We were not holding the kvm->slots_lock as required when calling
kvm_io_bus_unregister_dev() as required.
This only affects the error path, but still, let's do our due
diligence.
Reported by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
If userspace creates the VCPUs after initializing the VGIC, then we end
up in a situation where we trigger a bug in kvm_vcpu_get_idx(), because
it is called prior to adding the VCPU into the vcpus array on the VM.
There is no tight coupling between the VCPU index and the area of the
redistributor region used for the VCPU, so we can simply ensure that all
creations of redistributors are serialized per VM, and increment an
offset when we successfully add a redistributor.
The vgic_register_redist_iodev() function can be called from two paths:
vgic_redister_all_redist_iodev() which is called via the kvm_vgic_addr()
device attribute handler. This patch already holds the kvm->lock mutex.
The other path is via kvm_vgic_vcpu_init, which is called through a
longer chain from kvm_vm_ioctl_create_vcpu(), which releases the
kvm->lock mutex just before calling kvm_arch_vcpu_create(), so we can
simply take this mutex again later for our purposes.
Fixes: ab6f468c10 ("KVM: arm/arm64: Register iodevs when setting redist base and creating VCPUs")
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Tested-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
We yield the kvm->mmu_lock occassionaly while performing an operation
(e.g, unmap or permission changes) on a large area of stage2 mappings.
However this could possibly cause another thread to clear and free up
the stage2 page tables while we were waiting for regaining the lock and
thus the original thread could end up in accessing memory that was
freed. This patch fixes the problem by making sure that the stage2
pagetable is still valid after we regain the lock. The fact that
mmu_notifer->release() could be called twice (via __mmu_notifier_release
and mmu_notifier_unregsister) enhances the possibility of hitting
this race where there are two threads trying to unmap the entire guest
shadow pages.
While at it, cleanup the redudant checks around cond_resched_lock in
stage2_wp_range(), as cond_resched_lock already does the same checks.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: andreyknvl@google.com
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Make sure we don't use a cached value of the KVM stage2 PGD while
resetting the PGD.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In kvm_free_stage2_pgd() we check the stage2 PGD before holding
the lock and proceed to take the lock if it is valid. And we unmap
the page tables, followed by releasing the lock. We reset the PGD
only after dropping this lock, which could cause a race condition
where another thread waiting on or even holding the lock, could
potentially see that the PGD is still valid and proceed to perform
a stage2 operation and later encounter a NULL PGD.
[223090.242280] Unable to handle kernel NULL pointer dereference at
virtual address 00000040
[223090.262330] PC is at unmap_stage2_range+0x8c/0x428
[223090.262332] LR is at kvm_unmap_hva_handler+0x2c/0x3c
[223090.262531] Call trace:
[223090.262533] [<ffff0000080adb78>] unmap_stage2_range+0x8c/0x428
[223090.262535] [<ffff0000080adf40>] kvm_unmap_hva_handler+0x2c/0x3c
[223090.262537] [<ffff0000080ace2c>] handle_hva_to_gpa+0xb0/0x104
[223090.262539] [<ffff0000080af988>] kvm_unmap_hva+0x5c/0xbc
[223090.262543] [<ffff0000080a2478>]
kvm_mmu_notifier_invalidate_page+0x50/0x8c
[223090.262547] [<ffff0000082274f8>]
__mmu_notifier_invalidate_page+0x5c/0x84
[223090.262551] [<ffff00000820b700>] try_to_unmap_one+0x1d0/0x4a0
[223090.262553] [<ffff00000820c5c8>] rmap_walk+0x1cc/0x2e0
[223090.262555] [<ffff00000820c90c>] try_to_unmap+0x74/0xa4
[223090.262557] [<ffff000008230ce4>] migrate_pages+0x31c/0x5ac
[223090.262561] [<ffff0000081f869c>] compact_zone+0x3fc/0x7ac
[223090.262563] [<ffff0000081f8ae0>] compact_zone_order+0x94/0xb0
[223090.262564] [<ffff0000081f91c0>] try_to_compact_pages+0x108/0x290
[223090.262569] [<ffff0000081d5108>] __alloc_pages_direct_compact+0x70/0x1ac
[223090.262571] [<ffff0000081d64a0>] __alloc_pages_nodemask+0x434/0x9f4
[223090.262572] [<ffff0000082256f0>] alloc_pages_vma+0x230/0x254
[223090.262574] [<ffff000008235e5c>] do_huge_pmd_anonymous_page+0x114/0x538
[223090.262576] [<ffff000008201bec>] handle_mm_fault+0xd40/0x17a4
[223090.262577] [<ffff0000081fb324>] __get_user_pages+0x12c/0x36c
[223090.262578] [<ffff0000081fb804>] get_user_pages_unlocked+0xa4/0x1b8
[223090.262579] [<ffff0000080a3ce8>] __gfn_to_pfn_memslot+0x280/0x31c
[223090.262580] [<ffff0000080a3dd0>] gfn_to_pfn_prot+0x4c/0x5c
[223090.262582] [<ffff0000080af3f8>] kvm_handle_guest_abort+0x240/0x774
[223090.262584] [<ffff0000080b2bac>] handle_exit+0x11c/0x1ac
[223090.262586] [<ffff0000080ab99c>] kvm_arch_vcpu_ioctl_run+0x31c/0x648
[223090.262587] [<ffff0000080a1d78>] kvm_vcpu_ioctl+0x378/0x768
[223090.262590] [<ffff00000825df5c>] do_vfs_ioctl+0x324/0x5a4
[223090.262591] [<ffff00000825e26c>] SyS_ioctl+0x90/0xa4
[223090.262595] [<ffff000008085d84>] el0_svc_naked+0x38/0x3c
This patch moves the stage2 PGD manipulation under the lock.
Reported-by: Alexander Graf <agraf@suse.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
The GICv3 documentation is extremely confusing, as it talks about
the number of priorities represented by the ICH_APxRn_EL2 registers,
while it should really talk about the number of preemption levels.
This leads to a bug where we may access undefined ICH_APxRn_EL2
registers, since PREbits is allowed to be smaller than PRIbits.
Thankfully, nobody seem to have taken this path so far...
The fix is to use ICH_VTR_EL2.PREbits instead.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When an interrupt is injected with the HW bit set (indicating that
deactivation should be propagated to the physical distributor),
special care must be taken so that we never mark the corresponding
LR with the Active+Pending state (as the pending state is kept in
the physycal distributor).
Cc: stable@vger.kernel.org
Fixes: 59529f69f5 ("KVM: arm/arm64: vgic-new: Add GICv3 world switch backend")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When an interrupt is injected with the HW bit set (indicating that
deactivation should be propagated to the physical distributor),
special care must be taken so that we never mark the corresponding
LR with the Active+Pending state (as the pending state is kept in
the physycal distributor).
Cc: stable@vger.kernel.org
Fixes: 140b086dd1 ("KVM: arm/arm64: vgic-new: Add GICv2 world switch backend")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJZEZihAAoJEEtpOizt6ddyGDYH/jmGjDMnryORn2P2o10dUQKJ
RnHTQYnpOYqnprlkFtZFpmK+mjl/a8R1Btb7GK2EwmovTR95pMYPRqtrCTOL0aQA
4OToh7+vFGatwxsGCS6utazdhmx0UT/LhO/GEF4G1zOb7eVa4ZtS1NKLP2WjPD1E
RU3Qn8wa0pESv3tJScv8qo2+PWVX4krbFllhY2Hk0AkVQcI66ExkdVq4ikm1eUXn
rxzIayLG2bv3KEPNCzozdwoY9tDL+b40q6vN/RHGJmM05SZbbSx2/Bkw2RbslSpD
2hvhHWX7xeuEBcd5mZO7sP4WS3hM/BI8eX7q+uMeNJ9B+nM82yjGfOTtglVi2cc=
=JfvQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of KVM/ARM Changes for v4.12.
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
When failing to restore the ITT for a DTE, we should remove the failed
device entry from the list and free the object.
We slightly refactor vgic_its_destroy to be able to reuse the now
separate vgic_its_free_dte() function.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
The only reason we called kvm_vgic_map_resources() when restoring the
ITS tables was because we wanted to have the KVM iodevs registered in
the KVM IO bus framework at the time when the ITS was restored such that
a restored and active device can inject MSIs prior to otherwise calling
kvm_vgic_map_resources() from the first run of a VCPU.
Since we now register the KVM iodevs for the redestributors and ITS as
soon as possible (when setting the base addresses), we no longer need
this call and kvm_vgic_map_resources() is again called only when first
running a VCPU.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
We have to register the ITS iodevice before running the VM, because in
migration scenarios, we may be restoring a live device that wishes to
inject MSIs before the VCPUs have started.
All we need to register the ITS io device is the base address of the
ITS, so we can simply register that when the base address of the ITS is
set.
[ Code to fix concurrency issues when setting the ITS base address and
to fix the undef base address check written by Marc Zyngier ]
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
The its->initialized doesn't bring much to the table, and creates
unnecessary ordering between setting the address and initializing it
(which amounts to exactly nothing).
Let's kill it altogether, making KVM_DEV_ARM_VGIC_CTRL_INIT the no-op
it deserves to be.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Instead of waiting with registering KVM iodevs until the first VCPU is
run, we can actually create the iodevs when the redist base address is
set. The only downside is that we must now also check if we need to do
this for VCPUs which are created after creating the VGIC, because there
is no enforced ordering between creating the VGIC (and setting its base
addresses) and creating the VCPUs.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
As we are about to handle setting the address for the redistributor base
region separately from some of the other base addresses, let's rework
this function to leave a little more room for being flexible in what
each type of base address does.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
As we are about to fiddle with the IO device registration mechanism,
let's be a little more careful when setting base addresses as early as
possible. When setting a base address, we can check that there's
address space enough for its scope and when the last of the two
base addresses (dist and redist) get set, we can also check if the
regions overlap at that time.
This allows us to provide error messages to the user at time when trying
to set the base address, as opposed to later when trying to run the VM.
To do this, we make vgic_v3_check_base available in the core vgic-v3
code as well as in the other parts of the GICv3 code, namely the MMIO
config code.
We also return true for undefined base addresses so that the function
can be used before all base addresses are set; all callers already check
for uninitialized addresses before calling this function.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Split out the function to register all the redistributor iodevs into a
function that handles a single redistributor at a time in preparation
for being able to call this per VCPU as these get created.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
The main thing here is a new implementation of the in-kernel
XICS interrupt controller emulation for POWER9 machines, from Ben
Herrenschmidt.
POWER9 has a new interrupt controller called XIVE (eXternal Interrupt
Virtualization Engine) which is able to deliver interrupts directly
to guest virtual CPUs in hardware without hypervisor intervention.
With this new code, the guest still sees the old XICS interface but
performance is better because the XICS emulation in the host uses the
XIVE directly rather than going through a XICS emulation in firmware.
Conflicts:
arch/powerpc/kernel/cpu_setup_power.S [cherry-picked fix]
arch/powerpc/kvm/book3s_xive.c [include asm/debugfs.h]
In vm_stat_get_per_vm_fops and vcpu_stat_get_per_vm_fops, since we
use nonseekable_open() to open, we should use no_llseek() to seek,
not generic_file_llseek().
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This function really doesn't init anything, it enables the CPU
interface, so name it as such, which gives us the name to use for actual
init work later on.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Merge more updates from Andrew Morton:
- the rest of MM
- various misc things
- procfs updates
- lib/ updates
- checkpatch updates
- kdump/kexec updates
- add kvmalloc helpers, use them
- time helper updates for Y2038 issues. We're almost ready to remove
current_fs_time() but that awaits a btrfs merge.
- add tracepoints to DAX
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4
selftests/vm: add a test for virtual address range mapping
dax: add tracepoint to dax_insert_mapping()
dax: add tracepoint to dax_writeback_one()
dax: add tracepoints to dax_writeback_mapping_range()
dax: add tracepoints to dax_load_hole()
dax: add tracepoints to dax_pfn_mkwrite()
dax: add tracepoints to dax_iomap_pte_fault()
mtd: nand: nandsim: convert to memalloc_noreclaim_*()
treewide: convert PF_MEMALLOC manipulations to new helpers
mm: introduce memalloc_noreclaim_{save,restore}
mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
mm/huge_memory.c: use zap_deposited_table() more
time: delete CURRENT_TIME_SEC and CURRENT_TIME
gfs2: replace CURRENT_TIME with current_time
apparmorfs: replace CURRENT_TIME with current_time()
lustre: replace CURRENT_TIME macro
fs: ubifs: replace CURRENT_TIME_SEC with current_time
fs: ufs: use ktime_get_real_ts64() for birthtime
...
Patch series "kvmalloc", v5.
There are many open coded kmalloc with vmalloc fallback instances in the
tree. Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.
As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.
Most callers, I could find, have been converted to use the helper
instead. This is patch 6. There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.
[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com
This patch (of 9):
Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code. Yet we do not have any common helper
for that and so users have invented their own helpers. Some of them are
really creative when doing so. Let's just add kv[mz]alloc and make sure
it is implemented properly. This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures. This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.
This patch also changes some existing users and removes helpers which
are specific for them. In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL). Those need to be
fixed separately.
While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers. Existing ones would have to die
slowly.
[sfr@canb.auug.org.au: f2fs fixup]
Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
This patch adds a new attribute to GICV3 KVM device
KVM_DEV_ARM_VGIC_GRP_CTRL group. This allows userspace to
flush all GICR pending tables into guest RAM.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
In its_sync_lpi_pending_table() we currently ignore the
target_vcpu of the LPIs. We sync the pending bit found in
the vcpu pending table even if the LPI is not targeting it.
Also in vgic_its_cmd_handle_invall() we are supposed to
read the config table data for the LPIs associated to the
collection ID. At the moment we refresh all LPI config
information.
This patch passes a vpcu to vgic_copy_lpi_list() so that
this latter returns a snapshot of the LPIs targeting this
CPU and only those.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Implement routines to save and restore device ITT and their
interrupt table entries (ITE).
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
This patch saves the device table entries into guest RAM.
Both flat table and 2 stage tables are supported. DeviceId
indexing is used.
For each device listed in the device table, we also save
the translation table using the vgic_its_save/restore_itt
routines. Those functions will be implemented in a subsequent
patch.
On restore, devices are re-allocated and their itt are
re-built.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
As vgic_its_check_id() computes the device/collection entry's
GPA, let's return it so that new callers can retrieve it easily.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
The save path copies the collection entries into guest RAM
at the GPA specified in the BASER register. This obviously
requires the BASER to be set. The last written element is a
dummy collection table entry.
We do not index by collection ID as the collection entry
can fit into 8 bytes while containing the collection ID.
On restore path we re-allocate the collection objects.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Add a generic scan_its_table() helper whose role consists in
scanning a contiguous table located in guest RAM and applying
a callback on each entry. Entries can be handled as linked lists
since the callback may return an id offset to the next entry and
also indicate whether the entry is the last one.
Helper functions also are added to compute the device/event ID
offset to the next DTE/ITE.
compute_next_devid_offset, compute_next_eventid_offset and
scan_table will become static in subsequent patches
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Add two new helpers to allocate an its ite and an its device.
This will avoid duplication on restore path.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Introduce new attributes in KVM_DEV_ARM_VGIC_GRP_CTRL group:
- KVM_DEV_ARM_ITS_SAVE_TABLES: saves the ITS tables into guest RAM
- KVM_DEV_ARM_ITS_RESTORE_TABLES: restores them into VGIC internal
structures.
We hold the vcpus lock during the save and restore to make
sure no vcpu is running.
At this stage the functionality is not yet implemented. Only
the skeleton is put in place.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
[Given we will move the iodev register until setting the base addr]
Reviewed-by: Christoffer Dall <cdall@linaro.org>
When creating the lpi we now ask the redistributor what is the state
of the LPI (priority, enabled, pending).
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
this new helper synchronizes the irq pending_latch
with the LPI pending bit status found in rdist pending table.
As the status is consumed, we reset the bit in pending table.
As we need the PENDBASER_ADDRESS() in vgic-v3, let's move its
definition in the irqchip header. We restore the full length
of the field, ie [51:16]. Same for PROPBASER_ADDRESS with full
field length of [51:12].
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
On MAPD we currently check the device id can be stored in the device table.
Let's first check it can be encoded within the range defined by TYPER
DEVBITS.
