linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_drv.h

1617 lines
46 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006 Dave Airlie <airlied@linux.ie>
* Copyright (c) 2007-2008 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef __INTEL_DRV_H__
#define __INTEL_DRV_H__
#include <linux/async.h>
#include <linux/i2c.h>
#include <linux/sched/clock.h>
#include <drm/drm_atomic.h>
#include <drm/drm_crtc.h>
drm/i915: Respect DP++ adaptor TMDS clock limit Try to detect the max TMDS clock limit for the DP++ adaptor (if any) and take it into account when checking the port clock. Note that as with the sink (HDMI vs. DVI) TMDS clock limit we'll ignore the adaptor TMDS clock limit in the modeset path, in case users are already "overclocking" their TMDS links. One subtle change here is that we'll have to respect the adaptor TMDS clock limit when we decide whether to do 12bpc or 8bpc, otherwise we might end up picking 12bpc and accidentally driving the TMDS link out of spec even when the user chose a mode that fits wihting the limits at 8bpc. This means you can't "overclock" your DP++ dongle at 12bpc anymore, but you can continue to do so at 8bpc. Note that for simplicity we'll use the I2C access method for all dual mode adaptors including type 2. Otherwise we'd have to start mixing DP AUX and HDMI together. In the future we may need to do that if we come across any board designs that don't hook up the DDC pins to the DP++ connectors. Such boards would obviously only work with type 2 dual mode adaptors, and not type 1. v2: Store adaptor type under indel_hdmi->dp_dual_mode Deal with DRM_DP_DUAL_MODE_UNKNOWN Pass adaptor type to drm_dp_dual_mode_max_tmds_clock(), and use it for type1 adaptors as well Cc: stable@vger.kernel.org Reported-by: Tore Anderson <tore@fud.no> Fixes: 7a0baa623446 ("Revert "drm/i915: Disable 12bpc hdmi for now"") Cc: Paulo Zanoni <paulo.r.zanoni@intel.com> Cc: Shashank Sharma <shashank.sharma@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1462216105-20881-3-git-send-email-ville.syrjala@linux.intel.com Reviewed-by: Shashank Sharma <shashank.sharma@intel.com>
2016-05-03 02:08:23 +07:00
#include <drm/drm_dp_dual_mode_helper.h>
2014-05-02 11:02:48 +07:00
#include <drm/drm_dp_mst_helper.h>
#include <drm/drm_encoder.h>
#include <drm/drm_fb_helper.h>
drm: Split out drm_probe_helper.h Having the probe helper stuff (which pretty much everyone needs) in the drm_crtc_helper.h file (which atomic drivers should never need) is confusing. Split them out. To make sure I actually achieved the goal here I went through all drivers. And indeed, all atomic drivers are now free of drm_crtc_helper.h includes. v2: Make it compile. There was so much compile fail on arm drivers that I figured I'll better not include any of the acks on v1. v3: Massive rebase because i915 has lost a lot of drmP.h includes, but not all: Through drm_crtc_helper.h > drm_modeset_helper.h -> drmP.h there was still one, which this patch largely removes. Which means rolling out lots more includes all over. This will also conflict with ongoing drmP.h cleanup by others I expect. v3: Rebase on top of atomic bochs. v4: Review from Laurent for bridge/rcar/omap/shmob/core bits: - (re)move some of the added includes, use the better include files in other places (all suggested from Laurent adopted unchanged). - sort alphabetically v5: Actually try to sort them, and while at it, sort all the ones I touch. v6: Rebase onto i915 changes. v7: Rebase once more. Acked-by: Harry Wentland <harry.wentland@amd.com> Acked-by: Sam Ravnborg <sam@ravnborg.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Acked-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Acked-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> Acked-by: CK Hu <ck.hu@mediatek.com> Acked-by: Alex Deucher <alexander.deucher@amd.com> Acked-by: Sam Ravnborg <sam@ravnborg.org> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Liviu Dudau <liviu.dudau@arm.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Cc: linux-arm-kernel@lists.infradead.org Cc: virtualization@lists.linux-foundation.org Cc: etnaviv@lists.freedesktop.org Cc: linux-samsung-soc@vger.kernel.org Cc: intel-gfx@lists.freedesktop.org Cc: linux-mediatek@lists.infradead.org Cc: linux-amlogic@lists.infradead.org Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: nouveau@lists.freedesktop.org Cc: spice-devel@lists.freedesktop.org Cc: amd-gfx@lists.freedesktop.org Cc: linux-renesas-soc@vger.kernel.org Cc: linux-rockchip@lists.infradead.org Cc: linux-stm32@st-md-mailman.stormreply.com Cc: linux-tegra@vger.kernel.org Cc: xen-devel@lists.xen.org Link: https://patchwork.freedesktop.org/patch/msgid/20190117210334.13234-1-daniel.vetter@ffwll.ch
2019-01-18 04:03:34 +07:00
#include <drm/drm_probe_helper.h>
#include <drm/drm_rect.h>
drm: Split out drm_probe_helper.h Having the probe helper stuff (which pretty much everyone needs) in the drm_crtc_helper.h file (which atomic drivers should never need) is confusing. Split them out. To make sure I actually achieved the goal here I went through all drivers. And indeed, all atomic drivers are now free of drm_crtc_helper.h includes. v2: Make it compile. There was so much compile fail on arm drivers that I figured I'll better not include any of the acks on v1. v3: Massive rebase because i915 has lost a lot of drmP.h includes, but not all: Through drm_crtc_helper.h > drm_modeset_helper.h -> drmP.h there was still one, which this patch largely removes. Which means rolling out lots more includes all over. This will also conflict with ongoing drmP.h cleanup by others I expect. v3: Rebase on top of atomic bochs. v4: Review from Laurent for bridge/rcar/omap/shmob/core bits: - (re)move some of the added includes, use the better include files in other places (all suggested from Laurent adopted unchanged). - sort alphabetically v5: Actually try to sort them, and while at it, sort all the ones I touch. v6: Rebase onto i915 changes. v7: Rebase once more. Acked-by: Harry Wentland <harry.wentland@amd.com> Acked-by: Sam Ravnborg <sam@ravnborg.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Acked-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Acked-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> Acked-by: CK Hu <ck.hu@mediatek.com> Acked-by: Alex Deucher <alexander.deucher@amd.com> Acked-by: Sam Ravnborg <sam@ravnborg.org> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Liviu Dudau <liviu.dudau@arm.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Cc: linux-arm-kernel@lists.infradead.org Cc: virtualization@lists.linux-foundation.org Cc: etnaviv@lists.freedesktop.org Cc: linux-samsung-soc@vger.kernel.org Cc: intel-gfx@lists.freedesktop.org Cc: linux-mediatek@lists.infradead.org Cc: linux-amlogic@lists.infradead.org Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: nouveau@lists.freedesktop.org Cc: spice-devel@lists.freedesktop.org Cc: amd-gfx@lists.freedesktop.org Cc: linux-renesas-soc@vger.kernel.org Cc: linux-rockchip@lists.infradead.org Cc: linux-stm32@st-md-mailman.stormreply.com Cc: linux-tegra@vger.kernel.org Cc: xen-devel@lists.xen.org Link: https://patchwork.freedesktop.org/patch/msgid/20190117210334.13234-1-daniel.vetter@ffwll.ch
2019-01-18 04:03:34 +07:00
#include <drm/drm_vblank.h>
#include <drm/i915_drm.h>
#include <drm/i915_mei_hdcp_interface.h>
#include <media/cec-notifier.h>
#include "i915_drv.h"
struct drm_printer;
/*
* Display related stuff
*/
/* these are outputs from the chip - integrated only
external chips are via DVO or SDVO output */
enum intel_output_type {
INTEL_OUTPUT_UNUSED = 0,
INTEL_OUTPUT_ANALOG = 1,
INTEL_OUTPUT_DVO = 2,
INTEL_OUTPUT_SDVO = 3,
INTEL_OUTPUT_LVDS = 4,
INTEL_OUTPUT_TVOUT = 5,
INTEL_OUTPUT_HDMI = 6,
INTEL_OUTPUT_DP = 7,
INTEL_OUTPUT_EDP = 8,
INTEL_OUTPUT_DSI = 9,
drm/i915: Stop frobbing with DDI encoder->type Currently the DDI encoder->type will change at runtime depending on what kind of hotplugs we've processed. That's quite bad since we can't really trust that that current value of encoder->type actually matches the type of signal we're trying to drive through it. Let's eliminate that problem by declaring that non-eDP DDI port will always have the encoder type as INTEL_OUTPUT_DDI. This means the code can no longer try to distinguish DP vs. HDMI based on encoder->type. We'll leave eDP as INTEL_OUTPUT_EDP, since it'll never change and there's a bunch of code that relies on that value to identify eDP encoders. We'll introduce a new encoder .compute_output_type() hook. This allows us to compute the full output_types before any encoder .compute_config() hooks get called, thus those hooks can rely on output_types being correct, which is useful for cloning on oldr platforms. For now we'll just look at the connector type and pick the correct mode based on that. In the future the new hook could be used to implement dynamic switching between LS and PCON modes for LSPCON. v2: Fix BXT/GLK PPS explosion with DSI/MST encoders v3: Avoid the PPS warn on pure HDMI/DVI DDI encoders by checking dp.output_reg v4: Rebase v5: Populate output_types in .get_config() rather than in the caller v5: Split out populating output_types in .get_config() (Maarten) Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171027193128.14483-3-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2017-10-28 02:31:24 +07:00
INTEL_OUTPUT_DDI = 10,
INTEL_OUTPUT_DP_MST = 11,
};
struct intel_framebuffer {
struct drm_framebuffer base;
struct intel_rotation_info rot_info;
drm/i915: Rewrite fb rotation GTT handling Redo the fb rotation handling in order to: - eliminate the NV12 special casing - handle fb->offsets[] properly - make the rotation handling easier for the plane code To achieve these goals we reduce intel_rotation_info to only contain (for each plane) the rotated view width,height,stride in tile units, and the page offset into the object where the plane starts. Each plane is handled exactly the same way, no special casing for NV12 or other formats. We then store the computed rotation_info under intel_framebuffer so that we don't have to recompute it again. To handle fb->offsets[] we treat them as a linear offsets and convert them to x/y offsets from the start of the relevant GTT mapping (either normal or rotated). We store the x/y offsets under intel_framebuffer, and for some extra convenience we also store the rotated pitch (ie. tile aligned plane height). So for each plane we have the normal x/y offsets, rotated x/y offsets, and the rotated pitch. The normal pitch is available already in fb->pitches[]. While we're gathering up all that extra information, we can also easily compute the storage requirements for the framebuffer, so that we can check that the object is big enough to hold it. When it comes time to deal with the plane source coordinates, we first rotate the clipped src coordinates to match the relevant GTT view orientation, then add to them the fb x/y offsets. Next we compute the aligned surface page offset, and as a result we're left with some residual x/y offsets. Finally, if required by the hardware, we convert the remaining x/y offsets into a linear offset. For gen2/3 we simply skip computing the final page offset, and just convert the src+fb x/y offsets directly into a linear offset since that's what the hardware wants. After this all platforms, incluing SKL+, compute these things in exactly the same way (excluding alignemnt differences). v2: Use BIT(DRM_ROTATE_270) instead of ROTATE_270 when rotating plane src coordinates Drop some spurious changes that got left behind during development v3: Split out more changes to prep patches (Daniel) s/intel_fb->plane[].foo.bar/intel_fb->foo[].bar/ for brevity Rename intel_surf_gtt_offset to intel_fb_gtt_offset Kill the pointless 'plane' parameter from intel_fb_gtt_offset() v4: Fix alignment vs. alignment-1 when calling _intel_compute_tile_offset() from intel_fill_fb_info() Pass the pitch in tiles in stad of pixels to intel_adjust_tile_offset() from intel_fill_fb_info() Pass the full width/height of the rotated area to drm_rect_rotate() for clarity Use u32 for more offsets v5: Preserve the upper_32_bits()/lower_32_bits() handling for the fb ggtt offset (Sivakumar) v6: Rebase due to drm_plane_state src/dst rects Cc: Sivakumar Thulasimani <sivakumar.thulasimani@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Sivakumar Thulasimani <sivakumar.thulasimani@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470821001-25272-2-git-send-email-ville.syrjala@linux.intel.com Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-15 17:16:41 +07:00
/* for each plane in the normal GTT view */
struct {
unsigned int x, y;
} normal[2];
/* for each plane in the rotated GTT view */
struct {
unsigned int x, y;
unsigned int pitch; /* pixels */
} rotated[2];
};
struct intel_fbdev {
struct drm_fb_helper helper;
struct intel_framebuffer *fb;
struct i915_vma *vma;
drm/i915: Move the policy for placement of the GGTT vma into the caller Currently we make the unilateral decision inside i915_gem_object_pin_to_display() where the VMA should resided (inside the fence and mappable region or above?). This is not our decision to make as it impacts on how the display engine can use the resulting scanout object, and it would rather instruct us where to place the VMA so that it can enable the features it wants. As such, make the pin flags an argument to i915_gem_object_pin_to_display() and control them from intel_pin_and_fence_fb_obj() Whilst taking control of the mapping for ourselves, start tracking how we use it to avoid trying to free a fence we never claimed: <3>[ 227.151869] GEM_BUG_ON(vma->fence->pin_count <= 0) <4>[ 227.152064] ------------[ cut here ]------------ <2>[ 227.152068] kernel BUG at drivers/gpu/drm/i915/i915_vma.h:391! <4>[ 227.152084] invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI <0>[ 227.152092] Dumping ftrace buffer: <0>[ 227.152099] (ftrace buffer empty) <4>[ 227.152102] Modules linked in: i915 snd_hda_codec_analog snd_hda_codec_generic coretemp snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm lpc_ich e1000e mei_me mei prime_numbers <4>[ 227.152131] CPU: 1 PID: 1587 Comm: kworker/u16:49 Tainted: G U 4.16.0-rc1-gbab67b2f6177-kasan_7+ #1 <4>[ 227.152134] Hardware name: Dell Inc. OptiPlex 755 /0PU052, BIOS A08 02/19/2008 <4>[ 227.152236] Workqueue: events_unbound intel_atomic_commit_work [i915] <4>[ 227.152292] RIP: 0010:intel_unpin_fb_vma+0x23a/0x2a0 [i915] <4>[ 227.152295] RSP: 0018:ffff88005aad7b68 EFLAGS: 00010286 <4>[ 227.152300] RAX: 0000000000000026 RBX: ffff88005c359580 RCX: 0000000000000000 <4>[ 227.152304] RDX: 0000000000000026 RSI: ffffffff8707d840 RDI: ffffed000b55af63 <4>[ 227.152307] RBP: ffff880056817e58 R08: 0000000000000001 R09: 0000000000000000 <4>[ 227.152311] R10: ffff88005aad7b88 R11: 0000000000000000 R12: ffff8800568184d0 <4>[ 227.152314] R13: ffff880065b5ab08 R14: 0000000000000000 R15: dffffc0000000000 <4>[ 227.152318] FS: 0000000000000000(0000) GS:ffff88006ac40000(0000) knlGS:0000000000000000 <4>[ 227.152322] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 227.152325] CR2: 00007f5fb25550a8 CR3: 0000000068c78000 CR4: 00000000000006e0 <4>[ 227.152328] Call Trace: <4>[ 227.152385] intel_cleanup_plane_fb+0x6b/0xd0 [i915] <4>[ 227.152395] drm_atomic_helper_cleanup_planes+0x166/0x280 <4>[ 227.152452] intel_atomic_commit_tail+0x159d/0x3380 [i915] <4>[ 227.152463] ? process_one_work+0x66e/0x1460 <4>[ 227.152516] ? skl_update_crtcs+0x9c0/0x9c0 [i915] <4>[ 227.152523] ? lock_acquire+0x13d/0x390 <4>[ 227.152527] ? lock_acquire+0x13d/0x390 <4>[ 227.152534] process_one_work+0x71a/0x1460 <4>[ 227.152540] ? __schedule+0x815/0x1e20 <4>[ 227.152547] ? pwq_dec_nr_in_flight+0x2b0/0x2b0 <4>[ 227.152553] ? _raw_spin_lock_irq+0xa/0x40 <4>[ 227.152559] worker_thread+0xdf/0xf60 <4>[ 227.152569] ? process_one_work+0x1460/0x1460 <4>[ 227.152573] kthread+0x2cf/0x3c0 <4>[ 227.152578] ? _kthread_create_on_node+0xa0/0xa0 <4>[ 227.152583] ret_from_fork+0x3a/0x50 <4>[ 227.152591] Code: c6 00 11 86 c0 48 c7 c7 e0 bd 85 c0 e8 60 e7 a9 c4 0f ff e9 1f fe ff ff 48 c7 c6 40 10 86 c0 48 c7 c7 e0 ca 85 c0 e8 2b 95 bd c4 <0f> 0b 48 89 ef e8 4c 44 e8 c4 e9 ef fd ff ff e8 42 44 e8 c4 e9 <1>[ 227.152720] RIP: intel_unpin_fb_vma+0x23a/0x2a0 [i915] RSP: ffff88005aad7b68 v2: i915_vma_pin_fence() is a no-op if a fence isn't required, so check vma->fence as well. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180220134208.24988-2-chris@chris-wilson.co.uk
