versions
seem to be unaffected. This all feels like a WS2012 bug, which is, however,
easy to workaround in KVM: let's flush everything when we see an empty
flush request, over-flushing doesn't hurt.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If guest sets MSR_IA32_TSCDEADLINE to value such that in host
time-domain it's shorter than lapic_timer_advance_ns, we can
reach a case that we call hrtimer_start() with expiration time set at
the past.
Because lapic_timer.timer is init with HRTIMER_MODE_ABS_PINNED, it
is not allowed to run in softirq and therefore will never expire.
To avoid such a scenario, verify that deadline expiration time is set on
host time-domain further than (now + lapic_timer_advance_ns).
A future patch can also consider adding a min_timer_deadline_ns module parameter,
similar to min_timer_period_us to avoid races that amount of ns it takes
to run logic could still call hrtimer_start() with expiration timer set
at the past.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull crypto fix from Herbert Xu:
"Fix a bug in the implementation of the x86 accelerated version of
poly1305"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: x86/poly1305 - fix overflow during partial reduction
Family 17h differs from prior families by:
- Does not support an L2 cache miss event
- It has re-enumerated PMC counters for:
- L2 cache references
- front & back end stalled cycles
So we add a new amd_f17h_perfmon_event_map[] so that the generic
perf event names will resolve to the correct h/w events on
family 17h and above processors.
Reference sections 2.1.13.3.3 (stalls) and 2.1.13.3.6 (L2):
https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Cc: <stable@vger.kernel.org> # v4.9+
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Liška <mliska@suse.cz>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: e40ed1542d ("perf/x86: Add perf support for AMD family-17h processors")
[ Improved the formatting a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add MDS to the new 'mitigations=' cmdline option.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
kernel_randomize_memory() uses __PHYSICAL_MASK_SHIFT to calculate
the maximum amount of system RAM supported. The size of the direct
mapping section is obtained from the smaller one of the below two
values:
(actual system RAM size + padding size) vs (max system RAM size supported)
This calculation is wrong since commit
b83ce5ee91 ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52").
In it, __PHYSICAL_MASK_SHIFT was changed to be 52, regardless of whether
the kernel is using 4-level or 5-level page tables. Thus, it will always
use 4 PB as the maximum amount of system RAM, even in 4-level paging
mode where it should actually be 64 TB.
Thus, the size of the direct mapping section will always
be the sum of the actual system RAM size plus the padding size.
Even when the amount of system RAM is 64 TB, the following layout will
still be used. Obviously KALSR will be weakened significantly.
|____|_______actual RAM_______|_padding_|______the rest_______|
0 64TB ~120TB
Instead, it should be like this:
|____|_______actual RAM_______|_________the rest______________|
0 64TB ~120TB
The size of padding region is controlled by
CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING, which is 10 TB by default.
The above issue only exists when
CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING is set to a non-zero value,
which is the case when CONFIG_MEMORY_HOTPLUG is enabled. Otherwise,
using __PHYSICAL_MASK_SHIFT doesn't affect KASLR.
Fix it by replacing __PHYSICAL_MASK_SHIFT with MAX_PHYSMEM_BITS.
[ bp: Massage commit message. ]
Fixes: b83ce5ee91 ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52")
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: frank.ramsay@hpe.com
Cc: herbert@gondor.apana.org.au
Cc: kirill@shutemov.name
Cc: mike.travis@hpe.com
Cc: thgarnie@google.com
Cc: x86-ml <x86@kernel.org>
Cc: yamada.masahiro@socionext.com
Link: https://lkml.kernel.org/r/20190417083536.GE7065@MiWiFi-R3L-srv
$(call if_changed,...) must have FORCE as a prerequisite.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1554280212-10578-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, when a new resource group is created, the allocation values
of the MBA resource are not initialized and remain meaningless data.
For example:
mkdir /sys/fs/resctrl/p1
cat /sys/fs/resctrl/p1/schemata
MB:0=100;1=100
echo "MB:0=10;1=20" > /sys/fs/resctrl/p1/schemata
cat /sys/fs/resctrl/p1/schemata
MB:0= 10;1= 20
rmdir /sys/fs/resctrl/p1
mkdir /sys/fs/resctrl/p2
cat /sys/fs/resctrl/p2/schemata
MB:0= 10;1= 20
Therefore, when the new group is created, it is reasonable to initialize
MBA resource with default values.
Initialize the MBA resource and cache resources in separate functions.
[ bp: Add newlines between code blocks for better readability. ]
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1555499329-1170-3-git-send-email-xiaochen.shen@intel.com
Carve out per rdt_domain initialization code from rdtgroup_init_alloc()
into a separate function.
No functional change, make the code more readable and save us at least
two indentation levels.
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1555499329-1170-2-git-send-email-xiaochen.shen@intel.com
In pcibios_irq_init(), the PCI IRQ routing table 'pirq_table' is first
found through pirq_find_routing_table(). If the table is not found and
CONFIG_PCI_BIOS is defined, the table is then allocated in
pcibios_get_irq_routing_table() using kmalloc(). Later, if the I/O APIC is
used, this table is actually not used. In that case, the allocated table
is not freed, which is a memory leak.
Free the allocated table if it is not used.
Signed-off-by: Wenwen Wang <wang6495@umn.edu>
[bhelgaas: added Ingo's reviewed-by, since the only change since v1 was to
use the irq_routing_table local variable name he suggested]
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
This code is only for CPUs which are affected by MSBDS, but are *not*
affected by the other two MDS issues.
For such CPUs, enabling the mds_idle_clear mitigation is enough to
mitigate SMT.
