linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_ringbuffer.h

684 lines
23 KiB
C
Raw Normal View History

#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_
#include <linux/hashtable.h>
#include "i915_gem_batch_pool.h"
#include "i915_gem_request.h"
#include "i915_gem_timeline.h"
#include "i915_selftest.h"
#define I915_CMD_HASH_ORDER 9
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
* to give some inclination as to some of the magic values used in the various
* workarounds!
*/
#define CACHELINE_BYTES 64
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-20 01:07:01 +07:00
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
/*
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
* Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
* Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
*
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
* cacheline, the Head Pointer must not be greater than the Tail
* Pointer."
*/
#define I915_RING_FREE_SPACE 64
struct intel_hw_status_page {
struct i915_vma *vma;
u32 *page_addr;
u32 ggtt_offset;
};
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
*/
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
(((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
#define GEN8_SIGNAL_OFFSET(__ring, to) \
(dev_priv->semaphore->node.start + \
GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
#define GEN8_WAIT_OFFSET(__ring, from) \
(dev_priv->semaphore->node.start + \
GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
enum intel_engine_hangcheck_action {
drm/i915: Decouple hang detection from hangcheck period Hangcheck state accumulation has gained more steps along the years, like head movement and more recently the subunit inactivity check. As the subunit sampling is only done if the previous state check showed inactivity, we have added more stages (and time) to reach a hang verdict. Asymmetric engine states led to different actual weight of 'one hangcheck unit' and it was demonstrated in some hangs that due to difference in stages, simpler engines were accused falsely of a hang as their scoring was much more quicker to accumulate above the hang treshold. To completely decouple the hangcheck guilty score from the hangcheck period, convert hangcheck score to a rough period of inactivity measurement. As these are tracked as jiffies, they are meaningful also across reset boundaries. This makes finding a guilty engine more accurate across multi engine activity scenarios, especially across asymmetric engines. We lose the ability to detect cross batch malicious attempts to hinder the progress. Plan is to move this functionality to be part of context banning which is more natural fit, later in the series. v2: use time_before macros (Chris) reinstate the pardoning of moving engine after hc (Chris) v3: avoid global state for per engine stall detection (Chris) v4: take timeline last retirement into account (Chris) v5: do debug print on pardoning, split out retirement timestamp (Chris) Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
2016-11-18 20:09:04 +07:00
ENGINE_IDLE = 0,
ENGINE_WAIT,
ENGINE_ACTIVE_SEQNO,
ENGINE_ACTIVE_HEAD,
ENGINE_ACTIVE_SUBUNITS,
ENGINE_WAIT_KICK,
ENGINE_DEAD,
};
drm/i915: Decouple hang detection from hangcheck period Hangcheck state accumulation has gained more steps along the years, like head movement and more recently the subunit inactivity check. As the subunit sampling is only done if the previous state check showed inactivity, we have added more stages (and time) to reach a hang verdict. Asymmetric engine states led to different actual weight of 'one hangcheck unit' and it was demonstrated in some hangs that due to difference in stages, simpler engines were accused falsely of a hang as their scoring was much more quicker to accumulate above the hang treshold. To completely decouple the hangcheck guilty score from the hangcheck period, convert hangcheck score to a rough period of inactivity measurement. As these are tracked as jiffies, they are meaningful also across reset boundaries. This makes finding a guilty engine more accurate across multi engine activity scenarios, especially across asymmetric engines. We lose the ability to detect cross batch malicious attempts to hinder the progress. Plan is to move this functionality to be part of context banning which is more natural fit, later in the series. v2: use time_before macros (Chris) reinstate the pardoning of moving engine after hc (Chris) v3: avoid global state for per engine stall detection (Chris) v4: take timeline last retirement into account (Chris) v5: do debug print on pardoning, split out retirement timestamp (Chris) Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
2016-11-18 20:09:04 +07:00
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
switch (a) {
case ENGINE_IDLE:
return "idle";
case ENGINE_WAIT:
return "wait";
case ENGINE_ACTIVE_SEQNO:
return "active seqno";
case ENGINE_ACTIVE_HEAD:
return "active head";
case ENGINE_ACTIVE_SUBUNITS:
return "active subunits";
case ENGINE_WAIT_KICK:
return "wait kick";
case ENGINE_DEAD:
return "dead";
}
return "unknown";
}
#define I915_MAX_SLICES 3
#define I915_MAX_SUBSLICES 3
#define instdone_slice_mask(dev_priv__) \
(INTEL_GEN(dev_priv__) == 7 ? \
1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
#define instdone_subslice_mask(dev_priv__) \
(INTEL_GEN(dev_priv__) == 7 ? \
1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
for ((slice__) = 0, (subslice__) = 0; \
(slice__) < I915_MAX_SLICES; \
(subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
(slice__) += ((subslice__) == 0)) \
for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
(BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
struct intel_instdone {
u32 instdone;
/* The following exist only in the RCS engine */
u32 slice_common;
u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
};
struct intel_engine_hangcheck {
u64 acthd;
u32 seqno;
enum intel_engine_hangcheck_action action;
drm/i915: Decouple hang detection from hangcheck period Hangcheck state accumulation has gained more steps along the years, like head movement and more recently the subunit inactivity check. As the subunit sampling is only done if the previous state check showed inactivity, we have added more stages (and time) to reach a hang verdict. Asymmetric engine states led to different actual weight of 'one hangcheck unit' and it was demonstrated in some hangs that due to difference in stages, simpler engines were accused falsely of a hang as their scoring was much more quicker to accumulate above the hang treshold. To completely decouple the hangcheck guilty score from the hangcheck period, convert hangcheck score to a rough period of inactivity measurement. As these are tracked as jiffies, they are meaningful also across reset boundaries. This makes finding a guilty engine more accurate across multi engine activity scenarios, especially across asymmetric engines. We lose the ability to detect cross batch malicious attempts to hinder the progress. Plan is to move this functionality to be part of context banning which is more natural fit, later in the series. v2: use time_before macros (Chris) reinstate the pardoning of moving engine after hc (Chris) v3: avoid global state for per engine stall detection (Chris) v4: take timeline last retirement into account (Chris) v5: do debug print on pardoning, split out retirement timestamp (Chris) Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
2016-11-18 20:09:04 +07:00
unsigned long action_timestamp;
int deadlock;
struct intel_instdone instdone;
drm/i915: Decouple hang detection from hangcheck period Hangcheck state accumulation has gained more steps along the years, like head movement and more recently the subunit inactivity check. As the subunit sampling is only done if the previous state check showed inactivity, we have added more stages (and time) to reach a hang verdict. Asymmetric engine states led to different actual weight of 'one hangcheck unit' and it was demonstrated in some hangs that due to difference in stages, simpler engines were accused falsely of a hang as their scoring was much more quicker to accumulate above the hang treshold. To completely decouple the hangcheck guilty score from the hangcheck period, convert hangcheck score to a rough period of inactivity measurement. As these are tracked as jiffies, they are meaningful also across reset boundaries. This makes finding a guilty engine more accurate across multi engine activity scenarios, especially across asymmetric engines. We lose the ability to detect cross batch malicious attempts to hinder the progress. Plan is to move this functionality to be part of context banning which is more natural fit, later in the series. v2: use time_before macros (Chris) reinstate the pardoning of moving engine after hc (Chris) v3: avoid global state for per engine stall detection (Chris) v4: take timeline last retirement into account (Chris) v5: do debug print on pardoning, split out retirement timestamp (Chris) Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Mika Kuoppala <mika.kuoppala@intel.com>
2016-11-18 20:09:04 +07:00
bool stalled;
};
struct intel_ring {
struct i915_vma *vma;
void *vaddr;
struct intel_engine_cs *engine;
struct list_head request_list;
u32 head;
u32 tail;
int space;
int size;
int effective_size;
/** We track the position of the requests in the ring buffer, and
* when each is retired we increment last_retired_head as the GPU
* must have finished processing the request and so we know we
* can advance the ringbuffer up to that position.
*
* last_retired_head is set to -1 after the value is consumed so
* we can detect new retirements.
*/
u32 last_retired_head;
};
struct i915_gem_context;
struct drm_i915_reg_table;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-20 01:07:01 +07:00
/*
* we use a single page to load ctx workarounds so all of these
* values are referred in terms of dwords
*
* struct i915_wa_ctx_bb:
* offset: specifies batch starting position, also helpful in case
* if we want to have multiple batches at different offsets based on
* some criteria. It is not a requirement at the moment but provides
* an option for future use.