2018-02-20 20:42:06 +07:00
unsigned long vma_flags;
async_cookie_t cookie;
drm/i915: Wrap the preallocated BIOS framebuffer and preserve for KMS fbcon v12 Retrieve current framebuffer config info from the regs and create an fb object for the buffer the BIOS or boot loader left us. This should allow for smooth transitions to userspace apps once we finish the initial configuration construction. v2: check for non-native modes and adjust (Jesse) fixup aperture and cmap frees (Imre) use unlocked unref if init_bios fails (Jesse) fix curly brace around DSPADDR check (Imre) comment failure path for pin_and_fence (Imre) v3: fixup fixup of aperture frees (Chris) v4: update to current bits (locking & pin_and_fence hack) (Jesse) v5: move fb config fetch to display code (Jesse) re-order hw state readout on initial load to suit fb inherit (Jesse) re-add pin_and_fence in fbdev code to make sure we refcount properly (Je v6: rename to plane_config (Daniel) check for valid object when initializing BIOS fb (Jesse) split from plane_config readout and other display changes (Jesse) drop use_bios_fb option (Chris) update comments (Jesse) rework fbdev_init_bios for clarity (Jesse) drop fb obj ref under lock (Chris) v7: use fb object from plane_config instead (Ville) take ref on fb object (Jesse) v8: put under i915_fastboot option (Jesse) fix fb ptr checking (Jesse) inform drm_fb_helper if we fail to enable a connector (Jesse) drop unnecessary enabled[] modifications in failure cases (Chris) split from BIOS connector config readout (Daniel) don't memset the fb buffer if preallocated (Chris) alloc ifbdev up front and pass to init_bios (Chris) check for bad ifbdev in restore_mode too (Chris) v9: fix up !fastboot bpp setting (Jesse) fix up !fastboot helper alloc (Jesse) make sure BIOS fb is sufficient for biggest active pipe (Jesse) v10:fix up size calculation for proposed fbs (Chris) go back to two pass pipe fb assignment (Chris) add warning for active pipes w/o fbs (Chris) clean up num_pipes checks in fbdev_init and fbdev_restore_mode (Chris) move i915.fastboot into fbdev_init (Chris) v11:make BIOS connector config usage unconditional (Daniel) v12:fix up fb vs pipe size checking (Chris) Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-03-07 23:57:51 +07:00
int preferred_bpp;
drm/i915: Block fbdev HPD processing during suspend When resuming, we check whether or not any previously connected MST topologies are still present and if so, attempt to resume them. If this fails, we disable said MST topologies and fire off a hotplug event so that userspace knows to reprobe. However, sending a hotplug event involves calling drm_fb_helper_hotplug_event(), which in turn results in fbcon doing a connector reprobe in the caller's thread - something we can't do at the point in which i915 calls drm_dp_mst_topology_mgr_resume() since hotplugging hasn't been fully initialized yet. This currently causes some rather subtle but fatal issues. For example, on my T480s the laptop dock connected to it usually disappears during a suspend cycle, and comes back up a short while after the system has been resumed. This guarantees pretty much every suspend and resume cycle, drm_dp_mst_topology_mgr_set_mst(mgr, false); will be caused and in turn, a connector hotplug will occur. Now it's Rute Goldberg time: when the connector hotplug occurs, i915 reprobes /all/ of the connectors, including eDP. However, eDP probing requires that we power on the panel VDD which in turn, grabs a wakeref to the appropriate power domain on the GPU (on my T480s, this is the PORT_DDI_A_IO domain). This is where things start breaking, since this all happens before intel_power_domains_enable() is called we end up leaking the wakeref that was acquired and never releasing it later. Come next suspend/resume cycle, this causes us to fail to shut down the GPU properly, which causes it not to resume properly and die a horrible complicated death. (as a note: this only happens when there's both an eDP panel and MST topology connected which is removed mid-suspend. One or the other seems to always be OK). We could try to fix the VDD wakeref leak, but this doesn't seem like it's worth it at all since we aren't able to handle hotplug detection while resuming anyway. So, let's go with a more robust solution inspired by nouveau: block fbdev from handling hotplug events until we resume fbdev. This allows us to still send sysfs hotplug events to be handled later by user space while we're resuming, while also preventing us from actually processing any hotplug events we receive until it's safe. This fixes the wakeref leak observed on the T480s and as such, also fixes suspend/resume with MST topologies connected on this machine. Changes since v2: * Don't call drm_fb_helper_hotplug_event() under lock, do it after lock (Chris Wilson) * Don't call drm_fb_helper_hotplug_event() in intel_fbdev_output_poll_changed() under lock (Chris Wilson) * Always set ifbdev->hpd_waiting (Chris Wilson) Signed-off-by: Lyude Paul <lyude@redhat.com> Fixes: 0e32b39ceed6 ("drm/i915: add DP 1.2 MST support (v0.7)") Cc: Todd Previte <tprevite@gmail.com> Cc: Dave Airlie <airlied@redhat.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Imre Deak <imre.deak@intel.com> Cc: intel-gfx@lists.freedesktop.org Cc: <stable@vger.kernel.org> # v3.17+ Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190129191001.442-2-lyude@redhat.com
2019-01-30 02:09:59 +07:00
/* Whether or not fbdev hpd processing is temporarily suspended */
bool hpd_suspended : 1;
/* Set when a hotplug was received while HPD processing was
* suspended
*/
bool hpd_waiting : 1;
/* Protects hpd_suspended */
struct mutex hpd_lock;
};
struct intel_encoder {
struct drm_encoder base;
drm/i915: stage modeset output changes This is the core of the new modeset logic. The current code which is based upon the crtc helper code first updates all the link of the new display pipeline and then calls the lower-level set_mode function to execute the required callbacks to get there. The issue with this approach is that for disabling we need to know the _current_ display pipe state, not the new one. Hence we need to stage the new state of the display pipe and only update it once we have disabled the current configuration and before we start to update the hw registers with the new configuration. This patch here just prepares the ground by switching the new output state computation to these staging pointers. To make it clearer, rename the old update_output_state function to stage_output_state. A few peculiarities: - We're also calling the set_mode function at various places to update properties. Hence after a successfule modeset we need to stage the current configuration (for otherwise we might fall back again). This happens automatically because as part of the (successful) modeset we need to copy the staged state to the real one. But for the hw readout code we need to make sure that this happens, too. - Teach the new staged output state computation code the required smarts to handle the disabling of outputs. The current code handles this in a special case, but to better handle global modeset changes covering more than one crtc, we want to do this all in the same low-level modeset code. - The actual modeset code is still a bit ugly and wants to know the new crtc->enabled state a bit early. Follow-on patches will clean that up, for now we have to apply the staged output configuration early, outside of the set_mode functions. - Improve/add comments in stage_output_state. Essentially all that is left to do now is move the disabling code into set_mode and then move the staged state update code also into set_mode, at the right place between disabling things and calling the mode_set callbacks for the new configuration. v2: Disabling a crtc works by passing in a NULL mode or fb, userspace doesn't hand in the list of connectors. We therefore need to detect this case manually and tear down all the output links. v3: Properly update the output staging pointers after having read out the hw state. v4: Simplify the code, add more DRM_DEBUG_KMS output and check a few assumptions with WARN_ON. Essentially all things that I've noticed while debugging issues in other places of the code. v4: Correctly disable the old set of connectors when enabling an already enabled crtc on a new set of crtc. Reported by Paulo Zanoni. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-07-06 03:34:27 +07:00
enum intel_output_type type;
enum port port;
unsigned int cloneable;
bool (*hotplug)(struct intel_encoder *encoder,
struct intel_connector *connector);
drm/i915: Stop frobbing with DDI encoder->type Currently the DDI encoder->type will change at runtime depending on what kind of hotplugs we've processed. That's quite bad since we can't really trust that that current value of encoder->type actually matches the type of signal we're trying to drive through it. Let's eliminate that problem by declaring that non-eDP DDI port will always have the encoder type as INTEL_OUTPUT_DDI. This means the code can no longer try to distinguish DP vs. HDMI based on encoder->type. We'll leave eDP as INTEL_OUTPUT_EDP, since it'll never change and there's a bunch of code that relies on that value to identify eDP encoders. We'll introduce a new encoder .compute_output_type() hook. This allows us to compute the full output_types before any encoder .compute_config() hooks get called, thus those hooks can rely on output_types being correct, which is useful for cloning on oldr platforms. For now we'll just look at the connector type and pick the correct mode based on that. In the future the new hook could be used to implement dynamic switching between LS and PCON modes for LSPCON. v2: Fix BXT/GLK PPS explosion with DSI/MST encoders v3: Avoid the PPS warn on pure HDMI/DVI DDI encoders by checking dp.output_reg v4: Rebase v5: Populate output_types in .get_config() rather than in the caller v5: Split out populating output_types in .get_config() (Maarten) Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171027193128.14483-3-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2017-10-28 02:31:24 +07:00
enum intel_output_type (*compute_output_type)(struct intel_encoder *,
struct intel_crtc_state *,
struct drm_connector_state *);
drm/i915: Pass down rc in intel_encoder->compute_config() Something that I completely missed when implementing the new MST VCPI atomic helpers is that with those helpers, there's technically a chance of us having to grab additional modeset locks in ->compute_config() and furthermore, that means we have the potential to hit a normal modeset deadlock. However, because ->compute_config() only returns a bool this means we can't return -EDEADLK when we need to drop locks and try again which means we end up just failing the atomic check permanently. Whoops. So, fix this by modifying ->compute_config() to pass down an actual error code instead of a bool so that the atomic check can be restarted on modeset deadlocks. Thanks to Ville Syrjälä for pointing this out! Changes since v1: * Add some newlines * Return only -EINVAL from hsw_crt_compute_config() * Propogate return code from intel_dp_compute_dsc_params() * Change all of the intel_dp_compute_link_config*() variants * Don't miss if (hdmi_port_clock_valid()) branch in intel_hdmi_compute_config() [Cherry-picked from drm-misc-next to drm-intel-next-queued to fix linux-next & drm-tip conflict, while waiting for proper propagation of the DP MST series that this commit fixes. In hindsight, a topic branch might have been a better approach for it.] Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Fixes: eceae1472467 ("drm/dp_mst: Start tracking per-port VCPI allocations") Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=109320 Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190115200800.3121-1-lyude@redhat.com (cherry picked from commit 96550555a78ca3c9fda4b358549a5622810fe32c) Signed-off-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Daniel Vetter <daniel@ffwll.ch>
2019-01-16 03:08:00 +07:00
int (*compute_config)(struct intel_encoder *,
struct intel_crtc_state *,
struct drm_connector_state *);
void (*pre_pll_enable)(struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*pre_enable)(struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*enable)(struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*disable)(struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*post_disable)(struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*post_pll_disable)(struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*update_pipe)(struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
/* Read out the current hw state of this connector, returning true if
* the encoder is active. If the encoder is enabled it also set the pipe
* it is connected to in the pipe parameter. */
bool (*get_hw_state)(struct intel_encoder *, enum pipe *pipe);
/* Reconstructs the equivalent mode flags for the current hardware
* state. This must be called _after_ display->get_pipe_config has
* pre-filled the pipe config. Note that intel_encoder->base.crtc must
* be set correctly before calling this function. */
void (*get_config)(struct intel_encoder *,
struct intel_crtc_state *pipe_config);
/*
* Acquires the power domains needed for an active encoder during
* hardware state readout.