However if user boots with 'mds=off' and still has SMT enabled, we should
not report that SMT is mitigated:
$cat /sys//devices/system/cpu/vulnerabilities/mds
Vulnerable; SMT mitigated
But rather:
Vulnerable; SMT vulnerable
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20190412215118.294906495@localhost.localdomain
All stack types on x86 64-bit have guard pages now.
So there is no point in executing probabilistic overflow checks as the
guard pages are a accurate and reliable overflow prevention.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160146.466354762@linutronix.de
The IRQ stack lives in percpu space, so an IRQ handler that overflows it
will overwrite other data structures.
Use vmap() to remap the IRQ stack so that it will have the usual guard
pages that vmap()/vmalloc() allocations have. With this, the kernel will
panic immediately on an IRQ stack overflow.
[ tglx: Move the map code to a proper place and invoke it only when a CPU
is about to be brought online. No point in installing the map at
early boot for all possible CPUs. Fail the CPU bringup if the vmap()
fails as done for all other preparatory stages in CPU hotplug. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160146.363733568@linutronix.de
Currently, the IRQ stack is hardcoded as the first page of the percpu
area, and the stack canary lives on the IRQ stack. The former gets in
the way of adding an IRQ stack guard page, and the latter is a potential
weakness in the stack canary mechanism.
Split the IRQ stack into its own private percpu pages.
[ tglx: Make 64 and 32 bit share struct irq_stack ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de
Preparatory change for disentangling the irq stack union as a
prerequisite for irq stacks with guard pages.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190414160146.177558566@linutronix.de
irq_ctx_init() crashes hard on page allocation failures. While that's ok
during early boot, it's just wrong in the CPU hotplug bringup code.
Check the page allocation failure and return -ENOMEM and handle it at the
call sites. On early boot the only way out is to BUG(), but on CPU hotplug
there is no reason to crash, so just abort the operation.
Rename the function to something more sensible while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Shaokun Zhang <zhangshaokun@hisilicon.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/20190414160146.089060584@linutronix.de
irq_ctx_init() is invoked from native_init_IRQ() or from xen_init_IRQ()
code. There is no reason to have this split. The interrupt stacks must be
allocated no matter what.
Invoke it from init_IRQ() before invoking the native or XEN init
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Abraham <j.abraham1776@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.001162606@linutronix.de
There is no reason to have an u32 array in struct irq_stack. The only
purpose of the array is to size the struct properly.
Preparatory change for sharing struct irq_stack with 64-bit.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.736241969@linutronix.de
On 32-bit IRQ_STACK_SIZE is the same as THREAD_SIZE.
To allow sharing struct irq_stack with 32-bit, define IRQ_STACK_SIZE for
32-bit and use it for struct irq_stack.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.632513987@linutronix.de
The current implementation of in_exception_stack() iterates over the
exception stacks array. Most of the time this is an useless exercise, but
even for the actual use cases (perf and ftrace) it takes at least 2
iterations to get to the NMI stack.
As the exception stacks and the guard pages are page aligned the loop can
be avoided completely.
Add a initial check whether the stack pointer is inside the full exception
stack area and leave early if not.
Create a lookup table which describes the stack area. The table index is
the page offset from the beginning of the exception stacks. So for any
given stack pointer the page offset is computed and a lookup in the
description table is performed. If it is inside a guard page, return. If
not, use the descriptor to fill in the info structure.
The table is filled at compile time and for the !KASAN case the interesting
page descriptors exactly fit into a single cache line. Just the last guard
page descriptor is in the next cacheline, but that should not be accessed
in the regular case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.543320386@linutronix.de
The debug IST stack is actually two separate debug stacks to handle #DB
recursion. This is required because the CPU starts always at top of stack
on exception entry, which means on #DB recursion the second #DB would
overwrite the stack of the first.
The low level entry code therefore adjusts the top of stack on entry so a
secondary #DB starts from a different stack page. But the stack pages are
adjacent without a guard page between them.
Split the debug stack into 3 stacks which are separated by guard pages. The
3rd stack is never mapped into the cpu_entry_area and is only there to
catch triple #DB nesting:
--- top of DB_stack <- Initial stack
--- end of DB_stack
guard page
--- top of DB1_stack <- Top of stack after entering first #DB
--- end of DB1_stack
guard page
--- top of DB2_stack <- Top of stack after entering second #DB
--- end of DB2_stack
guard page
If DB2 would not act as the final guard hole, a second #DB would point the
top of #DB stack to the stack below #DB1 which would be valid and not catch
the not so desired triple nesting.
The backing store does not allocate any memory for DB2 and its guard page
as it is not going to be mapped into the cpu_entry_area.
- Adjust the low level entry code so it adjusts top of #DB with the offset
between the stacks instead of exception stack size.
- Make the dumpstack code aware of the new stacks.
- Adjust the in_debug_stack() implementation and move it into the NMI code
where it belongs. As this is NMI hotpath code, it just checks the full
area between top of DB_stack and bottom of DB1_stack without checking
for the guard page. That's correct because the NMI cannot hit a
stackpointer pointing to the guard page between DB and DB1 stack. Even
if it would, then the NMI operation still is unaffected, but the resume
of the debug exception on the topmost DB stack will crash by touching
the guard page.
[ bp: Make exception_stack_names static const char * const ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
All usage sites which expected that the exception stacks in the CPU entry
area are mapped linearly are fixed up. Enable guard pages between the
IST stacks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.349862042@linutronix.de
The entry order of the TSS.IST array and the order of the stack
storage/mapping are not required to be the same.
With the upcoming split of the debug stack this is going to fall apart as
the number of TSS.IST array entries stays the same while the actual stacks
are increasing.
