Instead of determining the connector type from the type of the display's
omap_dss_device and passing it to the omap_connector_init() function,
move the type determination code to omap_connector.c and remove the type
argument to the connector init function. This moves code to a more
natural location, making the driver easier to read.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The drm_connector implementation requires access to the omap_dss_device
corresponding to the display, which is passed to its initialization
function and stored internally. Refactoring of the timings operations
will require access to the output omap_dss_device. To prepare for that,
pass it to the connector initialization function and store it internally
as well.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The HDMI mode (.set_hdmi_mode()) and infoframe (.set_infoframe())
operations are called recursively from the display device back to the
HDMI encoder. This isn't required, as all components other than the HDMI
encoder just forward the operation to the previous component in the
chain. Call the operations directly on the HDMI encoder.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The drm_encoder implementation requires access to the omap_dss_device
corresponding to the display, which is passed to its initialization
function and stored internally. Clean up of the HDMI mode and infoframe
handling will require access to the output omap_dss_device. To prepare
for that, pass it to the encoder initialization function and store it
internally as well.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The CRTC mode set implementation needs to access the omap_dss_device for
the pipeline display. To do so, it iterates over all pipelines to find
the one that contains an encoder corresponding to the CRTC, and request
the display device from the encoder. That's a very complicated dance
when the CRTC has a direct pipeline pointer already, and the pipeline
contains a pointer to the display device.
Replace the convoluted code with direct access.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Instead of calling the EDID read operation (.read_edid()) recursively
from the display device back to the first device that provides EDID read
support, iterate over the devices manually in the DRM connector code.
This moves the complexity to a single central location and simplifies
the logic in omap_dss_device drivers.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On HDMI outputs, CEC support requires notification of HPD signal
deassertion. The HPD signal can be handled by various omap_dss_device
instances in the pipeline, and all of them forward HPD events to the
OMAP4 internal HDMI encoder.
Knowledge of the DSS internals need to be removed from the
omap_dss_device instances in order to migrate to drm_bridge. To do so,
move HPD handling for CEC to the omap_connector.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_device .enable_hpd() and .disable_hpd() are used to enable
and disable hot-plug detection at omapdrm probe and remove time. This is
required to avoid reporting hot-plug detection events before the DRM
infrastructure is ready to accept them, as that could result in crashes
or other malfunction.
Hot-plug event reporting is conditioned by both HPD being enabled
through the .enable_hpd() operation and by the HPD callback being
registered though the .register_hpd_cb() operation. We thus don't need a
separate enable operation if we can guarantee that callbacks won't be
registered too early.
HPD callbacks are registered at connector initialization time, which is
too early to start reporting HPD events. There's however nothing
blocking a move of callback registration to a later time when the
omapdrm driver calls the HPD enable operations. Do so, and remove the
HPD enable operation completely from omap_dss_device drivers.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The HPD-related omap_dss_device operations are now only called when the
device supports HPD. There's no need to duplicate that check in the
omap_dss_device drivers. The .register_hpd_cb() operation can as a
result be turned into a void operation.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Instead of calling the hot-plug detection callback registration
operations (.register_hpd_cb() and .unregister_hpd_cb()) recursively
from the display device back to the first device that provides hot plug
detection support, iterate over the devices manually in the DRM
connector code. This moves the complexity to a single central location
and simplifies the logic in omap_dss_device drivers.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Instead of calling the .detect() operation recursively from the display
device back to the first device that provides hot plug detection
support, iterate over the devices manually in the DRM connector
.detect() implementation. This moves the complexity to a single central
location and simplifies the logic in omap_dss_device drivers.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When an omap_dss_device operation can be implemented in multiple places
in a chain of devices, it is important to find out which device to
address to perfom the operation. This is currently done by calling the
operation on the display device at the end of the chain, and recursively
delagating the operation to the previous device if it can't be performed
locally. The drawback of this approach is an increased complexity in
omap_dss_device drivers.
