In the previous DSI driver design, a private workqueue was needed to prevent a
deadlock as explained in the commit : 0f16aa0ae6
. In the current design, the workqueue is only used for queueing delayed work in
the case where we don't get a FRAMEDONE interrupt for 250 milliseconds. It is
safe to remove the private workqueue amd use the system workqueue instead to
schedule the delayed work with the new design where the deadlock can't occur.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_dump_clocks() prints lck and pck rates for the DISPC channel which it is
connected to. Remove this since it is already printed by dispc_dump_clocks()
in debugfs.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Introduce DSI2 PLL clock sources needed by LCD2 channel and DSI2 Protocol
engine and DISPC Functional clock. Do the following:
- Modify dss_get_dsi_clk_source() and dss_select_dsi_clk_source() to take the
dsi module number as an argument.
- Create debugfs files for dsi2, split the corresponding debugfs functions.
- Allow DPI to use these new clock sources.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_packet_sent_handler_vp() and dsi_packet_sent_handler_l4() currently
receive the completion parameter as their argument. This is not sufficient
information to differentiate between DSI1 and DSI2 platform devices.
Pass the struct "dsi_packet_sent_handler_data" to the packet_sent_handler
isrs, these contain the platform_device pointer of the DSI device and the
pointer to the completion struct.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The dsi related data structure currently creates one global instance of itself
which is accessed by dsi functions. Remove this global structure instance and
declare the struct as dsi_data. Modify dsi_init() to allocate a "dsi_data"
structure for each platform device instance. Link this data with the device's
platform_device pointer. Create the function dsi_get_dsidrv_data() which takes
the pdev and return a pointer to the device's dsi_data.
Make dsi_get_dsidev_id() return only 0 for now, this will be removed once the
name of the DSI platform device is changed to the device instance form, like
"omapdss_dsi.0" and "omapdss_dsi.1" etc.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI interface is represented as a platform device, using the DSI platform
driver(dsi.c). The current DSI driver design is capable of running only one
instance of a DSI device. On OMAP4, there are 2 very similar DSI modules which
can be represented as instances of "omapdss_dsi" platform device.
Add member "module" in "dssdev.phy.dsi" that tells us which DSI module's lanes
the panel is connected to. Modify dsi.c functions to take the device's
platform_device struct pointer, provide functions dsi_get_dsidev_from_dssdev()
and dsi_get_dsidev_from_id() take the panel's omap_dss_device and module number
respectively, and return the platform_device pointer. Currently, the dsi struct
is declared globally and is accessed when dsi data is needed. The new pdev
argument will be used later to provide the platform device's dsi related data.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The function dsi_pll_init() has omap_dss_device argument which is
not used. Remove this argument.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add pointer to omap_dss_device struct as an argument in the functions which
are exported to dsi panel drivers. This argument will tell the DSI driver
which DSI interface's data it has to choose.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP4 requires SCP clocks enabled to access DSI PLL registers and DSI COMPLEXIO
registers. Enable scp clock before accessing the registers and disable it before
exiting dsi_dump_regs().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP4 DSI block has new interrupts for the two new DSI lanes.
Add definitions for those interrupts, and add the interrupts to the CIO
error mask.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The panel drivers can leave the VDDS_DSI regulator enabled, even when
the panel is disabled, to ensure that the DSI pins are powered.
This patch ensures that VDDS_DSI is disabled on DSI module unload.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add dsi_mux_pads function pointer to omap_dss_board_info, and use the
function pointer in DSI code to configure the DSI pads either to normal
DSI operation, or to pull down when in ULPS.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add parameter to omapdss_dsi_display_disable() which the panel driver
can use to tell if the DSI lanes should be put to ULPS before disabling
the interface.
This can be used to skip ULPS entry in cases where the panel doesn't
care about ULPS state, for example when the panel will be reset, or when
the display interface will be enabled again right after the disable.