Make them separate so that code like dumpstack can just utilize the mapping
order. The IST index is solely required for the actual TSS.IST array
initialization.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.241588113@linutronix.de
Convert the TSS.IST setup code to use the cpu entry area information
directly instead of assuming a linear mapping of the IST stacks.
The store to orig_ist[] is no longer required as there are no users
anymore.
This is the last preparatory step towards IST guard pages.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.061686012@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.974900463@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.885741626@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.784487230@linutronix.de
Store a pointer to the per cpu entry area exception stack mappings to allow
fast retrieval.
Required for converting various places from using the shadow IST array to
directly doing address calculations on the actual mapping address.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.680960459@linutronix.de
To allow guard pages between the IST stacks each stack needs to be
mapped individually.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.592691557@linutronix.de
At the moment everything assumes a full linear mapping of the various
exception stacks. Adding guard pages to the cpu entry area mapping of the
exception stacks will break that assumption.
As a preparatory step convert both the real storage and the effective
mapping in the cpu entry area from character arrays to structures.
To ensure that both arrays have the same ordering and the same size of the
individual stacks fill the members with a macro. The guard size is the only
difference between the two resulting structures. For now both have guard
size 0 until the preparation of all usage sites is done.
Provide a couple of helper macros which are used in the following
conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.506807893@linutronix.de
No point in retrieving the entry area pointer over and over. Do it once
and use unsigned int for 'cpu' everywhere.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.419653165@linutronix.de
The defines for the exception stack (IST) array in the TSS are using the
SDM convention IST1 - IST7. That causes all sorts of code to subtract 1 for
array indices related to IST. That's confusing at best and does not provide
any value.
Make the indices zero based and fixup the usage sites. The only code which
needs to adjust the 0 based index is the interrupt descriptor setup which
needs to add 1 now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.331772825@linutronix.de
Nothing uses that and before people get the wrong ideas, get rid of it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.139284839@linutronix.de
Commit
d8ba61ba58 ("x86/entry/64: Don't use IST entry for #BP stack")
removed the last user but left the macro around.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.050689789@linutronix.de
On x86, stacks go top to bottom, but the stack overflow check uses it
the other way round, which is just confusing. Clean it up and sanitize
the warning string a bit.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.961241397@linutronix.de
stack_overflow_check() is using both irq_stack_ptr and irq_stack_union
to find the IRQ stack. That's going to break when vmapped irq stacks are
introduced.
Change it to just use irq_stack_ptr.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.872549191@linutronix.de
The get_stack_info() function is off-by-one when checking whether an
address is on a IRQ stack or a IST stack. This prevents an overflowed
IRQ or IST stack from being dumped properly.
[ tglx: Do the same for 32-bit ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.785651055@linutronix.de
Commit
37fe6a42b3 ("x86: Check stack overflow in detail")
added a broad check for the full exception stack area, i.e. it considers
the full exception stack area as valid.
That's wrong in two aspects:
1) It does not check the individual areas one by one
2) #DF, NMI and #MCE are not enabling interrupts which means that a
regular device interrupt cannot happen in their context. In fact if a
device interrupt hits one of those IST stacks that's a bug because some
code path enabled interrupts while handling the exception.
Limit the check to the #DB stack and consider all other IST stacks as
'overflow' or invalid.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.682135110@linutronix.de
* Fixes for nested VMX with ept=0
* Fixes for AMD (APIC virtualization, NMI injection)
* Fixes for Hyper-V under KVM and KVM under Hyper-V
* Fixes for 32-bit SMM and tests for SMM virtualization
* More array_index_nospec peppering
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJctdrUAAoJEL/70l94x66Deq8H/0OEIBBuDt53nPEHXufNSV1S
uzIVvwJoL6786URWZfWZ99Z/NTTA1rn9Vr/leLPkSidpDpw7IuK28KZtEMP2rdRE
Sb8eN2g4SoQ51ZDSIMUzjcx9VGNqkH8CWXc2yhDtTUSD21S3S1kidZ0O0YbmetkJ
OwF1EDx4m7JO6EUHaJhIfdTUb9ItRC1Vfo7hpOuRVxPx2USv5+CLbexpteKogMcI
5WDaXFIRwUWW6Z8Bwyi7yA9gELKcXTTXlz9T/A7iKeqxRMLBazVKnH8h7Lfd0M0A
wR4AI+tE30MuHT7WLh1VOAKZk6TDabq9FJrva3JlDq+T+WOjgUzYALLKEd4Vv4o=
=zsT5
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"5.1 keeps its reputation as a big bugfix release for KVM x86.
- Fix for a memory leak introduced during the merge window
- Fixes for nested VMX with ept=0
- Fixes for AMD (APIC virtualization, NMI injection)
- Fixes for Hyper-V under KVM and KVM under Hyper-V
- Fixes for 32-bit SMM and tests for SMM virtualization
- More array_index_nospec peppering"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (21 commits)
KVM: x86: avoid misreporting level-triggered irqs as edge-triggered in tracing
KVM: fix spectrev1 gadgets
KVM: x86: fix warning Using plain integer as NULL pointer
selftests: kvm: add a selftest for SMM
selftests: kvm: fix for compilers that do not support -no-pie
selftests: kvm/evmcs_test: complete I/O before migrating guest state
KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels
KVM: x86: Don't clear EFER during SMM transitions for 32-bit vCPU
KVM: x86: clear SMM flags before loading state while leaving SMM
KVM: x86: Open code kvm_set_hflags
KVM: x86: Load SMRAM in a single shot when leaving SMM
KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU
KVM: x86: Raise #GP when guest vCPU do not support PMU
x86/kvm: move kvm_load/put_guest_xcr0 into atomic context
KVM: x86: svm: make sure NMI is injected after nmi_singlestep
svm/avic: Fix invalidate logical APIC id entry
Revert "svm: Fix AVIC incomplete IPI emulation"
kvm: mmu: Fix overflow on kvm mmu page limit calculation
KVM: nVMX: always use early vmcs check when EPT is disabled
KVM: nVMX: allow tests to use bad virtual-APIC page address
...