In order to simplify the drivers, we will switch from a recursive model
to an interative model, centralizing the complexity in a single
location. This requires knowing which operations an omap_dss_device
supports at runtime. We can already test which operations are
implemented by checking the operation pointer, but implemented
operations can require resources whose availability varies between
systems. For instance a hot-plug signal from a connector can be wired to
a GPIO or to a bridge chip.
Add operation flags that can be set in the omap_dss_device structure by
drivers to signal support for operations.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omap_dss_device instances have two ops structures, omap_dss_driver and
omap_dss_device_ops. The former is used for devices at the end of the
pipeline (a.k.a. display devices), and the latter for intermediate
devices.
Having two sets of operations isn't convenient as code that iterates
over omap_dss_device instances need to take them both into account.
There's currently a reasonably small amount of such code, but more will
be introduced to move the driver away from recursive operations. To
simplify current and future code, move all operations that are not
specific to the display device to the omap_dss_device_ops.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The GPIO descriptor API is favoured over the plain GPIO API for consumer
drivers. Using it simplifies the driver code.
As the descriptor API handles the active-low flag internally we need to
invert the polarity of all GPIO operations in the driver. Rename the
nreset_gpio field to reset_gpio to reflect that.
The reset GPIO is mandatory, so drop conditional tests through the
driver.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The driver doesn't use GPIOs and thus doesn't need to include the
linux/gpio.h header.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The GPIO descriptor API is favoured over the plain GPIO API for consumer
drivers. Using it simplifies the driver code.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The GPIO descriptor API is favoured over the plain GPIO API for consumer
drivers. Using it simplifies the driver code.
The reset GPIO is mandatory, so drop conditional tests through the
driver. The qvga GPIO is unused, so drop it completely.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The GPIO descriptor API is favoured over the plain GPIO API for consumer
drivers. Using it simplifies the driver code.
As the descriptor API handles the active-low flag internally we need to
invert the polarity of all GPIO operations in the driver.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The GPIO descriptor API is favoured over the plain GPIO API for consumer
drivers. Using it simplifies the driver code.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Various functions that need to differentiate between omap_dss_device
instances corresponding to displays and to internal encoders use the
omap_dss_device.driver field, which is only set for display instances.
This gets in the way of the omap_dss_device operations refactoring.
Replace that with a check based on the output_type field which is set
for all omap_dss_device instances but displays.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omapdrm driver checks at suspend and resume time whether the
displays it operates on have their driver operations set. This check is
unneeded, as all display drivers set the driver operations field at
probe time and never touch it afterwards. This is furthermore proven by
the dereferencing of the driver field without checking it first in
several locations.
The omapdss driver performs a similar check at shutdown time. This is
unneeded as well, as the for_each_dss_display() macro it uses to iterate
over displays locates the displays by checking the driver field
internally.
As those checks are unnecessary, remove them.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The .get_mirror() and .set_mirror() omap_dss_driver operations are
implemented by the panel-tpo-td043mtea1 driver but are never used.
Remove them.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The .probe(), .remove(), .run_test(), .get_rotate() and .set_rotate()
omap_dss_driver operations are not used. Remove them.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The dss_mgr .connect() and .disconnect() are implemented as no-op in
omapdrm. The operations are unneeded, remove them.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_device.dispc_channel_connect field is used by DSS outputs
to fail the .enable() operation if they're not connected. Set the field
directly from the (dis)connect handlers of the DSS outputs instead of
going through the CRTC dss_mgr operations.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The CRTC connect handler checks whether the DSS output supports the
DISPC channel assigned to it. As the channel is assigned to the output
by the output driver a failure there could only result from a driver
bug. All the output drivers have been verified and they are always
assigned a DISPC channel that is supported on the SoC they run on. The
check can thus be removed.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_crtc_output global array is used to look up the DSS output
device by channel. We can replace that by accessing the output device
from the pipeline if we store the pipeline pointer in the omap_crtc
structure.