This will speed up the operation considerably in cases where entering
ULPS would fail with timeout, and the panel driver isn't even interested
in entering ULPS.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add dsi_cio_wait_tx_clk_esc_reset() function which waits for the
TXCLKESC domains to come out of reset.
Things have worked fine without this, but better be safe than sorry.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use dsi_enable_scp_clk and dsi_disable_scp_clk in CIO init and uninit,
and improve the CIO init by adding a few status checks and error
handling.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
SCP clock is needed for CIO on OMAP3, and for CIO and PLL on OMAP4.
Current driver enables the CIO clock always when DSI display is
initialized. However, if a DPI display tries to use DSI PLL, the SCP
clock is never enabled.
This patch implements simple ref counting enable/disable functions for
SCP clock.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Rename ComplexIO from dsi_complexio_xxx to dsi_cio_xxx for brevity.
Also, add cio prefix for couple of functions that didn't have it, but
are cio related.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI pins are powered by VDDS_DSI. If VDDS_DSI is off, the DSI pins
are floating even if they are pinmuxed to, say, safe mode and there's a
pull down/up.
This patch gives the panel drivers an option to leave the VDDS_DSI power
enabled while the DSS itself is turned off. This can be used to keep the
DSI lanes in a valid state while DSS is off, if the DSI pins are muxed
for pull down (not done in this patch).
There will be a slight power consumption increase (~100 uA?) when the
VDDS_DSI is left on, but because this option is used when the panel is
left on, the regulator consumption is negligible compared to panel power
consumption.
When the panel is fully turned off the VDDS_DSI is also turned off.
As an added bonus this will give us faster start up time when starting
up the DSS and the regulator is already enabled.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Entering ULPS (Ultra Low Power State) happens by sending ULPS entry
sequence to the DSI peripheral and pulling the DSI lines down.
Exiting ULPS happens by sending ULPS exit sequence.
We can send the ULPS entry sequence by using OMAP DSS HW's ULPS support,
but we cannot use the ULPS exit support from DSS HW. DSS HW refuses to
send the ULPS exit sequence if it thinks that the lanes are not in ULPS.
After being in OFF mode the DSS HW has been reset, and so it does not
know that the lanes are actually in ULPS.
Thus we need to use the lane override support and manually send the ULPS
exit sequence. Luckily the sequence is very simple.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
CIO LDO status check seems to be broken on OMAP3630+ chips, and it's
also quite unclear what LDO status actually tells and when its status
changes.
This patch removes the whole check on the grounds that if there's a
problem with the LDO, we should anyway catch the problem as we check the
CIO power state and CIO reset status.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSI_DSIPHY_CFG10 register can be used to override DSI lane state. Add
functions to configure and enable the override, and to disable the
override.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The clock sources for DISPC_FCLK and LCD1_CLK are now specified in the board file.
There is no need for the hack config "CONFIG_OMAP2_DSS_USE_DSI_PLL" anymore.
Introduce function dpi_use_dsi_pll() which checks for the clock sources to decide
whether DSI PLL is to be used or not.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add enum dss_clock_source in dssdev.clocks struct so that the clock sources can
be specified in the board file.
Replace hard coded clock sources in dsi.c, dpi.c and replace them with the new
clock source members in dssdev.clocks. Modify the sdp4430_lcd_device struct in
board-4430sdp.c to specify clock sources for DISPC_FCLK, LCD1_CLK and DSI1_FCLK.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Change enum dss_clk_source to omap_dss_clock_source and move it to
'plat/display.h'. Change the enum members to attach "OMAP_" in the beginning.
These changes are done in order to specify the clock sources for DSS in the
board file.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clock configuration was defined inside dssdev.phy.dsi struct. The clock
config doesn't really belong there, and so it's moved to dssdev.clock
struct.