*/
void (*get_power_domains)(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state);
/*
* Called during system suspend after all pending requests for the
* encoder are flushed (for example for DP AUX transactions) and
* device interrupts are disabled.
*/
void (*suspend)(struct intel_encoder *);
int crtc_mask;
enum hpd_pin hpd_pin;
enum intel_display_power_domain power_domain;
/* for communication with audio component; protected by av_mutex */
const struct drm_connector *audio_connector;
};
struct intel_panel {
struct drm_display_mode *fixed_mode;
struct drm_display_mode *downclock_mode;
/* backlight */
struct {
bool present;
u32 level;
u32 min;
u32 max;
bool enabled;
bool combination_mode; /* gen 2/4 only */
bool active_low_pwm;
bool alternate_pwm_increment; /* lpt+ */
/* PWM chip */
drm/i915/bxt: Modify BXT BLC according to VBT changes Latest VBT mentions which set of registers will be used for BLC, as controller number field. Making use of this field in BXT BLC implementation. Also, the registers are used in case control pin indicates display DDI. Adding a check for this. According to Bspec, BLC_PWM_*_2 uses the display utility pin for output. To use backlight 2, enable the utility pin with mode = PWM v2: Jani's review comments addressed - Add a prefix _ to BXT BLC registers definitions. - Add "bxt only" comment for u8 controller - Remove control_pin check for DDI controller - Check for valid controller values - Set pipe bits in UTIL_PIN_CTL - Enable/Disable UTIL_PIN_CTL in enable/disable_backlight() - If BLC 2 is used, read active_low_pwm from UTIL_PIN polarity Satheesh's review comment addressed - If UTIL PIN is already enabled, BIOS would have programmed it. No need to disable and enable again. v3: Jani's review comments - add UTIL_PIN_PIPE_MASK and UTIL_PIN_MODE_MASK - Disable UTIL_PIN if controller 1 is used - Mask out UTIL_PIN_PIPE_MASK and UTIL_PIN_MODE_MASK before enabling UTIL_PIN - check valid controller value in intel_bios.c - add backlight.util_pin_active_low - disable util pin before enabling v4: Change for BXT-PO branch: Stubbed unwanted definition which was existing before because of DC6 patch. UTIL_PIN_MODE_PWM (0x1b << 24) v2: Fixed Jani's review comment. v3: Split the backight PWM frequency programming into separate patch, in cases BIOS doesn't initializes it. v4: Starting afresh and not modifying existing state for backlight, as per Jani's recommendation. v5: Fixed Jani's review comment wrt util pin enable Signed-off-by: Vandana Kannan <vandana.kannan@intel.com> Signed-off-by: Sunil Kamath <sunil.kamath@intel.com> Signed-off-by: Uma Shankar <uma.shankar@intel.com> Reviewed-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-10-01 00:04:57 +07:00
bool util_pin_active_low; /* bxt+ */
u8 controller; /* bxt+ only */
struct pwm_device *pwm;
struct backlight_device *device;
/* Connector and platform specific backlight functions */
int (*setup)(struct intel_connector *connector, enum pipe pipe);
u32 (*get)(struct intel_connector *connector);
void (*set)(const struct drm_connector_state *conn_state, u32 level);
drm/i915: Pass atomic state to backlight enable/disable/set callbacks. Pass crtc_state to the enable callback, and connector_state to all callbacks. This will eliminate the need to guess for the correct pipe in these callbacks. The crtc state is required for pch_enable_backlight to obtain the correct cpu_transcoder. intel_dp_aux_backlight's setup function is called before hw readout, so crtc_state and connector_state->best_encoder are NULL in the enable() and set() callbacks. This fixes the following series of warns from intel_get_pipe_from_connector: [ 219.968428] ------------[ cut here ]------------ [ 219.968481] WARNING: CPU: 3 PID: 2457 at drivers/gpu/drm/i915/intel_display.c:13881 intel_get_pipe_from_connector+0x62/0x90 [i915] [ 219.968483] WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)) [ 219.968485] Modules linked in: nls_iso8859_1 snd_hda_codec_hdmi snd_hda_codec_realtek snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hda_core snd_hwdep snd_pcm intel_rapl x86_pkg_temp_thermal coretemp kvm_intel snd_seq_midi snd_seq_midi_event kvm snd_rawmidi irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel pcbc snd_seq snd_seq_device serio_raw snd_timer aesni_intel aes_x86_64 crypto_simd glue_helper cryptd lpc_ich snd mei_me shpchp soundcore mei rfkill_gpio mac_hid intel_pmc_ipc parport_pc ppdev lp parport ip_tables x_tables autofs4 hid_generic usbhid igb ahci i915 xhci_pci dca xhci_hcd ptp sdhci_pci sdhci libahci pps_core i2c_hid hid video [ 219.968573] CPU: 3 PID: 2457 Comm: kworker/u8:3 Tainted: G W 4.10.0-tip-201703010159+ #2 [ 219.968575] Hardware name: Intel Corp. Broxton P/NOTEBOOK, BIOS APLKRVPA.X64.0144.B10.1606270006 06/27/2016 [ 219.968627] Workqueue: events_unbound intel_atomic_commit_work [i915] [ 219.968629] Call Trace: [ 219.968640] dump_stack+0x63/0x87 [ 219.968646] __warn+0xd1/0xf0 [ 219.968651] warn_slowpath_fmt+0x4f/0x60 [ 219.968657] ? drm_printk+0x97/0xa0 [ 219.968708] intel_get_pipe_from_connector+0x62/0x90 [i915] [ 219.968756] intel_panel_enable_backlight+0x19/0xf0 [i915] [ 219.968804] intel_edp_backlight_on.part.22+0x33/0x40 [i915] [ 219.968852] intel_edp_backlight_on+0x18/0x20 [i915] [ 219.968900] intel_enable_ddi+0x94/0xc0 [i915] [ 219.968950] intel_encoders_enable.isra.93+0x77/0x90 [i915] [ 219.969000] haswell_crtc_enable+0x310/0x7f0 [i915] [ 219.969051] intel_update_crtc+0x58/0x100 [i915] [ 219.969101] skl_update_crtcs+0x218/0x240 [i915] [ 219.969153] intel_atomic_commit_tail+0x350/0x1000 [i915] [ 219.969159] ? vtime_account_idle+0xe/0x50 [ 219.969164] ? finish_task_switch+0x107/0x250 [ 219.969214] intel_atomic_commit_work+0x12/0x20 [i915] [ 219.969219] process_one_work+0x153/0x3f0 [ 219.969223] worker_thread+0x12b/0x4b0 [ 219.969227] kthread+0x101/0x140 [ 219.969230] ? rescuer_thread+0x340/0x340 [ 219.969233] ? kthread_park+0x90/0x90 [ 219.969237] ? do_syscall_64+0x6e/0x180 [ 219.969243] ret_from_fork+0x2c/0x40 [ 219.969246] ---[ end trace 0a8fa19387b9ad6d ]--- Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=100022 Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170612102115.23665-4-maarten.lankhorst@linux.intel.com Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
2017-06-12 17:21:15 +07:00
void (*disable)(const struct drm_connector_state *conn_state);
void (*enable)(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state);
u32 (*hz_to_pwm)(struct intel_connector *connector, u32 hz);
void (*power)(struct intel_connector *, bool enable);
} backlight;
};
struct intel_digital_port;
enum check_link_response {
HDCP_LINK_PROTECTED = 0,
HDCP_TOPOLOGY_CHANGE,
HDCP_LINK_INTEGRITY_FAILURE,
HDCP_REAUTH_REQUEST
};
drm/i915: Add HDCP framework + base implementation This patch adds the framework required to add HDCP support to intel connectors. It implements Aksv loading from fuse, and parts 1/2/3 of the HDCP authentication scheme. Note that without shim implementations, this does not actually implement HDCP. That will come in subsequent patches. Changes in v2: - Don't open code wait_fors (Chris) - drm_hdcp.c under MIT license (Daniel) - Move intel_hdcp_disable() call above ddi_disable (Ram) - Fix // comments (I wore a cone of shame for 12 hours to atone) (Daniel) - Justify intel_hdcp_shim with comments (Daniel) - Fixed async locking issues by adding hdcp_mutex (Daniel) - Don't alter connector_state in enable/disable (Daniel) Changes in v3: - Added hdcp_mutex/hdcp_value to make async reasonable - Added hdcp_prop_work to separate link checking & property setting - Added new helper for atomic_check state tracking (Daniel) - Moved enable/disable into atomic_commit with matching helpers - Moved intel_hdcp_check_link out of all locks when called from dp - Bumped up ksv_fifo timeout (noticed failure on one of my dongles) Changes in v4: - Remove SKL_ prefix from most register names (Daniel) - Move enable/disable back to modeset path (Daniel) - s/get_random_long/get_random_u32/ (Daniel) - Remove mode_config.mutex lock in prop_work (Daniel) - Add intel_hdcp_init to handle init of conn components (Daniel) - Actually check return value of attach_property - Check Bksv is valid before trying to authenticate (Ram) Changes in v5: - checkpatch whitespace changes - s/DRM_MODE_CONTENT_PROTECTION_OFF/DRM_MODE_CONTENT_PROTECTION_UNDESIRED/ - Fix ksv list wait timeout (actually wait 5s) - Increase the R0 timeout to 300ms (Ram) Changes in v6: - SPDX license Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Ramalingam C <ramalingm.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Sean Paul <seanpaul@chromium.org> Link: https://patchwork.freedesktop.org/patch/msgid/20180108195545.218615-6-seanpaul@chromium.org
2018-01-09 02:55:39 +07:00
/*
* This structure serves as a translation layer between the generic HDCP code
* and the bus-specific code. What that means is that HDCP over HDMI differs
* from HDCP over DP, so to account for these differences, we need to
* communicate with the receiver through this shim.
*
* For completeness, the 2 buses differ in the following ways:
* - DP AUX vs. DDC
* HDCP registers on the receiver are set via DP AUX for DP, and
* they are set via DDC for HDMI.
* - Receiver register offsets
* The offsets of the registers are different for DP vs. HDMI
* - Receiver register masks/offsets
* For instance, the ready bit for the KSV fifo is in a different
* place on DP vs HDMI
* - Receiver register names
* Seriously. In the DP spec, the 16-bit register containing
* downstream information is called BINFO, on HDMI it's called
* BSTATUS. To confuse matters further, DP has a BSTATUS register
* with a completely different definition.
* - KSV FIFO
* On HDMI, the ksv fifo is read all at once, whereas on DP it must
* be read 3 keys at a time
* - Aksv output
* Since Aksv is hidden in hardware, there's different procedures
* to send it over DP AUX vs DDC
*/
struct intel_hdcp_shim {
/* Outputs the transmitter's An and Aksv values to the receiver. */
int (*write_an_aksv)(struct intel_digital_port *intel_dig_port, u8 *an);
/* Reads the receiver's key selection vector */
int (*read_bksv)(struct intel_digital_port *intel_dig_port, u8 *bksv);
/*
* Reads BINFO from DP receivers and BSTATUS from HDMI receivers. The
* definitions are the same in the respective specs, but the names are
* different. Call it BSTATUS since that's the name the HDMI spec
* uses and it was there first.