* size: size of the batch in DWORDS
*/
struct i915_ctx_workarounds {
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-20 01:07:01 +07:00
struct i915_wa_ctx_bb {
u32 offset;
u32 size;
} indirect_ctx, per_ctx;
struct i915_vma *vma;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-20 01:07:01 +07:00
};
struct drm_i915_gem_request;
struct intel_render_state;
/*
* Engine IDs definitions.
* Keep instances of the same type engine together.
*/
enum intel_engine_id {
RCS = 0,
BCS,
VCS,
VCS2,
#define _VCS(n) (VCS + (n))
VECS
};
struct intel_engine_cs {
struct drm_i915_private *i915;
const char *name;
enum intel_engine_id id;
unsigned int exec_id;
unsigned int hw_id;
unsigned int guc_id;
u32 mmio_base;
unsigned int irq_shift;
struct intel_ring *buffer;
struct intel_timeline *timeline;
struct intel_render_state *render_state;
atomic_t irq_count;
unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0
#define ENGINE_IRQ_EXECLIST 1
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
/* Rather than have every client wait upon all user interrupts,
* with the herd waking after every interrupt and each doing the
* heavyweight seqno dance, we delegate the task (of being the
* bottom-half of the user interrupt) to the first client. After
* every interrupt, we wake up one client, who does the heavyweight
* coherent seqno read and either goes back to sleep (if incomplete),
* or wakes up all the completed clients in parallel, before then
* transferring the bottom-half status to the next client in the queue.
*
* Compared to walking the entire list of waiters in a single dedicated
* bottom-half, we reduce the latency of the first waiter by avoiding
* a context switch, but incur additional coherent seqno reads when
* following the chain of request breadcrumbs. Since it is most likely
* that we have a single client waiting on each seqno, then reducing
* the overhead of waking that client is much preferred.
*/
struct intel_breadcrumbs {
spinlock_t irq_lock; /* protects irq_*; irqsafe */
struct intel_wait *irq_wait; /* oldest waiter by retirement */
spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
struct rb_root waiters; /* sorted by retirement, priority */
struct rb_root signals; /* sorted by retirement */
struct task_struct *signaler; /* used for fence signalling */
struct drm_i915_gem_request __rcu *first_signal;
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
struct timer_list fake_irq; /* used after a missed interrupt */
struct timer_list hangcheck; /* detect missed interrupts */
unsigned int hangcheck_interrupts;
bool irq_armed : 1;
bool irq_enabled : 1;
I915_SELFTEST_DECLARE(bool mock : 1);
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
} breadcrumbs;
/*
* A pool of objects to use as shadow copies of client batch buffers
* when the command parser is enabled. Prevents the client from
* modifying the batch contents after software parsing.
*/
struct i915_gem_batch_pool batch_pool;
struct intel_hw_status_page status_page;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-20 01:07:01 +07:00
struct i915_ctx_workarounds wa_ctx;
struct i915_vma *scratch;
u32 irq_keep_mask; /* always keep these interrupts */
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
void (*irq_enable)(struct intel_engine_cs *engine);
void (*irq_disable)(struct intel_engine_cs *engine);
int (*init_hw)(struct intel_engine_cs *engine);
drm/i915: Update reset path to fix incomplete requests Update reset path in preparation for engine reset which requires identification of incomplete requests and associated context and fixing their state so that engine can resume correctly after reset. The request that caused the hang will be skipped and head is reset to the start of breadcrumb. This allows us to resume from where we left-off. Since this request didn't complete normally we also need to cleanup elsp queue manually. This is vital if we employ nonblocking request submission where we may have a web of dependencies upon the hung request and so advancing the seqno manually is no longer trivial. ABI: gem_reset_stats / DRM_IOCTL_I915_GET_RESET_STATS We change the way we count pending batches. Only the active context involved in the reset is marked as either innocent or guilty, and not mark the entire world as pending. By inspection this only affects igt/gem_reset_stats (which assumes implementation details) and not piglit. ARB_robustness gives this guide on how we expect the user of this interface to behave: * Provide a mechanism for an OpenGL application to learn about graphics resets that affect the context. When a graphics reset occurs, the OpenGL context becomes unusable and the application must create a new context to continue operation. Detecting a graphics reset happens through an inexpensive query. And with regards to the actual meaning of the reset values: Certain events can result in a reset of the GL context. Such a reset causes all context state to be lost. Recovery from such events requires recreation of all objects in the affected context. The current status of the graphics reset state is returned by enum GetGraphicsResetStatusARB(); The symbolic constant returned indicates if the GL context has been in a reset state at any point since the last call to GetGraphicsResetStatusARB. NO_ERROR indicates that the GL context has not been in a reset state since the last call. GUILTY_CONTEXT_RESET_ARB indicates that a reset has been detected that is attributable to the current GL context. INNOCENT_CONTEXT_RESET_ARB indicates a reset has been detected that is not attributable to the current GL context. UNKNOWN_CONTEXT_RESET_ARB indicates a detected graphics reset whose cause is unknown. The language here is explicit in that we must mark up the guilty batch, but is loose enough for us to relax the innocent (i.e. pending) accounting as only the active batches are involved with the reset. In the future, we are looking towards single engine resetting (with minimal locking), where it seems inappropriate to mark the entire world as innocent since the reset occurred on a different engine. Reducing the information available means we only have to encounter the pain once, and also reduces the information leaking from one context to another. v2: Legacy ringbuffer submission required a reset following hibernation, or else we restore stale values to the RING_HEAD and walked over stolen garbage. v3: GuC requires replaying the requests after a reset. v4: Restore engine IRQ after reset (so waiters will be woken!) Rearm hangcheck if resetting with a waiter. Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20160909131201.16673-13-chris@chris-wilson.co.uk
2016-09-09 20:11:53 +07:00
void (*reset_hw)(struct intel_engine_cs *engine,
struct drm_i915_gem_request *req);
void (*set_default_submission)(struct intel_engine_cs *engine);
drm/i915: Unify active context tracking between legacy/execlists/guc The requests conversion introduced a nasty bug where we could generate a new request in the middle of constructing a request if we needed to idle the system in order to evict space for a context. The request to idle would be executed (and waited upon) before the current one, creating a minor havoc in the seqno accounting, as we will consider the current request to already be completed (prior to deferred seqno assignment) but ring->last_retired_head would have been updated and still could allow us to overwrite the current request before execution. We also employed two different mechanisms to track the active context until it was switched out. The legacy method allowed for waiting upon an active context (it could forcibly evict any vma, including context's), but the execlists method took a step backwards by pinning the vma for the entire active lifespan of the context (the only way to evict was to idle the entire GPU, not individual contexts). However, to circumvent the tricky issue of locking (i.e. we cannot take struct_mutex at the time of i915_gem_request_submit(), where we would want to move the previous context onto the active tracker and unpin it), we take the execlists approach and keep the contexts pinned until retirement. The benefit of the execlists approach, more important for execlists than legacy, was the reduction in work in pinning the context for each request - as the context was kept pinned until idle, it could short circuit the pinning for all active contexts. We introduce new engine vfuncs to pin and unpin the context respectively. The context is pinned at the start of the request, and only unpinned when the following request is retired (this ensures that the context is idle and coherent in main memory before we unpin it). We move the engine->last_context tracking into the retirement itself (rather than during request submission) in order to allow the submission to be reordered or unwound without undue difficultly. And finally an ulterior motive for unifying context handling was to prepare for mock requests. v2: Rename to last_retired_context, split out legacy_context tracking for MI_SET_CONTEXT. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161218153724.8439-3-chris@chris-wilson.co.uk
2016-12-18 22:37:20 +07:00
int (*context_pin)(struct intel_engine_cs *engine,
struct i915_gem_context *ctx);
void (*context_unpin)(struct intel_engine_cs *engine,
struct i915_gem_context *ctx);
int (*request_alloc)(struct drm_i915_gem_request *req);
int (*init_context)(struct drm_i915_gem_request *req);
int (*emit_flush)(struct drm_i915_gem_request *request,
u32 mode);
#define EMIT_INVALIDATE BIT(0)
#define EMIT_FLUSH BIT(1)
#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
int (*emit_bb_start)(struct drm_i915_gem_request *req,
u64 offset, u32 length,
unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS BIT(2)
void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 18:32:42 +07:00
u32 *cs);
int emit_breadcrumb_sz;
/* Pass the request to the hardware queue (e.g. directly into
* the legacy ringbuffer or to the end of an execlist).
*
* This is called from an atomic context with irqs disabled; must
* be irq safe.
*/
void (*submit_request)(struct drm_i915_gem_request *req);
/* Call when the priority on a request has changed and it and its
* dependencies may need rescheduling. Note the request itself may
* not be ready to run!