The global array is also used to protect against double connection of an
output. This can't happen with the connection handling mechanism going
from DSS outputs to displays. We can thus drop that check, allowing
removal of the global array.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_crtcs global array is used to store pointers to omap_crtc
indexed by DISPC channel number, in order to look them up in the dss_mgr
operations. Store the information in the omap_drm_private structure in
the form of an array of omap_drm_pipeline pointers.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Replace the dss display device pointer by a pipe pointer that will allow
the omap_crtc_init() function to access both the display and the DSS
output. As a result we can remove the omapdss_device_get_dispc_channel()
function that is now unneeded.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
To simplify the pipeline disconnection handling merge the
omapdss_device_disconnect() and omapdss_output_unset_device() functions.
The device state check is now called for every device in the pipeline,
extending this sanity check coverage.
There is no need to return an error from omapdss_device_disconnect()
when the check fails, as omapdss_output_unset_device() used to do, given
that we can't prevent disconnection due to device unbinding (the return
value of omapdss_output_unset_device() is never checked in the current
code for that reason).
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The display type is validated when the display is connected to the DSS
output. We already have all the information we need for validation when
initializing the outputs. Move validation to output initialization to
simplify pipeline connection handling.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When a DSS output is (dis)connected the omapdss_output_(un)set_device()
function performs a sanity check to ensure that the output isn't already
(dis)connected. The check is unnecessary as those situations should
never happen, but can nonetheless be useful to catch driver bugs. To
prepare for removal of the omapdss_output_(un)set_device() functions
move the connection check to the omapdss_device_connect() function. The
omapdss_device_disconnect() already contains a corresponding check.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omapdrm and omapdss drivers are architectured based on display
pipelines made of multiple components handled from sink (display) to
source (DSS output). This is incompatible with the DRM bridge and panel
APIs that handle components from source to sink.
To reconcile the omapdrm and omapdss drivers with the DRM bridge and
panel model, we need to reverse the direction of the DSS device
operations. Start with the connect and disconnect operations.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Create an omap_drm_pipeline structure to model display pipelines, made
of a CRTC, an encoder, a connector and a DSS display device. This allows
grouping related parameters together instead of storing them in
independent arrays and thus improves code readability.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Creating all the planes in a single location instead of creating them
per-CRTC with remaining planes then created in a second step simplifies
the logic.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The crtc_idx and plane_idw variables in the main loop are always equal
to the loop counter i, use it instead. Don't unnecessarily initialize
dssdev to NULL.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Regulators for the DPI, DSI, HDMI, SDI and VENC outputs are all looked
up when connecting the output omap_dss_device. There's no need to delay
regulator handling to that time, get the regulators at probe time.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The dss_mgr_connect() and dss_mgr_disconnect() functions take two
omap_dss_device pointers as parameters, which are always set to the same
value by all callers. Remove the duplicated pointer.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add a new omapdss_display_get() function to retrieve the omap_dss_device
for a given DSS output. This will be used when reversing the direction
of the DSS pipeline handling logic.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Similarly to for_each_dss_display(), the for_each_dss_output() macro
iterates over all the DSS connected outputs.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Look up the next dssdev at probe time based on device tree links for all
DSS outputs and encoders. This will be used to reverse the order of the
dssdev connect and disconnect call chains.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There's no reason to delay initialization of most of the driver (such as
mapping memory I/O or enabling runtime PM) to the component bind
handler. Perform as much of the initialization as possible at probe
time, initializing at bind time only the parts that depends on the DSS.
The cleanup code is moved from unbind to remove in a similar way.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There's no reason to delay initialization of most of the driver (such as
mapping memory I/O or enabling runtime PM) to the component bind
handler. Perform as much of the initialization as possible at probe
time, initializing at bind time only the parts that depends on the DSS.
The cleanup code is moved from unbind to remove in a similar way.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There's no reason to delay initialization of most of the driver (such as
mapping memory I/O or enabling runtime PM) to the component bind
handler. Perform as much of the initialization as possible at probe
time, initializing at bind time only the parts that depends on the DSS.
The cleanup code is moved from unbind to remove in a similar way.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There's no reason to delay initialization of most of the driver (such as
mapping memory I/O or enabling runtime PM) to the component bind
handler. Perform as much of the initialization as possible at probe
time, initializing at bind time only the parts that depends on the DSS.