Now the explicit clock configuration could also be used for other
interfaces than DSI, although there's no support for it currently.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI protocol engine has no interrupt for signalling the end of a Frame
transfer. The present approach is to send a BTA after DISPC generates a
FRAMEDONE interrupt, and unlock the dsi bus only when the BTA Ack is received.
The assumption made with this approach was that OMAP will send a BTA only after
the long packet corresponding to the last line is sent. However, it is possible
that on the DISPC FRAMEDONE interrupt there are 2 (or more) lines of pixel data
in the DSI line buffer. Hence, the BTA Ack could be received for the long packet
corresponding to the second last line (or the third last and so on..).
Therefore, the current method doesn't ensure that the complete frame data is
sent before we start a new transfer. A similar explanation holds valid if we
send a BTA in between multiple short/long command packets from the slave port.
Introduce dsi_sync_vc functions, based on Tomi Valkeinen's idea, which ensure
that the DSI Virtual Channel in use(update_channel) completes its previous work
before proceeding to the next Frame/Command.
For a frame update, the DSI driver now sends a callback to the Panel Driver
on the FRAMEDONE interrupt itself. The callback in the panel driver then unlocks
the bus. dsi_sync_vc() functions are placed in dsi_vc_config_l4() and
dsi_vc_config_vp() to ensure that the previous task of the Virtual Channel is
completed.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The following changes have changed from OMAP3 to OMAP4 DSI:
-The register field DSI_PLL_FREQSEL in DSI_PLL_CONFIGURATION2 has been removed.
-DCS_CMD_ENABLE and DCS_CMD_CODE bits have been moved from DSI_CTRL to
DSI_VC_CTRLi, hence the control of the bits is available per VC.
-DSI LDO powergood notification doesn't work on OMAP4. This is mentioned in
OMAP4 errata revision 1.8(Errata 1.76).
-OCP_WIDTH register field is included in DSI_VC_CTRL.
-The SCP clock is also required to access DSI PLL registers
Introduce dss features for these changes so that DSI runs on both OMAP3 and
OMAP4.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP3630 has a HW bug causing DSI PLL power command POWER_ON_DIV (0x3)
to not work properly. The bug prevents us from enabling DSI PLL power
only to HS divider block.
This patch adds a dss feature for the bug and converts POWER_ON_DIV
requests to POWER_ON_ALL (0x2).
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On OMAP4, reading DSI_PLL_CONFIGURATION2 register requires the L3 clock
(CIO_CLK_ICG) to PLL. Currently dsi_dump_clocks() tries to read that
register without enabling the L3 clock, leading to crash if DSI is not
in use.
The status of the bit being read from DSI_PLL_CONFIGURATION2 is
available from dsi_clock_info->use_sys_clk, so we can avoid the whole
problem by just using that.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
use_sys_clk and highfreq fields in dsi.current_cinfo were never set.
Luckily they weren't used anywhere so it didn't cause any problems.
This patch fixes those fields and they are now set at the same time as
the rest of the fields.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
arch/arm/plat-omap/include/plat/display.h is an include for the OMAP DSS
driver. A more logical place for it is in include/video.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
print_irq_status functions can be called with empty irq status when full
irq debugging is enabled. This patch makes print_irq_status functions
return immediately when given an empty irq status to lessen the debug
spam slightly.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_vc_send_bta_sync() waits for BTA interrupt with a 500ms timeout. If
a DSI error happens, no BTA is received and the timeout triggers. This
could be handled much faster by listening to DSI errors also.
This patch uses the ISR support to notice DSI errors while waiting for
the BTA, thus speeding up the fail-path considerably.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add generic ISR support for DSI interrupts. ISRs can be used instead of
custom hooks in the interrupt handler.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clean up the IRQ handler a bit by separating collection of IRQ stats and
handling of IRQ errors to separate functions.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI PLL parameters (regm, regn, regm_dispc, regm_dsi, fint) have different
fields and also different Max values on OMAP3 and OMAP4. Use dss features to
calculate the register fields and min/max values based on current OMAP revision.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Create 2 functions dss_feat_get_param_min() and dss_feat_get_param_max() which
return the minimum and maximum value of a parameter. Introduce a enum in
dss_features called dss_range_param which contains parameters whose ranges we
are interested in.