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
EFER.LME and EFER.NX are considered reserved if their respective feature
bits are not advertised to the guest.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM allows userspace to violate consistency checks related to the
guest's CPUID model to some degree. Generally speaking, userspace has
carte blanche when it comes to guest state so long as jamming invalid
state won't negatively affect the host.
Currently this is seems to be a non-issue as most of the interesting
EFER checks are missing, e.g. NX and LME, but those will be added
shortly. Proactively exempt userspace from the CPUID checks so as not
to break userspace.
Note, the efer_reserved_bits check still applies to userspace writes as
that mask reflects the host's capabilities, e.g. KVM shouldn't allow a
guest to run with NX=1 if it has been disabled in the host.
Fixes: d80174745b ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most, but not all, helpers that are related to emulating consistency
checks for nested VM-Entry return -EINVAL when a check fails. Convert
the holdouts to have consistency throughout and to make it clear that
the functions are signaling pass/fail as opposed to "resume guest" vs.
"exit to userspace".
Opportunistically fix bad indentation in nested_vmx_check_guest_state().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert all top-level nested VM-Enter consistency check functions to
return 0/-EINVAL instead of failure codes, since now they can only
ever return one failure code.
This also does not give the false impression that failure information is
always consumed and/or relevant, e.g. vmx_set_nested_state() only
cares whether or not the checks were successful.
nested_check_host_control_regs() can also now be inlined into its caller,
nested_vmx_check_host_state, since the two have effectively become the
same function.
Based on a patch by Sean Christopherson.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the top-level consistency check functions to (loosely) align with
the SDM. Historically, KVM has used the terms "prereq" and "postreq" to
differentiate between consistency checks that lead to VM-Fail and those
that lead to VM-Exit. The terms are vague and potentially misleading,
e.g. "postreq" might be interpreted as occurring after VM-Entry.
Note, while the SDM lumps controls and host state into a single section,
"Checks on VMX Controls and Host-State Area", split them into separate
top-level functions as the two categories of checks result in different
VM instruction errors. This split will allow for additional cleanup.
Note #2, "vmentry" is intentionally dropped from the new function names
to avoid confusion with nested_check_vm_entry_controls(), and to keep
the length of the functions names somewhat manageable.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel's SDM, volume 3, section Checking and Loading Guest State:
Because the checking and the loading occur concurrently, a failure may
be discovered only after some state has been loaded. For this reason,
the logical processor responds to such failures by loading state from
the host-state area, as it would for a VM exit.
In other words, a failed non-register state consistency check results in
a VM-Exit, not VM-Fail. Moving the non-reg state checks also paves the
way for renaming nested_vmx_check_vmentry_postreqs() to align with the
SDM, i.e. nested_vmx_check_vmentry_guest_state().
Fixes: 26539bd0e4 ("KVM: nVMX: check vmcs12 for valid activity state")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checking and Loading Guest State" in Intel SDM vol
3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-entry control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on Host Control Registers and MSRs" in Intel
SDM vol 3C, the following check is performed on vmentry:
If the "load IA32_PAT" VM-exit control is 1, the value of the field
for the IA32_PAT MSR must be one that could be written by WRMSR
without fault at CPL 0. Specifically, each of the 8 bytes in the
field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6 (WB), or 7 (UC-).
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This check will soon be done on every nested vmentry and vmexit,
"parallelize" it using bitwise operations.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is not needed, PAT writes always take an MSR vmexit.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SVI, RVI, virtual-APIC page address and APIC-access page address fields
were left out of dump_vmcs. Add them.
KERN_CONT technically isn't SMP safe, but it's okay to use it here since
the whole of dump_vmcs() is a single huge multi-line piece of output
that isn't SMP-safe.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In __apic_accept_irq() interface trig_mode is int and actually on some code
paths it is set above u8:
kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode
is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to
(1 << 15) & e->msi.data
kvm_apic_local_deliver sets it to reg & (1 << 15).
Fix the immediate issue by making 'tm' into u16. We may also want to adjust
__apic_accept_irq() interface and use proper sizes for vector, level,
trig_mode but this is not urgent.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Changed passing argument as "0 to NULL" which resolves below sparse warning
arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer
Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.
KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode. But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.
SMM complicates things as 64-bit CPUs use a different SMRAM save state
area. KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).
Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM. If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions. KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode. But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.
Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.
And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well. Note, this may result in a
compiler warning about cr4 being consumed uninitialized. Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).
Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cb ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.
Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm. Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.
This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.
When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.
The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.
Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.
To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.
Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.
For example:
kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
vmx_vcpu_run
vmx_complete_atomic_exit
kvm_machine_check
do_machine_check
do_memory_failure
memory_failure
lock_page
In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).
In __switch_to {
switch_fpu_finish
copy_kernel_to_fpregs
XRSTORS
If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.
Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.
When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.
Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.
Fixes: 98d90582be ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bb218fbcfa.
As Oren Twaig pointed out the old discussion:
https://patchwork.kernel.org/patch/8292231/
that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.
Also, the issue mentioned in the commit bb218fbcfa was misdiagnosed.
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.
Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The remaining failures of vmx.flat when EPT is disabled are caused by
incorrectly reflecting VMfails to the L1 hypervisor. What happens is
that nested_vmx_restore_host_state corrupts the guest CR3, reloading it
with the host's shadow CR3 instead, because it blindly loads GUEST_CR3
from the vmcs01.