The cleanup code is moved from unbind to remove in a similar way.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Rename the jump labels according to the cleanup they perform, not the
location they're accessed from, and move functions from error checks to
cleanup paths, and move reference handling to simplify cleanup.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The connect handle of the analog TV and HDMI connectors casts the dssdev
to panel data only to then access fields of the panel data that are also
present in the dssdev. Remove the cast and use dssdev directly.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omapdss_of_find_source_for_first_ep() function locates the source
corresponding to the first endpoint of the first port of a device node.
We can easily extend it to locate sinks as well by passing the port
number as a parameter. This will be useful to find sinks in encoders
drivers.
Extend the function and rename it to omapdss_of_find_connected_device()
to reflect its new extended purpose.
Additionally, it is useful to differentiate between failures to return
the connected device because no link exists in the device tree for the
requested port, or because the connected device as described in the
device tree is invalid or not probed yet. Return NULL in the first case
and an error code in the second case, and update the callers
accordingly.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_device port_num field stores the DT port number associated
with the device. The field is used in different ways depending on the
device type:
- For DPI outputs, the port number is used as an identifier of the DPI
instance
- For sources, the port number is used to look up the omap_dss_device by
DT port node
As omap_dss_device instances are only looked up as sources by sinks,
setting the field to the number of the source port works for both use
cases.
However, to enable looking up sinks, we need to record all the ports
associated with an omap_dss_device. Do so by turning the port_num field
into an of_ports bitmask. For DPI outputs the port number is
additionally stored in the dpi_data structure as the output ID.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omapdss_find_output_from_display() function is only used to retrieve
the dispc channel corresponding to the display. Return the dispc channel
directly, and rename the function to omapdss_device_get_dispc_channel()
to match its new purpose.
The dssdev->id check is removed as the dssdev is guaranteed to be an
output and have a non-zero id, as proved by the lack of crash despite
the caller never checking the returned pointer before dereferencing it.
As the function is not specific to outputs anymore, move it from
output.c to base.c.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSS manager ops and private data pointer are specific to a DSS
instance. Store them in the dss_device structure instead of global
variable.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Storing the dss_device pointer in the omap_dss_device structure will
allow accessing the dss_device from the dss_mgr API functions.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The functions operate on any omap_dss_device, move them from display.c
to base.c. While at it rename them to match the naming of the other
functions operating on struct omap_dss_device.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The panel devices list isn't used anymore, all panel devices are
accessed through the global devices list. Remove it.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Split the function into omapdss_display_init() to perform
display-specific initialization of the omap_dss_device, and
omapdss_register_display() to register the device. The latter will then
be replaced by more generic registration.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Despite its name, the omap_dss_get_next_device() function operates on
display devices only. Make it more generic by allowing operation on all
devices, with a parameter to specify the device type.
While at it rename the function to omapdss_device_get_next() to match
the naming of the other functions operating on struct omap_dss_device.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The macro iterates over displays only, rename it accordingly.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The output devices list isn't used anymore, all output devices are
accessed through the global devices list. Remove it.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI clocks are dumped in the DSS-level debugfs clocks file. This
complicates the implementation as the DSI private data has to be looked
up through the outputs list. Simplify it by creating two debugfs files,
dsi1_clks and dsi2_clks, to dump the DSI clocks.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI debugfs regs and irqs show handlers received a pointer to the
DSI private data. There's no need to look it up from the list of DSS
outputs. Use the pointer directly, this allows simplifying the
implementation of the handlers.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
All connectors, encoders and panels store a pointer to their input
omap_dss_device in the panel driver data structure. This duplicates the
src field in the omap_dss_device structure. Remove the private copy and
use the src field.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The encoders duplicate the same omap_dss_device src and dst fields set
and checks in their connect and disconnect handlers. Move the code to
the connect and disconnect wrappers.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
In preparation for the move of checks from the disconnect handlers to
the omapdss_device_disconnect() function, replace direct calls to the
disconnect handlers at remove time with calls to
omapdss_device_disconnect().
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The connectors, encoders and display duplicate the same debug messages
and connection checks in their omap_dss_device connect and disconnect
handlers. Move the code to the connect and disconnect wrappers.