Replace this with dss_feat_get_max_dss_fck() which is specific to the parameter
DSS_FCK.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When using OMAP2_DSS_USE_DSI_PLL, which selects DSI PLL as source clock
for DISPC, the DSI needs the vdds_dsi regulator. Latest regulator
changes broke this, causing the the code to not acquire the regulator
when using OMAP2_DSS_USE_DSI_PLL.
This patch acquires the vdds_dsi regulator in dsi_pll_init(), fixing the
issue. This is is just a quick hack to get the OMAP2_DSS_USE_DSI_PLL
option working. There shouldn't be any other downside in this solution
than some extra lines of code.
OMAP2_DSS_USE_DSI_PLL is itself a big hack, and should be removed, and
the feature itself should be implemented in a more sane way. However,
the solution is not trivial, and people are using DSI PLL to get more
exact pixel clocks, so this hack is an acceptable temporary solution for
the time being.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Taal driver used to take a hard coded Macro for Virtual Channel and the VC_ID.
The Taal panel driver now requests for a Virtual channel through the
omap_dsi_request_vc() call in taal_probe().
The channel number returned by the request_vc() call is used for sending command
and data to the Panel. The DSI driver automatically configures the Virtual
Channel's source to either Video Port or L4 Slave port based on what the panel
driver is using it for.
The driver uses omap_dsi_release_vc() to free the VC specified by the panel.
taal_remove() or when a request_vc() call fails.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Introduce functions which request and release VC's. This will be used in panel
drivers in their probes.
omap_dsi_request_vc() takes in the pointer to the omap_dss_device, the VC_ID
parameter which goes into the header of the DSI packets, and returns a Virtual
channel number (or virtual channel register set) which it can use.
omap_dsi_set_vc_id() takes the omap_dss_device pointer, the Virtual Channel
number and the VC_ID that needs to be set for the specifed Virtual Channel.
omap_dsi_release_vc() takes the omap_dss_device pointer and the Virtual Channel
number that needs to be made free.
Initialisation of VC parameters is done in dsi_init().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSI PLL output clock names have been made more generic. The clock name
describes what the source of the clock and what clock is used for. Some of
DSI PLL parameters like dividers and DSI PLL source have also been made more
generic.
dsi1_pll_fclk and dsi2_pll_fclk have been changed as dsi_pll_hsdiv_dispc_clk
and dsi_pll_hsdiv_dsi_clk respectively. Also, the hsdividers are now named
regm_dispc and regm_dsi instead of regm3 and regm4.
Functions and macros named on the basis of these clock names have also been
made generic.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clock source names vary across OMAP2/3 and OMAP4, the clock source enum
names have been made generic in the driver, but for purposes of debugging
and dumping clock sources, it is better to preserve the actual TRM name of
the clock.
Introduce a dss feature function 'dss_feat_get_clk_source_name()' which
returns a string with the TRM clock name for the current OMAP in use. The OMAP
specific name is printed along the generic name within brackets.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The enum members of 'dss_clk_source' have clock source names specific to
OMAP2/3. Change the names to more generic terms such that they now describe
where the clocks come from and what they are used for.
Also, change the enum member names to have "DSS_CLK_SRC" instead of "DSS_SRC"
for more clarity.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The maximum supported frequency for DSS has increased from 173 to 186 Mhz on
OMAP4.
Introduce a dss feature function to get the max_fck to replace DISPC_MAX_FCK
macro.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_reset_tx_fifo() was not used. Furthermore, OMAP errata states that
TX FIFO flush is not functional, so the function wouldn't even have
worked.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently, the core DSS platform device requests for an irq line for OMAP2 and
OMAP3. Make DISPC and DSI platform devices request for a shared IRQ line.