*
* Called under the struct_mutex.
*/
void (*schedule)(struct drm_i915_gem_request *request,
int priority);
/* Some chipsets are not quite as coherent as advertised and need
* an expensive kick to force a true read of the up-to-date seqno.
* However, the up-to-date seqno is not always required and the last
* seen value is good enough. Note that the seqno will always be
* monotonic, even if not coherent.
*/
void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
void (*cleanup)(struct intel_engine_cs *engine);
/* GEN8 signal/wait table - never trust comments!
* signal to signal to signal to signal to signal to
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
* |-------------------------------------------------------------------
* VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
* |-------------------------------------------------------------------
* BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
* |-------------------------------------------------------------------
* VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
* ie. transpose of g(x, y)
*
* sync from sync from sync from sync from sync from
* RCS VCS BCS VECS VCS2
* --------------------------------------------------------------------
* RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
* |-------------------------------------------------------------------
* VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
* |-------------------------------------------------------------------
* BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
* |-------------------------------------------------------------------
* VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
* |-------------------------------------------------------------------
* VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
* |-------------------------------------------------------------------
*
* Generalization:
* g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
* ie. transpose of f(x, y)
*/
struct {
union {
#define GEN6_SEMAPHORE_LAST VECS_HW
#define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
struct {
/* our mbox written by others */
u32 wait[GEN6_NUM_SEMAPHORES];
/* mboxes this ring signals to */
i915_reg_t signal[GEN6_NUM_SEMAPHORES];
} mbox;
u64 signal_ggtt[I915_NUM_ENGINES];
};
/* AKA wait() */
int (*sync_to)(struct drm_i915_gem_request *req,
struct drm_i915_gem_request *signal);
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 18:32:42 +07:00
u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
} semaphore;
/* Execlists */
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 18:11:56 +07:00
struct tasklet_struct irq_tasklet;
struct execlist_port {
struct drm_i915_gem_request *request;
unsigned int count;
GEM_DEBUG_DECL(u32 context_id);
} execlist_port[2];
drm/i915/scheduler: Execute requests in order of priorities Track the priority of each request and use it to determine the order in which we submit requests to the hardware via execlists. The priority of the request is determined by the user (eventually via the context) but may be overridden at any time by the driver. When we set the priority of the request, we bump the priority of all of its dependencies to match - so that a high priority drawing operation is not stuck behind a background task. When the request is ready to execute (i.e. we have signaled the submit fence following completion of all its dependencies, including third party fences), we put the request into a priority sorted rbtree to be submitted to the hardware. If the request is higher priority than all pending requests, it will be submitted on the next context-switch interrupt as soon as the hardware has completed the current request. We do not currently preempt any current execution to immediately run a very high priority request, at least not yet. One more limitation, is that this is first implementation is for execlists only so currently limited to gen8/gen9. v2: Replace recursive priority inheritance bumping with an iterative depth-first search list. v3: list_next_entry() for walking lists v4: Explain how the dfs solves the recursion problem with PI. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161114204105.29171-8-chris@chris-wilson.co.uk
2016-11-15 03:41:03 +07:00
struct rb_root execlist_queue;
struct rb_node *execlist_first;
unsigned int fw_domains;
drm/i915: Unify active context tracking between legacy/execlists/guc The requests conversion introduced a nasty bug where we could generate a new request in the middle of constructing a request if we needed to idle the system in order to evict space for a context. The request to idle would be executed (and waited upon) before the current one, creating a minor havoc in the seqno accounting, as we will consider the current request to already be completed (prior to deferred seqno assignment) but ring->last_retired_head would have been updated and still could allow us to overwrite the current request before execution. We also employed two different mechanisms to track the active context until it was switched out. The legacy method allowed for waiting upon an active context (it could forcibly evict any vma, including context's), but the execlists method took a step backwards by pinning the vma for the entire active lifespan of the context (the only way to evict was to idle the entire GPU, not individual contexts). However, to circumvent the tricky issue of locking (i.e. we cannot take struct_mutex at the time of i915_gem_request_submit(), where we would want to move the previous context onto the active tracker and unpin it), we take the execlists approach and keep the contexts pinned until retirement. The benefit of the execlists approach, more important for execlists than legacy, was the reduction in work in pinning the context for each request - as the context was kept pinned until idle, it could short circuit the pinning for all active contexts. We introduce new engine vfuncs to pin and unpin the context respectively. The context is pinned at the start of the request, and only unpinned when the following request is retired (this ensures that the context is idle and coherent in main memory before we unpin it). We move the engine->last_context tracking into the retirement itself (rather than during request submission) in order to allow the submission to be reordered or unwound without undue difficultly. And finally an ulterior motive for unifying context handling was to prepare for mock requests. v2: Rename to last_retired_context, split out legacy_context tracking for MI_SET_CONTEXT. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161218153724.8439-3-chris@chris-wilson.co.uk
2016-12-18 22:37:20 +07:00
/* Contexts are pinned whilst they are active on the GPU. The last
* context executed remains active whilst the GPU is idle - the
* switch away and write to the context object only occurs on the
* next execution. Contexts are only unpinned on retirement of the
* following request ensuring that we can always write to the object
* on the context switch even after idling. Across suspend, we switch
* to the kernel context and trash it as the save may not happen
* before the hardware is powered down.
*/
struct i915_gem_context *last_retired_context;
/* We track the current MI_SET_CONTEXT in order to eliminate
* redudant context switches. This presumes that requests are not
* reordered! Or when they are the tracking is updated along with
* the emission of individual requests into the legacy command
* stream (ring).
*/
struct i915_gem_context *legacy_active_context;
drm/i915: make context status notifier head be per engine GVTg has introduced the context status notifier to schedule the GVTg workload. At that time, the notifier is bound to GVTg context only, so GVTg is not aware of host workloads. Now we are going to improve GVTg's guest workload scheduler policy, and add Guc emulation support for new Gen graphics. Both these two features require acknowledgment for all contexts running on hardware. (But will not alter host workload.) So here try to make some change. The change is simple: 1. Move the context status notifier head from i915_gem_context to intel_engine_cs. Which means there is a notifier head per engine instead of per context. Execlist driver still call notifier for each context sched-in/out events of current engine. 2. At GVTg side, it binds a notifier_block for each physical engine at GVTg initialization period. Then GVTg can hear all context status events. In this patch, GVTg do nothing for host context event, but later will add a function there. But in any case, the notifier callback is a noop if this is no active vGPU. Since intel_gvt_init() is called at early initialization stage and require the status notifier head has been initiated, I initiate it in intel_engine_setup(). v2: remove a redundant newline. (chris) Fixes: 3c7ba6359d70 ("drm/i915: Introduce execlist context status change notification") Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=100232 Signed-off-by: Changbin Du <changbin.du@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/20170313024711.28591-1-changbin.du@intel.com Acked-by: Zhenyu Wang <zhenyuw@linux.intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
2017-03-13 09:47:11 +07:00
/* status_notifier: list of callbacks for context-switch changes */
struct atomic_notifier_head context_status_notifier;
struct intel_engine_hangcheck hangcheck;
bool needs_cmd_parser;
/*
* Table of commands the command parser needs to know about
* for this engine.
*/
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
/*
* Table of registers allowed in commands that read/write registers.
*/
const struct drm_i915_reg_table *reg_tables;
int reg_table_count;
/*
* Returns the bitmask for the length field of the specified command.
* Return 0 for an unrecognized/invalid command.
*
* If the command parser finds an entry for a command in the engine's
* cmd_tables, it gets the command's length based on the table entry.
* If not, it calls this function to determine the per-engine length
* field encoding for the command (i.e. different opcode ranges use
* certain bits to encode the command length in the header).