To simplify the code the connect function returns -EBUSY unconditionally
if the device is already connected. This doesn't cause any change in
practice: the connect handler of displays is never called on a connected
device as it is only invoked during omapdrm initialization.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_device objects model display components and are connected
at runtime to create display pipelines. The connect and disconnect
operations implemented by each component contain lots of duplicate code.
As a first step towards fixing this, create new functions to wrap the
direct calls to those operations and use them.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The various types of omapdss_*_ops structures define multiple operations
that are not specific to a bus type. To simplify the code and remove
dependencies on specific bus types move those operations to a common
structure. Operations that are specific to a bus type are kept in the
specialized ops structures.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_find_output_by_port() function looks up an omap_dss_device
by port from the list of devices registered as outputs. In preparation
for looking up sinks in addition to sources, allow the function to look
up any registered device. Rename it to omap_dss_find_device_by_port() to
match its new purpose.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_find_output_by_port_node() function defined in output.c
looks up an output from its port node. To do so it needs to call helper
functions from dss-of.c to lookup the port parent and the port number.
As omap_dss_find_output_by_port_node() is only called by
omapdss_of_find_source_for_first_ep() from dss-of.c this goes back and
forth between the to source files and isn't very clear.
Simplify the code by passing both the parent and the port number to
omap_dss_find_output_by_port_node() instead of the port node, and rename
the function to omap_dss_find_output_by_port().
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omapdss_component_is_loaded() function test whether a component is
loaded by checking whether it is present in the displays list or the
outputs list. Simplify the implementation by checking for the component
in the global omap_dss_device list.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_device instances are stored in two separate lists,
depending on whether they are panels or outputs. Create a third list
that stores all omap_dss_device instances to allow generic code to
operate on all instances.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
For coherency with the panel_list field, rename list to output_list.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_device panel.dsi_pix_fmt and panel.dsi_mode fields are
unused. Remove them.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omap_dss_device structure stores a videomode. All the connector and
panel drivers that use omap_dss_device also store the videomode in their
own panel_drv_data structures. There's no need to duplicate, remove the
videomode field from omap_dss_device.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The structure contains function pointers that don't need to be modified.
Make all its instances const to improve security.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
All omap_dss_driver instances provide the get_timings operation. Remove
the default function.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The get_timings operation from DSS encoders (not to be confused with the
identically named operation in omap_dss_driver) is never called. Remove
it.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The operations are never used, remove them. If the need to set wide
screen signaling data arises later, it should be implemented by
extending the DRM bridge API.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The dpi_init_port() and sdi_init_port() functions can return errors but
their return value is ignored. This prevents both probe failures and
probe deferral from working correctly. Propagate the errors up the call
stack.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Register the omapdrm device when we know that dss device probe going
to succeed. This avoids DSS6 and DSS2 omapdrm device registration from
colliding with each other.
Signed-off-by: Jyri Sarha <jsarha@ti.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The omapdss_gather_components() function walks the OF graph to create a
list of all components part of the display device. There's no need to
delay this operation until DSS bind time as we have all the information
we need at probe time.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
As ordering of the dss_devices based on DT aliases is now implemented in
omap_drm.c, there is no need to do the ordering in dss/display.c
anymore.
At the same time remove the alias member of the omap_dss_device struct
since it is no longer needed. The only place it was used is in the
omapdss_register_display() function.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Sort the dssdev array based on DT aliases.
With this change we can remove the panel ordering from dss/display.c and
have all sorting related to dssdevs in one place.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Instead of reaching back to DSS to iterate through the dss_devices every
time, use an internal array where we store the available and usable
dss_devices.
At the same time remove the omapdss_device_is_connected() check from
omap_modeset_init() as it became irrelevant: We are not adding dssdevs
if their connect failed.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
If we allocate the drm_device earlier we can just return the error code
without the need to use goto.
Do the unref of the drm_device as a last step when cleaning up. This will
make the drm_device available longer for us and makes sure that we only
free up the memory when all other cleanups have been already done.
Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The only thing that omap_gem_free_object does that might need the magic
protection of struct_mutex (of keeping all objects alive if that lock is
held, even if the last reference is gone) is the mm_list manipulation.
This is already protected by the separate omapdrm->list_lock, which
means that struct_mutex is not needed by omapdrm. We can switch to
gem_free_object_unlocked()
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
- None of the list walkings where protected.
- Switch to a mutex since the list walking at device resume time can
sleep when pinning buffers through the tiler.
Only thing we need to be careful with here is that while we walk the
list we can't unreference any gem objects, since the final unref would
result in a recursive deadlock. But the only functions that walk the
list is the device resume and debugfs dumping, so all safe.
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DRM device struct_mutex is used to protect against concurrent GEM
object operations that deal with memory allocation and pinning. All
those operations are local to a GEM object and don't need to be
serialized across different GEM objects. Replace the struct_mutex with
a local omap_obj.lock or drop it altogether where not needed.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
GEM objects mmap offsets are created by calling
drm_gem_create_mmap_offset_size() that doesn't need struct_mutex
protection as it includes its own locking, based on a size that is
static across the object's life time. Remove the unneeded struct_mutex
locking.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The __omap_gem_get_pages() function is a wrapper around
omap_gem_attach_pages() that returns the omap_obj->pages pointer through
a function argument. Some callers don't need the pages pointer, and all
of them can access omap_obj->pages directly. To simplify the code merge
the __omap_gem_get_pages() wrapper with omap_gem_attach_pages() and
update the callers accordingly.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
get_pages() as a local function name is too generic and easily confused
for a generic MM kernel function. Rename it to __omap_gem_get_pages().
Rename the is_contiguous(), is_cache_coherent(), evict(), evict_entry(),
fault_1d() and fault_2d() functions for the same reason.
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Description of DRA7 Errata i932:
In rare circumstances DPLL_VIDEO1 and DPLL_VIDEO2 PLL's may not lock on
the first attempt during DSS initialization. When this occurs, a
subsequent attempt to relock the PLL will result in PLL successfully
locking.
This patch does the following as per the errata recommendation:
- retries locking the PLL upto 20 times.
- The time to wait for a PLL lock set to 1000 REFCLK cycles. We use
usleep_range to wait for 1000 REFCLK cycles in the us range. This tight
constraint is imposed as a lock later than 1000 REFCLK cycles may have
high jitter.
- Criteria for PLL lock is extended from check on just the PLL_LOCK bit
to check on 6 PLL_STATUS bits.
Silicon Versions Impacted:
DRA71, DRA72, DRA74, DRA76 - All silicon revisions
AM57x - All silicon revisions
OMAP4/5 are not impacted by this errata
Signed-off-by: Venkateswara Rao Mandela <venkat.mandela@ti.com>
[tomi.valkeinen@ti.com: ported to v4.14]
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use new return type vm_fault_t for fault handler. For
now, this is just documenting that the function returns
a VM_FAULT value rather than an errno. Once all instances
are converted, vm_fault_t will become a distinct type.
Ref-> commit 1c8f422059 ("mm: change return type to vm_fault_t")
Previously vm_insert_mixed() returns err which driver
mapped into VM_FAULT_* type. Also return value of
vm_insert_mixed() not handled correctly and 0 was
returned inside fault_2d() as default. The new function
vmf_insert_mixed() will replace this inefficiency by
returning correct VM_FAULT_* type.
vmf_error() is the newly introduce inline function
in 4.17-rc6.
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Some functions are unused after removal of the kmap_atomic
DMA-buf interface.
Signed-off-by: Christian König <christian.koenig@amd.com>
Fixes: f664a52695 ("dma-buf: remove kmap_atomic interface")
Link: https://patchwork.freedesktop.org/series/45245/
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
We got a few conflicts in drm_atomic.c after merging the DRM writeback support,
now we need a backmerge to unlock develop development on drm-misc-next.
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.com>
Neither used nor correctly implemented anywhere. Just completely remove
the interface.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Sumit Semwal <sumit.semwal@linaro.org>
Link: https://patchwork.freedesktop.org/patch/226645/