For simplicity let's just always use hardware VMCS checks when EPT is
disabled. This way, nested_vmx_restore_host_state is not reached at
all (or at least shouldn't be reached).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Kconfig text contains a spelling mistake, fix it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20190416105751.18899-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hyper-V TLFS suggests an optimization to avoid imminent VMExit on EOI:
"The OS performs an EOI by atomically writing zero to the EOI Assist field
of the virtual VP assist page and checking whether the "No EOI required"
field was previously zero. If it was, the OS must write to the
HV_X64_APIC_EOI MSR thereby triggering an intercept into the hypervisor."
Implement the optimization in Linux.
Tested-by: Long Li <longli@microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kelley (EOSG) <Michael.H.Kelley@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Simon Xiao <sixiao@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-hyperv@vger.kernel.org
Link: http://lkml.kernel.org/r/20190403170309.4107-1-vkuznets@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add perf core PMU support for Intel Tremont CPU.
The init code is based on Goldmont plus.
The generic purpose counter 0 and fixed counter 0 have less skid.
Force :ppp events on generic purpose counter 0.
Force instruction:ppp on generic purpose counter 0 and fixed counter 0.
Updates LLC cache event table and OFFCORE_RESPONSE mask.
Adaptive PEBS, which is already enabled on ICL, is also supported
on Tremont. No extra code required.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/1554922629-126287-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add Intel Icelake uncore support:
- The init code is based on Skylake
- Add new PCI id for IMC
- New MSR address for CBOX
- Get CBOX# from CNL_UNC_CBO_CONFIG MSR directly
- Create a new PMU for fixed clocktick counter
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-13-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add Icelake core PMU perf code, including constraint tables and the main
enable code.
Icelake expanded the generic counters to always 8 even with HT on, but a
range of events cannot be scheduled on the extra 4 counters.
Add new constraint ranges to describe this to the scheduler.
The number of constraints that need to be checked is larger now than
with earlier CPUs.
At some point we may need a new data structure to look them up more
efficiently than with linear search. So far it still seems to be
acceptable however.
Icelake added a new fixed counter SLOTS. Full support for it is added
later in the patch series.
The cache events table is identical to Skylake.
Compare to PEBS instruction event on generic counter, fixed counter 0
has less skid. Force instruction:ppp always in fixed counter 0.
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Icelake extended the general counters to 8, even when SMT is enabled.
However only a (large) subset of the events can be used on all 8
counters.
The events that can or cannot be used on all counters are organized
in ranges.
A lot of scheduler constraints are required to handle all this.
To avoid blowing up the tables add event code ranges to the constraint
tables, and a new inline function to match them.
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # developer hat on
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # maintainer hat on
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-8-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With adaptive PEBS the CPU can directly supply the LBR information,
so we don't need to read it again. But the LBRs still need to be
enabled. Add a special count to the cpuc that distinguishes these
two cases, and avoid reading the LBRs unnecessarily when PEBS is
active.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-7-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adaptive PEBS is a new way to report PEBS sampling information. Instead
of a fixed size record for all PEBS events it allows to configure the
PEBS record to only include the information needed. Events can then opt
in to use such an extended record, or stay with a basic record which
only contains the IP.
The major new feature is to support LBRs in PEBS record.
Besides normal LBR, this allows (much faster) large PEBS, while still
supporting callstacks through callstack LBR. So essentially a lot of
profiling can now be done without frequent interrupts, dropping the
overhead significantly.
The main requirement still is to use a period, and not use frequency
mode, because frequency mode requires reevaluating the frequency on each
overflow.
The floating point state (XMM) is also supported, which allows efficient
profiling of FP function arguments.
Introduce specific drain function to handle variable length records.
Use a new callback to parse the new record format, and also handle the
STATUS field now being at a different offset.
Add code to set up the configuration register. Since there is only a
single register, all events either get the full super set of all events,
or only the basic record.
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-6-kan.liang@linux.intel.com
[ Renamed GPRS => GP. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The drain_pebs() could be called twice in a short period for auto-reload
event in pmu::read(). The intel_pmu_save_and_restart_reload() should be
called to update the event->count.
This case should also be handled on Icelake. Extract the code for
later reuse.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-5-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extract some code related to memory profiling from the PEBS record
parser into separate functions. It can be reused by the upcoming
adaptive PEBS parser. No functional changes.
Rename intel_hsw_weight to intel_get_tsx_weight, and
intel_hsw_transaction to intel_get_tsx_transaction. Because the input is
not the hsw pebs format anymore.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-4-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Starting from Icelake, XMM registers can be collected in PEBS record.
But current code only output the pt_regs.
Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The
xmm_regs will be used later to keep a pointer to PEBS record which has
XMM information.
XMM registers are 128 bit. To simplify the code, they are handled like
two different registers, which means setting two bits in the register
bitmap. This also allows only sampling the lower 64bit bits in XMM.
The index of XMM registers starts from 32. There are 16 XMM registers.
So all reserved space for regs are used. Remove REG_RESERVED.
Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86
regs including both GPRs and XMM.
Add REG_NOSUPPORT for 32bit to exclude unsupported registers.
Previous platforms can not collect XMM information in PEBS record.
Adding pebs_no_xmm_regs to indicate the unsupported platforms.
The common code still validates the supported registers. However, it
cannot check model specific registers, e.g. XMM. Add extra check in
x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr.
The regs_user never supports XMM collection.
The regs_intr only supports XMM collection when sampling PEBS event on
icelake and later platforms.
Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PEBS_REGS used as mask for the supported registers for large PEBS.
However, the mask cannot filter the sample_regs_user/sample_regs_intr
correctly.