*/
u32 (*get_cmd_length_mask)(u32 cmd_header);
};
static inline unsigned
intel_engine_flag(const struct intel_engine_cs *engine)
{
return 1 << engine->id;
}
static inline void
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
{
mb();
clflush(&engine->status_page.page_addr[reg]);
mb();
}
static inline u32
intel_read_status_page(struct intel_engine_cs *engine, int reg)
{
/* Ensure that the compiler doesn't optimize away the load. */
return READ_ONCE(engine->status_page.page_addr[reg]);
}
static inline void
intel_write_status_page(struct intel_engine_cs *engine,
int reg, u32 value)
{
drm/i915: Replace irq_seqno_barrier on hws write with a clflush When manually overwriting the HWS, rather than assume irq_seqno_barrier does the right thing, we can explicitly flush the cacheline instead. This avoids us calling the engine->irq_seqno_barrier() from an illegal context: [ 1472.651797] BUG: scheduling while atomic: migration/0/11/0x00000002 [ 1472.651807] Modules linked in: ctr ccm arc4 snd_hda_codec_hdmi bnep rfcomm iwldvm snd_hda_codec_conexant snd_hda_codec_generic snd_hda_intel mac80211 snd_hda_codec snd_hda_core snd_pcm dm_multipath snd_hwdep intel_powerclamp coretemp snd_seq_midi crct10dif_pclmul snd_seq_midi_event crc32_pclmul iwlwifi ghash_clmulni_intel btusb snd_rawmidi btrtl aesni_intel btbcm aes_x86_64 crypto_simd btintel cryptd glue_helper bluetooth snd_seq cfg80211 snd_timer snd_seq_device intel_ips binfmt_misc snd mei_me soundcore mei dm_mirror dm_region_hash dm_log i915 intel_gtt i2c_algo_bit drm_kms_helper cfbfillrect syscopyarea cfbimgblt sysfillrect sysimgblt fb_sys_fops cfbcopyarea prime_numbers e1000e drm ahci libahci [ 1472.651897] CPU: 0 PID: 11 Comm: migration/0 Tainted: G U 4.11.0-rc1+ #203 [ 1472.651899] Hardware name: LENOVO 514328U/514328U, BIOS 6QET44WW (1.14 ) 04/20/2010 [ 1472.651900] Call Trace: [ 1472.651913] dump_stack+0x63/0x90 [ 1472.651922] __schedule_bug+0x5d/0x6b [ 1472.651930] __schedule+0x46a/0x5f0 [ 1472.651934] schedule+0x38/0x90 [ 1472.651938] schedule_hrtimeout_range_clock+0x85/0x110 [ 1472.651945] ? hrtimer_init+0x10/0x10 [ 1472.651949] schedule_hrtimeout_range+0xe/0x10 [ 1472.651952] usleep_range+0x4d/0x60 [ 1472.652037] gen5_seqno_barrier+0x13/0x20 [i915] [ 1472.652101] intel_engine_init_global_seqno+0xd7/0x160 [i915] [ 1472.652160] __i915_gem_set_wedged_BKL+0xa0/0x180 [i915] [ 1472.652166] multi_cpu_stop+0xbb/0xe0 [ 1472.652170] ? cpu_stop_queue_work+0x90/0x90 [ 1472.652174] cpu_stopper_thread+0x82/0x110 [ 1472.652179] smpboot_thread_fn+0x137/0x190 [ 1472.652184] kthread+0xf7/0x130 [ 1472.652187] ? sort_range+0x20/0x20 [ 1472.652191] ? kthread_park+0x90/0x90 [ 1472.652195] ret_from_fork+0x2c/0x40 Testcase: igt/gem_eio #ilk Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/20170314111452.9375-1-chris@chris-wilson.co.uk Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
2017-03-14 18:14:52 +07:00
mb();
clflush(&engine->status_page.page_addr[reg]);
engine->status_page.page_addr[reg] = value;
drm/i915: Replace irq_seqno_barrier on hws write with a clflush When manually overwriting the HWS, rather than assume irq_seqno_barrier does the right thing, we can explicitly flush the cacheline instead. This avoids us calling the engine->irq_seqno_barrier() from an illegal context: [ 1472.651797] BUG: scheduling while atomic: migration/0/11/0x00000002 [ 1472.651807] Modules linked in: ctr ccm arc4 snd_hda_codec_hdmi bnep rfcomm iwldvm snd_hda_codec_conexant snd_hda_codec_generic snd_hda_intel mac80211 snd_hda_codec snd_hda_core snd_pcm dm_multipath snd_hwdep intel_powerclamp coretemp snd_seq_midi crct10dif_pclmul snd_seq_midi_event crc32_pclmul iwlwifi ghash_clmulni_intel btusb snd_rawmidi btrtl aesni_intel btbcm aes_x86_64 crypto_simd btintel cryptd glue_helper bluetooth snd_seq cfg80211 snd_timer snd_seq_device intel_ips binfmt_misc snd mei_me soundcore mei dm_mirror dm_region_hash dm_log i915 intel_gtt i2c_algo_bit drm_kms_helper cfbfillrect syscopyarea cfbimgblt sysfillrect sysimgblt fb_sys_fops cfbcopyarea prime_numbers e1000e drm ahci libahci [ 1472.651897] CPU: 0 PID: 11 Comm: migration/0 Tainted: G U 4.11.0-rc1+ #203 [ 1472.651899] Hardware name: LENOVO 514328U/514328U, BIOS 6QET44WW (1.14 ) 04/20/2010 [ 1472.651900] Call Trace: [ 1472.651913] dump_stack+0x63/0x90 [ 1472.651922] __schedule_bug+0x5d/0x6b [ 1472.651930] __schedule+0x46a/0x5f0 [ 1472.651934] schedule+0x38/0x90 [ 1472.651938] schedule_hrtimeout_range_clock+0x85/0x110 [ 1472.651945] ? hrtimer_init+0x10/0x10 [ 1472.651949] schedule_hrtimeout_range+0xe/0x10 [ 1472.651952] usleep_range+0x4d/0x60 [ 1472.652037] gen5_seqno_barrier+0x13/0x20 [i915] [ 1472.652101] intel_engine_init_global_seqno+0xd7/0x160 [i915] [ 1472.652160] __i915_gem_set_wedged_BKL+0xa0/0x180 [i915] [ 1472.652166] multi_cpu_stop+0xbb/0xe0 [ 1472.652170] ? cpu_stop_queue_work+0x90/0x90 [ 1472.652174] cpu_stopper_thread+0x82/0x110 [ 1472.652179] smpboot_thread_fn+0x137/0x190 [ 1472.652184] kthread+0xf7/0x130 [ 1472.652187] ? sort_range+0x20/0x20 [ 1472.652191] ? kthread_park+0x90/0x90 [ 1472.652195] ret_from_fork+0x2c/0x40 Testcase: igt/gem_eio #ilk Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/20170314111452.9375-1-chris@chris-wilson.co.uk Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
2017-03-14 18:14:52 +07:00
clflush(&engine->status_page.page_addr[reg]);
mb();
}
/*
* Reads a dword out of the status page, which is written to from the command
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
* MI_STORE_DATA_IMM.
*
* The following dwords have a reserved meaning:
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
* 0x04: ring 0 head pointer
* 0x05: ring 1 head pointer (915-class)
* 0x06: ring 2 head pointer (915-class)
* 0x10-0x1b: Context status DWords (GM45)
* 0x1f: Last written status offset. (GM45)
* 0x20-0x2f: Reserved (Gen6+)
*
* The area from dword 0x30 to 0x3ff is available for driver usage.