*/
int (*read_bstatus)(struct intel_digital_port *intel_dig_port,
u8 *bstatus);
/* Determines whether a repeater is present downstream */
int (*repeater_present)(struct intel_digital_port *intel_dig_port,
bool *repeater_present);
/* Reads the receiver's Ri' value */
int (*read_ri_prime)(struct intel_digital_port *intel_dig_port, u8 *ri);
/* Determines if the receiver's KSV FIFO is ready for consumption */
int (*read_ksv_ready)(struct intel_digital_port *intel_dig_port,
bool *ksv_ready);
/* Reads the ksv fifo for num_downstream devices */
int (*read_ksv_fifo)(struct intel_digital_port *intel_dig_port,
int num_downstream, u8 *ksv_fifo);
/* Reads a 32-bit part of V' from the receiver */
int (*read_v_prime_part)(struct intel_digital_port *intel_dig_port,
int i, u32 *part);
/* Enables HDCP signalling on the port */
int (*toggle_signalling)(struct intel_digital_port *intel_dig_port,
bool enable);
/* Ensures the link is still protected */
bool (*check_link)(struct intel_digital_port *intel_dig_port);
/* Detects panel's hdcp capability. This is optional for HDMI. */
int (*hdcp_capable)(struct intel_digital_port *intel_dig_port,
bool *hdcp_capable);
/* HDCP adaptation(DP/HDMI) required on the port */
enum hdcp_wired_protocol protocol;
drm/i915: Enable and Disable of HDCP2.2 Considering that HDCP2.2 is more secure than HDCP1.4, When a setup supports HDCP2.2 and HDCP1.4, HDCP2.2 will be enabled. When HDCP2.2 enabling fails and HDCP1.4 is supported, HDCP1.4 is enabled. This change implements a sequence of enabling and disabling of HDCP2.2 authentication and HDCP2.2 port encryption. v2: Included few optimization suggestions [Chris Wilson] Commit message is updated as per the rebased version. intel_wait_for_register is used instead of wait_for. [Chris Wilson] v3: Extra comment added and Style issue fixed [Uma] v4: Rebased as part of patch reordering. HDCP2 encryption status is tracked. HW state check is moved into WARN_ON [Daniel] v5: Redefined the mei service functions as per comp redesign. Merged patches related to hdcp2.2 enabling and disabling [Sean Paul]. Required shim functionality is defined [Sean Paul] v6: Return values are handles [Uma] Realigned the code. Check for comp_master is removed. v7: HDCP2.2 is attempted only if mei interface is up. Adjust to the new interface Avoid bool usage in struct [Tomas] v8: mei_binded status check is removed. %s/hdcp2_in_use/hdcp2_encrypted v9: bool is used in struct intel_hdcp. [Daniel] v10: panel is replaced with sink [Uma] Mei interface decided the hdcp2_capability. WARN_ON if hdcp_enable is called when hdcp state is ENABLED. Reviewed-by Uma. Signed-off-by: Ramalingam C <ramalingam.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Uma Shankar <uma.shankar@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/1550338640-17470-7-git-send-email-ramalingam.c@intel.com
2019-02-17 00:36:53 +07:00
/* Detects whether sink is HDCP2.2 capable */
int (*hdcp_2_2_capable)(struct intel_digital_port *intel_dig_port,
bool *capable);
drm/i915: Implement HDCP2.2 receiver authentication Implements HDCP2.2 authentication for hdcp2.2 receivers, with following steps: Authentication and Key exchange (AKE). Locality Check (LC). Session Key Exchange(SKE). DP Errata for stream type configuration for receivers. At AKE, the HDCP Receiver’s public key certificate is verified by the HDCP Transmitter. A Master Key k m is exchanged. At LC, the HDCP Transmitter enforces locality on the content by requiring that the Round Trip Time (RTT) between a pair of messages is not more than 20 ms. At SKE, The HDCP Transmitter exchanges Session Key ks with the HDCP Receiver. In DP HDCP2.2 encryption and decryption logics use the stream type as one of the parameter. So Before enabling the Encryption DP HDCP2.2 receiver needs to be communicated with stream type. This is added to spec as ERRATA. This generic implementation is complete only with the hdcp2 specific functions defined at hdcp_shim. v2: Rebased. v3: %s/PARING/PAIRING Coding style fixing [Uma] v4: Rebased as part of patch reordering. Defined the functions for mei services. [Daniel] v5: Redefined the mei service functions as per comp redesign. Required intel_hdcp members are defined [Sean Paul] v6: Typo of cipher is Fixed [Uma] %s/uintxx_t/uxx Check for comp_master is removed. v7: Adjust to the new interface. Avoid using bool structure members. [Tomas] v8: Rebased. v9: bool is used in struct intel_hdcp [Daniel] config_stream_type is redesigned [Daniel] Reviewed-by Uma. Signed-off-by: Ramalingam C <ramalingam.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Uma Shankar <uma.shankar@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/1550338640-17470-8-git-send-email-ramalingam.c@intel.com
2019-02-17 00:36:54 +07:00
/* Write HDCP2.2 messages */
int (*write_2_2_msg)(struct intel_digital_port *intel_dig_port,
void *buf, size_t size);
/* Read HDCP2.2 messages */
int (*read_2_2_msg)(struct intel_digital_port *intel_dig_port,
u8 msg_id, void *buf, size_t size);
/*
* Implementation of DP HDCP2.2 Errata for the communication of stream
* type to Receivers. In DP HDCP2.2 Stream type is one of the input to
* the HDCP2.2 Cipher for En/De-Cryption. Not applicable for HDMI.
*/
int (*config_stream_type)(struct intel_digital_port *intel_dig_port,
bool is_repeater, u8 type);
/* HDCP2.2 Link Integrity Check */
int (*check_2_2_link)(struct intel_digital_port *intel_dig_port);
drm/i915: Add HDCP framework + base implementation This patch adds the framework required to add HDCP support to intel connectors. It implements Aksv loading from fuse, and parts 1/2/3 of the HDCP authentication scheme. Note that without shim implementations, this does not actually implement HDCP. That will come in subsequent patches. Changes in v2: - Don't open code wait_fors (Chris) - drm_hdcp.c under MIT license (Daniel) - Move intel_hdcp_disable() call above ddi_disable (Ram) - Fix // comments (I wore a cone of shame for 12 hours to atone) (Daniel) - Justify intel_hdcp_shim with comments (Daniel) - Fixed async locking issues by adding hdcp_mutex (Daniel) - Don't alter connector_state in enable/disable (Daniel) Changes in v3: - Added hdcp_mutex/hdcp_value to make async reasonable - Added hdcp_prop_work to separate link checking & property setting - Added new helper for atomic_check state tracking (Daniel) - Moved enable/disable into atomic_commit with matching helpers - Moved intel_hdcp_check_link out of all locks when called from dp - Bumped up ksv_fifo timeout (noticed failure on one of my dongles) Changes in v4: - Remove SKL_ prefix from most register names (Daniel) - Move enable/disable back to modeset path (Daniel) - s/get_random_long/get_random_u32/ (Daniel) - Remove mode_config.mutex lock in prop_work (Daniel) - Add intel_hdcp_init to handle init of conn components (Daniel) - Actually check return value of attach_property - Check Bksv is valid before trying to authenticate (Ram) Changes in v5: - checkpatch whitespace changes - s/DRM_MODE_CONTENT_PROTECTION_OFF/DRM_MODE_CONTENT_PROTECTION_UNDESIRED/ - Fix ksv list wait timeout (actually wait 5s) - Increase the R0 timeout to 300ms (Ram) Changes in v6: - SPDX license Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Ramalingam C <ramalingm.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Sean Paul <seanpaul@chromium.org> Link: https://patchwork.freedesktop.org/patch/msgid/20180108195545.218615-6-seanpaul@chromium.org
2018-01-09 02:55:39 +07:00
};
struct intel_hdcp {
const struct intel_hdcp_shim *shim;
/* Mutex for hdcp state of the connector */
struct mutex mutex;
u64 value;
struct delayed_work check_work;
struct work_struct prop_work;
/* HDCP1.4 Encryption status */
bool hdcp_encrypted;
/* HDCP2.2 related definitions */
/* Flag indicates whether this connector supports HDCP2.2 or not. */
bool hdcp2_supported;
drm/i915: Enable and Disable of HDCP2.2 Considering that HDCP2.2 is more secure than HDCP1.4, When a setup supports HDCP2.2 and HDCP1.4, HDCP2.2 will be enabled. When HDCP2.2 enabling fails and HDCP1.4 is supported, HDCP1.4 is enabled. This change implements a sequence of enabling and disabling of HDCP2.2 authentication and HDCP2.2 port encryption. v2: Included few optimization suggestions [Chris Wilson] Commit message is updated as per the rebased version. intel_wait_for_register is used instead of wait_for. [Chris Wilson] v3: Extra comment added and Style issue fixed [Uma] v4: Rebased as part of patch reordering. HDCP2 encryption status is tracked. HW state check is moved into WARN_ON [Daniel] v5: Redefined the mei service functions as per comp redesign. Merged patches related to hdcp2.2 enabling and disabling [Sean Paul]. Required shim functionality is defined [Sean Paul] v6: Return values are handles [Uma] Realigned the code. Check for comp_master is removed. v7: HDCP2.2 is attempted only if mei interface is up. Adjust to the new interface Avoid bool usage in struct [Tomas] v8: mei_binded status check is removed. %s/hdcp2_in_use/hdcp2_encrypted v9: bool is used in struct intel_hdcp. [Daniel] v10: panel is replaced with sink [Uma] Mei interface decided the hdcp2_capability. WARN_ON if hdcp_enable is called when hdcp state is ENABLED. Reviewed-by Uma. Signed-off-by: Ramalingam C <ramalingam.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Uma Shankar <uma.shankar@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/1550338640-17470-7-git-send-email-ramalingam.c@intel.com
2019-02-17 00:36:53 +07:00
/* HDCP2.2 Encryption status */
bool hdcp2_encrypted;
/*
* Content Stream Type defined by content owner. TYPE0(0x0) content can
* flow in the link protected by HDCP2.2 or HDCP1.4, where as TYPE1(0x1)
* content can flow only through a link protected by HDCP2.2.
*/
u8 content_type;
struct hdcp_port_data port_data;
drm/i915: Implement HDCP2.2 receiver authentication Implements HDCP2.2 authentication for hdcp2.2 receivers, with following steps: Authentication and Key exchange (AKE). Locality Check (LC). Session Key Exchange(SKE). DP Errata for stream type configuration for receivers. At AKE, the HDCP Receiver’s public key certificate is verified by the HDCP Transmitter. A Master Key k m is exchanged. At LC, the HDCP Transmitter enforces locality on the content by requiring that the Round Trip Time (RTT) between a pair of messages is not more than 20 ms. At SKE, The HDCP Transmitter exchanges Session Key ks with the HDCP Receiver. In DP HDCP2.2 encryption and decryption logics use the stream type as one of the parameter. So Before enabling the Encryption DP HDCP2.2 receiver needs to be communicated with stream type. This is added to spec as ERRATA. This generic implementation is complete only with the hdcp2 specific functions defined at hdcp_shim. v2: Rebased. v3: %s/PARING/PAIRING Coding style fixing [Uma] v4: Rebased as part of patch reordering. Defined the functions for mei services. [Daniel] v5: Redefined the mei service functions as per comp redesign. Required intel_hdcp members are defined [Sean Paul] v6: Typo of cipher is Fixed [Uma] %s/uintxx_t/uxx Check for comp_master is removed. v7: Adjust to the new interface. Avoid using bool structure members. [Tomas] v8: Rebased. v9: bool is used in struct intel_hdcp [Daniel] config_stream_type is redesigned [Daniel] Reviewed-by Uma. Signed-off-by: Ramalingam C <ramalingam.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Uma Shankar <uma.shankar@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/1550338640-17470-8-git-send-email-ramalingam.c@intel.com
2019-02-17 00:36:54 +07:00
bool is_paired;
bool is_repeater;
/*
* Count of ReceiverID_List received. Initialized to 0 at AKE_INIT.
* Incremented after processing the RepeaterAuth_Send_ReceiverID_List.
* When it rolls over re-auth has to be triggered.
*/
u32 seq_num_v;
/*
* Count of RepeaterAuth_Stream_Manage msg propagated.
* Initialized to 0 on AKE_INIT. Incremented after every successful
* transmission of RepeaterAuth_Stream_Manage message. When it rolls
* over re-Auth has to be triggered.
*/
u32 seq_num_m;
/*
* Work queue to signal the CP_IRQ. Used for the waiters to read the
* available information from HDCP DP sink.
*/
wait_queue_head_t cp_irq_queue;
atomic_t cp_irq_count;
int cp_irq_count_cached;
};
struct intel_connector {
struct drm_connector base;
drm/i915: stage modeset output changes This is the core of the new modeset logic. The current code which is based upon the crtc helper code first updates all the link of the new display pipeline and then calls the lower-level set_mode function to execute the required callbacks to get there. The issue with this approach is that for disabling we need to know the _current_ display pipe state, not the new one. Hence we need to stage the new state of the display pipe and only update it once we have disabled the current configuration and before we start to update the hw registers with the new configuration. This patch here just prepares the ground by switching the new output state computation to these staging pointers. To make it clearer, rename the old update_output_state function to stage_output_state. A few peculiarities: - We're also calling the set_mode function at various places to update properties. Hence after a successfule modeset we need to stage the current configuration (for otherwise we might fall back again). This happens automatically because as part of the (successful) modeset we need to copy the staged state to the real one. But for the hw readout code we need to make sure that this happens, too. - Teach the new staged output state computation code the required smarts to handle the disabling of outputs. The current code handles this in a special case, but to better handle global modeset changes covering more than one crtc, we want to do this all in the same low-level modeset code. - The actual modeset code is still a bit ugly and wants to know the new crtc->enabled state a bit early. Follow-on patches will clean that up, for now we have to apply the staged output configuration early, outside of the set_mode functions. - Improve/add comments in stage_output_state. Essentially all that is left to do now is move the disabling code into set_mode and then move the staged state update code also into set_mode, at the right place between disabling things and calling the mode_set callbacks for the new configuration. v2: Disabling a crtc works by passing in a NULL mode or fb, userspace doesn't hand in the list of connectors. We therefore need to detect this case manually and tear down all the output links. v3: Properly update the output staging pointers after having read out the hw state. v4: Simplify the code, add more DRM_DEBUG_KMS output and check a few assumptions with WARN_ON. Essentially all things that I've noticed while debugging issues in other places of the code. v4: Correctly disable the old set of connectors when enabling an already enabled crtc on a new set of crtc. Reported by Paulo Zanoni. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-07-06 03:34:27 +07:00
/*
* The fixed encoder this connector is connected to.