Also check the collection ID belongs to the 16 bit range as GITS_TYPER
CIL field equals to 0.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Up to now the MAPD ITT_addr had been ignored. We will need it
for save/restore. Let's record it in the its_device struct.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Up to now the MAPD's ITT size field has been ignored. It encodes
the number of eventid bit minus 1. It should be used to check
the eventid when a MAPTI command is issued on a device. Let's
store the number of eventid bits in the its_device and do the
check on MAPTI. Also make sure the ITT size field does
not exceed the GITS_TYPER IDBITS field.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
The GITS_IIDR revision field is used to encode the migration ABI
revision. So we need to restore it to check the table layout is
readable by the destination.
By writing the IIDR, userspace thus forces the ABI revision to be
used and this must be less than or equal to the max revision KVM
supports.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
We plan to support different migration ABIs, ie. characterizing
the ITS table layout format in guest RAM. For example, a new ABI
will be needed if vLPIs get supported for nested use case.
So let's introduce an array of supported ABIs (at the moment a single
ABI is supported though). The following characteristics are foreseen
to vary with the ABI: size of table entries, save/restore operation,
the way abi settings are applied.
By default the MAX_ABI_REV is applied on its creation. In subsequent
patches we will introduce a way for the userspace to change the ABI
in use.
The entry sizes now are set according to the ABI version and not
hardcoded anymore.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
GITS_CREADR needs to be restored so let's implement the associated
uaccess_write_its callback. The write only is allowed if the its
is disabled.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
This patch implements vgic_its_has_attr_regs and vgic_its_attr_regs_access
upon the MMIO framework. VGIC ITS KVM device KVM_DEV_ARM_VGIC_GRP_ITS_REGS
group becomes functional.
At least GITS_CREADR and GITS_IIDR require to differentiate a guest write
action from a user access. As such let's introduce a new uaccess_its_write
vgic_register_region callback.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We need to use those helpers in vgic-its.c so let's
expose them in the private vgic header.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
The ITS KVM device exposes a new KVM_DEV_ARM_VGIC_GRP_ITS_REGS
group which allows the userspace to save/restore ITS registers.
At this stage the get/set/has operations are not yet implemented.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
We plan to use vgic_find_mmio_region in vgic-its.c so let's
turn it into a public function.
Also let's take the opportunity to rename the region parameter
into regions to emphasize this latter is an array of regions.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
The actual abbreviation for the interrupt translation table entry
is ITE. Let's rename all itte instances by ite.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDKMoAAoJEGvWsS0AyF7xR+YP/0EMEz5MDfCv0PVYj7/AIa0G
Zphl7OhysIkeDAz7urXw9Jdl0NfORNIqmD1vZNVSc321IyNp56Od+kWd82lBrOWB
ad3nNT67pEmu0pAW7CO48ju3rTesEnEl3ra45E1tULeLihmv93jc4ZlfXgumlKq3
/GE84XJ5ZFmluuhq1zgNefeUtyl1tbxTxHJ74+INF7dTd/5sJcphpqS4Dzpb+msT
20WYliccQCBF9zBFUYHc2KjcXXKRQGxLulGS3MuoN2DLkD+U9YyR/OmA7SoXh2J2
WXC5b0x856xTQJFCJ39pb7rw5xHjt3l5zfU3VLSvqEVL/+asBqCcgGNtNUgOW1Es
dEHC6bc66Ley6mn7bbpFE3MK8D+K5q8HwMF6G5KDtIVB6DB/iQ6kzi5aXKoupxtb
1EuU4OW6cDhmOFQYjgIDofLgqbmVvJofdF6+NfxasfZmWrMgHzv0rYvaCDnAV/Tr
t7bhH7hf9/KcP/wpk86O2AMKKpgoNTqe1Qy8cWVFFLnut567Pb6zs/L3ZXfleoLv
t613yM8Zj2fE05ja8ylMDjaasidNpXGttb08/4kAn06Daaoueqla0jmduAhy4aaV
dQ3OFP9lJ5MFaFnMMTPfU3vtvNLMHuo9MZsYCrv5zCaNNs3lpAPUiPNh588ZscKa
sWx4PEiaCi+wcOsLsJvh
=SDkm
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS
arm64: Print DT machine model in setup_machine_fdt()
arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills
arm64: module: split core and init PLT sections
arm64: pmuv3: handle pmuv3+
arm64: Add CNTFRQ_EL0 trap handler
arm64: Silence spurious kbuild warning on menuconfig
arm64: pmuv3: use arm_pmu ACPI framework
arm64: pmuv3: handle !PMUv3 when probing
drivers/perf: arm_pmu: add ACPI framework
arm64: add function to get a cpu's MADT GICC table
drivers/perf: arm_pmu: split out platform device probe logic
drivers/perf: arm_pmu: move irq request/free into probe
drivers/perf: arm_pmu: split cpu-local irq request/free
drivers/perf: arm_pmu: rename irq request/free functions
drivers/perf: arm_pmu: handle no platform_device
drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs()
drivers/perf: arm_pmu: factor out pmu registration
drivers/perf: arm_pmu: fold init into alloc
drivers/perf: arm_pmu: define armpmu_init_fn
...
The #ifndef was removed in 75aaafb79f,
but it was also protecting smp_send_reschedule() in kvm_vcpu_kick().
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.
Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.
Move the shared files into virt/kvm/arm and move the trace points along
with it. When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
This reverts commit bbd6411513.
I've been sitting on this revert for too long and it unfortunately
missed 4.11. It's also the reason why I haven't merged ring-based
dirty tracking for 4.12.
Using kvm_vcpu_memslots in kvm_gfn_to_hva_cache_init and
kvm_vcpu_write_guest_offset_cached means that the MSR value can
now be used to access SMRAM, simply by making it point to an SMRAM
physical address. This is problematic because it lets the guest
OS overwrite memory that it shouldn't be able to touch.
Cc: stable@vger.kernel.org
Fixes: bbd6411513
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We needed the lock to avoid racing with creation of the irqchip on x86. As
kvm_set_irq_routing() calls srcu_synchronize_expedited(), this lock
might be held for a longer time.
Let's introduce an arch specific callback to check if we can actually
add irq routes. For x86, all we have to do is check if we have an
irqchip in the kernel. We don't need kvm->lock at that point as the
irqchip is marked as inititalized only when actually fully created.
Reported-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes: 1df6ddede1 ("KVM: x86: race between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This merges in the powerpc topic/xive branch to bring in the code for
the in-kernel XICS interrupt controller emulation to use the new XIVE
(eXternal Interrupt Virtualization Engine) hardware in the POWER9 chip
directly, rather than via a XICS emulation in firmware.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Changes include:
- Using the common sysreg definitions between KVM and arm64
- Improved hyp-stub implementation with support for kexec and kdump on the 32-bit side
- Proper PMU exception handling
- Performance improvements of our GIC handling
- Support for irqchip in userspace with in-kernel arch-timers and PMU support
- A fix for a race condition in our PSCI code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJY/IasAAoJEEtpOizt6ddyd7gH/2N3BIMxi/Uqigx0e0byA43s
f+8gNq8A71VBTERGW2l9QP1/AZAXpQYNWdWmN2jn+91x2yoVL7AT00gEsliSLEZv
tqZaTGFXKi1vNihYrxEWm1mfVNzhRrnbW6vjLrO4J5Advq7T3OWhNuVt2BLTxz3Y
h0iqOWNVrUD9h3QSBFH8tz7yXhguDTSppAcXbE0tACdRu4vN50wqEWokHJG5TsMG
Tl3KYWrcc3YCKlAJGuJi7t5rMrXk+g1q6HnxlIN6OSk0POC2Vmw9/Gigtltj1Qwh
ZEAwsnka/U8ak8WaWeZa3EsGTSFSoAk/+pKv2FB8mFN+uOmWDqVlEiol4dW49AY=
=mEOk
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM Changes for v4.12.
Changes include:
- Using the common sysreg definitions between KVM and arm64
- Improved hyp-stub implementation with support for kexec and kdump on the 32-bit side
- Proper PMU exception handling
- Performance improvements of our GIC handling
- Support for irqchip in userspace with in-kernel arch-timers and PMU support
- A fix for a race condition in our PSCI code
Conflicts:
Documentation/virtual/kvm/api.txt
include/uapi/linux/kvm.h
kvm_make_all_requests() provides a synchronization that waits until all
kicked VCPUs have acknowledged the kick. This is important for
KVM_REQ_MMU_RELOAD as it prevents freeing while lockless paging is
underway.
This patch adds the synchronization property into all requests that are
currently being used with kvm_make_all_requests() in order to preserve
the current behavior and only introduce a new framework. Removing it
from requests where it is not necessary is left for future patches.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No need to kick a VCPU that we have just woken up.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_kick() must issue a general memory barrier prior to reading
vcpu->mode in order to ensure correctness of the mutual-exclusion
memory barrier pattern used with vcpu->requests. While the cmpxchg
called from kvm_vcpu_kick():
kvm_vcpu_kick
kvm_arch_vcpu_should_kick
kvm_vcpu_exiting_guest_mode
cmpxchg
implies general memory barriers before and after the operation, that
implication is only valid when cmpxchg succeeds. We need an explicit
barrier for when it fails, otherwise a VCPU thread on its entry path
that reads zero for vcpu->requests does not exclude the possibility
the requesting thread sees !IN_GUEST_MODE when it reads vcpu->mode.
kvm_make_all_cpus_request already had a barrier, so we remove it, as
now it would be redundant.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We want to have kvm_make_all_cpus_request() to be an optmized version of
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_make_request(vcpu, request);
kvm_vcpu_kick(vcpu);
}
and kvm_vcpu_kick() wakes up the target vcpu. We know which requests do
not need the wake up and use it to optimize the loop.
Thanks to that, this patch doesn't change the behavior of current users
(the all don't need the wake up) and only prepares for future where the
wake up is going to be needed.
I think that most requests do not need the wake up, so we would flip the
bit then.
Later on, kvm_make_request() will take care of kicking too, using this
bit to make the decision whether to kick or not.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The #ifndef was protecting a missing halt_wakeup stat, but that is no
longer necessary.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.
This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This allows the host kernel to handle H_PUT_TCE, H_PUT_TCE_INDIRECT
and H_STUFF_TCE requests targeted an IOMMU TCE table used for VFIO
without passing them to user space which saves time on switching
to user space and back.
This adds H_PUT_TCE/H_PUT_TCE_INDIRECT/H_STUFF_TCE handlers to KVM.
KVM tries to handle a TCE request in the real mode, if failed
it passes the request to the virtual mode to complete the operation.
If it a virtual mode handler fails, the request is passed to
the user space; this is not expected to happen though.
To avoid dealing with page use counters (which is tricky in real mode),
this only accelerates SPAPR TCE IOMMU v2 clients which are required
to pre-register the userspace memory. The very first TCE request will
be handled in the VFIO SPAPR TCE driver anyway as the userspace view
of the TCE table (iommu_table::it_userspace) is not allocated till
the very first mapping happens and we cannot call vmalloc in real mode.
If we fail to update a hardware IOMMU table unexpected reason, we just
clear it and move on as there is nothing really we can do about it -
for example, if we hot plug a VFIO device to a guest, existing TCE tables
will be mirrored automatically to the hardware and there is no interface
to report to the guest about possible failures.
This adds new attribute - KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE - to
the VFIO KVM device. It takes a VFIO group fd and SPAPR TCE table fd
and associates a physical IOMMU table with the SPAPR TCE table (which
is a guest view of the hardware IOMMU table). The iommu_table object
is cached and referenced so we do not have to look up for it in real mode.
This does not implement the UNSET counterpart as there is no use for it -
once the acceleration is enabled, the existing userspace won't
disable it unless a VFIO container is destroyed; this adds necessary
cleanup to the KVM_DEV_VFIO_GROUP_DEL handler.
This advertises the new KVM_CAP_SPAPR_TCE_VFIO capability to the user
space.
This adds real mode version of WARN_ON_ONCE() as the generic version
causes problems with rcu_sched. Since we testing what vmalloc_to_phys()
returns in the code, this also adds a check for already existing
vmalloc_to_phys() call in kvmppc_rm_h_put_tce_indirect().
This finally makes use of vfio_external_user_iommu_id() which was
introduced quite some time ago and was considered for removal.
Tests show that this patch increases transmission speed from 220MB/s
to 750..1020MB/s on 10Gb network (Chelsea CXGB3 10Gb ethernet card).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When iterating over the used LRs, be careful not to try to access
an unused LR, or even an unimplemented one if you're unlucky...
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When emulating a GICv2-on-GICv3, special care must be taken to only
save/restore VMCR_EL2 when ICC_SRE_EL1.SRE is cleared. Otherwise,
all Group-0 interrupts end-up being delivered as FIQ, which is
probably not what the guest expects, as demonstrated here with
an unhappy EFI:
FIQ Exception at 0x000000013BD21CC4
This means that we cannot perform the load/put trick when dealing
with VMCR_EL2 (because the host has SRE set), and we have to deal
with it in the world-switch.
Fortunately, this is not the most common case (modern guests should
be able to deal with GICv3 directly), and the performance is not worse
than what it was before the VMCR optimization.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Let's drop the goto and return the error value directly.
Suggested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's rename it into a proper arch specific callback.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Avoid races between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP by taking
the kvm->lock when setting up routes.
If KVM_CREATE_IRQCHIP fails, KVM_SET_GSI_ROUTING could have already set
up routes pointing at pic/ioapic, being silently removed already.
Also, as a side effect, this patch makes sure that KVM_SET_GSI_ROUTING
and KVM_CAP_SPLIT_IRQCHIP cannot run in parallel.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When not using an in-kernel VGIC, but instead emulating an interrupt
controller in userspace, we should report the PMU overflow status to
that userspace interrupt controller using the KVM_CAP_ARM_USER_IRQ
feature.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If you're running with a userspace gic or other interrupt controller
(that is no vgic in the kernel), then you have so far not been able to
use the architected timers, because the output of the architected
timers, which are driven inside the kernel, was a kernel-only construct
between the arch timer code and the vgic.
This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a
side channel on the kvm_run structure, run->s.regs.device_irq_level, to
always notify userspace of the timer output levels when using a userspace
irqchip.
This works by ensuring that before we enter the guest, if the timer
output level has changed compared to what we last told userspace, we
don't enter the guest, but instead return to userspace to notify it of
the new level. If we are exiting, because of an MMIO for example, and
the level changed at the same time, the value is also updated and
userspace can sample the line as it needs. This is nicely achieved
simply always updating the timer_irq_level field after the main run
loop.
Note that the kvm_timer_update_irq trace event is changed to show the
host IRQ number for the timer instead of the guest IRQ number, because
the kernel no longer know which IRQ userspace wires up the timer signal
to.
Also note that this patch implements all required functionality but does
not yet advertise the capability.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we check if we have an in-kernel irqchip and if the vgic was
properly implemented several places in the arch timer code. But, we
already predicate our enablement of the arm timers on having a valid
and initialized gic, so we can simply check if the timers are enabled or
not.
This also gets rid of the ugly "error that's not an error but used to
signal that the timer shouldn't poke the gic" construct we have.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
There is no need to call any functions to fold LRs when we don't use any
LRs and we don't need to mess with overflow flags, take spinlocks, or
prune the AP list if the AP list is empty.
Note: list_empty is a single atomic read (uses READ_ONCE) and can
therefore check if a list is empty or not without the need to take the
spinlock protecting the list.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Now when we do an early init of the static parts of the VGIC data
structures, we can do things like checking if the AP lists are empty
directly without having to explicitly check if the vgic is initialized
and reduce a bit of work in our critical path.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Implement early initialization for both the distributor and the CPU
interfaces. The basic idea is that even though the VGIC is not
functional or not requested from user space, the critical path of the
run loop can still call VGIC functions that just won't do anything,
without them having to check additional initialization flags to ensure
they don't look at uninitialized data structures.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We don't use these fields anymore so let's nuke them completely.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now when we don't look at the MISR and EISR values anymore, we can get
rid of the logic to save them in the GIC save/restore code.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Since we always read back the LRs that we wrote to the guest and the
MISR and EISR registers simply provide a summary of the configuration of
the bits in the LRs, there is really no need to read back those status
registers and process them. We might as well just signal the
notifyfd when folding the LR state and save some cycles in the process.
We now clear the underflow bit in the fold_lr_state functions as we only
need to clear this bit if we had used all the LRs, so this is as good a
place as any to do that work.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We currently assume that all the interrupts in our AP list will be
queued to LRs, but that's not necessarily the case, because some of them
could have been migrated away to different VCPUs and only the VCPU
thread itself can remove interrupts from its AP list.