(1ULL << PERF_REG_X86_*) should be used to replace PERF_REG_X86_*, which
is only the index.
Rename PEBS_REGS to PEBS_GP_REGS, because the mask is only for general
purpose registers.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Fixes: 2fe1bc1f50 ("perf/x86: Enable free running PEBS for REGS_USER/INTR")
Link: https://lkml.kernel.org/r/20190402194509.2832-2-kan.liang@linux.intel.com
[ Renamed it to PEBS_GP_REGS - as 'GPRS' is used elsewhere ;-) ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As mentioned in the comment, there are some special cases where we can simply
clear the TPR shadow bit from the CPU-based execution controls in the vmcs02.
Handle them so that we can remove some XFAILs from vmx.flat.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert the following commit:
515ab7c413: ("x86/mm: Align TLB invalidation info")
I found out (the hard way) that under some .config options (notably L1_CACHE_SHIFT=7)
and compiler combinations this on-stack alignment leads to a 320 byte
stack usage, which then triggers a KASAN stack warning elsewhere.
Using 320 bytes of stack space for a 40 byte structure is ludicrous and
clearly not right.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Nadav Amit <namit@vmware.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 515ab7c413 ("x86/mm: Align TLB invalidation info")
Link: http://lkml.kernel.org/r/20190416080335.GM7905@worktop.programming.kicks-ass.net
[ Minor changelog edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Upon reboot, the Acer TravelMate X514-51T laptop appears to complete the
shutdown process, but then it hangs in BIOS POST with a black screen.
The problem is intermittent - at some points it has appeared related to
Secure Boot settings or different kernel builds, but ultimately we have
not been able to identify the exact conditions that trigger the issue to
come and go.
Besides, the EFI mode cannot be disabled in the BIOS of this model.
However, after extensive testing, we observe that using the EFI reboot
method reliably avoids the issue in all cases.
So add a boot time quirk to use EFI reboot on such systems.
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=203119
Signed-off-by: Jian-Hong Pan <jian-hong@endlessm.com>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux@endlessm.com
Link: http://lkml.kernel.org/r/20190412080152.3718-1-jian-hong@endlessm.com
[ Fix !CONFIG_EFI build failure, clarify the code and the changelog a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Xose Vazquez Perez reported boot warnings when NX is disabled on the kernel command line.
__early_set_fixmap() triggers this warning:
attempted to set unsupported pgprot: 8000000000000163
bits: 8000000000000000
supported: 7fffffffffffffff
WARNING: CPU: 0 PID: 0 at arch/x86/include/asm/pgtable.h:537
__early_set_fixmap+0xa2/0xff
because it uses __default_kernel_pte_mask to mask out unsupported bits.
Use __supported_pte_mask instead.
Disabling NX on the command line also triggers the NX warning in the page
table mapping check:
WARNING: CPU: 1 PID: 1 at arch/x86/mm/dump_pagetables.c:262 note_page+0x2ae/0x650
....
Make the warning depend on NX set in __supported_pte_mask.
Reported-by: Xose Vazquez Perez <xose.vazquez@gmail.com>
Tested-by: Xose Vazquez Perez <xose.vazquez@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1904151037530.1729@nanos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_LD_DEAD_CODE_DATA_ELIMINATION=y, we compile the kernel with
-fdata-sections, which also splits the .bss section.
The new section, with a new .bss.* name, which pattern gets missed by the
main x86 linker script which only expects the '.bss' name. This results
in the discarding of the second part and a too small, truncated .bss
section and an unhappy, non-working kernel.
Use the common BSS_MAIN macro in the linker script to properly capture
and merge all the generated BSS sections.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190415164956.124067-1-samitolvanen@google.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mikhail reported a lockdep splat related to the AMD specific ssb_state
lock:
CPU0 CPU1
lock(&st->lock);
local_irq_disable();
lock(&(&sighand->siglock)->rlock);
lock(&st->lock);
<Interrupt>
lock(&(&sighand->siglock)->rlock);
*** DEADLOCK ***
The connection between sighand->siglock and st->lock comes through seccomp,
which takes st->lock while holding sighand->siglock.
Make sure interrupts are disabled when __speculation_ctrl_update() is
invoked via prctl() -> speculation_ctrl_update(). Add a lockdep assert to
catch future offenders.
Fixes: 1f50ddb4f4 ("x86/speculation: Handle HT correctly on AMD")
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1904141948200.4917@nanos.tec.linutronix.de
Terminating the last trace entry with ULONG_MAX is a completely pointless
exercise and none of the consumers can rely on it because it's
inconsistently implemented across architectures. In fact quite some of the
callers remove the entry and adjust stack_trace.nr_entries afterwards.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Link: https://lkml.kernel.org/r/20190410103643.750954603@linutronix.de
When cache allocation is supported and the user creates a new resctrl
resource group, the allocations of the new resource group are
initialized to all regions that it can possibly use. At this time these
regions are all that are shareable by other resource groups as well as
regions that are not currently used. The new resource group's mode is
also initialized to reflect this initialization and set to "shareable".
The new resource group's mode is currently repeatedly initialized within
the loop that configures the hardware with the resource group's default
allocations.
Move the initialization of the resource group's mode outside the
hardware configuration loop. The resource group's mode is now
initialized only once as the final step to reflect that its configured
allocations are "shareable".