*/
struct intel_encoder *encoder;
drm/i915: stage modeset output changes This is the core of the new modeset logic. The current code which is based upon the crtc helper code first updates all the link of the new display pipeline and then calls the lower-level set_mode function to execute the required callbacks to get there. The issue with this approach is that for disabling we need to know the _current_ display pipe state, not the new one. Hence we need to stage the new state of the display pipe and only update it once we have disabled the current configuration and before we start to update the hw registers with the new configuration. This patch here just prepares the ground by switching the new output state computation to these staging pointers. To make it clearer, rename the old update_output_state function to stage_output_state. A few peculiarities: - We're also calling the set_mode function at various places to update properties. Hence after a successfule modeset we need to stage the current configuration (for otherwise we might fall back again). This happens automatically because as part of the (successful) modeset we need to copy the staged state to the real one. But for the hw readout code we need to make sure that this happens, too. - Teach the new staged output state computation code the required smarts to handle the disabling of outputs. The current code handles this in a special case, but to better handle global modeset changes covering more than one crtc, we want to do this all in the same low-level modeset code. - The actual modeset code is still a bit ugly and wants to know the new crtc->enabled state a bit early. Follow-on patches will clean that up, for now we have to apply the staged output configuration early, outside of the set_mode functions. - Improve/add comments in stage_output_state. Essentially all that is left to do now is move the disabling code into set_mode and then move the staged state update code also into set_mode, at the right place between disabling things and calling the mode_set callbacks for the new configuration. v2: Disabling a crtc works by passing in a NULL mode or fb, userspace doesn't hand in the list of connectors. We therefore need to detect this case manually and tear down all the output links. v3: Properly update the output staging pointers after having read out the hw state. v4: Simplify the code, add more DRM_DEBUG_KMS output and check a few assumptions with WARN_ON. Essentially all things that I've noticed while debugging issues in other places of the code. v4: Correctly disable the old set of connectors when enabling an already enabled crtc on a new set of crtc. Reported by Paulo Zanoni. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-07-06 03:34:27 +07:00
drm/i915: make i915 the source of acpi device ids for _DOD The graphics driver is supposed to define the DIDL, which are used for _DOD, not the BIOS. Restore that behaviour. This is basically a revert of commit 3143751ff51a163b77f7efd389043e038f3e008e Author: Zhang Rui <rui.zhang@intel.com> Date: Mon Mar 29 15:12:16 2010 +0800 drm/i915: set DIDL using the ACPI video output device _ADR method return. which went out of its way to cater to a specific BIOS, setting up DIDL based on _ADR method. Perhaps that approach worked on that specific machine, but on the machines I checked the _ADR method invents the device identifiers out of thin air if DIDL has not been set. The source for _ADR is also supposed to be the DIDL set by the driver, not the other way around. With this, we'll also limit the number of outputs to what the driver actually has. A side effect of this change is that the DIDL, and by proxy CADL, will be initialized in the order of the connector list. That, in turn, has internal panels in front, ensuring they're included in the DIDL and CADL lists. Hopefully this ensures the BIOS does not block backlight hotkey events, thinking the internal panel is off. v2: do not set ACPI_DEVICE_ID_SCHEME in the device id (Peter Wu) v3: Rebase Cc: Peter Wu <peter@lekensteyn.nl> Cc: Rainer Koenig <Rainer.Koenig@ts.fujitsu.com> Cc: Jan-Marek Glogowski <glogow@fbihome.de> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Marcos Paulo de Souza <marcos.souza.org@gmail.com> Cc: Paolo Stivanin <paolostivanin@fastmail.fm> Tested-by: Rainer Koenig <Rainer.Koenig@ts.fujitsu.com> Tested-by: Paolo Stivanin <paolostivanin@fastmail.fm> Tested-by: Marcos Paulo de Souza <marcos.souza.org@gmail.com> Reviewed-and-tested-by: Peter Wu <peter@lekensteyn.nl> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/9660d29cf310c17bbf4d58c0e09d5b047446e2d5.1479295490.git.jani.nikula@intel.com
2016-11-16 18:29:56 +07:00
/* ACPI device id for ACPI and driver cooperation */
u32 acpi_device_id;
/* Reads out the current hw, returning true if the connector is enabled
* and active (i.e. dpms ON state). */
bool (*get_hw_state)(struct intel_connector *);
/* Panel info for eDP and LVDS */
struct intel_panel panel;
/* Cached EDID for eDP and LVDS. May hold ERR_PTR for invalid EDID. */
struct edid *edid;
struct edid *detect_edid;
/* since POLL and HPD connectors may use the same HPD line keep the native
state of connector->polled in case hotplug storm detection changes it */
u8 polled;
2014-05-02 11:02:48 +07:00
void *port; /* store this opaque as its illegal to dereference it */
struct intel_dp *mst_port;
drm/i915: Implement Link Rate fallback on Link training failure If link training at a link rate optimal for a particular mode fails during modeset's atomic commit phase, then we let the modeset complete and then retry. We save the link rate value at which link training failed, update the link status property to "BAD" and use a lower link rate to prune the modes. It will redo the modeset on the current mode at lower link rate or if the current mode gets pruned due to lower link constraints then, it will send a hotplug uevent for userspace to handle it. This is also required to pass DP CTS tests 4.3.1.3, 4.3.1.4, 4.3.1.6. This patch is a resend of the original commit id (233ce881dd91fb "drm/i915: Implement Link Rate fallback on Link training failure") which got reverted in this commit id (afc1ebf4562a14 Revert "drm/i915: Implement Link Rate fallback on Link training failure") due to CI failures. After investigating the CI failures it was found that these were essentially the failures which were always there but hidden because they used to be DRM_DEBUG_KMS messages for link failures so never got caught by CI. But now this patch actually throws DRM_ERROR if the link training fails at RBR and 1 lane. So it caught these link train failures. There were two failures: 1. On SKL 6700k this was because the machine in CI lab is a SKL desktop without eDP on Port A. But our VBT initialization code in the driver writes VBT defaults in a way that it always sets DP flag on Port A and this does not get cleared after parsing the VBT outputs. This has been fixed in commit id (bb1d132935c2f8 "drm/i915/vbt: split out defaults that are set when there is no VBT) and (665788572c6410b "drm/i915/vbt: don't propagate errors from intel_bios_init()) 2. On ILK-650 desktop - This was happening because of a bad monitor desktop combination. I switched the monitor in the CI lab and that helped get rid of the link failures on ILK system. v10: * Rebase on drm-tip and resend after revert v9: * Use the trimmed max values of link rate/lane count based on link train fallback (Daniel Vetter) v8: * Set link_status to BAD first and then call mode_valid (Jani Nikula) v7: Remove the redundant variable in previous patch itself v6: * Obtain link rate index from fallback_link_rate using the helper intel_dp_link_rate_index (Jani Nikula) * Include fallback within intel_dp_start_link_train (Jani Nikula) v5: * Move set link status to drm core (Daniel Vetter, Jani Nikula) v4: * Add fallback support for non DDI platforms too * Set connector->link status inside set_link_status function (Jani Nikula) v3: * Set link status property to BAd unconditionally (Jani Nikula) * Dont use two separate variables link_train_failed and link_status to indicate same thing (Jani Nikula) v2: * Squashed a few patches (Jani Nikula) Acked-by: Tony Cheng <tony.cheng@amd.com> Acked-by: Harry Wentland <Harry.wentland@amd.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Signed-off-by: Manasi Navare <manasi.d.navare@intel.com> Reviewed-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/16ca48b1e74c618929245e9a085b9e3483c3a16d.1491485983.git.jani.nikula@intel.com
2017-04-06 20:44:19 +07:00
/* Work struct to schedule a uevent on link train failure */
struct work_struct modeset_retry_work;
drm/i915: Add HDCP framework + base implementation This patch adds the framework required to add HDCP support to intel connectors. It implements Aksv loading from fuse, and parts 1/2/3 of the HDCP authentication scheme. Note that without shim implementations, this does not actually implement HDCP. That will come in subsequent patches. Changes in v2: - Don't open code wait_fors (Chris) - drm_hdcp.c under MIT license (Daniel) - Move intel_hdcp_disable() call above ddi_disable (Ram) - Fix // comments (I wore a cone of shame for 12 hours to atone) (Daniel) - Justify intel_hdcp_shim with comments (Daniel) - Fixed async locking issues by adding hdcp_mutex (Daniel) - Don't alter connector_state in enable/disable (Daniel) Changes in v3: - Added hdcp_mutex/hdcp_value to make async reasonable - Added hdcp_prop_work to separate link checking & property setting - Added new helper for atomic_check state tracking (Daniel) - Moved enable/disable into atomic_commit with matching helpers - Moved intel_hdcp_check_link out of all locks when called from dp - Bumped up ksv_fifo timeout (noticed failure on one of my dongles) Changes in v4: - Remove SKL_ prefix from most register names (Daniel) - Move enable/disable back to modeset path (Daniel) - s/get_random_long/get_random_u32/ (Daniel) - Remove mode_config.mutex lock in prop_work (Daniel) - Add intel_hdcp_init to handle init of conn components (Daniel) - Actually check return value of attach_property - Check Bksv is valid before trying to authenticate (Ram) Changes in v5: - checkpatch whitespace changes - s/DRM_MODE_CONTENT_PROTECTION_OFF/DRM_MODE_CONTENT_PROTECTION_UNDESIRED/ - Fix ksv list wait timeout (actually wait 5s) - Increase the R0 timeout to 300ms (Ram) Changes in v6: - SPDX license Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Ramalingam C <ramalingm.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Sean Paul <seanpaul@chromium.org> Link: https://patchwork.freedesktop.org/patch/msgid/20180108195545.218615-6-seanpaul@chromium.org
2018-01-09 02:55:39 +07:00
struct intel_hdcp hdcp;
};
struct intel_digital_connector_state {
struct drm_connector_state base;
enum hdmi_force_audio force_audio;
int broadcast_rgb;
};
#define to_intel_digital_connector_state(x) container_of(x, struct intel_digital_connector_state, base)
struct dpll {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
};
struct intel_atomic_state {
struct drm_atomic_state base;
intel_wakeref_t wakeref;
struct {
/*
* Logical state of cdclk (used for all scaling, watermark,
* etc. calculations and checks). This is computed as if all
* enabled crtcs were active.
*/
struct intel_cdclk_state logical;
/*
* Actual state of cdclk, can be different from the logical
* state only when all crtc's are DPMS off.
*/
struct intel_cdclk_state actual;
int force_min_cdclk;
bool force_min_cdclk_changed;
/* pipe to which cd2x update is synchronized */
enum pipe pipe;
} cdclk;
bool dpll_set, modeset;
/*
* Does this transaction change the pipes that are active? This mask
* tracks which CRTC's have changed their active state at the end of
* the transaction (not counting the temporary disable during modesets).
* This mask should only be non-zero when intel_state->modeset is true,
* but the converse is not necessarily true; simply changing a mode may
* not flip the final active status of any CRTC's
*/
unsigned int active_pipe_changes;
unsigned int active_crtcs;
/* minimum acceptable cdclk for each pipe */
int min_cdclk[I915_MAX_PIPES];
/* minimum acceptable voltage level for each pipe */
u8 min_voltage_level[I915_MAX_PIPES];
struct intel_shared_dpll_state shared_dpll[I915_NUM_PLLS];
drm/i915: Add two-stage ILK-style watermark programming (v11) In addition to calculating final watermarks, let's also pre-calculate a set of intermediate watermark values at atomic check time. These intermediate watermarks are a combination of the watermarks for the old state and the new state; they should satisfy the requirements of both states which means they can be programmed immediately when we commit the atomic state (without waiting for a vblank). Once the vblank does happen, we can then re-program watermarks to the more optimal final value. v2: Significant rebasing/rewriting. v3: - Move 'need_postvbl_update' flag to CRTC state (Daniel) - Don't forget to check intermediate watermark values for validity (Maarten) - Don't due async watermark optimization; just do it at the end of the atomic transaction, after waiting for vblanks. We do want it to be async eventually, but adding that now will cause more trouble for Maarten's in-progress work. (Maarten) - Don't allocate space in crtc_state for intermediate watermarks on platforms that don't need it (gen9+). - Move WaCxSRDisabledForSpriteScaling:ivb into intel_begin_crtc_commit now that ilk_update_wm is gone. v4: - Add a wm_mutex to cover updates to intel_crtc->active and the need_postvbl_update flag. Since we don't have async yet it isn't terribly important yet, but might as well add it now. - Change interface to program watermarks. Platforms will now expose .initial_watermarks() and .optimize_watermarks() functions to do watermark programming. These should lock wm_mutex, copy the appropriate state values into intel_crtc->active, and then call the internal program watermarks function. v5: - Skip intermediate watermark calculation/check during initial hardware readout since we don't trust the existing HW values (and don't have valid values of our own yet). - Don't try to call .optimize_watermarks() on platforms that don't have atomic watermarks yet. (Maarten) v6: - Rebase v7: - Further rebase v8: - A few minor indentation and line length fixes v9: - Yet another rebase since Maarten's patches reworked a bunch of the code (wm_pre, wm_post, etc.) that this was previously based on. v10: - Move wm_mutex to dev_priv to protect against racing commits against disjoint CRTC sets. (Maarten) - Drop unnecessary clearing of cstate->wm.need_postvbl_update (Maarten) v11: - Now that we've moved to atomic watermark updates, make sure we call the proper function to program watermarks in {ironlake,haswell}_crtc_enable(); the failure to do so on the previous patch iteration led to us not actually programming the watermarks before turning on the CRTC, which was the cause of the underruns that the CI system was seeing. - Fix inverted logic for determining when to optimize watermarks. We were needlessly optimizing when the intermediate/optimal values were the same (harmless), but not actually optimizing when they differed (also harmless, but wasteful from a power/bandwidth perspective). Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1456276813-5689-1-git-send-email-matthew.d.roper@intel.com
2016-02-24 08:20:13 +07:00
/*
* Current watermarks can't be trusted during hardware readout, so
* don't bother calculating intermediate watermarks.