Therefore, slightly change the logic to only setting the underflow
interrupt when we actually run out of LRs.
As it turns out, this allows us to further simplify the handling in
vgic_sync_hwstate in later patches.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
There is no need to calculate and maintain live_lrs when we always
populate the lowest numbered LRs first on every entry and clear all LRs
on every exit.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We do not need to flush vgic states in each world switch unless
there is pending IRQ queued to the vgic's ap list. We can thus reduce
the overhead by not grabbing the spinlock and not making the extra
function call to vgic_flush_lr_state.
Note: list_empty is a single atomic read (uses READ_ONCE) and can
therefore check if a list is empty or not without the need to take the
spinlock protecting the list.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We don't have to save/restore the VMCR on every entry to/from the guest,
since on GICv2 we can access the control interface from EL1 and on VHE
systems with GICv3 we can access the control interface from KVM running
in EL2.
GICv3 systems without VHE becomes the rare case, which has to
save/restore the register on each round trip.
Note that userspace accesses may see out-of-date values if the VCPU is
running while accessing the VGIC state via the KVM device API, but this
is already the case and it is up to userspace to quiesce the CPUs before
reading the CPU registers from the GIC for an up-to-date view.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Its value has never changed; we might as well make it part of the ABI instead
of using the return value of KVM_CHECK_EXTENSION(KVM_CAP_COALESCED_MMIO).
Because PPC does not always make MMIO available, the code has to be made
dependent on CONFIG_KVM_MMIO rather than KVM_COALESCED_MMIO_PAGE_OFFSET.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Remove code from architecture files that can be moved to virt/kvm, since there
is already common code for coalesced MMIO.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Removed a pointless 'break' after 'return'.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Legacy device assignment has been deprecated since 4.2 (released
1.5 years ago). VFIO is better and everyone should have switched to it.
If they haven't, this should convince them. :)
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes include:
- Fix a problem with GICv3 userspace save/restore
- Clarify GICv2 userspace save/restore ABI
- Be more careful in clearing GIC LRs
- Add missing synchronization primitive to our MMU handling code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJY5MItAAoJEEtpOizt6ddy4mUH/1Z2rt2mUAYFQpWD/vy9WMxf
zJKMtcLlZZGjeU78zFfWuOxEo1bbDO+tOTV1docNnY8xjyszCZ5XKOqMeo2a7Vfh
1QYHxJTOmgxcRmMsOnJpqUXhhYm9hDxrbU88U/wvoNllLjWBea01ZXiJbWFPBssT
jrdtcCVstDGp3x3D91RgYNNzj9jNw80RBekACZZwYokDRpBZyUb8DYKfUgABFEKT
UPiHrxb8UOVqvbCuXMBNzhUZcuMoAh3oY02R9sV7u1QOXAJYfRV4fOV12fIcYbHf
tnyU8cCxEkSI1pHrpVG6SStcMt8yznQ+UPo0okQNBJXim2yI8+QKHtQlvx7Tjo8=
=tPDd
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.11-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
From: Christoffer Dall <cdall@linaro.org>
KVM/ARM Fixes for v4.11-rc6
Fixes include:
- Fix a problem with GICv3 userspace save/restore
- Clarify GICv2 userspace save/restore ABI
- Be more careful in clearing GIC LRs
- Add missing synchronization primitive to our MMU handling code
As an oversight, for GICv2, we accidentally export the GICC_PMR register
in the format of the GICH_VMCR.VMPriMask field in the lower 5 bits of a
word, meaning that userspace must always use the lower 5 bits to
communicate with the KVM device and must shift the value left by 3
places to obtain the actual priority mask level.
Since GICv3 supports the full 8 bits of priority masking in the ICH_VMCR,
we have to fix the value we export when emulating a GICv2 on top of a
hardware GICv3 and exporting the emulated GICv2 state to userspace.
Take the chance to clarify this aspect of the ABI.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We currently have some code to clear the list registers on GICv3, but we
never call this code, because the caller got nuked when removing the old
vgic. We also used to have a similar GICv2 part, but that got lost in
the process too.
Let's reintroduce the logic for GICv2 and call the logic when we
initialize the use of hypervisors on the CPU, for example when first
loading KVM or when exiting a low power state.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
or VM memory are not put thus leaked in kvm_iommu_unmap_memslots() when
destroy VM.
This is consistent with current vfio implementation.
Signed-off-by: herongguang <herongguang.he@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No caller currently checks the return value of
kvm_io_bus_unregister_dev(). This is evil, as all callers silently go on
freeing their device. A stale reference will remain in the io_bus,
getting at least used again, when the iobus gets teared down on
kvm_destroy_vm() - leading to use after free errors.
There is nothing the callers could do, except retrying over and over
again.
So let's simply remove the bus altogether, print an error and make
sure no one can access this broken bus again (returning -ENOMEM on any
attempt to access it).
Fixes: e93f8a0f82 ("KVM: convert io_bus to SRCU")
Cc: stable@vger.kernel.org # 3.4+
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_vgic_global_state struct contains a static key which is
written to by jump_label_init() at boot time. So in preparation of
making .text regions truly (well, almost truly) read-only, mark
kvm_vgic_global_state __ro_after_init so it moves to the .rodata
section instead.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When releasing the bus, let's clear the bus pointers to mark it out. If
any further device unregister happens on this bus, we know that we're
done if we found the bus being released already.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The ITS spec says that ITS commands are only processed when the ITS
is enabled (section 8.19.4, Enabled, bit[0]). Our emulation was not taking
this into account.
Fix this by checking the enabled state before handling CWRITER writes.
On the other hand that means that CWRITER could advance while the ITS
is disabled, and enabling it would need those commands to be processed.
Fix this case as well by refactoring actual command processing and
calling this from both the GITS_CWRITER and GITS_CTLR handlers.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently, if a vcpu thread tries to change the active state of an
interrupt which is already on the same vcpu's AP list, it will loop
forever. Since the VGIC mmio handler is called after a vcpu has
already synced back the LR state to the struct vgic_irq, we can just
let it proceed safely.
Cc: stable@vger.kernel.org
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Our GICv3 emulation always presents ICC_SRE_EL1 with DIB/DFB set to
zero, which implies that there is a way to bypass the GIC and
inject raw IRQ/FIQ by driving the CPU pins.
Of course, we don't allow that when the GIC is configured, but
we fail to indicate that to the guest. The obvious fix is to
set these bits (and never let them being changed again).
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
PPC:
* correct assumption about ASDR on POWER9
* fix MMIO emulation on POWER9
x86:
* add a simple test for ioperm
* cleanup TSS
(going through KVM tree as the whole undertaking was caused by VMX's
use of TSS)
* fix nVMX interrupt delivery
* fix some performance counters in the guest
And two cleanup patches.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJYuu5qAAoJEED/6hsPKofoRAUH/jkx/KFDcw3FggixysWVgRai
iLSbbAZemnSLFSOkOU/t7Bz0fXCUgB0tAcMJd9ow01Dg1zObiTpuUIo6qEPaYHdX
gqtUzlHuyECZEcgK0RXS9kDYLrvw7EFocxnDWQfV91qCZSS6nBSSLF3ST1rNV69W
mUvcZG+MciDcZUe1lTexoswVTh1m7avvozEnQ5OHnZR9yicoXiadBQjzL6yqWoqf
Ml/29zRk5+MvloTudxjkAKm3mh7psW88jNMh37TXbAA7i+Xwl9cU6GLR9mFWstoP
7Ot7ecq9mNAUO3lTIQh7lqvB60LMFznS4IlYK7MbplC3kvJLkfzhTWaN1aGvh90=
=cqHo
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Radim Krčmář:
"Second batch of KVM changes for the 4.11 merge window:
PPC:
- correct assumption about ASDR on POWER9
- fix MMIO emulation on POWER9
x86:
- add a simple test for ioperm
- cleanup TSS (going through KVM tree as the whole undertaking was
caused by VMX's use of TSS)
- fix nVMX interrupt delivery
- fix some performance counters in the guest
... and two cleanup patches"
* tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: nVMX: Fix pending events injection
x86/kvm/vmx: remove unused variable in segment_base()
selftests/x86: Add a basic selftest for ioperm
x86/asm: Tidy up TSS limit code
kvm: convert kvm.users_count from atomic_t to refcount_t
KVM: x86: never specify a sample period for virtualized in_tx_cp counters
KVM: PPC: Book3S HV: Don't use ASDR for real-mode HPT faults on POWER9
KVM: PPC: Book3S HV: Fix software walk of guest process page tables
We are going to split <linux/sched/stat.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/stat.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
The APIs that are going to be moved first are:
mm_alloc()
__mmdrop()
mmdrop()
mmdrop_async_fn()
mmdrop_async()
mmget_not_zero()
mmput()
mmput_async()
get_task_mm()
mm_access()
mm_release()
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_users);/mmget\(\1\);/'
git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_users);/mmget\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-2-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_count);/mmgrab\(\1\);/'
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_count);/mmgrab\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-1-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Return an error code without storing it in an intermediate variable.
* Delete the local variable "r" and the jump label "out" which became
unnecessary with this refactoring.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Return an error code without storing it in an intermediate variable.
* Delete the local variable "r" and the jump label "out" which became
unnecessary with this refactoring.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Return directly after a call of the function "copy_from_user" failed
in a case block.
This issue was detected by using the Coccinelle software.
* Delete the jump label "out" which became unnecessary with
this refactoring.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide versions of struct gfn_to_hva_cache functions that
take vcpu as a parameter instead of struct kvm. The existing functions
are not needed anymore, so delete them. This allows dirty pages to
be logged in the vcpu dirty ring, instead of the global dirty ring,
for ring-based dirty memory tracking.
Signed-off-by: Lei Cao <lei.cao@stratus.com>
Message-Id: <CY1PR08MB19929BD2AC47A291FD680E83F04F0@CY1PR08MB1992.namprd08.prod.outlook.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will make it easier to support multiple address spaces in
kvm_gfn_to_hva_cache_init. Instead of having to check the address
space id, we can keep on checking just the generation number.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will make it a bit simpler to handle multiple address spaces
in gfn_to_hva_cache.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulate read and write operations to CNTP_TVAL, CNTP_CVAL and CNTP_CTL.
Now VMs are able to use the EL1 physical timer.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Set a background timer for the EL1 physical timer emulation while VMs
are running, so that VMs get the physical timer interrupts in a timely
manner.
Schedule the background timer on entry to the VM and cancel it on exit.
This would not have any performance impact to the guest OSes that
currently use the virtual timer since the physical timer is always not
enabled.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When scheduling a background timer, consider both of the virtual and
physical timer and pick the earliest expiration time.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we maintain the EL1 physical timer register states of VMs,
update the physical timer interrupt level along with the virtual one.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Initialize the emulated EL1 physical timer with the default irq number.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we have a separate structure for timer context, make functions
generic so that they can work with any timer context, not just the
virtual timer context. This does not change the virtual timer
functionality.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Make cntvoff per each timer context. This is helpful to abstract kvm
timer functions to work with timer context without considering timer
types (e.g. physical timer or virtual timer).
This also would pave the way for ever doing adjustments of the cntvoff
on a per-CPU basis if that should ever make sense.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Abstract virtual timer context into a separate structure and change all
callers referring to timer registers, irq state and so on. No change in
functionality.
This is about to become very handy when adding the EL1 physical timer.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The IRQFD framework calls the architecture dependent function
twice if the corresponding GSI type is edge triggered. For ARM,
the function kvm_set_msi() is getting called twice whenever the
IRQFD receives the event signal. The rest of the code path is
trying to inject the MSI without any validation checks. No need
to call the function vgic_its_inject_msi() second time to avoid
an unnecessary overhead in IRQ queue logic. It also avoids the
possibility of VM seeing the MSI twice.
Simple fix, return -1 if the argument 'level' value is zero.
Cc: stable@vger.kernel.org
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The only benefit of having kvm_vgic_inject_mapped_irq separate from
kvm_vgic_inject_irq is that we pass a boolean that we use for error
checking on the injection path.
While this could potentially help in some aspect of robustness, it's
also a little bit of a defensive move, and arguably callers into the
vgic should have make sure they have marked their virtual IRQs as mapped
if required.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Userspace requires to store and restore of line_level for
level triggered interrupts using ioctl KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
VGICv3 CPU interface registers are accessed using
KVM_DEV_ARM_VGIC_CPU_SYSREGS ioctl. These registers are accessed
as 64-bit. The cpu MPIDR value is passed along with register id.
It is used to identify the cpu for registers access.
The VM that supports SEIs expect it on destination machine to handle
guest aborts and hence checked for ICC_CTLR_EL1.SEIS compatibility.
Similarly, VM that supports Affinity Level 3 that is required for AArch64
mode, is required to be supported on destination machine. Hence checked
for ICC_CTLR_EL1.A3V compatibility.
The arch/arm64/kvm/vgic-sys-reg-v3.c handles read and write of VGIC
CPU registers for AArch64.
For AArch32 mode, arch/arm/kvm/vgic-v3-coproc.c file is created but
APIs are not implemented.
Updated arch/arm/include/uapi/asm/kvm.h with new definitions
required to compile for AArch32.
The version of VGIC v3 specification is defined here
Documentation/virtual/kvm/devices/arm-vgic-v3.txt
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ICC_VMCR_EL2 supports virtual access to ICC_IGRPEN1_EL1.Enable
and ICC_IGRPEN0_EL1.Enable fields. Add grpen0 and grpen1 member
variables to struct vmcr to support read and write of these fields.
Also refactor vgic_set_vmcr and vgic_get_vmcr() code.
Drop ICH_VMCR_CTLR_SHIFT and ICH_VMCR_CTLR_MASK macros and instead
use ICH_VMCR_EOI* and ICH_VMCR_CBPR* macros.
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
VGICv3 Distributor and Redistributor registers are accessed using
KVM_DEV_ARM_VGIC_GRP_DIST_REGS and KVM_DEV_ARM_VGIC_GRP_REDIST_REGS
with KVM_SET_DEVICE_ATTR and KVM_GET_DEVICE_ATTR ioctls.
These registers are accessed as 32-bit and cpu mpidr
value passed along with register offset is used to identify the
cpu for redistributor registers access.
The version of VGIC v3 specification is defined here
Documentation/virtual/kvm/devices/arm-vgic-v3.txt
Also update arch/arm/include/uapi/asm/kvm.h to compile for
AArch32 mode.
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Read and write of some registers like ISPENDR and ICPENDR
from userspace requires special handling when compared to
guest access for these registers.
Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
for handling of ISPENDR, ICPENDR registers handling.
Add infrastructure to support guest and userspace read
and write for the required registers
Also moved vgic_uaccess from vgic-mmio-v2.c to vgic-mmio.c
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add a file to debugfs to read the in-kernel state of the vgic. We don't
do any locking of the entire VGIC state while traversing all the IRQs,
so if the VM is running the user/developer may not see a quiesced state,
but should take care to pause the VM using facilities in user space for
that purpose.
We also don't support LPIs yet, but they can be added easily if needed.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
One of the goals behind the VGIC redesign was to get rid of cached or
intermediate state in the data structures, but we decided to allow
ourselves to precompute the pending value of an IRQ based on the line
level and pending latch state. However, this has now become difficult
to base proper GICv3 save/restore on, because there is a potential to
modify the pending state without knowing if an interrupt is edge or
level configured.
See the following post and related message for more background:
https://lists.cs.columbia.edu/pipermail/kvmarm/2017-January/023195.html
This commit gets rid of the precomputed pending field in favor of a
function that calculates the value when needed, irq_is_pending().
The soft_pending field is renamed to pending_latch to represent that
this latch is the equivalent hardware latch which gets manipulated by
the input signal for edge-triggered interrupts and when writing to the
SPENDR/CPENDR registers.
After this commit save/restore code should be able to simply restore the
pending_latch state, line_level state, and config state in any order and
get the desired result.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Dmitry Vyukov reported that the syzkaller fuzzer triggered a
deadlock in the vgic setup code when an error was detected, as
the cleanup code tries to take a lock that is already held by
the setup code.
The fix is to avoid retaking the lock when cleaning up, by
telling the cleanup function that we already hold it.