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1554839629-5448-1-git-send-email-xiaochen.shen@intel.com
Pull x86 fixes from Ingo Molnar:
"Fix typos in user-visible resctrl parameters, and also fix assembly
constraint bugs that might result in miscompilation"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm: Use stricter assembly constraints in bitops
x86/resctrl: Fix typos in the mba_sc mount option
Pull perf fixes from Ingo Molnar:
"Six kernel side fixes: three related to NMI handling on AMD systems, a
race fix, a kexec initialization fix and a PEBS sampling fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Fix perf_event_disable_inatomic() race
x86/perf/amd: Remove need to check "running" bit in NMI handler
x86/perf/amd: Resolve NMI latency issues for active PMCs
x86/perf/amd: Resolve race condition when disabling PMC
perf/x86/intel: Initialize TFA MSR
perf/x86/intel: Fix handling of wakeup_events for multi-entry PEBS
The task's initial PKRU value is set partly for fpu__clear()/
copy_init_pkru_to_fpregs(). It is not part of init_fpstate.xsave and
instead it is set explicitly.
If the user removes the PKRU state from XSAVE in the signal handler then
__fpu__restore_sig() will restore the missing bits from `init_fpstate'
and initialize the PKRU value to 0.
Add the `init_pkru_value' to `init_fpstate' so it is set to the init
value in such a case.
In theory copy_init_pkru_to_fpregs() could be removed because restoring
the PKRU at return-to-userland should be enough.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-28-bigeasy@linutronix.de
If a task is scheduled out and receives a signal then it won't be
able to take the fastpath because the registers aren't available. The
slowpath is more expensive compared to XRSTOR + XSAVE which usually
succeeds.
Here are some clock_gettime() numbers from a bigger box with AVX512
during bootup:
- __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent
FPU context on the CPU then the optimisation in __fpregs_load_activate()
will skip the load (which was disabled during the test).
- copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a
pagefault it is 1.8us - 3us usually in the 2.6us area.
- The slowpath takes 1.5us - 6us. Usually in the 2.6us area.
My testcases (including lat_sig) take the fastpath without
__fpregs_load_activate(). I expect this to be the majority.
Since the slowpath is in the >1us area it makes sense to load the
registers and attempt to save them directly. The direct save may fail
but should only happen on the first invocation or after fork() while the
page is read-only.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
Try to save the FPU registers directly to the userland stack frame if
the CPU holds the FPU registers for the current task. This has to be
done with the pagefault disabled because we can't fault (while the FPU
registers are locked) and therefore the operation might fail. If it
fails try the slowpath which can handle faults.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-26-bigeasy@linutronix.de
The previous commits refactor the restoration of the FPU registers so
that they can be loaded from in-kernel memory. This overhead can be
avoided if the load can be performed without a pagefault.
Attempt to restore FPU registers by invoking
copy_user_to_fpregs_zeroing(). If it fails try the slowpath which can
handle pagefaults.
[ bp: Add a comment over the fastpath to be able to find one's way
around the function. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-25-bigeasy@linutronix.de
Defer loading of FPU state until return to userspace. This gives
the kernel the potential to skip loading FPU state for tasks that
stay in kernel mode, or for tasks that end up with repeated
invocations of kernel_fpu_begin() & kernel_fpu_end().
The fpregs_lock/unlock() section ensures that the registers remain
unchanged. Otherwise a context switch or a bottom half could save the
registers to its FPU context and the processor's FPU registers would
became random if modified at the same time.
KVM swaps the host/guest registers on entry/exit path. This flow has
been kept as is. First it ensures that the registers are loaded and then
saves the current (host) state before it loads the guest's registers. The
swap is done at the very end with disabled interrupts so it should not
change anymore before theg guest is entered. The read/save version seems
to be cheaper compared to memcpy() in a micro benchmark.
Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy().
For kernel threads, this flag gets never cleared which avoids saving /
restoring the FPU state for kernel threads and during in-kernel usage of
the FPU registers.
[
bp: Correct and update commit message and fix checkpatch warnings.
s/register/registers/ where it is used in plural.
minor comment corrections.
remove unused trace_x86_fpu_activate_state() TP.
]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <longman@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
The ia32_fxstate case (32bit with fxsr) and the other (64bit frames or
32bit frames without fxsr) restore both from kernel memory and sanitize
the content.
The !ia32_fxstate version restores missing xstates from "init state"
while the ia32_fxstate doesn't and skips it.
Merge the two code paths and keep the !ia32_fxstate one. Copy only the
user_i387_ia32_struct data structure in the ia32_fxstate.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-23-bigeasy@linutronix.de
The 64-bit case (both 64-bit and 32-bit frames) loads the new state from
user memory.
However, doing this is not desired if the FPU state is going to be
restored on return to userland: it would be required to disable
preemption in order to avoid a context switch which would set
TIF_NEED_FPU_LOAD. If this happens before the restore operation then the
loaded registers would become volatile.
Furthermore, disabling preemption while accessing user memory requires
to disable the pagefault handler. An error during FXRSTOR would then
mean that either a page fault occurred (and it would have to be retried
with enabled page fault handler) or a #GP occurred because the xstate is
bogus (after all, the signal handler can modify it).
In order to avoid that mess, copy the FPU state from userland, validate
it and then load it. The copy_kernel_…() helpers are basically just
like the old helpers except that they operate on kernel memory and the
fault handler just sets the error value and the caller handles it.
copy_user_to_fpregs_zeroing() and its helpers remain and will be used
later for a fastpath optimisation.
[ bp: Clarify commit message. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-22-bigeasy@linutronix.de
Start refactoring __fpu__restore_sig() by inlining
copy_user_to_fpregs_zeroing(). The original function remains and will be
used to restore from userland memory if possible.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-21-bigeasy@linutronix.de
During the context switch the xstate is loaded which also includes the
PKRU value.
If xstate is restored on return to userland it is required
that the PKRU value in xstate is the same as the one in the CPU.