*/
bool skip_intermediate_wm;
drm/i915/gen9: Compute DDB allocation at atomic check time (v4) Calculate the DDB blocks needed to satisfy the current atomic transaction at atomic check time. This is a prerequisite to calculating SKL watermarks during the 'check' phase and rejecting any configurations that we can't find valid watermarks for. Due to the nature of DDB allocation, it's possible for the addition of a new CRTC to make the watermark configuration already in use on another, unchanged CRTC become invalid. A change in which CRTC's are active triggers a recompute of the entire DDB, which unfortunately means we need to disallow any other atomic commits from racing with such an update. If the active CRTC's change, we need to grab the lock on all CRTC's and run all CRTC's through their 'check' handler to recompute and re-check their per-CRTC DDB allocations. Note that with this patch we only compute the DDB allocation but we don't actually use the computed values during watermark programming yet. For ease of review/testing/bisecting, we still recompute the DDB at watermark programming time and just WARN() if it doesn't match the precomputed values. A future patch will switch over to using the precomputed values once we're sure they're being properly computed. Another clarifying note: DDB allocation itself shouldn't ever fail with the algorithm we use today (i.e., we have enough DDB blocks on BXT to support the minimum needs of the worst-case scenario of every pipe/plane enabled at full size). However the watermarks calculations based on the DDB may fail and we'll be moving those to the atomic check as well in future patches. v2: - Skip DDB calculations in the rare case where our transaction doesn't actually touch any CRTC's at all. Assuming at least one CRTC state is present in our transaction, then it means we can't race with any transactions that would update dev_priv->active_crtcs (which requires _all_ CRTC locks). v3: - Also calculate DDB during initial hw readout, to prevent using incorrect bios values. (Maarten) v4: - Use new distrust_bios_wm flag instead of skip_initial_wm (which was never actually set). - Set intel_state->active_pipe_changes instead of just realloc_pipes Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Lyude Paul <cpaul@redhat.com> Cc: Radhakrishna Sripada <radhakrishna.sripada@intel.com> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1463061971-19638-10-git-send-email-matthew.d.roper@intel.com
2016-05-12 21:06:03 +07:00
drm/i915: Interactive RPS mode RPS provides a feedback loop where we use the load during the previous evaluation interval to decide whether to up or down clock the GPU frequency. Our responsiveness is split into 3 regimes, a high and low plateau with the intent to keep the gpu clocked high to cover occasional stalls under high load, and low despite occasional glitches under steady low load, and inbetween. However, we run into situations like kodi where we want to stay at low power (video decoding is done efficiently inside the fixed function HW and doesn't need high clocks even for high bitrate streams), but just occasionally the pipeline is more complex than a video decode and we need a smidgen of extra GPU power to present on time. In the high power regime, we sample at sub frame intervals with a bias to upclocking, and conversely at low power we sample over a few frames worth to provide what we consider to be the right levels of responsiveness respectively. At low power, we more or less expect to be kicked out to high power at the start of a busy sequence by waitboosting. Prior to commit e9af4ea2b9e7 ("drm/i915: Avoid waitboosting on the active request") whenever we missed the frame or stalled, we would immediate go full throttle and upclock the GPU to max. But in commit e9af4ea2b9e7, we relaxed the waitboosting to only apply if the pipeline was deep to avoid over-committing resources for a near miss. Sadly though, a near miss is still a miss, and perceptible as jitter in the frame delivery. To try and prevent the near miss before having to resort to boosting after the fact, we use the pageflip queue as an indication that we are in an "interactive" regime and so should sample the load more frequently to provide power before the frame misses it vblank. This will make us more favorable to providing a small power increase (one or two bins) as required rather than going all the way to maximum and then having to work back down again. (We still keep the waitboosting mechanism around just in case a dramatic change in system load requires urgent uplocking, faster than we can provide in a few evaluation intervals.) v2: Reduce rps_set_interactive to a boolean parameter to avoid the confusion of what if they wanted a new power mode after pinning to a different mode (which to choose?) v3: Only reprogram RPS while the GT is awake, it will be set when we wake the GT, and while off warns about being used outside of rpm. v4: Fix deferred application of interactive mode v5: s/state/interactive/ v6: Group the mutex with its principle in a substruct Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=107111 Fixes: e9af4ea2b9e7 ("drm/i915: Avoid waitboosting on the active request") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Radoslaw Szwichtenberg <radoslaw.szwichtenberg@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180731132629.3381-1-chris@chris-wilson.co.uk
2018-07-31 20:26:29 +07:00
bool rps_interactive;
drm/i915/gen9: Compute DDB allocation at atomic check time (v4) Calculate the DDB blocks needed to satisfy the current atomic transaction at atomic check time. This is a prerequisite to calculating SKL watermarks during the 'check' phase and rejecting any configurations that we can't find valid watermarks for. Due to the nature of DDB allocation, it's possible for the addition of a new CRTC to make the watermark configuration already in use on another, unchanged CRTC become invalid. A change in which CRTC's are active triggers a recompute of the entire DDB, which unfortunately means we need to disallow any other atomic commits from racing with such an update. If the active CRTC's change, we need to grab the lock on all CRTC's and run all CRTC's through their 'check' handler to recompute and re-check their per-CRTC DDB allocations. Note that with this patch we only compute the DDB allocation but we don't actually use the computed values during watermark programming yet. For ease of review/testing/bisecting, we still recompute the DDB at watermark programming time and just WARN() if it doesn't match the precomputed values. A future patch will switch over to using the precomputed values once we're sure they're being properly computed. Another clarifying note: DDB allocation itself shouldn't ever fail with the algorithm we use today (i.e., we have enough DDB blocks on BXT to support the minimum needs of the worst-case scenario of every pipe/plane enabled at full size). However the watermarks calculations based on the DDB may fail and we'll be moving those to the atomic check as well in future patches. v2: - Skip DDB calculations in the rare case where our transaction doesn't actually touch any CRTC's at all. Assuming at least one CRTC state is present in our transaction, then it means we can't race with any transactions that would update dev_priv->active_crtcs (which requires _all_ CRTC locks). v3: - Also calculate DDB during initial hw readout, to prevent using incorrect bios values. (Maarten) v4: - Use new distrust_bios_wm flag instead of skip_initial_wm (which was never actually set). - Set intel_state->active_pipe_changes instead of just realloc_pipes Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Lyude Paul <cpaul@redhat.com> Cc: Radhakrishna Sripada <radhakrishna.sripada@intel.com> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1463061971-19638-10-git-send-email-matthew.d.roper@intel.com
2016-05-12 21:06:03 +07:00
/* Gen9+ only */
struct skl_ddb_values wm_results;
struct i915_sw_fence commit_ready;
drm/i915: Move atomic state free from out of fence release Fences are required to support being released from under an atomic context. The drm_atomic_state struct may take a mutex when being released and so we cannot drop a reference to the drm_atomic_state from the fence release path directly, and so we need to defer that unreference to a worker. [ 326.576697] WARNING: CPU: 2 PID: 366 at kernel/sched/core.c:7737 __might_sleep+0x5d/0x80 [ 326.576816] do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffffc0359549>] intel_breadcrumbs_signaler+0x59/0x270 [i915] [ 326.576818] Modules linked in: rfcomm fuse snd_hda_codec_hdmi bnep snd_hda_codec_realtek snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm snd_seq_midi snd_seq_midi_event snd_rawmidi snd_seq snd_seq_device snd_timer input_leds led_class snd punit_atom_debug btusb btrtl btbcm btintel intel_rapl bluetooth i915 drm_kms_helper syscopyarea sysfillrect iwlwifi sysimgblt soundcore fb_sys_fops mei_txe cfg80211 drm pwm_lpss_platform pwm_lpss pinctrl_cherryview fjes acpi_pad parport_pc ppdev parport autofs4 [ 326.576899] CPU: 2 PID: 366 Comm: i915/signal:0 Tainted: G U 4.10.0-rc3-patser+ #5030 [ 326.576902] Hardware name: /NUC5PPYB, BIOS PYBSWCEL.86A.0031.2015.0601.1712 06/01/2015 [ 326.576905] Call Trace: [ 326.576920] dump_stack+0x4d/0x6d [ 326.576926] __warn+0xc0/0xe0 [ 326.576931] warn_slowpath_fmt+0x5a/0x80 [ 326.577004] ? intel_breadcrumbs_signaler+0x59/0x270 [i915] [ 326.577075] ? intel_breadcrumbs_signaler+0x59/0x270 [i915] [ 326.577079] __might_sleep+0x5d/0x80 [ 326.577087] mutex_lock+0x1b/0x40 [ 326.577133] drm_property_free_blob+0x1e/0x80 [drm] [ 326.577167] ? drm_property_destroy+0xe0/0xe0 [drm] [ 326.577200] drm_mode_object_unreference+0x5c/0x70 [drm] [ 326.577233] drm_property_unreference_blob+0xe/0x10 [drm] [ 326.577260] __drm_atomic_helper_crtc_destroy_state+0x14/0x40 [drm_kms_helper] [ 326.577278] drm_atomic_helper_crtc_destroy_state+0x10/0x20 [drm_kms_helper] [ 326.577352] intel_crtc_destroy_state+0x9/0x10 [i915] [ 326.577388] drm_atomic_state_default_clear+0xea/0x1d0 [drm] [ 326.577462] intel_atomic_state_clear+0xd/0x20 [i915] [ 326.577497] drm_atomic_state_clear+0x1a/0x30 [drm] [ 326.577532] __drm_atomic_state_free+0x13/0x60 [drm] [ 326.577607] intel_atomic_commit_ready+0x6f/0x78 [i915] [ 326.577670] i915_sw_fence_release+0x3a/0x50 [i915] [ 326.577733] dma_i915_sw_fence_wake+0x39/0x80 [i915] [ 326.577741] dma_fence_signal+0xda/0x120 [ 326.577812] ? intel_breadcrumbs_signaler+0x59/0x270 [i915] [ 326.577884] intel_breadcrumbs_signaler+0xb1/0x270 [i915] [ 326.577889] kthread+0x127/0x130 [ 326.577961] ? intel_engine_remove_wait+0x1a0/0x1a0 [i915] [ 326.577964] ? kthread_stop+0x120/0x120 [ 326.577970] ret_from_fork+0x22/0x30 Fixes: c004a90b7263 ("drm/i915: Restore nonblocking awaits for modesetting") Reported-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20170123212939.30345-1-chris@chris-wilson.co.uk Cc: <drm-intel-fixes@lists.freedesktop.org> # v4.10-rc1+ Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2017-01-24 04:29:39 +07:00
struct llist_node freed;
};
struct intel_plane_state {
struct drm_plane_state base;
struct i915_ggtt_view view;
struct i915_vma *vma;