Cc: stable@vger.kernel.org
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Current KVM world switch code is unintentionally setting wrong bits to
CNTHCTL_EL2 when E2H == 1, which may allow guest OS to access physical
timer. Bit positions of CNTHCTL_EL2 are changing depending on
HCR_EL2.E2H bit. EL1PCEN and EL1PCTEN are 1st and 0th bits when E2H is
not set, but they are 11th and 10th bits respectively when E2H is set.
In fact, on VHE we only need to set those bits once, not for every world
switch. This is because the host kernel runs in EL2 with HCR_EL2.TGE ==
1, which makes those bits have no effect for the host kernel execution.
So we just set those bits once for guests, and that's it.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When a VCPU blocks (WFI) and has programmed the vtimer, we program a
soft timer to expire in the future to wake up the vcpu thread when
appropriate. Because such as wake up involves a vcpu kick, and the
timer expire function can get called from interrupt context, and the
kick may sleep, we have to schedule the kick in the work function.
The work function currently has a warning that gets raised if it turns
out that the timer shouldn't fire when it's run, which was added because
the idea was that in that case the work should never have been cancelled.
However, it turns out that this whole thing is racy and we can get
spurious warnings. The problem is that we clear the armed flag in the
work function, which may run in parallel with the
kvm_timer_unschedule->timer_disarm() call. This results in a possible
situation where the timer_disarm() call does not call
cancel_work_sync(), which effectively synchronizes the completion of the
work function with running the VCPU. As a result, the VCPU thread
proceeds before the work function completees, causing changes to the
timer state such that kvm_timer_should_fire(vcpu) returns false in the
work function.
All we do in the work function is to kick the VCPU, and an occasional
rare extra kick never harmed anyone. Since the race above is extremely
rare, we don't bother checking if the race happens but simply remove the
check and the clearing of the armed flag from the work function.
Reported-by: Matthias Brugger <mbrugger@suse.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Pull timer type cleanups from Thomas Gleixner:
"This series does a tree wide cleanup of types related to
timers/timekeeping.
- Get rid of cycles_t and use a plain u64. The type is not really
helpful and caused more confusion than clarity
- Get rid of the ktime union. The union has become useless as we use
the scalar nanoseconds storage unconditionally now. The 32bit
timespec alike storage got removed due to the Y2038 limitations
some time ago.
That leaves the odd union access around for no reason. Clean it up.
Both changes have been done with coccinelle and a small amount of
manual mopping up"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ktime: Get rid of ktime_equal()
ktime: Cleanup ktime_set() usage
ktime: Get rid of the union
clocksource: Use a plain u64 instead of cycle_t
Pull SMP hotplug notifier removal from Thomas Gleixner:
"This is the final cleanup of the hotplug notifier infrastructure. The
series has been reintgrated in the last two days because there came a
new driver using the old infrastructure via the SCSI tree.
Summary:
- convert the last leftover drivers utilizing notifiers
- fixup for a completely broken hotplug user
- prevent setup of already used states
- removal of the notifiers
- treewide cleanup of hotplug state names
- consolidation of state space
There is a sphinx based documentation pending, but that needs review
from the documentation folks"
* 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/armada-xp: Consolidate hotplug state space
irqchip/gic: Consolidate hotplug state space
coresight/etm3/4x: Consolidate hotplug state space
cpu/hotplug: Cleanup state names
cpu/hotplug: Remove obsolete cpu hotplug register/unregister functions
staging/lustre/libcfs: Convert to hotplug state machine
scsi/bnx2i: Convert to hotplug state machine
scsi/bnx2fc: Convert to hotplug state machine
cpu/hotplug: Prevent overwriting of callbacks
x86/msr: Remove bogus cleanup from the error path
bus: arm-ccn: Prevent hotplug callback leak
perf/x86/intel/cstate: Prevent hotplug callback leak
ARM/imx/mmcd: Fix broken cpu hotplug handling
scsi: qedi: Convert to hotplug state machine
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
When the state names got added a script was used to add the extra argument
to the calls. The script basically converted the state constant to a
string, but the cleanup to convert these strings into meaningful ones did
not happen.
Replace all the useless strings with 'subsys/xxx/yyy:state' strings which
are used in all the other places already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20161221192112.085444152@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unexport the low-level __get_user_pages_unlocked() function and replaces
invocations with calls to more appropriate higher-level functions.
In hva_to_pfn_slow() we are able to replace __get_user_pages_unlocked()
with get_user_pages_unlocked() since we can now pass gup_flags.
In async_pf_execute() and process_vm_rw_single_vec() we need to pass
different tsk, mm arguments so get_user_pages_remote() is the sane
replacement in these cases (having added manual acquisition and release
of mmap_sem.)
Additionally get_user_pages_remote() reintroduces use of the FOLL_TOUCH
flag. However, this flag was originally silently dropped by commit
1e9877902d ("mm/gup: Introduce get_user_pages_remote()"), so this
appears to have been unintentional and reintroducing it is therefore not
an issue.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20161027095141.2569-3-lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86: userspace can now hide nested VMX features from guests; nested
VMX can now run Hyper-V in a guest; support for AVX512_4VNNIW and
AVX512_FMAPS in KVM; infrastructure support for virtual Intel GPUs.
PPC: support for KVM guests on POWER9; improved support for interrupt
polling; optimizations and cleanups.
s390: two small optimizations, more stuff is in flight and will be
in 4.11.
ARM: support for the GICv3 ITS on 32bit platforms.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQExBAABCAAbBQJYTkP0FBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
lZIH/iT1n9OQXcuTpYYnQhuCenzI3GZZOIMTbCvK2i5bo0FIJKxVn0EiAAqZSXvO
nO185FqjOgLuJ1AD1kJuxzye5suuQp4HIPWWgNHcexLuy43WXWKZe0IQlJ4zM2Xf
u31HakpFmVDD+Cd1qN3yDXtDrRQ79/xQn2kw7CWb8olp+pVqwbceN3IVie9QYU+3
gCz0qU6As0aQIwq2PyalOe03sO10PZlm4XhsoXgWPG7P18BMRhNLTDqhLhu7A/ry
qElVMANT7LSNLzlwNdpzdK8rVuKxETwjlc1UP8vSuhrwad4zM2JJ1Exk26nC2NaG
D0j4tRSyGFIdx6lukZm7HmiSHZ0=
=mkoB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small release, the most interesting stuff is x86 nested virt
improvements.
x86:
- userspace can now hide nested VMX features from guests
- nested VMX can now run Hyper-V in a guest
- support for AVX512_4VNNIW and AVX512_FMAPS in KVM
- infrastructure support for virtual Intel GPUs.
PPC:
- support for KVM guests on POWER9
- improved support for interrupt polling
- optimizations and cleanups.
s390:
- two small optimizations, more stuff is in flight and will be in
4.11.
ARM:
- support for the GICv3 ITS on 32bit platforms"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
KVM: arm/arm64: timer: Check for properly initialized timer on init
KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
KVM: x86: Handle the kthread worker using the new API
KVM: nVMX: invvpid handling improvements
KVM: nVMX: check host CR3 on vmentry and vmexit
KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
KVM: nVMX: propagate errors from prepare_vmcs02
KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
KVM: nVMX: support restore of VMX capability MSRs
KVM: nVMX: generate non-true VMX MSRs based on true versions
KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
KVM: x86: Add kvm_skip_emulated_instruction and use it.
KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
KVM: VMX: Reorder some skip_emulated_instruction calls
KVM: x86: Add a return value to kvm_emulate_cpuid
KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
...
- VFIO updates for v4.10 primarily include a new Mediated Device
interface, which essentially allows software defined devices to be
exposed to users through VFIO. The host vendor driver providing
this virtual device polices, or mediates user access to the device.
These devices often incorporate portions of real devices, for
instance the primary initial users of this interface expose vGPUs
which allow the user to map mediated devices, or mdevs, to a
portion of a physical GPU. QEMU composes these mdevs into PCI
representations using the existing VFIO user API. This enables
both Intel KVM-GT support, which is also expected to arrive into
Linux mainline during the v4.10 merge window, as well as NVIDIA
vGPU, and also Channel I/O devices (aka CCW devices) for s390
virtualization support. (Kirti Wankhede, Neo Jia)
- Drop unnecessary uses of pcibios_err_to_errno() (Cao Jin)
- Fixes to VFIO capability chain handling (Eric Auger)
- Error handling fixes for fallout from mdev (Christophe JAILLET)
- Notifiers to expose struct kvm to mdev vendor drivers (Jike Song)
- type1 IOMMU model search fixes (Kirti Wankhede, Neo Jia)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJYSyCtAAoJECObm247sIsi+rIP/3Q/GE3zaDdz1iKQK/c/qhs6
0Pl45opAqw4wCJDCZIhRmoHmsCaT4KkeJKU1fiYc0mKJhW11HfA4DTFwzBqrHBj7
7wPjHTaWwlFRHCYVCWYEp5g9UASyD8ubWGyZKzqIXELFoAvwuBL3SULNj4neJKKR
rPcHTVxJ7laYIjHFzuNUi/MWEdjxPT9oJn8Bm9mhISwPglIMU9nkIR20ChaSeFJb
MiFqFW7BcvkVyqupjpksM9DodpNZu+3uSMVtgASNVNbilf0FXJr0d8RCbeSxTIfm
rEsZ5+0PrklhCtmRRl5EB+tNawgaism8wAF74KIO//76vE02Usrxb0b5mTIZ8TiN
6/Z+WID5D+ZRt8hp9hJIJmGE/sM/odH4r174dPaiEkMvOB9ksDIPkzgbtDbVY40c
DACb7/n3ZZA0an2Eq2HEx/BqTOvt9sgu367KVvhuoIArQcb5SM94GT03Dv+pKnax
Cxmro2oaWmAV3IS0vNzbCIddsFqlPjkFIYxjtzBy+bVLg2RN3STyaSL6cwJsydSU
KLcCPiYtovczKFj7RJlgVlqh5/8uZ7SEffTkIggehdnVPAfDlK9p9BYqLCgAoWpN
vwWidM3qOIjooRXQgxUwJgJsl4MLRMoA/gFP4iHbqOgIAGtUDRHuQ4muvkf+LLxg
wpgfXsBQNRuVcZHBUEVe
=gc6j
-----END PGP SIGNATURE-----
Merge tag 'vfio-v4.10-rc1' of git://github.com/awilliam/linux-vfio
Pull VFIO updates from Alex Williamson:
- VFIO updates for v4.10 primarily include a new Mediated Device
interface, which essentially allows software defined devices to be
exposed to users through VFIO. The host vendor driver providing this
virtual device polices, or mediates user access to the device.
These devices often incorporate portions of real devices, for
instance the primary initial users of this interface expose vGPUs
which allow the user to map mediated devices, or mdevs, to a portion
of a physical GPU. QEMU composes these mdevs into PCI representations
using the existing VFIO user API. This enables both Intel KVM-GT
support, which is also expected to arrive into Linux mainline during
the v4.10 merge window, as well as NVIDIA vGPU, and also Channel I/O
devices (aka CCW devices) for s390 virtualization support. (Kirti
Wankhede, Neo Jia)
- Drop unnecessary uses of pcibios_err_to_errno() (Cao Jin)
- Fixes to VFIO capability chain handling (Eric Auger)
- Error handling fixes for fallout from mdev (Christophe JAILLET)
- Notifiers to expose struct kvm to mdev vendor drivers (Jike Song)
- type1 IOMMU model search fixes (Kirti Wankhede, Neo Jia)
* tag 'vfio-v4.10-rc1' of git://github.com/awilliam/linux-vfio: (30 commits)
vfio iommu type1: Fix size argument to vfio_find_dma() in pin_pages/unpin_pages
vfio iommu type1: Fix size argument to vfio_find_dma() during DMA UNMAP.
vfio iommu type1: WARN_ON if notifier block is not unregistered
kvm: set/clear kvm to/from vfio_group when group add/delete
vfio: support notifier chain in vfio_group
vfio: vfio_register_notifier: classify iommu notifier
vfio: Fix handling of error returned by 'vfio_group_get_from_dev()'
vfio: fix vfio_info_cap_add/shift
vfio/pci: Drop unnecessary pcibios_err_to_errno()
MAINTAINERS: Add entry VFIO based Mediated device drivers
docs: Sample driver to demonstrate how to use Mediated device framework.
docs: Sysfs ABI for mediated device framework
docs: Add Documentation for Mediated devices
vfio: Define device_api strings
vfio_platform: Updated to use vfio_set_irqs_validate_and_prepare()
vfio_pci: Updated to use vfio_set_irqs_validate_and_prepare()
vfio: Introduce vfio_set_irqs_validate_and_prepare()
vfio_pci: Update vfio_pci to use vfio_info_add_capability()
vfio: Introduce common function to add capabilities
vfio iommu: Add blocking notifier to notify DMA_UNMAP
...
- Support for the GICv3 ITS on 32bit platforms
- A handful of timer and GIC emulation fixes
- A PMU architecture fix
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYStI0AAoJECPQ0LrRPXpD6kcP/0J+fynLo/uhe3VAP7pZ0fH5
dFmvcgZaHQ6wpWgkHYbyuAkZ2tiQfthylErjt9Xay2qf3f0BZScsNKSkTOmVTOJH
NO+4yo7YDIbRbQO3h+QX2YB3uBqdZvn6eRLCDWNLwSa/GkNmLGvhcorQer0GduCl
qnsRRrNIewzSYI+U3821jVUjLgXuBuGoFt0yT/197ZBRIrowNJ4vqAvaqVaLQ4jt
aOd+aCPKCaatkeewEo6Es4lX86JOytpxtVfNpRe6/gSr1mK2fHAfycQ5Txkl7oTX
T/vsYUusYDSJbiz7PUMFBfNYvVijBY8QCtm6yJZHQNg6q25r3pjn//3BiuSDf4Dz
o0DDMoFPjEi23myfGI91oeL9Svbtk06ERGyN7MY2vMNtORrwhmgNiSfIsqI9V0d8
Slru3REMZg+ZbY6rgyJZa9/09vlwKfqZpkwJlfQkJO9tsXn4WwwdyvwIXmaH9p5X
mqnjgbIMRipBs5Teedb++pC5XQcbC8ed2KMEBXlgORDm6fC0Pz/q623tVRYhIm4B
4YKHI1A8I8XaYd0VJkZOns2Uq7/Uwc2j5wGWRIa0IwB6LXlzNw4kbD+omj0Mmo0V
Fxio610jyTfrPidx/XzO0zsEzVW794Si8S4F1nFShdkk1NuzClVnQzce5TA8K3Zu
cCUKISR4oi5IWVcimDQt
=zxXl
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.10:
- Support for the GICv3 ITS on 32bit platforms
- A handful of timer and GIC emulation fixes
- A PMU architecture fix
When the arch timer code fails to initialize (for example because the
memory mapped timer doesn't work, which is currently seen with the AEM
model), then KVM just continues happily with a final result that KVM
eventually does a NULL pointer dereference of the uninitialized cycle
counter.
Check directly for this in the init path and give the user a reasonable
error in this case.
Cc: Shih-Wei Li <shihwei@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The GICv2 spec says in section 4.3.12 that a "CPU targets field bit that
corresponds to an unimplemented CPU interface is RAZ/WI."
Currently we allow the guest to write any value in there and it can
read that back.
Mask the written value with the proper CPU mask to be spec compliant.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Sometimes users need to be aware when a vfio_group attaches to a
KVM or detaches from it. KVM already calls get/put method from vfio to
manipulate the vfio_group reference, it can notify vfio_group in
a similar way.
Cc: Kirti Wankhede <kwankhede@nvidia.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Jike Song <jike.song@intel.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
We should move the ops->destroy(dev) after the list_del(&dev->vm_node)
so that we don't use "dev" after freeing it.