*/
#define I915_GEM_HWS_INDEX 0x30
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_SCRATCH_INDEX 0x40
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias);
void intel_ring_unpin(struct intel_ring *ring);
void intel_ring_free(struct intel_ring *ring);
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
drm/i915: Update reset path to fix incomplete requests Update reset path in preparation for engine reset which requires identification of incomplete requests and associated context and fixing their state so that engine can resume correctly after reset. The request that caused the hang will be skipped and head is reset to the start of breadcrumb. This allows us to resume from where we left-off. Since this request didn't complete normally we also need to cleanup elsp queue manually. This is vital if we employ nonblocking request submission where we may have a web of dependencies upon the hung request and so advancing the seqno manually is no longer trivial. ABI: gem_reset_stats / DRM_IOCTL_I915_GET_RESET_STATS We change the way we count pending batches. Only the active context involved in the reset is marked as either innocent or guilty, and not mark the entire world as pending. By inspection this only affects igt/gem_reset_stats (which assumes implementation details) and not piglit. ARB_robustness gives this guide on how we expect the user of this interface to behave: * Provide a mechanism for an OpenGL application to learn about graphics resets that affect the context. When a graphics reset occurs, the OpenGL context becomes unusable and the application must create a new context to continue operation. Detecting a graphics reset happens through an inexpensive query. And with regards to the actual meaning of the reset values: Certain events can result in a reset of the GL context. Such a reset causes all context state to be lost. Recovery from such events requires recreation of all objects in the affected context. The current status of the graphics reset state is returned by enum GetGraphicsResetStatusARB(); The symbolic constant returned indicates if the GL context has been in a reset state at any point since the last call to GetGraphicsResetStatusARB. NO_ERROR indicates that the GL context has not been in a reset state since the last call. GUILTY_CONTEXT_RESET_ARB indicates that a reset has been detected that is attributable to the current GL context. INNOCENT_CONTEXT_RESET_ARB indicates a reset has been detected that is not attributable to the current GL context. UNKNOWN_CONTEXT_RESET_ARB indicates a detected graphics reset whose cause is unknown. The language here is explicit in that we must mark up the guilty batch, but is loose enough for us to relax the innocent (i.e. pending) accounting as only the active batches are involved with the reset. In the future, we are looking towards single engine resetting (with minimal locking), where it seems inappropriate to mark the entire world as innocent since the reset occurred on a different engine. Reducing the information available means we only have to encounter the pain once, and also reduces the information leaking from one context to another. v2: Legacy ringbuffer submission required a reset following hibernation, or else we restore stale values to the RING_HEAD and walked over stolen garbage. v3: GuC requires replaying the requests after a reset. v4: Restore engine IRQ after reset (so waiters will be woken!) Rearm hangcheck if resetting with a waiter. Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20160909131201.16673-13-chris@chris-wilson.co.uk
2016-09-09 20:11:53 +07:00
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 18:32:42 +07:00
u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req, int n);
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 18:32:42 +07:00
static inline void
intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
drm/i915: Write RING_TAIL once per-request Ignoring the legacy DRI1 code, and a couple of special cases (to be discussed later), all access to the ring is mediated through requests. The first write to a ring will grab a seqno and mark the ring as having an outstanding_lazy_request. Either through explicitly adding a request after an execbuffer or through an implicit wait (either by the CPU or by a semaphore), that sequence of writes will be terminated with a request. So we can ellide all the intervening writes to the tail register and send the entire command stream to the GPU at once. This will reduce the number of *serialising* writes to the tail register by a factor or 3-5 times (depending upon architecture and number of workarounds, context switches, etc involved). This becomes even more noticeable when the register write is overloaded with a number of debugging tools. The astute reader will wonder if it is then possible to overflow the ring with a single command. It is not. When we start a command sequence to the ring, we check for available space and issue a wait in case we have not. The ring wait will in this case be forced to flush the outstanding register write and then poll the ACTHD for sufficient space to continue. The exception to the rule where everything is inside a request are a few initialisation cases where we may want to write GPU commands via the CS before userspace wakes up and page flips. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-08-11 04:16:32 +07:00
{
/* Dummy function.
*
* This serves as a placeholder in the code so that the reader
* can compare against the preceding intel_ring_begin() and
* check that the number of dwords emitted matches the space
* reserved for the command packet (i.e. the value passed to
* intel_ring_begin()).
*/
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 18:32:42 +07:00
GEM_BUG_ON((req->ring->vaddr + req->ring->tail) != cs);
}
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 18:32:42 +07:00
static inline u32
intel_ring_offset(struct drm_i915_gem_request *req, void *addr)
{
/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
drm/i915: Emit to ringbuffer directly This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
2017-02-14 18:32:42 +07:00
u32 offset = addr - req->ring->vaddr;
GEM_BUG_ON(offset > req->ring->size);
return offset & (req->ring->size - 1);
drm/i915: Write RING_TAIL once per-request Ignoring the legacy DRI1 code, and a couple of special cases (to be discussed later), all access to the ring is mediated through requests. The first write to a ring will grab a seqno and mark the ring as having an outstanding_lazy_request. Either through explicitly adding a request after an execbuffer or through an implicit wait (either by the CPU or by a semaphore), that sequence of writes will be terminated with a request. So we can ellide all the intervening writes to the tail register and send the entire command stream to the GPU at once. This will reduce the number of *serialising* writes to the tail register by a factor or 3-5 times (depending upon architecture and number of workarounds, context switches, etc involved). This becomes even more noticeable when the register write is overloaded with a number of debugging tools. The astute reader will wonder if it is then possible to overflow the ring with a single command. It is not. When we start a command sequence to the ring, we check for available space and issue a wait in case we have not. The ring wait will in this case be forced to flush the outstanding register write and then poll the ACTHD for sufficient space to continue. The exception to the rule where everything is inside a request are a few initialisation cases where we may want to write GPU commands via the CS before userspace wakes up and page flips. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-08-11 04:16:32 +07:00
}
void intel_ring_update_space(struct intel_ring *ring);
drm/i915: Write RING_TAIL once per-request Ignoring the legacy DRI1 code, and a couple of special cases (to be discussed later), all access to the ring is mediated through requests. The first write to a ring will grab a seqno and mark the ring as having an outstanding_lazy_request. Either through explicitly adding a request after an execbuffer or through an implicit wait (either by the CPU or by a semaphore), that sequence of writes will be terminated with a request. So we can ellide all the intervening writes to the tail register and send the entire command stream to the GPU at once. This will reduce the number of *serialising* writes to the tail register by a factor or 3-5 times (depending upon architecture and number of workarounds, context switches, etc involved). This becomes even more noticeable when the register write is overloaded with a number of debugging tools. The astute reader will wonder if it is then possible to overflow the ring with a single command. It is not. When we start a command sequence to the ring, we check for available space and issue a wait in case we have not. The ring wait will in this case be forced to flush the outstanding register write and then poll the ACTHD for sufficient space to continue. The exception to the rule where everything is inside a request are a few initialisation cases where we may want to write GPU commands via the CS before userspace wakes up and page flips. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-08-11 04:16:32 +07:00
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