drm/i915: Move the policy for placement of the GGTT vma into the caller Currently we make the unilateral decision inside i915_gem_object_pin_to_display() where the VMA should resided (inside the fence and mappable region or above?). This is not our decision to make as it impacts on how the display engine can use the resulting scanout object, and it would rather instruct us where to place the VMA so that it can enable the features it wants. As such, make the pin flags an argument to i915_gem_object_pin_to_display() and control them from intel_pin_and_fence_fb_obj() Whilst taking control of the mapping for ourselves, start tracking how we use it to avoid trying to free a fence we never claimed: <3>[ 227.151869] GEM_BUG_ON(vma->fence->pin_count <= 0) <4>[ 227.152064] ------------[ cut here ]------------ <2>[ 227.152068] kernel BUG at drivers/gpu/drm/i915/i915_vma.h:391! <4>[ 227.152084] invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI <0>[ 227.152092] Dumping ftrace buffer: <0>[ 227.152099] (ftrace buffer empty) <4>[ 227.152102] Modules linked in: i915 snd_hda_codec_analog snd_hda_codec_generic coretemp snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm lpc_ich e1000e mei_me mei prime_numbers <4>[ 227.152131] CPU: 1 PID: 1587 Comm: kworker/u16:49 Tainted: G U 4.16.0-rc1-gbab67b2f6177-kasan_7+ #1 <4>[ 227.152134] Hardware name: Dell Inc. OptiPlex 755 /0PU052, BIOS A08 02/19/2008 <4>[ 227.152236] Workqueue: events_unbound intel_atomic_commit_work [i915] <4>[ 227.152292] RIP: 0010:intel_unpin_fb_vma+0x23a/0x2a0 [i915] <4>[ 227.152295] RSP: 0018:ffff88005aad7b68 EFLAGS: 00010286 <4>[ 227.152300] RAX: 0000000000000026 RBX: ffff88005c359580 RCX: 0000000000000000 <4>[ 227.152304] RDX: 0000000000000026 RSI: ffffffff8707d840 RDI: ffffed000b55af63 <4>[ 227.152307] RBP: ffff880056817e58 R08: 0000000000000001 R09: 0000000000000000 <4>[ 227.152311] R10: ffff88005aad7b88 R11: 0000000000000000 R12: ffff8800568184d0 <4>[ 227.152314] R13: ffff880065b5ab08 R14: 0000000000000000 R15: dffffc0000000000 <4>[ 227.152318] FS: 0000000000000000(0000) GS:ffff88006ac40000(0000) knlGS:0000000000000000 <4>[ 227.152322] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 227.152325] CR2: 00007f5fb25550a8 CR3: 0000000068c78000 CR4: 00000000000006e0 <4>[ 227.152328] Call Trace: <4>[ 227.152385] intel_cleanup_plane_fb+0x6b/0xd0 [i915] <4>[ 227.152395] drm_atomic_helper_cleanup_planes+0x166/0x280 <4>[ 227.152452] intel_atomic_commit_tail+0x159d/0x3380 [i915] <4>[ 227.152463] ? process_one_work+0x66e/0x1460 <4>[ 227.152516] ? skl_update_crtcs+0x9c0/0x9c0 [i915] <4>[ 227.152523] ? lock_acquire+0x13d/0x390 <4>[ 227.152527] ? lock_acquire+0x13d/0x390 <4>[ 227.152534] process_one_work+0x71a/0x1460 <4>[ 227.152540] ? __schedule+0x815/0x1e20 <4>[ 227.152547] ? pwq_dec_nr_in_flight+0x2b0/0x2b0 <4>[ 227.152553] ? _raw_spin_lock_irq+0xa/0x40 <4>[ 227.152559] worker_thread+0xdf/0xf60 <4>[ 227.152569] ? process_one_work+0x1460/0x1460 <4>[ 227.152573] kthread+0x2cf/0x3c0 <4>[ 227.152578] ? _kthread_create_on_node+0xa0/0xa0 <4>[ 227.152583] ret_from_fork+0x3a/0x50 <4>[ 227.152591] Code: c6 00 11 86 c0 48 c7 c7 e0 bd 85 c0 e8 60 e7 a9 c4 0f ff e9 1f fe ff ff 48 c7 c6 40 10 86 c0 48 c7 c7 e0 ca 85 c0 e8 2b 95 bd c4 <0f> 0b 48 89 ef e8 4c 44 e8 c4 e9 ef fd ff ff e8 42 44 e8 c4 e9 <1>[ 227.152720] RIP: intel_unpin_fb_vma+0x23a/0x2a0 [i915] RSP: ffff88005aad7b68 v2: i915_vma_pin_fence() is a no-op if a fence isn't required, so check vma->fence as well. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180220134208.24988-2-chris@chris-wilson.co.uk
2018-02-20 20:42:06 +07:00
unsigned long flags;
#define PLANE_HAS_FENCE BIT(0)
drm/i915: Refactor work that can sleep out of commit (v7) Once we integrate our work into the atomic pipeline, plane commit operations will need to happen with interrupts disabled, due to vblank evasion. Our commit functions today include sleepable work, so those operations need to be split out and run either before or after the atomic register programming. The solution here calculates which of those operations will need to be performed during the 'check' phase and sets flags in an intel_crtc sub-struct. New intel_begin_crtc_commit() and intel_finish_crtc_commit() functions are added before and after the actual register programming; these will eventually be called from the atomic plane helper's .atomic_begin() and .atomic_end() entrypoints. v2: Fix broken sprite code split v3: Make the pre/post commit work crtc-based to match how we eventually want this to be called from the atomic plane helpers. v4: Some platforms that haven't had their watermark code reworked were waiting for vblank, then calling update_sprite_watermarks in their platform-specific disable code. These also need to be flagged out of the critical section. v5: Sprite plane test for primary show/hide should just set the flag to wait for pending flips, not actually perform the wait. (Ander) v6: - Rebase onto latest di-nightly; picks up an important runtime PM fix. - Handle 'wait_for_flips' flag in intel_begin_crtc_commit(). (Ander) - Use wait_for_flips flag for primary plane update rather than performing the wait in the check routine. - Added kerneldoc to pre_disable/post_enable functions that are no longer static. (Ander) - Replace assert_pipe_enabled() in intel_disable_primary_hw_plane() with an intel_crtc->active test; it turns out assert_pipe_enabled() grabs some mutexes and can sleep, which we can't do with interrupts disabled. v7: - Check for fb != NULL when deciding whether the sprite plane hides the primary plane during a sprite update. (PRTS) Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Ander Conselvan de Oliveira <conselvan2@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-12-24 22:59:06 +07:00
struct {
u32 offset;
/*
* Plane stride in:
* bytes for 0/180 degree rotation
* pixels for 90/270 degree rotation
*/
u32 stride;
int x, y;
} color_plane[2];
/* plane control register */
u32 ctl;
/* plane color control register */
u32 color_ctl;
/*
* scaler_id
* = -1 : not using a scaler
* >= 0 : using a scalers
*
* plane requiring a scaler:
* - During check_plane, its bit is set in
* crtc_state->scaler_state.scaler_users by calling helper function
* update_scaler_plane.
* - scaler_id indicates the scaler it got assigned.
*
* plane doesn't require a scaler:
* - this can happen when scaling is no more required or plane simply
* got disabled.
* - During check_plane, corresponding bit is reset in
* crtc_state->scaler_state.scaler_users by calling helper function
* update_scaler_plane.
*/
int scaler_id;
drm/i915/gen11: Link nv12 Y and UV planes in the atomic state, v5. To make NV12 working on icl, we need to update 2 planes simultaneously. I've chosen to do this in the CRTC step after plane validation is done, so we know what planes are (in)visible. The linked Y plane will get updated in intel_plane_update_planes_on_crtc(), by the call to update_slave, which gets the master's plane_state as argument. The link requires both planes for atomic_update to work, so make sure skl_ddb_add_affected_planes() adds both states. Changes since v1: - Introduce icl_is_nv12_y_plane(), instead of hardcoding sprite numbers. - Put all the state updating login in intel_plane_atomic_check_with_state(). - Clean up changes in intel_plane_atomic_check(). Changes since v2: - Fix intel_atomic_get_old_plane_state() to actually return old state. - Move visibility changes to preparation patch. - Only try to find a Y plane on gen11, earlier platforms only require a single plane. Changes since v3: - Fix checkpatch warning about to_intel_crtc() usage. - Add affected planes from icl_add_linked_planes() before check_planes(), it's a cleaner way to do this. (Ville) Changes since v4: - Clear plane links in icl_check_nv12_planes() for clarity. - Only pass crtc_state to icl_check_nv12_planes(). - Use for_each_new_intel_plane_in_state() in icl_check_nv12_planes. - Rename aux to linked. (Ville) Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181022135152.15324-1-maarten.lankhorst@linux.intel.com [mlankhorst: Change bool slave to u32, to satisfy checkpatch] [mlankhorst: Add WARN_ON's based on Ville's suggestion]
2018-10-22 20:51:52 +07:00
/*
* linked_plane:
*
* ICL planar formats require 2 planes that are updated as pairs.
* This member is used to make sure the other plane is also updated
* when required, and for update_slave() to find the correct
* plane_state to pass as argument.
*/
struct intel_plane *linked_plane;
/*
* slave:
* If set don't update use the linked plane's state for updating
* this plane during atomic commit with the update_slave() callback.
*
* It's also used by the watermark code to ignore wm calculations on
* this plane. They're calculated by the linked plane's wm code.
*/
u32 slave;
struct drm_intel_sprite_colorkey ckey;
};
struct intel_initial_plane_config {
struct intel_framebuffer *fb;
unsigned int tiling;
int size;
u32 base;
u8 rotation;
};
struct intel_scaler {
int in_use;
u32 mode;
};
struct intel_crtc_scaler_state {
#define SKL_NUM_SCALERS 2
struct intel_scaler scalers[SKL_NUM_SCALERS];
/*
* scaler_users: keeps track of users requesting scalers on this crtc.
*
* If a bit is set, a user is using a scaler.
* Here user can be a plane or crtc as defined below:
* bits 0-30 - plane (bit position is index from drm_plane_index)
* bit 31 - crtc
*
* Instead of creating a new index to cover planes and crtc, using
* existing drm_plane_index for planes which is well less than 31
* planes and bit 31 for crtc. This should be fine to cover all
* our platforms.
*
* intel_atomic_setup_scalers will setup available scalers to users
* requesting scalers. It will gracefully fail if request exceeds
* avilability.
*/
#define SKL_CRTC_INDEX 31
unsigned scaler_users;
/* scaler used by crtc for panel fitting purpose */
int scaler_id;
};
/* drm_mode->private_flags */
#define I915_MODE_FLAG_INHERITED (1<<0)
drm/i915: Enable scanline read based on frame timestamps For certain platforms on certain encoders, timings are driven from port instead of pipe. Thus, we can't rely on pipe scanline registers to get the timing information. Some cases scanline register read will not be functional. This is causing vblank evasion logic to fail since it relies on scanline, causing atomic update failure warnings. This patch uses pipe framestamp and current timestamp registers to calculate scanline. This is an indirect way to get the scanline. It helps resolve atomic update failure for gen9 dsi platforms. v2: Addressed Ville and Daniel's review comments. Updated the register MACROs, handled race condition for register reads, extracted timings from the hwmode. Removed the dependency on crtc->config to get the encoder type. v3: Made get scanline function generic v4: Addressed Ville's review comments. Added a flag to decide timestamp based scanline reporting. Changed 64bit variables to u32 v5: Adressed Ville's review comments. Put the scanline compute function at the place of caller. Removed hwmode flags from uapi and used a local i915 data structure instead. v6: Used vblank hwmode to get the timings. v7: Fixed sparse warnings, indentation and minor review comments. v8: Limited this only for Gen9 DSI. Credits-to: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Uma Shankar <uma.shankar@intel.com> Signed-off-by: Chandra Konduru <chandra.konduru@intel.com> Signed-off-by: Vidya Srinivas <vidya.srinivas@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/1506347761-4201-1-git-send-email-vidya.srinivas@intel.com
2017-09-25 20:56:01 +07:00
/* Flag to get scanline using frame time stamps */
#define I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP (1<<1)
/* Flag to use the scanline counter instead of the pixel counter */
#define I915_MODE_FLAG_USE_SCANLINE_COUNTER (1<<2)
struct intel_pipe_wm {
struct intel_wm_level wm[5];
u32 linetime;
bool fbc_wm_enabled;
bool pipe_enabled;
bool sprites_enabled;
bool sprites_scaled;
};
struct skl_plane_wm {
struct skl_wm_level wm[8];
struct skl_wm_level uv_wm[8];
struct skl_wm_level trans_wm;
bool is_planar;
};
struct skl_pipe_wm {
struct skl_plane_wm planes[I915_MAX_PLANES];
u32 linetime;
};
enum vlv_wm_level {
VLV_WM_LEVEL_PM2,
VLV_WM_LEVEL_PM5,
VLV_WM_LEVEL_DDR_DVFS,
NUM_VLV_WM_LEVELS,
};
struct vlv_wm_state {
struct g4x_pipe_wm wm[NUM_VLV_WM_LEVELS];
struct g4x_sr_wm sr[NUM_VLV_WM_LEVELS];
u8 num_levels;
bool cxsr;
};
struct vlv_fifo_state {
u16 plane[I915_MAX_PLANES];
};
drm/i915: Two stage watermarks for g4x Implement proper two stage watermark programming for g4x. As with other pre-SKL platforms, the watermark registers aren't double buffered on g4x. Hence we must sequence the watermark update carefully around plane updates. The code is quite heavily modelled on the VLV/CHV code, with some fairly significant differences due to the different hardware architecture: * g4x doesn't use inverted watermark values * CxSR actually affects the watermarks since it controls memory self refresh in addition to the max FIFO mode * A further HPLL SR mode is possible with higher memory wakeup latency * g4x has FBC2 and so it also has FBC watermarks * max FIFO mode for primary plane only (cursor is allowed, sprite is not) * g4x has no manual FIFO repartitioning * some TLB miss related workarounds are needed for the watermarks Actually the hardware is quite similar to ILK+ in many ways. The most visible differences are in the actual watermakr register layout. ILK revamped that part quite heavily whereas g4x is still using the layout inherited from earlier platforms. Note that we didn't previously enable the HPLL SR on g4x. So in order to not introduce too many functional changes in this patch I've not actually enabled it here either, even though the code is now fully ready for it. We'll enable it separately later on. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170421181432.15216-13-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2017-04-22 01:14:29 +07:00
enum g4x_wm_level {
G4X_WM_LEVEL_NORMAL,
G4X_WM_LEVEL_SR,
G4X_WM_LEVEL_HPLL,
NUM_G4X_WM_LEVELS,
};
struct g4x_wm_state {
struct g4x_pipe_wm wm;
struct g4x_sr_wm sr;
struct g4x_sr_wm hpll;
bool cxsr;
bool hpll_en;
bool fbc_en;
};
struct intel_crtc_wm_state {
union {
struct {
/*
* Intermediate watermarks; these can be
* programmed immediately since they satisfy
* both the current configuration we're
* switching away from and the new
* configuration we're switching to.
*/
struct intel_pipe_wm intermediate;
/*
* Optimal watermarks, programmed post-vblank
* when this state is committed.