Fixes: a28ebea2ad ("KVM: Protect device ops->create and list_add with kvm->lock")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
- Do not call kvm_notify_acked for PPIs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYNzGYAAoJECPQ0LrRPXpDwC8P/3SlsYK9ickZfxoX05tfwbmy
H5IVmMvnhqQwi2ALe1PycKU9a9c5MISEvFyzGtr/SVkwZdiGRztGCQsYgxAyL0Tr
mJDttavNU8B9YKC/d+pNNl18uue1Ny297aPDwL6eo3i9s7MX7EZRdRG3U0MiGlbB
MFVCOLCAd8eUGI68eE5CsRC5+3OFqbkh2JlgtZJPV1BDu/K1ojViijUnpv/CJX52
8g8qKU9xTgHnd1pTAaE22u5+odgOvOa62rGqVAF8T9eOMpVHxUDeAvzaFLXQAgty
tVwYlEtoglLKXFa/B0dqBX639J8hLKBC3gBM/1sEbUU4Ii026iPuCbWLjDGju7Ra
ggaeFp9X8IK9wcwyT88yUAFLwk/neApm5YemzdD7VWSb/5Np3mJpuIH7McwoJp3p
cvXrTV4P+XBSYgYSdBsGKSQo38dynW8m8Gqq3D5DEAJc33P/kvwBMFRuzj/F3GwZ
5w1uTDJx+tTdGhpEvxY+Mwb17XDid9WPKyYdgI5Xy662g904m7WmQvP08VezxVcw
woMlqqSpJvsNxOphj3xRb00W61MTu7zcfYQlwiDwtEqXgIPlpk3tBZO651eMMaSF
bQmP2qPDKw5UQHtRfcDq4SmcyvaDn6j9BMYCR/XvXmtlFi7+zyglhkIn+wkJF0Dz
J/hmZNTPVN6rtRv9wY/2
=1IXI
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.9-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM updates for v4.9-rc7
- Do not call kvm_notify_acked for PPIs
The kvm module has the parameters halt_poll_ns, halt_poll_ns_grow, and
halt_poll_ns_shrink. Halt polling was recently added to the powerpc kvm-hv
module and these parameters were essentially duplicated for that. There is
no benefit to this duplication and it can lead to confusion when trying to
tune halt polling.
Thus move the definition of these variables to kvm_host.h and export them.
This will allow the kvm-hv module to use the same module parameters by
accessing these variables, which will be implemented in the next patch,
meaning that they will no longer be duplicated.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When we inject a level triggerered interrupt (and unless it
is backed by the physical distributor - timer style), we request
a maintenance interrupt. Part of the processing for that interrupt
is to feed to the rest of KVM (and to the eventfd subsystem) the
information that the interrupt has been EOIed.
But that notification only makes sense for SPIs, and not PPIs
(such as the PMU interrupt). Skip over the notification if
the interrupt is not an SPI.
Cc: stable@vger.kernel.org # 4.7+
Fixes: 140b086dd1 ("KVM: arm/arm64: vgic-new: Add GICv2 world switch backend")
Fixes: 59529f69f5 ("KVM: arm/arm64: vgic-new: Add GICv3 world switch backend")
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This was reported by syzkaller:
[ INFO: possible recursive locking detected ]
4.9.0-rc4+ #49 Not tainted
---------------------------------------------
kworker/2:1/5658 is trying to acquire lock:
([ 1644.769018] (&work->work)
[< inline >] list_empty include/linux/compiler.h:243
[<ffffffff8128dd60>] flush_work+0x0/0x660 kernel/workqueue.c:1511
but task is already holding lock:
([ 1644.769018] (&work->work)
[<ffffffff812916ab>] process_one_work+0x94b/0x1900 kernel/workqueue.c:2093
stack backtrace:
CPU: 2 PID: 5658 Comm: kworker/2:1 Not tainted 4.9.0-rc4+ #49
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Workqueue: events async_pf_execute
ffff8800676ff630 ffffffff81c2e46b ffffffff8485b930 ffff88006b1fc480
0000000000000000 ffffffff8485b930 ffff8800676ff7e0 ffffffff81339b27
ffff8800676ff7e8 0000000000000046 ffff88006b1fcce8 ffff88006b1fccf0
Call Trace:
...
[<ffffffff8128ddf3>] flush_work+0x93/0x660 kernel/workqueue.c:2846
[<ffffffff812954ea>] __cancel_work_timer+0x17a/0x410 kernel/workqueue.c:2916
[<ffffffff81295797>] cancel_work_sync+0x17/0x20 kernel/workqueue.c:2951
[<ffffffff81073037>] kvm_clear_async_pf_completion_queue+0xd7/0x400 virt/kvm/async_pf.c:126
[< inline >] kvm_free_vcpus arch/x86/kvm/x86.c:7841
[<ffffffff810b728d>] kvm_arch_destroy_vm+0x23d/0x620 arch/x86/kvm/x86.c:7946
[< inline >] kvm_destroy_vm virt/kvm/kvm_main.c:731
[<ffffffff8105914e>] kvm_put_kvm+0x40e/0x790 virt/kvm/kvm_main.c:752
[<ffffffff81072b3d>] async_pf_execute+0x23d/0x4f0 virt/kvm/async_pf.c:111
[<ffffffff8129175c>] process_one_work+0x9fc/0x1900 kernel/workqueue.c:2096
[<ffffffff8129274f>] worker_thread+0xef/0x1480 kernel/workqueue.c:2230
[<ffffffff812a5a94>] kthread+0x244/0x2d0 kernel/kthread.c:209
[<ffffffff831f102a>] ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:433
The reason is that kvm_put_kvm is causing the destruction of the VM, but
the page fault is still on the ->queue list. The ->queue list is owned
by the VCPU, not by the work items, so we cannot just add list_del to
the work item.
Instead, use work->vcpu to note async page faults that have been resolved
and will be processed through the done list. There is no need to flush
those.
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
KVM calls kvm_pmu_set_counter_event_type() when PMCCFILTR is configured.
But this function can't deals with PMCCFILTR correctly because the evtCount
bits of PMCCFILTR, which is reserved 0, conflits with the SW_INCR event
type of other PMXEVTYPER<n> registers. To fix it, when eventsel == 0, this
function shouldn't return immediately; instead it needs to check further
if select_idx is ARMV8_PMU_CYCLE_IDX.
Another issue is that KVM shouldn't copy the eventsel bits of PMCCFILTER
blindly to attr.config. Instead it ought to convert the request to the
"cpu cycle" event type (i.e. 0x11).
To support this patch and to prevent duplicated definitions, a limited
set of ARMv8 perf event types were relocated from perf_event.c to
asm/perf_event.h.
Cc: stable@vger.kernel.org # 4.6+
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
1) Since commit:41a54482 changed timer enabled variable to per-vcpu,
the correlative comment in kvm_timer_enable is useless now.
2) After the kvm module init successfully, the timecounter is always
non-null, so we can remove the checking of timercounter.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch allows to build and use vGICv3 ITS in 32-bit mode.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Evaluate GITS_BASER_ENTRY_SIZE once as an int data (GITS_BASER<n>'s
Entry Size is 5-bit wide only), so when used as divider no reference
to __aeabi_uldivmod is generated when build for AArch32.
Use unsigned long long for GITS_BASER_PAGE_SIZE_* since they are
used in conjunction with 64-bit data.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
- Kick the vcpu when a pending interrupt becomes pending again
- Prevent access to invalid interrupt registers
- Invalid TLBs when two vcpus from the same VM share a CPU
-----BEGIN PGP SIGNATURE-----
iQIyBAABCAAcBQJYHNMTFRxtYXJjLnp5bmdpZXJAYXJtLmNvbQAKCRAj0NC60T16
Q1WDD/9d5KfQ3dWiLtBXbeD3w2K0gXknwLAMsCCAdhgkCdLenxSBjlB7lmVYi1lZ
pTnshnR4HC0P3yW3bA78J7LZnUzJg72pq/S5K/om9KylVUdXz9WzQ3u+XyB3KTFW
b+viTUK3mqose67UcBSKGfFEWpIOmJ/nZVvWAIaUTg49btxnetKjyhv2Ux744Hm/
Jba3trcA4m8RPJ8Vu6mIfd6gkTXzSkQaN2wGVaEFhCFHOPDCQHjcdspe20Ig9fmY
kTXEBe4r0sC+8fXoymEM6TDQFWB8WthIIqfeIJ3FgfoETKrwmyJ23YfLAh49m1cB
nFpyy/lr9PNsOjJKXFi84pzx6l8U/CDslnBm5klYTT2kFc3stKbyDtIILvUOwKl8
n9UZSO8NGhOpKscGXLzO/CmIO+wgL15LTsxYsOh3HK7KjzocspQpxyD7pPWN8CUI
M2IGLvYMzCaBAOzs6WO4P9xlJRNtUMK8lvAthnBiCeE2Nnu3Oajf8krR4DZmBcQh
Q/GOACa1kuBMfqmWNrCVq3UNiFLxxAseShgxq9/E/dNe20daXOnxSaRGdRzTvAQF
dRBEtHXdY0qDgLz3tVzBdTTmx3M2k4B4/t+VxnsFFVlvbr0OyOozvFH42tGeTw5t
IBoXP9x87+Rpl6P6wW+ICketXQMRmdl40JXNjR96sXN94Y/Z4A==
=vj/s
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for v4.9-rc4
- Kick the vcpu when a pending interrupt becomes pending again
- Prevent access to invalid interrupt registers
- Invalid TLBs when two vcpus from the same VM share a CPU
during the merge window. The rest are fixes for MIPS, s390 and nested VMX.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJYG2H5AAoJEL/70l94x66DK/cH/0jEQ3ynuLAd5CKux7JxI/EP
msSJh1Xqr4+XhXZnuDpGQWrdsBlxoiqA6PsJrUTtyi4nQCDXlT8g+2MDuvqhWIHz
7vw58j/EMJDCVQzYAbN5VDUfk13uB5aSWTo3M9Rf09v0hU1Ql7z8u4CtKEdLpN5Y
LY9bT9fxUmXO7REKP7bdW6ZrDX/hUShYHgMqzXGFMyGBG3ym3a9bggXEzTCD6eNQ
ioogQIWqg+icdhta0iLNAwFClPlcKB2/xo4IUuNgrPwGoHFGJN/8+qxT4+sVbp2B
v8u1zOXlCFXBcskWE+yRRsGe72+mIzz6QScCyO+5HbhKYVfbE9H7KBlFX9rZZ2c=
=IbKx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One NULL pointer dereference, and two fixes for regressions introduced
during the merge window.
The rest are fixes for MIPS, s390 and nested VMX"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: x86: Check memopp before dereference (CVE-2016-8630)
kvm: nVMX: VMCLEAR an active shadow VMCS after last use
KVM: x86: drop TSC offsetting kvm_x86_ops to fix KVM_GET/SET_CLOCK
KVM: x86: fix wbinvd_dirty_mask use-after-free
kvm/x86: Show WRMSR data is in hex
kvm: nVMX: Fix kernel panics induced by illegal INVEPT/INVVPID types
KVM: document lock orders
KVM: fix OOPS on flush_work
KVM: s390: Fix STHYI buffer alignment for diag224
KVM: MIPS: Precalculate MMIO load resume PC
KVM: MIPS: Make ERET handle ERL before EXL
KVM: MIPS: Fix lazy user ASID regenerate for SMP
In cases like IPI, we could be queueing an interrupt for a VCPU
that is already running and is not about to exit, because the
VCPU has entered the VM with the interrupt pending and would
not trap on EOI'ing that interrupt. This could result to delays
in interrupt deliveries or even loss of interrupts.
To guarantee prompt interrupt injection, here we have to try to
kick the VCPU.
Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In our VGIC implementation we limit the number of SPIs to a number
that the userland application told us. Accordingly we limit the
allocation of memory for virtual IRQs to that number.
However in our MMIO dispatcher we didn't check if we ever access an
IRQ beyond that limit, leading to out-of-bound accesses.
Add a test against the number of allocated SPIs in check_region().
Adjust the VGIC_ADDR_TO_INT macro to avoid an actual division, which
is not implemented on ARM(32).
[maz: cleaned-up original patch]
Cc: stable@vger.kernel.org
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Various kvm vm and vcpu stats are provided via debugfs entries.
Currently there is no way to reset these stats back to zero.
Add the ability to clear (reset back to zero) these stats on a per stat
basis by writing to the debugfs files. Only a write value of 0 is accepted.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The conversion done by commit 3706feacd0 ("KVM: Remove deprecated
create_singlethread_workqueue") is broken. It flushes a single work
item &irqfd->shutdown instead of all of them, and even worse if there
is no irqfd on the list then you get a NULL pointer dereference.
Revert the virt/kvm/eventfd.c part of that patch; to avoid the
deprecated function, just allocate our own workqueue---it does
not even have to be unbound---with alloc_workqueue.
Fixes: 3706feacd0
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch unexports the low-level __get_user_pages() function.
Recent refactoring of the get_user_pages* functions allow flags to be
passed through get_user_pages() which eliminates the need for access to
this function from its one user, kvm.
We can see that the two calls to get_user_pages() which replace
__get_user_pages() in kvm_main.c are equivalent by examining their call
stacks:
get_user_page_nowait():
get_user_pages(start, 1, flags, page, NULL)
__get_user_pages_locked(current, current->mm, start, 1, page, NULL, NULL,
false, flags | FOLL_TOUCH)
__get_user_pages(current, current->mm, start, 1,
flags | FOLL_TOUCH | FOLL_GET, page, NULL, NULL)
check_user_page_hwpoison():
get_user_pages(addr, 1, flags, NULL, NULL)
__get_user_pages_locked(current, current->mm, addr, 1, NULL, NULL, NULL,
false, flags | FOLL_TOUCH)
__get_user_pages(current, current->mm, addr, 1, flags | FOLL_TOUCH, NULL,
NULL, NULL)
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes the redundant 'write' and 'force' parameters from
__get_user_pages_unlocked() to make the use of FOLL_FORCE explicit in
callers as use of this flag can result in surprising behaviour (and
hence bugs) within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Various cleanups and removal of redundant code
- Two important fixes for not using an in-kernel irqchip
- A bit of optimizations
- Handle SError exceptions and present them to guests if appropriate
- Proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- Preparations for GICv3 save/restore, including ABI docs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJX6rKQAAoJEEtpOizt6ddy8i4H/0bfB1EVukggoL/FfGeds/dg
p2FG0oOsggcSBwK7VXUUvVllO7ioUssRCqqkn1e0/bCLtQrN4ex4PqJ3618EHFz/
pLP72hf8Zl33rP3OVtPaDcxzjjKKdf+xGbBIv3AE7x7O5rFZg4lWHeWjy4yuhFv2
Jm+8ul7JCxCMse08Xc90riou4i/jWjyoLadHbAoeX3tR+dVcZyOUZSlgAPI1bS/P
rOQi/zkl3bT2R3kh28QuEFTrJ9BVTnmw25BRW8DNr6+CWmR9bpM6y7AGzOwrZ3FZ
F1MbsPpN3ogcjvPg2QTYuOoqrwz8NLLHw5pR5YNj84VppjSpSsAhKU7Ug5Uhsr0=
=1z/L
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into next
KVM/ARM Changes for v4.9
- Various cleanups and removal of redundant code
- Two important fixes for not using an in-kernel irqchip
- A bit of optimizations
- Handle SError exceptions and present them to guests if appropriate
- Proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- Preparations for GICv3 save/restore, including ABI docs
If the vgic hasn't been created and initialized, we shouldn't attempt to
look at its data structures or flush/sync anything to the GIC hardware.
This fixes an issue reported by Alexander Graf when using a userspace
irqchip.
Fixes: 0919e84c0f ("KVM: arm/arm64: vgic-new: Add IRQ sync/flush framework")
Cc: stable@vger.kernel.org
Reported-by: Alexander Graf <agraf@suse.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If userspace creates a PMU for the VCPU, but doesn't create an in-kernel
irqchip, then we end up in a nasty path where we try to take an
uninitialized spinlock, which can lead to all sorts of breakages.
Luckily, QEMU always creates the VGIC before the PMU, so we can
establish this as ABI and check for the VGIC in the PMU init stage.
This can be relaxed at a later time if we want to support PMU with a
userspace irqchip.
Cc: stable@vger.kernel.org
Cc: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch allows to build and use vgic-v3 in 32-bit mode.
Unfortunately, it can not be split in several steps without extra
stubs to keep patches independent and bisectable. For instance,
virt/kvm/arm/vgic/vgic-v3.c uses function from vgic-v3-sr.c, handling
access to GICv3 cpu interface from the guest requires vgic_v3.vgic_sre
to be already defined.
It is how support has been done:
* handle SGI requests from the guest
* report configured SRE on access to GICv3 cpu interface from the guest
* required vgic-v3 macros are provided via uapi.h
* static keys are used to select GIC backend
* to make vgic-v3 build KVM_ARM_VGIC_V3 guard is removed along with
the static inlines
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We have couple of 64-bit registers defined in GICv3 architecture, so
unsigned long accesses to these registers will only access a single
32-bit part of that regitser. On the other hand these registers can't
be accessed as 64-bit with a single instruction like ldrd/strd or
ldmia/stmia if we run a 32-bit host because KVM does not support
access to MMIO space done by these instructions.