On OMAP3, the logical OR of DSI and DISPC interrupt lines goes to the MPU. There
is a register DSS_IRQSTATUS which tells if the interrupt came from DISPC or DSI.
On OMAP2, there is no DSI, only DISPC interrupts goto the MPU. There is no
DSS_IRQSTATUS register.
Hence, it makes more sense to have separate irq handlers corresponding to the
DSS sub modules instead of having a common handler.
Since on OMAP3 the logical OR of the lines goes to MPU, the irq line is shared
among the IRQ handlers.
The hwmod irq info has been removed for DSS to DISPC and DSI for OMAP2 and OMAP3
hwmod databases. The Probes of DISPC and DSI now request for irq handlers.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSS submodules DPI/SDI/DSI/VENC require a regulator to function.
However, if the board doesn't use, say, SDI, the board shouldn't need to
configure vdds_sdi regulator required by the SDI module.
Currently the regulators are acquired when the DSS driver is loaded.
This means that if the kernel is configured with SDI, vdds_sdi regulator
is needed for all boards.
This patch changes the DSS driver to acquire the regulators only when a
display of particular type is initialized. For example, vdds_sdi is
acquired when sdi_init_display() is called.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
enum dss_clock structure is replaced with generic names that
could be used across OMAP2420, 2430, 3xxx, 44xx platforms.
Signed-off-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSS, DISPC, DSI, RFBI, VENC baseaddr can be obtained from platform_get_resource().
This API in turn picks the right silicon baseaddr from the hwmod database.
So hardcoding of base addr could be removed.
Reviewed-by: Paul Walmsley <paul@pwsan.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Senthilvadivu Guruswamy <svadivu@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This patch replaces printk's in the init/probe functions to dev_dbg
for boot time optimization.
Reviewed-by: Kevin Hilman <khilman@ti.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Hwmod adaptation design requires each of the DSS HW IP to be a platform driver.
So a platform_driver for DSI is created and init exit methods are moved from core.c
to its driver probe,remove. pdev member has to be maintained by its own drivers.
Also, vdds_dsi regulator handling is copied to dsi.c, since vdds_dsi regulator is
needed by dpi_init() too. Board files are updated accordingly to add 2 instances of
vdds_dsi regulator.
DSI platform driver is registered from inside omap_dss_probe, in the order desired.
Signed-off-by: Senthilvadivu Guruswamy <svadivu@ti.com>
Signed-off-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The interface drivers (dsi.c, sdi.c etc) need to call dispc functions with
dssdev->manager->id as a parameter to specify the DISPC channel which they want
to configure/use, this is required as the same functions are now used to configure
dispc registers of different channels.
The following dispc functions are changed to incorporate channel as an argument:
-dispc_enable_fifohandcheck()
-dispc_set_lcd_size()
-dispc_set_parallel_interface_mode()
-dispc_set_tft_data_lines()
-dispc_set_lcd_display_type()
-dispc_set_lcd_timings()
Signed-off-by: Sumit Semwal <sumit.semwal@ti.com>
Signed-off-by: Mukund Mittal <mmittal@ti.com>
Signed-off-by: Samreen <samreen@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
[tomi.valkeinen@nokia.com: fixed trivial compile error]
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
iounmap is already done in label err2: so extra iounmap in
the error handling path could be removed.
Signed-off-by: Senthilvadivu Guruswamy <svadivu@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
In the case of an error on calling dsi_update_screen_l4(), a
successful framedone callback is still sent to panel-taal. An
error should be returned to taal_update() instead.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
OMAP DSS HW cannot send updates with odd widths. Normally the widths are
made even while preparing the update.
This patch adds a BUG_ON() to check if the update width is even. This is
to detect broken updates cleanly, as otherwise the OMAP DSS HW will just
halt, leading to obscure error situations.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
The current FIFO low threshold was too low, and caused the FIFO to run
empty when core domain went to INA state between FIFO fills. This patch
increases the low threshold to keep that from happening.