drm/i915: Avoid accessing request->timeline outside of its lifetime Whilst waiting on a request, we may do so without holding any locks or any guards beyond a reference to the request. In order to avoid taking locks within request deallocation, we drop references to its timeline (via the context and ppgtt) upon retirement. We should avoid chasing such pointers outside of their control, in particular we inspect the request->timeline to see if we may restore the RPS waitboost for a client. If we instead look at the engine->timeline, we will have similar behaviour on both full-ppgtt and !full-ppgtt systems and reduce the amount of reward we give towards stalling clients (i.e. only if the client stalls and the GPU is uncontended does it reclaim its boost). This restores behaviour back to pre-timelines, whilst fixing: [ 645.078485] BUG: KASAN: use-after-free in i915_gem_object_wait_fence+0x1ee/0x2e0 at addr ffff8802335643a0 [ 645.078577] Read of size 4 by task gem_exec_schedu/28408 [ 645.078638] CPU: 1 PID: 28408 Comm: gem_exec_schedu Not tainted 4.9.0-rc2+ #64 [ 645.078724] Hardware name: / , BIOS PYBSWCEL.86A.0027.2015.0507.1758 05/07/2015 [ 645.078816] ffff88022daef9a0 ffffffff8143d059 ffff880235402a80 ffff880233564200 [ 645.078998] ffff88022daef9c8 ffffffff81229c5c ffff88022daefa48 ffff880233564200 [ 645.079172] ffff880235402a80 ffff88022daefa38 ffffffff81229ef0 000000008110a796 [ 645.079345] Call Trace: [ 645.079404] [<ffffffff8143d059>] dump_stack+0x68/0x9f [ 645.079467] [<ffffffff81229c5c>] kasan_object_err+0x1c/0x70 [ 645.079534] [<ffffffff81229ef0>] kasan_report_error+0x1f0/0x4b0 [ 645.079601] [<ffffffff8122a244>] kasan_report+0x34/0x40 [ 645.079676] [<ffffffff81634f5e>] ? i915_gem_object_wait_fence+0x1ee/0x2e0 [ 645.079741] [<ffffffff81229951>] __asan_load4+0x61/0x80 [ 645.079807] [<ffffffff81634f5e>] i915_gem_object_wait_fence+0x1ee/0x2e0 [ 645.079876] [<ffffffff816364bf>] i915_gem_object_wait+0x19f/0x590 [ 645.079944] [<ffffffff81636320>] ? i915_gem_object_wait_priority+0x500/0x500 [ 645.080016] [<ffffffff8110fb30>] ? debug_show_all_locks+0x1e0/0x1e0 [ 645.080084] [<ffffffff8110abdc>] ? check_chain_key+0x14c/0x210 [ 645.080157] [<ffffffff8110a796>] ? __lock_is_held+0x46/0xc0 [ 645.080226] [<ffffffff8163bc61>] ? i915_gem_set_domain_ioctl+0x141/0x690 [ 645.080296] [<ffffffff8163bcc2>] i915_gem_set_domain_ioctl+0x1a2/0x690 [ 645.080366] [<ffffffff811f8f85>] ? __might_fault+0x75/0xe0 [ 645.080433] [<ffffffff815a55f7>] drm_ioctl+0x327/0x640 [ 645.080508] [<ffffffff8163bb20>] ? i915_gem_obj_prepare_shmem_write+0x3a0/0x3a0 [ 645.080603] [<ffffffff815a52d0>] ? drm_ioctl_permit+0x120/0x120 [ 645.080670] [<ffffffff8110abdc>] ? check_chain_key+0x14c/0x210 [ 645.080738] [<ffffffff81275717>] do_vfs_ioctl+0x127/0xa20 [ 645.080804] [<ffffffff8120268c>] ? do_mmap+0x47c/0x580 [ 645.080871] [<ffffffff811da567>] ? vm_mmap_pgoff+0x117/0x140 [ 645.080938] [<ffffffff812755f0>] ? ioctl_preallocate+0x150/0x150 [ 645.081011] [<ffffffff81108c53>] ? up_write+0x23/0x50 [ 645.081078] [<ffffffff811da567>] ? vm_mmap_pgoff+0x117/0x140 [ 645.081145] [<ffffffff811da450>] ? vma_is_stack_for_current+0x90/0x90 [ 645.081214] [<ffffffff8110d853>] ? mark_held_locks+0x23/0xc0 [ 645.082030] [<ffffffff81288408>] ? __fget+0x168/0x250 [ 645.082106] [<ffffffff819ad517>] ? entry_SYSCALL_64_fastpath+0x5/0xb1 [ 645.082176] [<ffffffff81288592>] ? __fget_light+0xa2/0xc0 [ 645.082242] [<ffffffff8127604c>] SyS_ioctl+0x3c/0x70 [ 645.082309] [<ffffffff819ad52e>] entry_SYSCALL_64_fastpath+0x1c/0xb1 [ 645.082374] Object at ffff880233564200, in cache kmalloc-8192 size: 8192 [ 645.082431] Allocated: [ 645.082480] PID = 28408 [ 645.082535] [ 645.082566] [<ffffffff8103ae66>] save_stack_trace+0x16/0x20 [ 645.082623] [ 645.082656] [<ffffffff81228b06>] save_stack+0x46/0xd0 [ 645.082716] [ 645.082756] [<ffffffff812292fd>] kasan_kmalloc+0xad/0xe0 [ 645.082817] [ 645.082848] [<ffffffff81631752>] i915_ppgtt_create+0x52/0x220 [ 645.082908] [ 645.082941] [<ffffffff8161db96>] i915_gem_create_context+0x396/0x560 [ 645.083027] [ 645.083059] [<ffffffff8161f857>] i915_gem_context_create_ioctl+0x97/0xf0 [ 645.083152] [ 645.083183] [<ffffffff815a55f7>] drm_ioctl+0x327/0x640 [ 645.083243] [ 645.083274] [<ffffffff81275717>] do_vfs_ioctl+0x127/0xa20 [ 645.083334] [ 645.083372] [<ffffffff8127604c>] SyS_ioctl+0x3c/0x70 [ 645.083432] [ 645.083464] [<ffffffff819ad52e>] entry_SYSCALL_64_fastpath+0x1c/0xb1 [ 645.083551] Freed: [ 645.083599] PID = 27629 [ 645.083648] [ 645.083676] [<ffffffff8103ae66>] save_stack_trace+0x16/0x20 [ 645.083738] [ 645.083770] [<ffffffff81228b06>] save_stack+0x46/0xd0 [ 645.083830] [ 645.083862] [<ffffffff81229203>] kasan_slab_free+0x73/0xc0 [ 645.083922] [ 645.083961] [<ffffffff812279c9>] kfree+0xa9/0x170 [ 645.084021] [ 645.084053] [<ffffffff81629f60>] i915_ppgtt_release+0x100/0x180 [ 645.084139] [ 645.084171] [<ffffffff8161d414>] i915_gem_context_free+0x1b4/0x230 [ 645.084257] [ 645.084288] [<ffffffff816537b2>] intel_lr_context_unpin+0x192/0x230 [ 645.084380] [ 645.084413] [<ffffffff81645250>] i915_gem_request_retire+0x620/0x630 [ 645.084500] [ 645.085226] [<ffffffff816473d1>] i915_gem_retire_requests+0x181/0x280 [ 645.085313] [ 645.085352] [<ffffffff816352ba>] i915_gem_retire_work_handler+0xca/0xe0 [ 645.085440] [ 645.085471] [<ffffffff810c725b>] process_one_work+0x4fb/0x920 [ 645.085532] [ 645.085562] [<ffffffff810c770d>] worker_thread+0x8d/0x840 [ 645.085622] [ 645.085653] [<ffffffff810d21e5>] kthread+0x185/0x1b0 [ 645.085718] [ 645.085750] [<ffffffff819ad7a7>] ret_from_fork+0x27/0x40 [ 645.085811] Memory state around the buggy address: [ 645.085869] ffff880233564280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.085956] ffff880233564300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086053] >ffff880233564380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086138] ^ [ 645.086193] ffff880233564400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086283] ffff880233564480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb v2: Add a comment to document the hint like nature of intel_engine_last_submit() Fixes: 73cb97010d4f ("drm/i915: Combine seqno + tracking into a global timeline struct") Fixes: 80b204bce8f2 ("drm/i915: Enable multiple timelines") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161101100317.11129-1-chris@chris-wilson.co.uk
2016-11-01 17:03:16 +07:00
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
/* We are only peeking at the tail of the submit queue (and not the
* queue itself) in order to gain a hint as to the current active
* state of the engine. Callers are not expected to be taking
* engine->timeline->lock, nor are they expected to be concerned
* wtih serialising this hint with anything, so document it as
* a hint and nothing more.
*/
return READ_ONCE(engine->timeline->seqno);
drm/i915: Avoid accessing request->timeline outside of its lifetime Whilst waiting on a request, we may do so without holding any locks or any guards beyond a reference to the request. In order to avoid taking locks within request deallocation, we drop references to its timeline (via the context and ppgtt) upon retirement. We should avoid chasing such pointers outside of their control, in particular we inspect the request->timeline to see if we may restore the RPS waitboost for a client. If we instead look at the engine->timeline, we will have similar behaviour on both full-ppgtt and !full-ppgtt systems and reduce the amount of reward we give towards stalling clients (i.e. only if the client stalls and the GPU is uncontended does it reclaim its boost). This restores behaviour back to pre-timelines, whilst fixing: [ 645.078485] BUG: KASAN: use-after-free in i915_gem_object_wait_fence+0x1ee/0x2e0 at addr ffff8802335643a0 [ 645.078577] Read of size 4 by task gem_exec_schedu/28408 [ 645.078638] CPU: 1 PID: 28408 Comm: gem_exec_schedu Not tainted 4.9.0-rc2+ #64 [ 645.078724] Hardware name: / , BIOS PYBSWCEL.86A.0027.2015.0507.1758 05/07/2015 [ 645.078816] ffff88022daef9a0 ffffffff8143d059 ffff880235402a80 ffff880233564200 [ 645.078998] ffff88022daef9c8 ffffffff81229c5c ffff88022daefa48 ffff880233564200 [ 645.079172] ffff880235402a80 ffff88022daefa38 ffffffff81229ef0 000000008110a796 [ 645.079345] Call Trace: [ 645.079404] [<ffffffff8143d059>] dump_stack+0x68/0x9f [ 645.079467] [<ffffffff81229c5c>] kasan_object_err+0x1c/0x70 [ 645.079534] [<ffffffff81229ef0>] kasan_report_error+0x1f0/0x4b0 [ 645.079601] [<ffffffff8122a244>] kasan_report+0x34/0x40 [ 645.079676] [<ffffffff81634f5e>] ? i915_gem_object_wait_fence+0x1ee/0x2e0 [ 645.079741] [<ffffffff81229951>] __asan_load4+0x61/0x80 [ 645.079807] [<ffffffff81634f5e>] i915_gem_object_wait_fence+0x1ee/0x2e0 [ 645.079876] [<ffffffff816364bf>] i915_gem_object_wait+0x19f/0x590 [ 645.079944] [<ffffffff81636320>] ? i915_gem_object_wait_priority+0x500/0x500 [ 645.080016] [<ffffffff8110fb30>] ? debug_show_all_locks+0x1e0/0x1e0 [ 645.080084] [<ffffffff8110abdc>] ? check_chain_key+0x14c/0x210 [ 645.080157] [<ffffffff8110a796>] ? __lock_is_held+0x46/0xc0 [ 645.080226] [<ffffffff8163bc61>] ? i915_gem_set_domain_ioctl+0x141/0x690 [ 645.080296] [<ffffffff8163bcc2>] i915_gem_set_domain_ioctl+0x1a2/0x690 [ 645.080366] [<ffffffff811f8f85>] ? __might_fault+0x75/0xe0 [ 645.080433] [<ffffffff815a55f7>] drm_ioctl+0x327/0x640 [ 645.080508] [<ffffffff8163bb20>] ? i915_gem_obj_prepare_shmem_write+0x3a0/0x3a0 [ 645.080603] [<ffffffff815a52d0>] ? drm_ioctl_permit+0x120/0x120 [ 645.080670] [<ffffffff8110abdc>] ? check_chain_key+0x14c/0x210 [ 645.080738] [<ffffffff81275717>] do_vfs_ioctl+0x127/0xa20 [ 645.080804] [<ffffffff8120268c>] ? do_mmap+0x47c/0x580 [ 645.080871] [<ffffffff811da567>] ? vm_mmap_pgoff+0x117/0x140 [ 645.080938] [<ffffffff812755f0>] ? ioctl_preallocate+0x150/0x150 [ 645.081011] [<ffffffff81108c53>] ? up_write+0x23/0x50 [ 645.081078] [<ffffffff811da567>] ? vm_mmap_pgoff+0x117/0x140 [ 645.081145] [<ffffffff811da450>] ? vma_is_stack_for_current+0x90/0x90 [ 645.081214] [<ffffffff8110d853>] ? mark_held_locks+0x23/0xc0 [ 645.082030] [<ffffffff81288408>] ? __fget+0x168/0x250 [ 645.082106] [<ffffffff819ad517>] ? entry_SYSCALL_64_fastpath+0x5/0xb1 [ 645.082176] [<ffffffff81288592>] ? __fget_light+0xa2/0xc0 [ 645.082242] [<ffffffff8127604c>] SyS_ioctl+0x3c/0x70 [ 645.082309] [<ffffffff819ad52e>] entry_SYSCALL_64_fastpath+0x1c/0xb1 [ 645.082374] Object at ffff880233564200, in cache kmalloc-8192 size: 8192 [ 645.082431] Allocated: [ 645.082480] PID = 28408 [ 645.082535] [ 645.082566] [<ffffffff8103ae66>] save_stack_trace+0x16/0x20 [ 645.082623] [ 645.082656] [<ffffffff81228b06>] save_stack+0x46/0xd0 [ 645.082716] [ 645.082756] [<ffffffff812292fd>] kasan_kmalloc+0xad/0xe0 [ 645.082817] [ 645.082848] [<ffffffff81631752>] i915_ppgtt_create+0x52/0x220 [ 645.082908] [ 645.082941] [<ffffffff8161db96>] i915_gem_create_context+0x396/0x560 [ 645.083027] [ 645.083059] [<ffffffff8161f857>] i915_gem_context_create_ioctl+0x97/0xf0 [ 645.083152] [ 645.083183] [<ffffffff815a55f7>] drm_ioctl+0x327/0x640 [ 645.083243] [ 645.083274] [<ffffffff81275717>] do_vfs_ioctl+0x127/0xa20 [ 645.083334] [ 645.083372] [<ffffffff8127604c>] SyS_ioctl+0x3c/0x70 [ 645.083432] [ 645.083464] [<ffffffff819ad52e>] entry_SYSCALL_64_fastpath+0x1c/0xb1 [ 645.083551] Freed: [ 645.083599] PID = 27629 [ 645.083648] [ 645.083676] [<ffffffff8103ae66>] save_stack_trace+0x16/0x20 [ 645.083738] [ 645.083770] [<ffffffff81228b06>] save_stack+0x46/0xd0 [ 645.083830] [ 645.083862] [<ffffffff81229203>] kasan_slab_free+0x73/0xc0 [ 645.083922] [ 645.083961] [<ffffffff812279c9>] kfree+0xa9/0x170 [ 645.084021] [ 645.084053] [<ffffffff81629f60>] i915_ppgtt_release+0x100/0x180 [ 645.084139] [ 645.084171] [<ffffffff8161d414>] i915_gem_context_free+0x1b4/0x230 [ 645.084257] [ 645.084288] [<ffffffff816537b2>] intel_lr_context_unpin+0x192/0x230 [ 645.084380] [ 645.084413] [<ffffffff81645250>] i915_gem_request_retire+0x620/0x630 [ 645.084500] [ 645.085226] [<ffffffff816473d1>] i915_gem_retire_requests+0x181/0x280 [ 645.085313] [ 645.085352] [<ffffffff816352ba>] i915_gem_retire_work_handler+0xca/0xe0 [ 645.085440] [ 645.085471] [<ffffffff810c725b>] process_one_work+0x4fb/0x920 [ 645.085532] [ 645.085562] [<ffffffff810c770d>] worker_thread+0x8d/0x840 [ 645.085622] [ 645.085653] [<ffffffff810d21e5>] kthread+0x185/0x1b0 [ 645.085718] [ 645.085750] [<ffffffff819ad7a7>] ret_from_fork+0x27/0x40 [ 645.085811] Memory state around the buggy address: [ 645.085869] ffff880233564280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.085956] ffff880233564300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086053] >ffff880233564380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086138] ^ [ 645.086193] ffff880233564400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086283] ffff880233564480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb v2: Add a comment to document the hint like nature of intel_engine_last_submit() Fixes: 73cb97010d4f ("drm/i915: Combine seqno + tracking into a global timeline struct") Fixes: 80b204bce8f2 ("drm/i915: Enable multiple timelines") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161101100317.11129-1-chris@chris-wilson.co.uk
2016-11-01 17:03:16 +07:00
}
int init_workarounds_ring(struct intel_engine_cs *engine);
int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
void intel_engine_get_instdone(struct intel_engine_cs *engine,
struct intel_instdone *instdone);
drm/i915: Reserve ring buffer space for i915_add_request() commands It is a bad idea for i915_add_request() to fail. The work will already have been send to the ring and will be processed, but there will not be any tracking or management of that work. The only way the add request call can fail is if it can't write its epilogue commands to the ring (cache flushing, seqno updates, interrupt signalling). The reasons for that are mostly down to running out of ring buffer space and the problems associated with trying to get some more. This patch prevents that situation from happening in the first place. When a request is created, it marks sufficient space as reserved for the epilogue commands. Thus guaranteeing that by the time the epilogue is written, there will be plenty of space for it. Note that a ring_begin() call is required to actually reserve the space (and do any potential waiting). However, that is not currently done at request creation time. This is because the ring_begin() code can allocate a request. Hence calling begin() from the request allocation code would lead to infinite recursion! Later patches in this series remove the need for begin() to do the allocate. At that point, it becomes safe for the allocate to call begin() and really reserve the space. Until then, there is a potential for insufficient space to be available at the point of calling i915_add_request(). However, that would only be in the case where the request was created and immediately submitted without ever calling ring_begin() and adding any work to that request. Which should never happen. And even if it does, and if that request happens to fall down the tiny window of opportunity for failing due to being out of ring space then does it really matter because the request wasn't doing anything in the first place? v2: Updated the 'reserved space too small' warning to include the offending sizes. Added a 'cancel' operation to clean up when a request is abandoned. Added re-initialisation of tracking state after a buffer wrap to keep the sanity checks accurate. v3: Incremented the reserved size to accommodate Ironlake (after finally managing to run on an ILK system). Also fixed missing wrap code in LRC mode. v4: Added extra comment and removed duplicate WARN (feedback from Tomas). For: VIZ-5115 CC: Tomas Elf <tomas.elf@intel.com> Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-18 19:10:09 +07:00
/*
* Arbitrary size for largest possible 'add request' sequence. The code paths
* are complex and variable. Empirical measurement shows that the worst case
* is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
* we need to allocate double the largest single packet within that emission
* to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
drm/i915: Reserve ring buffer space for i915_add_request() commands It is a bad idea for i915_add_request() to fail. The work will already have been send to the ring and will be processed, but there will not be any tracking or management of that work. The only way the add request call can fail is if it can't write its epilogue commands to the ring (cache flushing, seqno updates, interrupt signalling). The reasons for that are mostly down to running out of ring buffer space and the problems associated with trying to get some more. This patch prevents that situation from happening in the first place. When a request is created, it marks sufficient space as reserved for the epilogue commands. Thus guaranteeing that by the time the epilogue is written, there will be plenty of space for it. Note that a ring_begin() call is required to actually reserve the space (and do any potential waiting). However, that is not currently done at request creation time. This is because the ring_begin() code can allocate a request. Hence calling begin() from the request allocation code would lead to infinite recursion! Later patches in this series remove the need for begin() to do the allocate. At that point, it becomes safe for the allocate to call begin() and really reserve the space. Until then, there is a potential for insufficient space to be available at the point of calling i915_add_request(). However, that would only be in the case where the request was created and immediately submitted without ever calling ring_begin() and adding any work to that request. Which should never happen. And even if it does, and if that request happens to fall down the tiny window of opportunity for failing due to being out of ring space then does it really matter because the request wasn't doing anything in the first place? v2: Updated the 'reserved space too small' warning to include the offending sizes. Added a 'cancel' operation to clean up when a request is abandoned. Added re-initialisation of tracking state after a buffer wrap to keep the sanity checks accurate. v3: Incremented the reserved size to accommodate Ironlake (after finally managing to run on an ILK system). Also fixed missing wrap code in LRC mode. v4: Added extra comment and removed duplicate WARN (feedback from Tomas). For: VIZ-5115 CC: Tomas Elf <tomas.elf@intel.com> Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-18 19:10:09 +07:00
*/
#define MIN_SPACE_FOR_ADD_REQUEST 336