It means that a 32-bit guest accesses these registers in 32-bit
chunks, so the only thing we need to do is to ensure that
extract_bytes() always takes 64-bit data.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Well, this patch is looking ahead of time, but we'll get following
compiler warnings as soon as we introduce vgic-v3 to 32-bit world
CC arch/arm/kvm/../../../virt/kvm/arm/vgic/vgic-mmio-v3.o
arch/arm/kvm/../../../virt/kvm/arm/vgic/vgic-mmio-v3.c: In function 'vgic_mmio_read_v3r_typer':
arch/arm/kvm/../../../virt/kvm/arm/vgic/vgic-mmio-v3.c:184:35: warning: left shift count >= width of type [-Wshift-count-overflow]
value = (mpidr & GENMASK(23, 0)) << 32;
^
In file included from ./include/linux/kernel.h:10:0,
from ./include/asm-generic/bug.h:13,
from ./arch/arm/include/asm/bug.h:59,
from ./include/linux/bug.h:4,
from ./include/linux/io.h:23,
from ./arch/arm/include/asm/arch_gicv3.h:23,
from ./include/linux/irqchip/arm-gic-v3.h:411,
from arch/arm/kvm/../../../virt/kvm/arm/vgic/vgic-mmio-v3.c:14:
arch/arm/kvm/../../../virt/kvm/arm/vgic/vgic-mmio-v3.c: In function 'vgic_v3_dispatch_sgi':
./include/linux/bitops.h:6:24: warning: left shift count >= width of type [-Wshift-count-overflow]
#define BIT(nr) (1UL << (nr))
^
arch/arm/kvm/../../../virt/kvm/arm/vgic/vgic-mmio-v3.c:614:20: note: in expansion of macro 'BIT'
broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
^
Let's fix them now.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
By now ITS code guarded with KVM_ARM_VGIC_V3 config option which was
introduced to hide everything specific to vgic-v3 from 32-bit world.
We are going to support vgic-v3 in 32-bit world and KVM_ARM_VGIC_V3
will gone, but we don't have support for ITS there yet and we need to
continue keeping ITS away.
Introduce the new config option to prevent ITS code being build in
32-bit mode when support for vgic-v3 is done.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
So we can reuse the code under arch/arm
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently GIC backend is selected via alternative framework and this
is fine. We are going to introduce vgic-v3 to 32-bit world and there
we don't have patching framework in hand, so we can either check
support for GICv3 every time we need to choose which backend to use or
try to optimise it by using static keys. The later looks quite
promising because we can share logic involved in selecting GIC backend
between architectures if both uses static keys.
This patch moves arm64 from alternative to static keys framework for
selecting GIC backend. For that we embed static key into vgic_global
and enable the key during vgic initialisation based on what has
already been exposed by the host GIC driver.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This commit adds the ability for archs to export
per-vcpu information via a new per-vcpu dir in
the VM's debugfs directory.
If kvm_arch_has_vcpu_debugfs() returns true, then KVM
will create a vcpu dir for each vCPU in the VM's
debugfs directory. Then kvm_arch_create_vcpu_debugfs()
is responsible for populating each vcpu directory
with arch specific entries.
The per-vcpu path in debugfs will look like:
/sys/kernel/debug/kvm/29162-10/vcpu0
/sys/kernel/debug/kvm/29162-10/vcpu1
This is all arch specific for now because the only
user of this interface (x86) wants to export x86-specific
per-vcpu information to user-space.
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This make it possible to call kvm_destroy_vm_debugfs() from
kvm_create_vm_debugfs() in error conditions.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paul Mackerras writes:
The highlights are:
* Reduced latency for interrupts from PCI pass-through devices, from
Suresh Warrier and me.
* Halt-polling implementation from Suraj Jitindar Singh.
* 64-bit VCPU statistics, also from Suraj.
* Various other minor fixes and improvements.
Remove two unnecessary labels now that kvm_timer_hyp_init is not
creating its own workqueue anymore.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If, when proxying a GICV access at EL2, we detect that the guest is
doing something silly, report an EL1 SError instead ofgnoring the
access.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
So far, we've been disabling KVM on systems where the GICV region couldn't
be safely given to a guest. Now that we're able to handle this access
safely by emulating it in HYP, we can enable this feature when we detect
an unsafe configuration.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now that we have the necessary infrastructure to handle MMIO accesses
in HYP, perform the GICV access on behalf of the guest. This requires
checking that the access is strictly 32bit, properly aligned, and
falls within the expected range.
When all condition are satisfied, we perform the access and tell
the rest of the HYP code that the instruction has been correctly
emulated.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In order to efficiently perform the GICV access on behalf of the
guest, we need to be able to avoid going back all the way to
the host kernel.
For this, we introduce a new hook in the world switch code,
conveniently placed just after populating the fault info.
At that point, we only have saved/restored the GP registers,
and we can quickly perform all the required checks (data abort,
translation fault, valid faulting syndrome, not an external
abort, not a PTW).
Coming back from the emulation code, we need to skip the emulated
instruction. This involves an additional bit of save/restore in
order to be able to access the guest's PC (and possibly CPSR if
this is a 32bit guest).
At this stage, no emulation code is provided.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
As we plan to do some emulation at HYP, let's make kvm_skip_instr32
as part of the hyp_text section. This doesn't preclude the kernel
from using it.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Add the bit of glue and const-ification that is required to use
the code inherited from the arm64 port, and move over to it.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
It would make some sense to share the conditional execution code
between 32 and 64bit. In order to achieve this, let's move that
code to virt/kvm/arm/aarch32.c. While we're at it, drop a
superfluous BUG_ON() that wasn't that useful.
Following patches will migrate the 32bit port to that code base.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
As kvm_set_routing_entry() was changing prototype between 4.7 and 4.8,
an ugly hack was put in place in order to survive both building in
-next and the merge window.
Now that everything has been merged, let's dump the compatibility
hack for good.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Just a rename so we can implement a v3-specific function later.
We take the chance to get rid of the V2/V3 ops comments as well.
No functional change.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
As we are about to deal with multiple data types and situations where
the vgic should not be initialized when doing userspace accesses on the
register attributes, factor out the functionality of
vgic_attr_regs_access into smaller bits which can be reused by a new
function later.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
vms and vcpus have statistics associated with them which can be viewed
within the debugfs. Currently it is assumed within the vcpu_stat_get() and
vm_stat_get() functions that all of these statistics are represented as
u32s, however the next patch adds some u64 vcpu statistics.
Change all vcpu statistics to u64 and modify vcpu_stat_get() accordingly.
Since vcpu statistics are per vcpu, they will only be updated by a single
vcpu at a time so this shouldn't present a problem on 32-bit machines
which can't atomically increment 64-bit numbers. However vm statistics
could potentially be updated by multiple vcpus from that vm at a time.
To avoid the overhead of atomics make all vm statistics ulong such that
they are 64-bit on 64-bit systems where they can be atomically incremented
and are 32-bit on 32-bit systems which may not be able to atomically
increment 64-bit numbers. Modify vm_stat_get() to expect ulongs.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The workqueue "irqfd_cleanup_wq" queues a single work item
&irqfd->shutdown and hence doesn't require ordering. It is a host-wide
workqueue for issuing deferred shutdown requests aggregated from all
vm* instances. It is not being used on a memory reclaim path.
Hence, it has been converted to use system_wq.
The work item has been flushed in kvm_irqfd_release().
The workqueue "wqueue" queues a single work item &timer->expired
and hence doesn't require ordering. Also, it is not being used on
a memory reclaim path. Hence, it has been converted to use system_wq.
System workqueues have been able to handle high level of concurrency
for a long time now and hence it's not required to have a singlethreaded
workqueue just to gain concurrency. Unlike a dedicated per-cpu workqueue
created with create_singlethread_workqueue(), system_wq allows multiple
work items to overlap executions even on the same CPU; however, a
per-cpu workqueue doesn't have any CPU locality or global ordering
guarantee unless the target CPU is explicitly specified and thus the
increase of local concurrency shouldn't make any difference.
Signed-off-by: Bhaktipriya Shridhar <bhaktipriya96@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This tag contains the following fixes on top of v4.8-rc1:
- ITS init issues
- ITS error handling issues
- ITS IRQ leakage fix
- Plug a couple of ITS race conditions
- An erratum workaround for timers
- Some removal of misleading use of errors and comments
- A fix for GICv3 on 32-bit guests
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXtLicAAoJEEtpOizt6ddyEC4H/16IngntN6Gz1WPwtBBelgyj
ZfU970uzGOyDtDOeOX1NT+gJpkDvUMhsNlngWnMrMwqqqPVKdE4XBShPiW2v53E7
JquDTd2kKl+OO9e9XnkLw9yUcARmJFKIjHdISlg+E78t2kcNHn+XB2jrfTLKQVl8
tk1ztDALb4LXSGYPZQ/uHTYp9U0qei+2SbbQufRcdQ3ggyxLDwPP2aO25amctzEP
0Y42tlnNoZj7yBBp0X9BWRrHF2AZuOp+qBJnpFiQdsgLL6G1P3DcU/t9+KDjVBVr
LYKN8jId2r5eyGGg8aKb4I3trevayToWhDw/jzarrTNAovB1cp8G5J7ozfmeS3g=
=4PCW
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.8-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM Fixes for v4.8-rc3
This tag contains the following fixes on top of v4.8-rc1:
- ITS init issues
- ITS error handling issues
- ITS IRQ leakage fix
- Plug a couple of ITS race conditions
- An erratum workaround for timers
- Some removal of misleading use of errors and comments
- A fix for GICv3 on 32-bit guests
Similarily to f005bd7e3b ("clocksource/arm_arch_timer: Force
per-CPU interrupt to be level-triggered"), make sure we can
survive an interrupt that has been misconfigured as edge-triggered
by forcing it to be level-triggered (active low is assumed, but
the GIC doesn't really care whether this is high or low).
Hopefully, the amount of shouting in the kernel log will convince
the user to do something about their firmware.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a guest wants to map a device-ID/event-ID combination that is
already mapped, we may end up in a situation where an LPI is never
"put", thus never being freed.
Since the GICv3 spec says that mapping an already mapped LPI is
UNPREDICTABLE, lets just bail out early in this situation to avoid
any potential leaks.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When userspace provides the doorbell address for an MSI to be
injected into the guest, we find a KVM device which feels responsible.
Lets check that this device is really an emulated ITS before we make
real use of the container_of-ed pointer.
[ Moved NULL-pointer check to caller of static function
- Christoffer ]
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we register an ITS device upon userland issuing the CTLR_INIT
ioctl to mark initialization of the ITS as done.
This deviates from the initialization sequence of the existing GIC
devices and does not play well with the way QEMU handles things.
To be more in line with what we are used to, register the ITS(es) just
before the first VCPU is about to run, so in the map_resources() call.
This involves iterating through the list of KVM devices and map each
ITS that we find.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
There are two problems with the current implementation of the MMIO
handlers for the propbaser and pendbaser:
First, the write to the value itself is not guaranteed to be an atomic
64-bit write so two concurrent writes to the structure field could be
intermixed.
Second, because we do a read-modify-update operation without any
synchronization, if we have two 32-bit accesses to separate parts of the
register, we can loose one of them.
By using the atomic cmpxchg64 we should cover both issues above.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
KVM devices were manipulating list data structures without any form of
synchronization, and some implementations of the create operations also
suffered from a lack of synchronization.
Now when we've split the xics create operation into create and init, we
can hold the kvm->lock mutex while calling the create operation and when
manipulating the devices list.
The error path in the generic code gets slightly ugly because we have to
take the mutex again and delete the device from the list, but holding
the mutex during anon_inode_getfd or releasing/locking the mutex in the
common non-error path seemed wrong.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
As we are about to hold the kvm->lock during the create operation on KVM
devices, we should move the call to xics_debugfs_init into its own
function, since holding a mutex over extended amounts of time might not
be a good idea.
Introduce an init operation on the kvm_device_ops struct which cannot
fail and call this, if configured, after the device has been created.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Right now the following sequence of events can happen:
1. Thread X calls vgic_put_irq
2. Thread Y calls vgic_add_lpi
3. Thread Y gets lpi_list_lock
4. Thread X drops the ref count to 0 and blocks on lpi_list_lock
5. Thread Y finds the irq via the lpi_list_lock, raises the ref
count to 1, and release the lpi_list_lock.
6. Thread X proceeds and frees the irq.
Avoid this by holding the spinlock around the kref_put.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
During low memory conditions, we could be dereferencing a NULL pointer
when vgic_add_lpi fails to allocate memory.
Consider for example this call sequence:
vgic_its_cmd_handle_mapi
itte->irq = vgic_add_lpi(kvm, lpi_nr);
update_lpi_config(kvm, itte->irq, NULL);
ret = kvm_read_guest(kvm, propbase + irq->intid
^^^^
kaboom?
Instead, return an error pointer from vgic_add_lpi and check the return
value from its single caller.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
According to the KVM API documentation a successful MSI injection
should return a value > 0 on success.
Return possible errors in vgic_its_trigger_msi() and report a
successful injection back to userland, while also reporting the
case where the MSI could not be delivered due to the guest not
having the LPI mapped, for instance.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Includes GSI routing support to go along with the new VGIC and a small fix that
has been cooking in -next for a while.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXoydqAAoJEEtpOizt6ddyM3oH/1A4VeG/J9q4fBPXqY2tVWXs
c3P7UgNcrEgUNs/F9ykQY/lb31deecUzaBt1OyTf+RlsNbihq3dQdYcBhxtUODw/
Faok582ya3UFgLW+IRHcID0EbkVOpIzMhOStYsnU/Dz7HG1JL9HdPzwkid7iu9LT
fI6yrrBnJFjdWAAQ4BkcEKBENRsY8NTs7jX5vnFA92MkUBby7BmariPDD3FtrB+f
Ob9B7CxM30pNqsN7OA/QvFOHMJHxf3s1TBKwmPHe5TLIfSzV1YxcEGiMc0lWqF4v
BT8ZeMGCtjDw94tND1DskfQQRPaMqPmGuRTrAW/IuE2n92bFtbqIqs7Cbw0fzLE=
=Vm6Q
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.8-take2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM Changes for v4.8 - Take 2
Includes GSI routing support to go along with the new VGIC and a small fix that
has been cooking in -next for a while.
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
Pull smp hotplug updates from Thomas Gleixner:
"This is the next part of the hotplug rework.
- Convert all notifiers with a priority assigned
- Convert all CPU_STARTING/DYING notifiers
The final removal of the STARTING/DYING infrastructure will happen
when the merge window closes.
Another 700 hundred line of unpenetrable maze gone :)"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
timers/core: Correct callback order during CPU hot plug
leds/trigger/cpu: Move from CPU_STARTING to ONLINE level
powerpc/numa: Convert to hotplug state machine
arm/perf: Fix hotplug state machine conversion
irqchip/armada: Avoid unused function warnings
ARC/time: Convert to hotplug state machine
clocksource/atlas7: Convert to hotplug state machine
clocksource/armada-370-xp: Convert to hotplug state machine
clocksource/exynos_mct: Convert to hotplug state machine
clocksource/arm_global_timer: Convert to hotplug state machine
rcu: Convert rcutree to hotplug state machine
KVM/arm/arm64/vgic-new: Convert to hotplug state machine
smp/cfd: Convert core to hotplug state machine
x86/x2apic: Convert to CPU hotplug state machine
profile: Convert to hotplug state machine
timers/core: Convert to hotplug state machine
hrtimer: Convert to hotplug state machine
x86/tboot: Convert to hotplug state machine
arm64/armv8 deprecated: Convert to hotplug state machine
hwtracing/coresight-etm4x: Convert to hotplug state machine
...
kvm_set_routing_entry is changing in -next, and causes things to
explode. Add a temporary workaround that should be dropped when
we hit 4.8-rc1
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
- GICv3 ITS emulation
- Simpler idmap management that fixes potential TLB conflicts
- Honor the kernel protection in HYP mode
- Removal of the old vgic implementation
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXkk6wAAoJECPQ0LrRPXpDkIQP/iJ2yXTxrfbJoyaVq1vuMn3R
UFhVwNXP8OEjQrmp5lvMBazB1MRBkNDzlVXL1fSb+ijKmbIELOqHhO6ijrkK4zmc
0Ie0x5Bt4gIFPTZyZORVpy1eU/0YFGWERAfsAjYdMCeKwHjaUCRSrZBXF2YsFTfo
Hh/ILvHa8TjUXWsQXvtZCL6AAnkDKBsbDWqsq5zspuT+PA8umI+dGLIiULXBpc4t
S2TCDxOU1JgsAn+Y0XVbPXV9id+bs5LRd6nNH/RmipIVqWmukSrScXOjg/po/l2S
laO4tHmyEeN6ecnCxWttpjacNwyTDNh5n3lL1ceBnBZFqn1k/7NjqV3fQzJxGd1T
1U6edE9+EuS9uXWF5XcEuAD660EiMs4FLVSjPgqYQtto3gOHilmuWL9eeeOOgCem
Lknnu/7G8h36PaQuLnEXWXQb7jeS2rTuC0RqxCG62gD9UWEJTckRz5pRh/e6gz7n
ZVXMrwGiVZ3zR78qE6i2j5CZ6A0BMAK3nZ85AI3kmgKg0CfVY28uPOj8llAOaYm+
0XVdfRj7ed75eu3GobjHUyZ0fQ40jovmH2vy3mupBm5XBUHgH/j6X510KJ1UTLWI
C2EO9KogbjoVeu60mQi4bKGSPi8/wdgYqVft/Qzl5D5iFvQ7Ia+TQNMArCQazBID
Ihe1E09NGrHjV3Yw/GWV
=2Del
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into next
KVM/ARM changes for Linux 4.8
- GICv3 ITS emulation
- Simpler idmap management that fixes potential TLB conflicts
- Honor the kernel protection in HYP mode
- Removal of the old vgic implementation
Up to now, only irqchip routing entries could be set. This patch
adds the capability to insert MSI routing entries.