The threshold values depend quite much on the HW and the use cases, so
this should actually be somehow configurable from board files, perhaps.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
The code presumed that all ComplexIO interrupts are errors. This is not
the case. This patch adds proper error mask for CIO interrupt handling.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
SMRPS function always sent BTA after sending the SMRPS packet. This is
not needed, and also caused some (buggy) panels to bug. This patch
removes the BTA.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Currently the update area on manual update displays is automatically
enlargened to fully cover scaled overlays. This patch makes that
optional, allowing the panel driver to choose if it's used or not.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Previously a work was started on FRAMEDONE interrupt, and this work
either sent a BTA synchronously or looped until TE_SIZE was zero, to
wait for the end of the transfer.
This patch changes a BTA to be sent asynchronously from FRAMEDONE
interrupt, and when a BTA interrupt is received, the transfer is
finished. This way we do the whole process asynchronously, and also
inside interrupt context.
This will give us much better latency to handle the end of the frame
than with the previous work based solution.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Change dsi_vc_config_l4/vp() to loop for the VC_BUSY flag to change, and
return an error if it fails.
Busy looping is bad, but there's no interrupt that can be used for all the
cases where VC can be busy. So the caller should first try to make sure
that the VC is not busy, if possible, and then call dsi_vc_config_l4/vp().
Most notable case when the caller cannot be sure if the VC is busy is
after frame has been sent. Usually DSI buffers have been emptied until we
need to reconfig the VC, but in some rare cases the VC can still be busy,
and this patch will handle that case.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Once the DSI PLL is separated from the DSI display a full DSI reset will
not be performed every time the display is enabled so the interface and
VCs must be disabled when disabling the display. If the VCs are not
disabled some register accesses will abort.
Signed-off-by: Ville Syrjälä <ville.syrjala@nokia.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
The TRM tells us to wait for the DSI PLL derived clocks to become
active before selecting them for use. I didn't actually have any issues
which this would fix but according to the TRM it seems to be the right
thing to do.
Signed-off-by: Ville Syrjälä <ville.syrjala@nokia.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Print an error message if dsi_calc_clock_rates() fails just like it's
done when dispc_calc_clock_rates() fails.
Signed-off-by: Ville Syrjälä <ville.syrjala@nokia.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Do not leave the free running pixel clock enabled if the DSI PLL reset
times out.
Signed-off-by: Ville Syrjälä <ville.syrjala@nokia.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Using nanoseconds as arguments to functions that set the DSI timeouts was
perhaps not so good idea. The timeouts are based on different DSI clocks,
so the possible range for the timeouts vary greatly depending on the
clocks. Also, the multipliers used with the timeouts cause big gaps in the
timeout range, meaning that the nanosecond based functions could cause the
timeout to be quite far from the intended value.
This patch changes the functions to take the plain tick values with the
multiplier enable/disable bits, and sets the TA/LP_RX/HS_TX timeouts to
maximum. While the timeouts could be much lower, the fact is that when
TA/LP_RX/HS_TX timeout happens, we are in an error situation and not in a
hurry anyway.
STOP_STATE_COUNTER is a different matter, but it is only used at
initialization time, and won't normally affect the performance.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Using the shared workqueue led to to a deadlock in the case where the
display was unblanked via keyboard.
What happens is something like this:
- User presses a key
context 1:
- drivers/char/keyboard.c calls schedule_console_callback()
- fb_unblank takes the console semaphore
- dsi bus lock is taken, and frame transfer is started (dsi bus lock is
left on)
- Unblank code tries to set the panel backlight, which tries to take dsi
bus lock, but is blocked while the frame transfer is going on
context 2, shared workqueue, console_callback in drivers/char/vt.c:
- Tries to take console semaphore
- Blocks, as console semaphore is being held by context 1
- No other shared workqueue work can be run
context 3, HW irq, caused by FRAMEDONE interrupt:
- Interrupt handler schedules framedone-work in shared workqueue
- Framedone-work is never ran, as the shared workqueue is blocked. This
means that the unblank thread stays blocked, which means that context 2
stays blocked.