Save the PKRU in xstate during modification.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-20-bigeasy@linutronix.de
The FPU registers need only to be saved if TIF_NEED_FPU_LOAD is not set.
Otherwise this has been already done and can be skipped.
[ bp: Massage a bit. ]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-19-bigeasy@linutronix.de
copy_fpstate_to_sigframe() stores the registers directly to user space.
This is okay because the FPU registers are valid and saving them
directly avoids saving them into kernel memory and making a copy.
However, this cannot be done anymore if the FPU registers are going
to be restored on the return to userland. It is possible that the FPU
registers will be invalidated in the middle of the save operation and
this should be done with disabled preemption / BH.
Save the FPU registers to the task's FPU struct and copy them to the
user memory later on.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-18-bigeasy@linutronix.de
Add TIF_NEED_FPU_LOAD. This flag is used for loading the FPU registers
before returning to userland. It must not be set on systems without a
FPU.
If this flag is cleared, the CPU's FPU registers hold the latest,
up-to-date content of the current task's (current()) FPU registers.
The in-memory copy (union fpregs_state) is not valid.
If this flag is set, then all of CPU's FPU registers may hold a random
value (except for PKRU) and it is required to load the content of the
FPU registers on return to userland.
Introduce it now as a preparatory change before adding the main feature.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-17-bigeasy@linutronix.de
While most of a task's FPU state is only needed in user space, the
protection keys need to be in place immediately after a context switch.
The reason is that any access to userspace memory while running in
kernel mode also needs to abide by the memory permissions specified in
the protection keys.
The "eager switch" is a preparation for loading the FPU state on return
to userland. Instead of decoupling PKRU state from xstate, update PKRU
within xstate on write operations by the kernel.
For user tasks the PKRU should be always read from the xsave area and it
should not change anything because the PKRU value was loaded as part of
FPU restore.
For kernel threads the default "init_pkru_value" will be written. Before
this commit, the kernel thread would end up with a random value which it
inherited from the previous user task.
[ bigeasy: save pkru to xstate, no cache, don't use __raw_xsave_addr() ]
[ bp: update commit message, sort headers properly in asm/fpu/xstate.h ]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-16-bigeasy@linutronix.de
write_pkru() checks if the current value is the same as the expected
value. So instead of just checking if the current and new value is zero
(and skip the write in such a case) we can benefit from that.
Remove the zero check of PKRU, __write_pkru() provides such a check now.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-15-bigeasy@linutronix.de
According to Dave Hansen, WRPKRU is more expensive than RDPKRU. It has
a higher cycle cost and it's also practically a (light) speculation
barrier.
As an optimisation read the current PKRU value and only write the new
one if it is different.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-14-bigeasy@linutronix.de
Dave Hansen asked for __read_pkru() and __write_pkru() to be
symmetrical.
As part of the series __write_pkru() will read back the value and only
write it if it is different.
In order to make both functions symmetrical, move the function
containing only the opcode asm into a function called like the
instruction itself.
__write_pkru() will just invoke wrpkru() but in a follow-up patch will
also read back the value.
[ bp: Convert asm opcode wrapper names to rd/wrpkru(). ]
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-13-bigeasy@linutronix.de
This is the ancient loading interface which requires special tools to be
used. The bigger problem with it is that it is as inadequate for proper
loading of microcode as the late microcode loading interface is because
it happens just as late.
iucode_tool's manpage already warns people that it is deprecated.
Deprecate it and turn it off by default along with a big fat warning in
the Kconfig help. It will go away sometime in the future.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190405133010.24249-4-bp@alien8.de
Commit
2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
added the new define UCODE_NEW to denote that an update should happen
only when newer microcode (than installed on the system) has been found.
But it missed adjusting that for the old /dev/cpu/microcode loading
interface. Fix it.
Fixes: 2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Link: https://lkml.kernel.org/r/20190405133010.24249-3-bp@alien8.de
As reported by 0-DAY kernel test infrastructure:
arch/x86//kernel/ima_arch.c: In function 'arch_get_ima_policy':
>> arch/x86//kernel/ima_arch.c:78:4: error: implicit declaration of
function 'set_module_sig_enforced' [-Werror=implicit-function-declaration]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Change generic_load_microcode() to use the iov_iter API instead of a
clumsy open-coded version which has to pay attention to __user data
or kernel data, depending on the loading method. This allows to avoid
explicit casting between user and kernel pointers.
Because the iov_iter API makes it hard to read the same location twice,
as a side effect, also fix a double-read of the microcode header (which
could e.g. lead to out-of-bounds reads in microcode_sanity_check()).
Not that it matters much, only root is allowed to load microcode
anyway...
[ bp: Massage a bit, sort function-local variables. ]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190404111128.131157-1-jannh@google.com
After changing the argument of __raw_xsave_addr() from a mask to
number Dave suggested to check if it makes sense to do the same for
get_xsave_addr(). As it turns out it does.
Only get_xsave_addr() needs the mask to check if the requested feature
is part of what is supported/saved and then uses the number again. The
shift operation is cheaper compared to fls64() (find last bit set).
Also, the feature number uses less opcode space compared to the mask. :)
Make the get_xsave_addr() argument a xfeature number instead of a mask
and fix up its callers.
Furthermore, use xfeature_nr and xfeature_mask consistently.
This results in the following changes to the kvm code:
feature -> xfeature_mask
index -> xfeature_nr
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Siarhei Liakh <Siarhei.Liakh@concurrent-rt.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-12-bigeasy@linutronix.de
Most users of __raw_xsave_addr() use a feature number, shift it to a
mask and then __raw_xsave_addr() shifts it back to the feature number.
Make __raw_xsave_addr() use the feature number as an argument.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-11-bigeasy@linutronix.de