For ARM64, let's also increase KVM_MAX_IRQ_ROUTES to 4096: this
include SPI irqchip routes plus MSI routes. In the future this
might be extended.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch adds compilation and link against irqchip.
Main motivation behind using irqchip code is to enable MSI
routing code. In the future irqchip routing may also be useful
when targeting multiple irqchips.
Routing standard callbacks now are implemented in vgic-irqfd:
- kvm_set_routing_entry
- kvm_set_irq
- kvm_set_msi
They only are supported with new_vgic code.
Both HAVE_KVM_IRQCHIP and HAVE_KVM_IRQ_ROUTING are defined.
KVM_CAP_IRQ_ROUTING is advertised and KVM_SET_GSI_ROUTING is allowed.
So from now on IRQCHIP routing is enabled and a routing table entry
must exist for irqfd injection to succeed for a given SPI. This patch
builds a default flat irqchip routing table (gsi=irqchip.pin) covering
all the VGIC SPI indexes. This routing table is overwritten by the
first first user-space call to KVM_SET_GSI_ROUTING ioctl.
MSI routing setup is not yet allowed.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
on ARM, a devid field is populated in kvm_msi struct in case the
flag is set to KVM_MSI_VALID_DEVID. Let's propagate both flags and
devid field in kvm_kernel_irq_routing_entry.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
If we care to move all the checks that do not involve any memory
allocation, we can simplify the MAPI error handling. Let's do that,
it cannot hurt.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
vgic_its_cmd_handle_mapi has an extra "subcmd" argument, which is
already contained in the command buffer that all command handlers
obtain from the command queue. Let's drop it, as it is not that
useful.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is no need to have separate functions to validate devices
and collections, as the architecture doesn't really distinguish the
two, and they are supposed to be managed the same way.
Let's turn the DevID checker into a generic one.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Going from the ITS structure to the corresponding KVM structure
would be quite handy at times. The kvm_device pointer that is
passed at create time is quite convenient for this, so let's
keep a copy of it in the vgic_its structure.
This will be put to a good use in subsequent patches.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Instead of spreading random allocations all over the place,
consolidate allocation/init/freeing of collections in a pair
of constructor/destructor.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When checking that the storage address of a device entry is valid,
it is critical to compute the actual address of the entry, rather
than relying on the beginning of the page to match a CPU page of
the same size: for example, if the guest places the table at the
last 64kB boundary of RAM, but RAM size isn't a multiple of 64kB...
Fix this by computing the actual offset of the device ID in the
L2 page, and check the corresponding GFN.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Checking that the device_id fits if the table, and we must make
sure that the associated memory is also accessible.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The nr_entries variable in vgic_its_check_device_id actually
describe the size of the L1 table, and not the number of
entries in this table.
Rename it to l1_tbl_size, so that we can now change the code
with a better understanding of what is what.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The ITS tables are stored in LE format. If the host is reading
a L1 table entry to check its validity, it must convert it to
the CPU endianness.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The current code will fail on valid indirect tables, and happily
use the ones that are pointing out of the guest RAM. Funny what a
small "!" can do for you...
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Instead of sprinkling raw kref_get() calls everytime we cannot
do a normal vgic_get_irq(), use the existing vgic_get_irq_kref(),
which does the same thing and is paired with a vgic_put_irq().
vgic_get_irq_kref is moved to vgic.h in order to be easily shared.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
For VGICv2 save and restore the CPU interface registers
are accessed. Restore the modality which has been altered.
Also explicitly set the iodev_type for both the DIST and CPU
interface.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that all ITS emulation functionality is in place, we advertise
MSI functionality to userland and also the ITS device to the guest - if
userland has configured that.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When userland wants to inject an MSI into the guest, it uses the
KVM_SIGNAL_MSI ioctl, which carries the doorbell address along with
the payload and the device ID.
With the help of the KVM IO bus framework we learn the corresponding
ITS from the doorbell address. We then use our wrapper functions to
iterate the linked lists and find the proper Interrupt Translation Table
Entry (ITTE) and thus the corresponding struct vgic_irq to finally set
the pending bit.
We also provide the handler for the ITS "INT" command, which allows a
guest to trigger an MSI via the ITS command queue. Since this one knows
about the right ITS already, we directly call the MMIO handler function
without using the kvm_io_bus framework.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The connection between a device, an event ID, the LPI number and the
associated CPU is stored in in-memory tables in a GICv3, but their
format is not specified by the spec. Instead software uses a command
queue in a ring buffer to let an ITS implementation use its own
format.
Implement handlers for the various ITS commands and let them store
the requested relation into our own data structures. Those data
structures are protected by the its_lock mutex.
Our internal ring buffer read and write pointers are protected by the
its_cmd mutex, so that only one VCPU per ITS can handle commands at
any given time.
Error handling is very basic at the moment, as we don't have a good
way of communicating errors to the guest (usually an SError).
The INT command handler is missing from this patch, as we gain the
capability of actually injecting MSIs into the guest only later on.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The (system-wide) LPI configuration table is held in a table in
(guest) memory. To achieve reasonable performance, we cache this data
in our struct vgic_irq. If the guest updates the configuration data
(which consists of the enable bit and the priority value), it issues
an INV or INVALL command to allow us to update our information.
Provide functions that update that information for one LPI or all LPIs
mapped to a specific collection.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The LPI pending status for a GICv3 redistributor is held in a table
in (guest) memory. To achieve reasonable performance, we cache the
pending bit in our struct vgic_irq. The initial pending state must be
read from guest memory upon enabling LPIs for this redistributor.
As we can't access the guest memory while we hold the lpi_list spinlock,
we create a snapshot of the LPI list and iterate over that.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
LPIs are dynamically created (mapped) at guest runtime and their
actual number can be quite high, but is mostly assigned using a very
sparse allocation scheme. So arrays are not an ideal data structure
to hold the information.
We use a spin-lock protected linked list to hold all mapped LPIs,
represented by their struct vgic_irq. This lock is grouped between the
ap_list_lock and the vgic_irq lock in our locking order.
Also we store a pointer to that struct vgic_irq in our struct its_itte,
so we can easily access it.
Eventually we call our new vgic_get_lpi() from vgic_get_irq(), so
the VGIC code gets transparently access to LPIs.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add emulation for some basic MMIO registers used in the ITS emulation.
This includes:
- GITS_{CTLR,TYPER,IIDR}
- ID registers
- GITS_{CBASER,CREADR,CWRITER}
(which implement the ITS command buffer handling)
- GITS_BASER<n>
Most of the handlers are pretty straight forward, only the CWRITER
handler is a bit more involved by taking the new its_cmd mutex and
then iterating over the command buffer.
The registers holding base addresses and attributes are sanitised before
storing them.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Introduce a new KVM device that represents an ARM Interrupt Translation
Service (ITS) controller. Since there can be multiple of this per guest,
we can't piggy back on the existing GICv3 distributor device, but create
a new type of KVM device.
On the KVM_CREATE_DEVICE ioctl we allocate and initialize the ITS data
structure and store the pointer in the kvm_device data.
Upon an explicit init ioctl from userland (after having setup the MMIO
address) we register the handlers with the kvm_io_bus framework.
Any reference to an ITS thus has to go via this interface.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The ARM GICv3 ITS emulation code goes into a separate file, but needs
to be connected to the GICv3 emulation, of which it is an option.
The ITS MMIO handlers require the respective ITS pointer to be passed in,
so we amend the existing VGIC MMIO framework to let it cope with that.
Also we introduce the basic ITS data structure and initialize it, but
don't return any success yet, as we are not yet ready for the show.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In the GICv3 redistributor there are the PENDBASER and PROPBASER
registers which we did not emulate so far, as they only make sense
when having an ITS. In preparation for that emulate those MMIO
accesses by storing the 64-bit data written into it into a variable
which we later read in the ITS emulation.
We also sanitise the registers, making sure RES0 regions are respected
and checking for valid memory attributes.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In the moment our struct vgic_irq's are statically allocated at guest
creation time. So getting a pointer to an IRQ structure is trivial and
safe. LPIs are more dynamic, they can be mapped and unmapped at any time
during the guest's _runtime_.
In preparation for supporting LPIs we introduce reference counting for
those structures using the kernel's kref infrastructure.
Since private IRQs and SPIs are statically allocated, we avoid actually
refcounting them, since they would never be released anyway.
But we take provisions to increase the refcount when an IRQ gets onto a
VCPU list and decrease it when it gets removed. Also this introduces
vgic_put_irq(), which wraps kref_put and hides the release function from
the callers.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The kvm_io_bus framework is a nice place of holding information about
various MMIO regions for kernel emulated devices.
Add a call to retrieve the kvm_io_device structure which is associated
with a certain MMIO address. This avoids to duplicate kvm_io_bus'
knowledge of MMIO regions without having to fake MMIO calls if a user
needs the device a certain MMIO address belongs to.
This will be used by the ITS emulation to get the associated ITS device
when someone triggers an MSI via an ioctl from userspace.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
kvm_register_device_ops() can return an error, so lets check its return
value and propagate this up the call chain.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Logically a GICv3 redistributor is assigned to a (v)CPU, so we should
aim to keep redistributor related variables out of our struct vgic_dist.
Let's start by replacing the redistributor related kvm_io_device array
with two members in our existing struct vgic_cpu, which are naturally
per-VCPU and thus don't require any allocation / freeing.
So apart from the better fit with the redistributor design this saves
some code as well.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Eric Auger <eric.auger@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-arm-kernel@lists.infradead.org
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153337.900484868@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Richard Cochran <rcochran@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-arm-kernel@lists.infradead.org
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153336.634155707@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
The VGIC callback is run after KVM's main callback since it reflects the
makefile order.
Signed-off-by: Richard Cochran <rcochran@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-arm-kernel@lists.infradead.org
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153336.546953286@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine. The core won't invoke the
callbacks on already online CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153335.886159080@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Once anon_inode_getfd() has succeeded, it's impossible to undo
in a clean way and no, sys_close() is not usable in such cases.
Use anon_inode_getfile() and get_unused_fd_flags() to get struct file
and descriptor and do *not* install the file into the descriptor table
until after the last possible failure exit.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 77ecc085fed1af1000ca719522977b960aa6da52.
Al Viro colorfully says: "You should *NEVER* use sys_close() on failure
exit paths like that. Moreover, this kvm_put_kvm() becomes a double-put,
since closing the damn file will drop that reference to kvm. Please,
revert. anon_inode_getfd() should be used only when there's no possible
failures past its call".
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The failure of create debugfs of VM will return directly without release
the anon file. It will leak memory and file descriptors, even through
be not serious.
Signed-off-by: Liu Shuo <shuo.a.liu@intel.com>
Fixes: 536a6f88c4
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When freeing the nested resources of a vcpu, there is an assumption that
the vcpu's vmcs01 is the current VMCS on the CPU that executes
nested_release_vmcs12(). If this assumption is violated, the vcpu's
vmcs01 may be made active on multiple CPUs at the same time, in
violation of Intel's specification. Moreover, since the vcpu's vmcs01 is
not VMCLEARed on every CPU on which it is active, it can linger in a
CPU's VMCS cache after it has been freed and potentially
repurposed. Subsequent eviction from the CPU's VMCS cache on a capacity
miss can result in memory corruption.
It is not sufficient for vmx_free_vcpu() to call vmx_load_vmcs01(). If
the vcpu in question was last loaded on a different CPU, it must be
migrated to the current CPU before calling vmx_load_vmcs01().
Signed-off-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The vGPU folks would like to trap the first access to a BAR by setting
vm_ops on the VMAs produced by mmap-ing a VFIO device. The fault handler
then can use remap_pfn_range to place some non-reserved pages in the VMA.
This kind of VM_PFNMAP mapping is not handled by KVM, but follow_pfn
and fixup_user_fault together help supporting it. The patch also supports
VM_MIXEDMAP vmas where the pfns are not reserved and thus subject to
reference counting.
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Neo Jia <cjia@nvidia.com>
Reported-by: Kirti Wankhede <kwankhede@nvidia.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle VM_IO like VM_PFNMAP, as is common in the rest of Linux; extract
the formula to convert hva->pfn into a new function, which will soon
gain more capabilities.
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I don't think any single piece of the KVM/ARM code ever generated
as much hatred as the GIC emulation.
It was written by someone who had zero experience in modeling
hardware (me), was riddled with design flaws, should have been
scrapped and rewritten from scratch long before having a remote
chance of reaching mainline, and yet we supported it for a good
three years. No need to mention the names of those who suffered,
the git log is singing their praises.
Thankfully, we now have a much more maintainable implementation,
and we can safely put the grumpy old GIC to rest.
Fellow hackers, please raise your glass in memory of the GIC:
The GIC is dead, long live the GIC!
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
These days, we experienced one guest crash with 8 cores and 3 disks,
with qemu error logs as bellow:
qemu-system-x86_64: /build/qemu-2.0.0/kvm-all.c:984:
kvm_irqchip_commit_routes: Assertion `ret == 0' failed.
And then we found one patch(bdf026317d) in qemu tree, which said
could fix this bug.
Execute the following script will reproduce the BUG quickly:
irq_affinity.sh
========================================================================
vda_irq_num=25
vdb_irq_num=27
while [ 1 ]
do
for irq in {1,2,4,8,10,20,40,80}
do
echo $irq > /proc/irq/$vda_irq_num/smp_affinity
echo $irq > /proc/irq/$vdb_irq_num/smp_affinity
dd if=/dev/vda of=/dev/zero bs=4K count=100 iflag=direct
dd if=/dev/vdb of=/dev/zero bs=4K count=100 iflag=direct
done
done
========================================================================
The following qemu log is added in the qemu code and is displayed when
this bug reproduced:
kvm_irqchip_commit_routes: max gsi: 1008, nr_allocated_irq_routes: 1024,
irq_routes->nr: 1024, gsi_count: 1024.
That's to say when irq_routes->nr == 1024, there are 1024 routing entries,
but in the kernel code when routes->nr >= 1024, will just return -EINVAL;
The nr is the number of the routing entries which is in of
[1 ~ KVM_MAX_IRQ_ROUTES], not the index in [0 ~ KVM_MAX_IRQ_ROUTES - 1].
This patch fix the BUG above.
Cc: stable@vger.kernel.org
Signed-off-by: Xiubo Li <lixiubo@cmss.chinamobile.com>
Signed-off-by: Wei Tang <tangwei@cmss.chinamobile.com>
Signed-off-by: Zhang Zhuoyu <zhangzhuoyu@cmss.chinamobile.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new created_vcpus field makes it possible to avoid the race between
irqchip and VCPU creation in a much nicer way; just check under kvm->lock
whether a VCPU has already been created.