While I think the real problem is in keyboard/virtual terminal code, using
a private workqueue in the DSI driver is perhaps safer and more robust
than using the shared one. The DSI works should not be delayed more than a
millisecond or so, and even if the private workqueue gives us no hard
promise of doing so, it's still safer bet than the shared workqueue.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
dsi_vc_flush_receive_data() is meant to dump data when something has gone
wrong, and thus we should use DSSERR, not DSSDBG.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
For some reason screen updates of certain odd widths seem to be triggering
HS TX timeouts on OMAP 3430, even if bigger updates do not. The reason for
this is unknown, but increasing the timeout removes the problem with no
(so far) noticeable problems. I haven't seen this problem on OMAP 3630.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
With the reworked model, DSI driver doesn't need to know anything about
external TE lines. Thus we can remove ext_te support, and only leave the
DSI TE trigger support.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move enable/disable/suspend/resume from omap_dss_device to
omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move update() and sync() from omap_dss_device to omap_dss_driver.
Also, update was hardcoded to use virtual channel 0. This patch adds a
parameter that specifies the VC.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move set/get_update_mode() from omap_dss_device to omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move enable/get_te() from omap_dss_device to omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move get_resolution() from omap_dss_device to omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move enable/disable_channel() from omap_dss_device to overlay manager.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move get/set_rotate() from omap_dss_device to omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move set/get_mirror() from omap_dss_device to omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move memory_read() from omap_dss_device to omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Move run_test() from omap_dss_device to omap_dss_driver.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Remove performance measurement for auto-update. Auto-update and thus
performance measurement cannot be supported after the driver change where
the control is moved to display drivers.
This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Physical DSI bus is protected by a mutex. This patch changed the mutex to
a semaphore, so that we can lock and unlock the bus_lock from different
threads.
This is needed as the update process is started by user space program, and
thus the lock is acquired in that context, but the lock can be released in
different context, a work thread via irq.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
After changing the selection of DSI and DISPC clock source the users of
get_dsi/dispc_clk_source() functions were left unchanged.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Instead of configuring only VC0 to be usable, configure all four VCs
similarly. This is needed to utilize the other VCs.
Setting the FIFO sizes evenly for all VCs, regardless of how many VCs are
actually used, is not optimal. However, this affects only cases when
larger amounts of data are written or read via L4, meaning that normal use
cases are not affected.
At some point this could be optimized better to suit different use cases.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Rename and export dsi_vc_enable_hs() so that the display drivers can
control the mode of the DSI link.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
dss_select_clk_source() was rather confusing. Selecting the source with
enums is much clearer.
The clk source selection is also stored into memory, so that we know what
is the selected source, even when clocks are off. This is important during
setup, as we need to what clocks to turn on before the clocks are turned
on.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
It looks like on OMAP3 some DSS pins need VDDS_DSI to function properly.
This has not been confirmed from TI, but looking at figure 15-1 "Display
subsystem highlight" from the TRM, some data pins come near the DSI and SDI
blocks. This is not very hard evidence, but the fact remains that with the
power on, pixels are ok, and with the power off, pixels are not ok.
It may also be that VDDS_SDI is needed to power some pins, but as normally
both VDDS_SDI and VDDS_DSI come from the same power source, this hasn't
been shown.
It seems that a single driver can only get a regulator once. This patch
solves it by getting all the required regulators in one place, and from
which the submodules then get the regulators they need.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Loops checking for certain condition were rather inconsistent.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
Reported-by: Juha Leppanen <juha_motorsportcom@luukku.com>