drm/i915: Reserve ring buffer space for i915_add_request() commands It is a bad idea for i915_add_request() to fail. The work will already have been send to the ring and will be processed, but there will not be any tracking or management of that work. The only way the add request call can fail is if it can't write its epilogue commands to the ring (cache flushing, seqno updates, interrupt signalling). The reasons for that are mostly down to running out of ring buffer space and the problems associated with trying to get some more. This patch prevents that situation from happening in the first place. When a request is created, it marks sufficient space as reserved for the epilogue commands. Thus guaranteeing that by the time the epilogue is written, there will be plenty of space for it. Note that a ring_begin() call is required to actually reserve the space (and do any potential waiting). However, that is not currently done at request creation time. This is because the ring_begin() code can allocate a request. Hence calling begin() from the request allocation code would lead to infinite recursion! Later patches in this series remove the need for begin() to do the allocate. At that point, it becomes safe for the allocate to call begin() and really reserve the space. Until then, there is a potential for insufficient space to be available at the point of calling i915_add_request(). However, that would only be in the case where the request was created and immediately submitted without ever calling ring_begin() and adding any work to that request. Which should never happen. And even if it does, and if that request happens to fall down the tiny window of opportunity for failing due to being out of ring space then does it really matter because the request wasn't doing anything in the first place? v2: Updated the 'reserved space too small' warning to include the offending sizes. Added a 'cancel' operation to clean up when a request is abandoned. Added re-initialisation of tracking state after a buffer wrap to keep the sanity checks accurate. v3: Incremented the reserved size to accommodate Ironlake (after finally managing to run on an ILK system). Also fixed missing wrap code in LRC mode. v4: Added extra comment and removed duplicate WARN (feedback from Tomas). For: VIZ-5115 CC: Tomas Elf <tomas.elf@intel.com> Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-18 19:10:09 +07:00
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
}
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
static inline void intel_wait_init(struct intel_wait *wait,
struct drm_i915_gem_request *rq)
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
{
wait->tsk = current;
wait->request = rq;
}
static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
wait->tsk = current;
wait->seqno = seqno;
}
static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
return wait->seqno;
}
static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
wait->seqno = seqno;
return intel_wait_has_seqno(wait);
}
static inline bool
intel_wait_update_request(struct intel_wait *wait,
const struct drm_i915_gem_request *rq)
{
return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
}
static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
return wait->seqno == seqno;
}
static inline bool
intel_wait_check_request(const struct intel_wait *wait,
const struct drm_i915_gem_request *rq)
{
return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
}
static inline bool intel_wait_complete(const struct intel_wait *wait)
{
return RB_EMPTY_NODE(&wait->node);
}
bool intel_engine_add_wait(struct intel_engine_cs *engine,
struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
struct intel_wait *wait);
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
{
return READ_ONCE(engine->breadcrumbs.irq_wait);
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
}
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
#define ENGINE_WAKEUP_ASLEEP BIT(1)
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
drm/i915: Slaughter the thundering i915_wait_request herd One particularly stressful scenario consists of many independent tasks all competing for GPU time and waiting upon the results (e.g. realtime transcoding of many, many streams). One bottleneck in particular is that each client waits on its own results, but every client is woken up after every batchbuffer - hence the thunder of hooves as then every client must do its heavyweight dance to read a coherent seqno to see if it is the lucky one. Ideally, we only want one client to wake up after the interrupt and check its request for completion. Since the requests must retire in order, we can select the first client on the oldest request to be woken. Once that client has completed his wait, we can then wake up the next client and so on. However, all clients then incur latency as every process in the chain may be delayed for scheduling - this may also then cause some priority inversion. To reduce the latency, when a client is added or removed from the list, we scan the tree for completed seqno and wake up all the completed waiters in parallel. Using igt/benchmarks/gem_latency, we can demonstrate this effect. The benchmark measures the number of GPU cycles between completion of a batch and the client waking up from a call to wait-ioctl. With many concurrent waiters, with each on a different request, we observe that the wakeup latency before the patch scales nearly linearly with the number of waiters (before external factors kick in making the scaling much worse). After applying the patch, we can see that only the single waiter for the request is being woken up, providing a constant wakeup latency for every operation. However, the situation is not quite as rosy for many waiters on the same request, though to the best of my knowledge this is much less likely in practice. Here, we can observe that the concurrent waiters incur extra latency from being woken up by the solitary bottom-half, rather than directly by the interrupt. This appears to be scheduler induced (having discounted adverse effects from having a rbtree walk/erase in the wakeup path), each additional wake_up_process() costs approximately 1us on big core. Another effect of performing the secondary wakeups from the first bottom-half is the incurred delay this imposes on high priority threads - rather than immediately returning to userspace and leaving the interrupt handler to wake the others. To offset the delay incurred with additional waiters on a request, we could use a hybrid scheme that did a quick read in the interrupt handler and dequeued all the completed waiters (incurring the overhead in the interrupt handler, not the best plan either as we then incur GPU submission latency) but we would still have to wake up the bottom-half every time to do the heavyweight slow read. Or we could only kick the waiters on the seqno with the same priority as the current task (i.e. in the realtime waiter scenario, only it is woken up immediately by the interrupt and simply queues the next waiter before returning to userspace, minimising its delay at the expense of the chain, and also reducing contention on its scheduler runqueue). This is effective at avoid long pauses in the interrupt handler and at avoiding the extra latency in realtime/high-priority waiters. v2: Convert from a kworker per engine into a dedicated kthread for the bottom-half. v3: Rename request members and tweak comments. v4: Use a per-engine spinlock in the breadcrumbs bottom-half. v5: Fix race in locklessly checking waiter status and kicking the task on adding a new waiter. v6: Fix deciding when to force the timer to hide missing interrupts. v7: Move the bottom-half from the kthread to the first client process. v8: Reword a few comments v9: Break the busy loop when the interrupt is unmasked or has fired. v10: Comments, unnecessary churn, better debugging from Tvrtko v11: Wake all completed waiters on removing the current bottom-half to reduce the latency of waking up a herd of clients all waiting on the same request. v12: Rearrange missed-interrupt fault injection so that it works with igt/drv_missed_irq_hang v13: Rename intel_breadcrumb and friends to intel_wait in preparation for signal handling. v14: RCU commentary, assert_spin_locked v15: Hide BUG_ON behind the compiler; report on gem_latency findings. v16: Sort seqno-groups by priority so that first-waiter has the highest task priority (and so avoid priority inversion). v17: Add waiters to post-mortem GPU hang state. v18: Return early for a completed wait after acquiring the spinlock. Avoids adding ourselves to the tree if the is already complete, and skips the awkward question of why we don't do completion wakeups for waits earlier than or equal to ourselves. v19: Prepare for init_breadcrumbs to fail. Later patches may want to allocate during init, so be prepared to propagate back the error code. Testcase: igt/gem_concurrent_blit Testcase: igt/benchmarks/gem_latency Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: "Rogozhkin, Dmitry V" <dmitry.v.rogozhkin@intel.com> Cc: "Gong, Zhipeng" <zhipeng.gong@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Dave Gordon <david.s.gordon@intel.com> Cc: "Goel, Akash" <akash.goel@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> #v18 Link: http://patchwork.freedesktop.org/patch/msgid/1467390209-3576-6-git-send-email-chris@chris-wilson.co.uk
2016-07-01 23:23:15 +07:00
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
memset(batch, 0, 6 * sizeof(u32));
batch[0] = GFX_OP_PIPE_CONTROL(6);
batch[1] = flags;
batch[2] = offset;
return batch + 6;
}
bool intel_engine_is_idle(struct intel_engine_cs *engine);
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
#endif /* _INTEL_RINGBUFFER_H_ */