We can then remove KVM_APIC_ARCHITECTURE too, because at this point the
symbol is only governing the default definition of kvm_vcpu_compatible.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The race between creating the irqchip and the first VCPU is
currently fixed by checking the presence of an irqchip before
updating kvm->online_vcpus, and undoing the whole VCPU creation
if someone created the irqchip in the meanwhile.
Instead, introduce a new field in struct kvm that will count VCPUs
under a mutex, without the atomic access and memory ordering that we
need elsewhere to protect the vcpus array. This also plugs the race
and is more easily applicable in all similar circumstances.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When changing the active bit from an MMIO trap, we decide to
explode if the intid is that of a private interrupt.
This flawed logic comes from the fact that we were assuming that
kvm_vcpu_kick() as called by kvm_arm_halt_vcpu() would not return before
the called vcpu responded, but this is not the case, so we need to
perform this wait even for private interrupts.
Dropping the BUG_ON seems like the right thing to do.
[ Commit message tweaked by Christoffer ]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When reading back from the list registers, we need to perform
two actions for level interrupts:
1) clear the soft-pending bit if the interrupt is not pending
anymore *in the list register*
2) resample the line level and propagate it to the pending state
But these two actions shouldn't be linked, and we should *always*
resample the line level, no matter what state is in the list
register. Otherwise, we may end-up injecting spurious interrupts
that have been already retired.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When reading back from the list registers, we need to perform
two actions for level interrupts:
1) clear the soft-pending bit if the interrupt is not pending
anymore *in the list register*
2) resample the line level and propagate it to the pending state
But these two actions shouldn't be linked, and we should *always*
resample the line level, no matter what state is in the list
register. Otherwise, we may end-up injecting spurious interrupts
that have been already retired.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When saving the state of the list registers, it is critical to
reset them zero, as we could otherwise leave unexpected EOI
interrupts pending for virtual level interrupts.
Cc: stable@vger.kernel.org # v4.6+
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch adds a kvm debugfs subdirectory for each VM, which is named
after its pid and file descriptor. The directories contain the same
kind of files that are already in the kvm debugfs directory, but the
data exported through them is now VM specific.
This makes the debugfs kvm data a convenient alternative to the
tracepoints which already have per VM data. The debugfs data is easy
to read and low overhead.
CC: Dan Carpenter <dan.carpenter@oracle.com> [includes fixes by Dan Carpenter]
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"The GIC is dead; Long live the GIC"
This set of changes include the new vgic, which is a reimplementation of
our horribly broken legacy vgic implementation. The two implementations
will live side-by-side (with the new being the configured default) for
one kernel release and then we'll remove it.
Also fixes a non-critical issue with virtual abort injection to guests.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXRA7PAAoJEEtpOizt6ddy9a0H+wQ5LTC4rrgcWOsLjfa7res7
SqB3HEqrzmN3zMbv4dgYeMSBDqr6F3b1+8DJ6n1WkG7afXOKrpMWsl9SXgwmRc1q
8H54DYLcu/CDakzi/FKTeZEIp/u+tpMC7xQLFk8PFx/NUPfspPt1NU6Qi0fumZj6
5AbXwC6FKojplgO6wxV7oHRRiEnfrN5F+1whD3QlaDmI+rlNUSYNp2Ljhp8k9m9E
NSeGzZgeMdHOeZpv60uhjotuxegG1zmHeHI59ltNytdfjuFL3LvNm18yG8u1yjKm
9ZDjIu1m7dfuPw39DYC99cxP6tvEh03/N2zw86ZFgj7QfdW756WrV+UkSFfeIKE=
=xy+z
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4-7-take2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next
KVM/ARM Changes for v4.7 take 2
"The GIC is dead; Long live the GIC"
This set of changes include the new vgic, which is a reimplementation of
our horribly broken legacy vgic implementation. The two implementations
will live side-by-side (with the new being the configured default) for
one kernel release and then we'll remove it.
Also fixes a non-critical issue with virtual abort injection to guests.
When modifying the active state of an interrupt via the MMIO interface,
we should ensure that the write has the intended effect.
If a guest sets an interrupt to active, but that interrupt is already
flushed into a list register on a running VCPU, then that VCPU will
write the active state back into the struct vgic_irq upon returning from
the guest and syncing its state. This is a non-benign race, because the
guest can observe that an interrupt is not active, and it can have a
reasonable expectations that other VCPUs will not ack any IRQs, and then
set the state to active, and expect it to stay that way. Currently we
are not honoring this case.
Thefore, change both the SACTIVE and CACTIVE mmio handlers to stop the
world, change the irq state, potentially queue the irq if we're setting
it to active, and then continue.
We take this chance to slightly optimize these functions by not stopping
the world when touching private interrupts where there is inherently no
possible race.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now that the new VGIC implementation has reached feature parity with
the old one, add the new files to the build system and add a Kconfig
option to switch between the two versions.
We set the default to the new version to get maximum test coverage,
in case people experience problems they can switch back to the old
behaviour if needed.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
We now store the mapped hardware IRQ number in our struct, so we
don't need the irq_phys_map for the new VGIC.
Implement the hardware IRQ mapping on top of the reworked arch
timer interface.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Connect to the new VGIC to the irqfd framework, so that we can
inject IRQs.
GSI routing and MSI routing is not yet implemented.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Enable the VGIC operation by properly initialising the registers
in the hypervisor GIC interface.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
map_resources is the last initialization step. It is executed on
first VCPU run. At that stage the code checks that userspace has provided
the base addresses for the relevant VGIC regions, which depend on the
type of VGIC that is exposed to the guest. Also we check if the two
regions overlap.
If the checks succeeded, we register the respective register frames with
the kvm_io_bus framework.
If we emulate a GICv2, the function also forces vgic_init execution if
it has not been executed yet. Also we map the virtual GIC CPU interface
onto the guest's CPU interface.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch allocates and initializes the data structures used
to model the vgic distributor and virtual cpu interfaces. At that
stage the number of IRQs and number of virtual CPUs is frozen.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch implements the vgic_creation function which is
called on CREATE_IRQCHIP VM IOCTL (v2 only) or KVM_CREATE_DEVICE
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Implements kvm_vgic_hyp_init and vgic_probe function.
This uses the new firmware independent VGIC probing to support both ACPI
and DT based systems (code from Marc Zyngier).
The vgic_global struct is enriched with new fields populated
by those functions.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Using the VMCR accessors we provide access to GIC CPU interface state
to userland by wiring it up to the existing userland interface.
[Marc: move and make VMCR accessors static, streamline MMIO handlers]
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Since the GIC CPU interface is always virtualized by the hardware,
we don't have CPU interface state information readily available in our
emulation if userland wants to save or restore it.
Fortunately the GIC hypervisor interface provides the VMCR register to
access the required virtual CPU interface bits.
Provide wrappers for GICv2 and GICv3 hosts to have access to this
register.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Userland may want to save and restore the state of the in-kernel VGIC,
so we provide the code which takes a userland request and translate
that into calls to our MMIO framework.
From Christoffer:
When accessing the VGIC state from userspace we really don't want a VCPU
to be messing with the state at the same time, and the API specifies
that we should return -EBUSY if any VCPUs are running.
Check and prevent VCPUs from running by grabbing their mutexes, one by
one, and error out if we fail.
(Note: This could potentially be simplified to just do a simple check
and see if any VCPUs are running, and return -EBUSY then, without
enforcing the locking throughout the duration of the uaccess, if we
think that taking/releasing all these mutexes for every single GIC
register access is too heavyweight.)
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Userland can access the emulated GIC to save and restore its state
for initialization or migration purposes.
The kvm_io_bus API requires an absolute gpa, which does not fit the
KVM_DEV_ARM_VGIC_GRP_DIST_REGS user API, that only provides relative
offsets. So we provide a wrapper to plug into our MMIO framework and
find the respective register handler.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
This patch implements the switches for KVM_DEV_ARM_VGIC_GRP_DIST_REGS
and KVM_DEV_ARM_VGIC_GRP_CPU_REGS API which allows the userspace to
access VGIC registers.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch implements the KVM_DEV_ARM_VGIC_GRP_ADDR group which
enables to set the base address of GIC regions as seen by the guest.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
kvm_vgic_addr is used by the userspace to set the base address of
the following register regions, as seen by the guest:
- distributor(v2 and v3),
- re-distributors (v3),
- CPU interface (v2).
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch implements the KVM_DEV_ARM_VGIC_GRP_CTRL group API
featuring KVM_DEV_ARM_VGIC_CTRL_INIT attribute. The vgic_init
function is not yet implemented though.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch implements the KVM_DEV_ARM_VGIC_GRP_NR_IRQS group. This
modality is supported by both VGIC V2 and V3 KVM device as will be
other groups, hence the introduction of common helpers.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch introduces the skeleton for the KVM device operations
associated to KVM_DEV_TYPE_ARM_VGIC_V2 and KVM_DEV_TYPE_ARM_VGIC_V3.
At that stage kvm_vgic_create is stubbed.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
In contrast to GICv2 SGIs in a GICv3 implementation are not triggered
by a MMIO write, but with a system register write. KVM knows about
that register already, we just need to implement the handler and wire
it up to the core KVM/ARM code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Since GICv3 supports much more than the 8 CPUs the GICv2 ITARGETSR
register can handle, the new IROUTER register covers the whole range
of possible target (V)CPUs by using the same MPIDR that the cores
report themselves.
In addition to translating this MPIDR into a vcpu pointer we store
the originally written value as well. The architecture allows to
write any values into the register, which must be read back as written.
Since we don't support affinity level 3, we don't need to take care
about the upper word of this 64-bit register, which simplifies the
handling a bit.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
We implement the only one ID register that is required by the
architecture, also this is the one that Linux actually checks.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
The redistributor TYPER tells the OS about the associated MPIDR,
also the LAST bit is crucial to determine the number of redistributors.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
As in the GICv2 emulation we handle those three registers in one
function.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Create a new file called vgic-mmio-v3.c and describe the GICv3
distributor and redistributor registers there.
This adds a special macro to deal with the split of SGI/PPI in the
redistributor and SPIs in the distributor, which allows us to reuse
the existing GICv2 handlers for those registers which are compatible.
Also we provide a function to deal with the registration of the two
separate redistributor frames per VCPU.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
As this register is v2 specific, its implementation lives entirely
in vgic-mmio-v2.c.
This register allows setting the source mask of an IPI.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Triggering an IPI via this register is v2 specific, so the
implementation lives entirely in vgic-mmio-v2.c.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
The target register handlers are v2 emulation specific, so their
implementation lives entirely in vgic-mmio-v2.c.
We copy the old VGIC behaviour of assigning an IRQ to the first VCPU
set in the target mask instead of making it possibly pending on
multiple VCPUs.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
The config register handlers are shared between the v2 and v3
emulation, so their implementation goes into vgic-mmio.c, to be
easily referenced from the v3 emulation as well later.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
The priority register handlers are shared between the v2 and v3
emulation, so their implementation goes into vgic-mmio.c, to be
easily referenced from the v3 emulation as well later.
There is a corner case when we change the priority of a pending
interrupt which we don't handle at the moment.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
The active register handlers are shared between the v2 and v3
emulation, so their implementation goes into vgic-mmio.c, to be
easily referenced from the v3 emulation as well later.
Since activation/deactivation of an interrupt may happen entirely
in the guest without it ever exiting, we need some extra logic to
properly track the active state.
For clearing the active state, we basically have to halt the guest to
make sure this is properly propagated into the respective VCPUs.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
The pending register handlers are shared between the v2 and v3
emulation, so their implementation goes into vgic-mmio.c, to be easily
referenced from the v3 emulation as well later.
For level triggered interrupts the real line level is unaffected by
this write, so we keep this state separate and combine it with the
device's level to get the actual pending state.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
As the enable register handlers are shared between the v2 and v3
emulation, their implementation goes into vgic-mmio.c, to be easily
referenced from the v3 emulation as well later.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Those three registers are v2 emulation specific, so their implementation
lives entirely in vgic-mmio-v2.c. Also they are handled in one function,
as their implementation is pretty simple.
When the guest enables the distributor, we kick all VCPUs to get
potentially pending interrupts serviced.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Create vgic-mmio-v2.c to describe GICv2 emulation specific handlers
using the initializer macros provided by the VGIC MMIO framework.
Provide a function to register the GICv2 distributor registers to
the kvm_io_bus framework.
The actual handler functions are still stubs in this patch.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Add an MMIO handling framework to the VGIC emulation:
Each register is described by its offset, size (or number of bits per
IRQ, if applicable) and the read/write handler functions. We provide
initialization macros to describe each GIC register later easily.
Separate dispatch functions for read and write accesses are connected
to the kvm_io_bus framework and binary-search for the responsible
register handler based on the offset address within the region.
We convert the incoming data (referenced by a pointer) to the host's
endianess and use pass-by-value to hand the data over to the actual
handler functions.
The register handler prototype and the endianess conversion are
courtesy of Christoffer Dall.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Tell KVM whether a particular VCPU has an IRQ that needs handling
in the guest. This is used to decide whether a VCPU is runnable.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
As the GICv3 virtual interface registers differ from their GICv2
siblings, we need different handlers for processing maintenance
interrupts and reading/writing to the LRs.
Implement the respective handler functions and connect them to
existing code to be called if the host is using a GICv3.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Processing maintenance interrupts and accessing the list registers
are dependent on the host's GIC version.
Introduce vgic-v2.c to contain GICv2 specific functions.
Implement the GICv2 specific code for syncing the emulation state
into the VGIC registers.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Implement the framework for syncing IRQs between our emulation and
the list registers, which represent the guest's view of IRQs.
This is done in kvm_vgic_flush_hwstate and kvm_vgic_sync_hwstate,
which gets called on guest entry and exit.
The code talking to the actual GICv2/v3 hardware is added in the
following patches.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Adds the sorting function to cover the case where you have more IRQs
to consider than you have LRs. We now consider priorities.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Provide a vgic_queue_irq_unlock() function which decides whether a
given IRQ needs to be queued to a VCPU's ap_list.
This should be called whenever an IRQ becomes pending or enabled,
either as a result of userspace injection, from in-kernel emulated
devices like the architected timer or from MMIO accesses to the
distributor emulation.
Also provides the necessary functions to allow userland to inject an
IRQ to a guest.
Since this is the first code that starts using our locking mechanism, we
add some (hopefully) clear documentation of our locking strategy and
requirements along with this patch.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
The new VGIC implementation centers around a struct vgic_irq instance
per virtual IRQ.
Provide a function to retrieve the right instance for a given IRQ
number and (in case of private interrupts) the right VCPU.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
As (some) GICv3 hosts can emulate a GICv2, some GICv2 specific masks
for the list register definition also apply to GICv3 LRs.
At the moment we have those definitions in the KVM VGICv3
implementation, so let's move them into the GICv3 header file to
have them automatically defined.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Currently the PMU uses a member of the struct vgic_dist directly,
which not only breaks abstraction, but will fail with the new VGIC.
Abstract this access in the VGIC header file and refactor the validity
check in the PMU code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
When the kernel was handling a guest MMIO read access internally, we
need to copy the emulation result into the run->mmio structure in order
for the kvm_handle_mmio_return() function to pick it up and inject the
result back into the guest.
Currently the only user of kvm_io_bus for ARM is the VGIC, which did
this copying itself, so this was not causing issues so far.
But with the upcoming new vgic implementation we need this done
properly.
Update the kvm_handle_mmio_return description and cleanup the code to
only perform a single copying when needed.
Code and commit message inspired by Andre Przywara.
Reported-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
The number of list registers is a property of the underlying system, not
of emulated VGIC CPU interface.
As we are about to move this variable to global state in the new vgic
for clarity, move it from the legacy implementation as well to make the
merge of the new code easier.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
We are about to modify the VGIC to allocate all data structures
dynamically and store mapped IRQ information on a per-IRQ struct, which
is indeed allocated dynamically at init time.
Therefore, we cannot record the mapped IRQ info from the timer at timer
reset time like it's done now, because VCPU reset happens before timer
init.
A possible later time to do this is on the first run of a per VCPU, it
just requires us to move the enable state to be a per-VCPU state and do
the lookup of the physical IRQ number when we are about to run the VCPU.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Now that the virtual arch timer does not care about the irq_phys_map
anymore, let's rework kvm_vgic_map_phys_irq() to return an error
value instead. Any reference to that mapping can later be done by
passing the correct combination of VCPU and virtual IRQ number.
This makes the irq_phys_map handling completely private to the
VGIC code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>