*/
struct intel_pipe_wm optimal;
} ilk;
struct {
/* gen9+ only needs 1-step wm programming */
struct skl_pipe_wm optimal;
struct skl_ddb_entry ddb;
struct skl_ddb_entry plane_ddb_y[I915_MAX_PLANES];
struct skl_ddb_entry plane_ddb_uv[I915_MAX_PLANES];
} skl;
struct {
/* "raw" watermarks (not inverted) */
struct g4x_pipe_wm raw[NUM_VLV_WM_LEVELS];
/* intermediate watermarks (inverted) */
struct vlv_wm_state intermediate;
/* optimal watermarks (inverted) */
struct vlv_wm_state optimal;
/* display FIFO split */
struct vlv_fifo_state fifo_state;
} vlv;
drm/i915: Two stage watermarks for g4x Implement proper two stage watermark programming for g4x. As with other pre-SKL platforms, the watermark registers aren't double buffered on g4x. Hence we must sequence the watermark update carefully around plane updates. The code is quite heavily modelled on the VLV/CHV code, with some fairly significant differences due to the different hardware architecture: * g4x doesn't use inverted watermark values * CxSR actually affects the watermarks since it controls memory self refresh in addition to the max FIFO mode * A further HPLL SR mode is possible with higher memory wakeup latency * g4x has FBC2 and so it also has FBC watermarks * max FIFO mode for primary plane only (cursor is allowed, sprite is not) * g4x has no manual FIFO repartitioning * some TLB miss related workarounds are needed for the watermarks Actually the hardware is quite similar to ILK+ in many ways. The most visible differences are in the actual watermakr register layout. ILK revamped that part quite heavily whereas g4x is still using the layout inherited from earlier platforms. Note that we didn't previously enable the HPLL SR on g4x. So in order to not introduce too many functional changes in this patch I've not actually enabled it here either, even though the code is now fully ready for it. We'll enable it separately later on. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170421181432.15216-13-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2017-04-22 01:14:29 +07:00
struct {
/* "raw" watermarks */
struct g4x_pipe_wm raw[NUM_G4X_WM_LEVELS];
/* intermediate watermarks */
struct g4x_wm_state intermediate;
/* optimal watermarks */
struct g4x_wm_state optimal;
} g4x;
};
/*
* Platforms with two-step watermark programming will need to
* update watermark programming post-vblank to switch from the
* safe intermediate watermarks to the optimal final
* watermarks.
*/
bool need_postvbl_update;
};
enum intel_output_format {
INTEL_OUTPUT_FORMAT_INVALID,
INTEL_OUTPUT_FORMAT_RGB,
drm/i915: Add CRTC output format YCBCR 4:2:0 Currently, we are using a bool in CRTC state (state->ycbcr420), to indicate modeset, that the output format is YCBCR 4:2:0. Now in order to support other YCBCR formats, we will need more such flags. This patch adds a new enum parameter for YCBCR 4:2:0 outputs, in the CRTC output formats and then plugs it during the modeset. V3: Added this patch in the series, to address review comments from second patchset. V4: Added r-b from Maarten (on v3) Addressed review comments from Ville: - Change the enum name to intel_output_format. - Start the enum value (INVALID) from 0 instaed of 1. - Set the crtc's output_format to RGB in encoder's compute_config. V5: Broke previous patch 1 into two parts, - first patch to add CRTC output format in general - second patch (this one) to add YCBCR 4:2:0 output format specifically. - Use ARRAY_SIZE(format_str) for output format validity check (Ville) V6: Added a separate function to calculate crtc_state->output_format, and calling it from various get_config function (Fix CI build warning) V7: Fixed checkpatch warnings for alignment V8: Rebase V9: Rebase V10: Rebase V11: Addressed review comments from Ville: - Change check for CRTC output format from > ARRAY_SIZE to >= ARRAY_SIZE. - Check for values < INTEL_OUTPUT_FORMAT_RGB is unnecessary. - No need to get CRTC YCBCR config, for pre-BDW functions. Added Ville's r-b. Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/1539325394-20788-2-git-send-email-shashank.sharma@intel.com
2018-10-12 13:23:08 +07:00
INTEL_OUTPUT_FORMAT_YCBCR420,
INTEL_OUTPUT_FORMAT_YCBCR444,
};
struct intel_crtc_state {
struct drm_crtc_state base;
/**
* quirks - bitfield with hw state readout quirks
*
* For various reasons the hw state readout code might not be able to
* completely faithfully read out the current state. These cases are
* tracked with quirk flags so that fastboot and state checker can act
* accordingly.
*/
#define PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS (1<<0) /* unreliable sync mode.flags */
unsigned long quirks;
unsigned fb_bits; /* framebuffers to flip */
bool update_pipe; /* can a fast modeset be performed? */
bool disable_cxsr;
bool update_wm_pre, update_wm_post; /* watermarks are updated */
bool fb_changed; /* fb on any of the planes is changed */
bool fifo_changed; /* FIFO split is changed */
/* Pipe source size (ie. panel fitter input size)
* All planes will be positioned inside this space,
* and get clipped at the edges. */
int pipe_src_w, pipe_src_h;
/*
* Pipe pixel rate, adjusted for
* panel fitter/pipe scaler downscaling.
*/
unsigned int pixel_rate;
/* Whether to set up the PCH/FDI. Note that we never allow sharing
* between pch encoders and cpu encoders. */
bool has_pch_encoder;
/* Are we sending infoframes on the attached port */
bool has_infoframe;
/* CPU Transcoder for the pipe. Currently this can only differ from the
* pipe on Haswell and later (where we have a special eDP transcoder)
* and Broxton (where we have special DSI transcoders). */
enum transcoder cpu_transcoder;
/*
* Use reduced/limited/broadcast rbg range, compressing from the full
* range fed into the crtcs.
*/
bool limited_color_range;
/* Bitmask of encoder types (enum intel_output_type)
* driven by the pipe.
*/
unsigned int output_types;
/* Whether we should send NULL infoframes. Required for audio. */
bool has_hdmi_sink;
/* Audio enabled on this pipe. Only valid if either has_hdmi_sink or
* has_dp_encoder is set. */
bool has_audio;
/*
* Enable dithering, used when the selected pipe bpp doesn't match the
* plane bpp.
*/
bool dither;
drm/i915: Add support for DP Video pattern compliance tests The intel_dp_autotest_video_pattern() function gets invoked through the compliance test handler on a HPD short pulse if the test type is set to DP_TEST_VIDEO_PATTERN. This performs the DPCD registers reads to read the requested test pattern, video pattern resolution, frame rate and bits per color value. The results of this analysis are handed off to userspace so that the userspace app can set the video pattern mode appropriately for the test result/response. When the test is requested with specific BPC value, we read the BPC value from the DPCD register. If this BPC value in intel_dp structure has a non-zero value and we're on a display port connector, then we use the value to calculate the bpp for the pipe. Also in this case if its a 18bpp video pattern request, then we force the dithering on pipe to be disabled since it causes CRC mismatches. The compliance_test_active flag is set at the end of the individual test handling functions. This is so that the kernel-side operations can be completed without the risk of interruption from the userspace app that is polling on that flag. v5: * Remove test_result variable * Populate the compliance test data at the end of the function (Jani Nikula) v4: *Return TEST_NAK on read failures and invalid values (Jani Nikula) * Address CRC mismatch errors v3: * Use the updated properly shifted bit definitions (Jani Nikula) * Force dithering to be disabled on 18bpp compliance test request (Manasi Navare) v2: * Updated the DPCD Register reads based on proper defines in header (Jani Nikula) * Squahsed the patch that forced the pipe bpp to compliance test bpp (Jani Nikula) Signed-off-by: Manasi Navare <manasi.d.navare@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1485274909-17470-1-git-send-email-manasi.d.navare@intel.com
2017-01-24 23:21:49 +07:00
/*
* Dither gets enabled for 18bpp which causes CRC mismatch errors for
* compliance video pattern tests.
* Disable dither only if it is a compliance test request for
* 18bpp.
*/
bool dither_force_disable;
/* Controls for the clock computation, to override various stages. */
bool clock_set;
/* SDVO TV has a bunch of special case. To make multifunction encoders
* work correctly, we need to track this at runtime.*/
bool sdvo_tv_clock;
drm/i915: implement fdi auto-dithering So on a bunch of setups we only have 2 fdi lanes available, e.g. hsw VGA or 3 pipes on ivb. And seemingly a lot of modes don't quite fit into this, among them the default 1080p mode. The solution is to dither down the pipe a bit so that everything fits, which this patch implements. But ports compute their state under the assumption that the bpp they pick will be the one selected, e.g. the display port bw computations won't work otherwise. Now we could adjust our code to again up-dither to the computed DP link parameters, but that's pointless. So instead when the pipe needs to adjust parameters we need to retry the pipe_config computation at the encoder stage. Furthermore we need to inform encoders that they should not increase bandwidth requirements if possible. This is required for the hdmi code, which prefers the pipe to up-dither to either of the two possible hdmi bpc values. LVDS has a similar requirement, although that's probably only theoretical in nature: It's unlikely that we'll ever see an 8bpc high-res lvds panel (which is required to hit the 2 fdi lane limit). eDP is the only thing which could increase the pipe_bpp setting again, even when in the retry-loop. This could hit the WARN. Two reasons for not bothering: - On many eDP panels we'll get a black screen if the bpp settings don't match vbt. So failing the modeset is the right thing to do. But since that also means it's the only way to light up the panel, it should work. So we shouldn't be able to hit this WARN. - There are still opens around the eDP panel handling, and maybe we need additional tricks. Before that happens it's imo no use trying to be too clever. Worst case we just need to kill that WARN or maybe fail the compute config stage if the eDP connector can't get the bpp setting it wants. And since this can only happen with an fdi link in between and so for pch eDP panels it's rather unlikely to blow up, if ever. v2: Rebased on top of a bikeshed from Paulo. v3: Improve commit message around eDP handling with the stuff things with Imre. Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-02-21 06:00:16 +07:00
/*
* crtc bandwidth limit, don't increase pipe bpp or clock if not really
* required. This is set in the 2nd loop of calling encoder's
* ->compute_config if the first pick doesn't work out.
*/
bool bw_constrained;
/* Settings for the intel dpll used on pretty much everything but
* haswell. */
struct dpll dpll;
/* Selected dpll when shared or NULL. */
struct intel_shared_dpll *shared_dpll;
/* Actual register state of the dpll, for shared dpll cross-checking. */
struct intel_dpll_hw_state dpll_hw_state;
/* DSI PLL registers */
struct {
u32 ctrl, div;
} dsi_pll;
int pipe_bpp;
drm/i915: clear up the fdi/dp set_m_n confusion There's a rather decent confusion going on around transcoder m_n values. So let's clarify: - All dp encoders need this, either on the pch transcoder if it's a pch port, or on the cpu transcoder/pipe if it's a cpu port. - fdi links need to have the right m_n values for the fdi link set in the cpu transcoder. To handle the pch vs transcoder stuff a bit better, extract transcoder set_m_n helpers. To make them simpler, set intel_crtc->cpu_transcoder als in ironlake_crtc_mode_set, so that gen5+ (where the cpu m_n registers are all at the same offset) can use it. Haswell modeset is decently confused about dp vs. edp vs. fdi. dp vs. edp works exactly the same as dp (since there's no pch dp any more), so use that as a check. And only set up the fdi m_n values if we really have a pch encoder present (which means we have a VGA encoder). On ilk+ we've called ironlake_set_m_n both for cpu_edp and for pch encoders. Now that dp_set_m_n handles all dp links (thanks to the pch encoder check), we can ditch the cpu_edp stuff from the fdi_set_m_n function. Since the dp_m_n values are not readily available, we need to carefully coax the edp values out of the encoder. Hence we can't (yet) kill this superflous complexity. v2: Rebase on top of the ivb fdi B/C check patch - we need to properly clear intel_crtc->fdi_lane, otherwise those checks will misfire. v3: Rebased on top of a s/IS_HASWELL/HAS_DDI/ patch from Paulo Zanoni. v4: Drop the addition of has_dp_encoder, it's in the wrong patch (Jesse). Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-04-03 04:38:10 +07:00
struct intel_link_m_n dp_m_n;
drm/i915: store adjusted dotclock in adjusted_mode->clock ... not the port clock. This allows us to kill the funny semantics around pixel_target_clock. Since the dpll code still needs the real port clock, add a new port_clock field to the pipe configuration. Handling the default case for that one is a bit tricky, since encoders might not consistently overwrite it when retrying the crtc/encoder bw arbitrage step in the compute config stage. Hence we need to always clear port_clock and update it again if the encoder hasn't put in something more specific. This can't be done in one step since the encoder might want to adjust the mode first. I was a bit on the fence whether I should subsume the pixel multiplier handling into the port_clock, too. But then I decided against this since it's on an abstract level still the dotclock of the adjusted mode, and only our hw makes it a bit special due to the separate pixel mulitplier setting (which requires that the dpll runs at the non-multiplied dotclock). So after this patch the adjusted_mode accurately describes the mode we feed into the port, after the panel fitter and pixel multiplier (or line doubling, if we ever bother with that) have done their job. Since the fdi link is between the pfit and the pixel multiplier steps we need to be careful with calculating the fdi link config. v2: Fix up ilk cpu pll handling. v3: Introduce an fdi_dotclock variable in ironlake_fdi_compute_config to make it clearer that we transmit the adjusted_mode without the pixel multiplier taken into account. The old code multiplied the the available link bw with the pixel multiplier, which results in the same fdi configuration, but is much more confusing. v4: Rebase on top of Imre's is_cpu_edp removal. v5: Rebase on top of Paulo's haswell watermark fixes, which introduce a new place which looked at the pixel_clock and so needed conversion. v6: Split out prep patches as requested by Paulo Zanoni. Also rebase on top of the fdi dotclock handling fix in the fdi lanes/bw computation code. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v3) Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> (v6) Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-06-01 22:16:21 +07:00
drm/i915: Add support for DRRS to switch RR This patch computes and stored 2nd M/N/TU for switching to different refresh rate dynamically. PIPECONF_EDP_RR_MODE_SWITCH bit helps toggle between alternate refresh rates programmed in 2nd M/N/TU registers. v2: Daniel's review comments Computing M2/N2 in compute_config and storing it in crtc_config v3: Modified reference to edp_downclock and edp_downclock_avail based on the changes made to move them from dev_private to intel_panel. v4: Modified references to is_drrs_supported based on the changes made to rename it to drrs_support. v5: Jani's review comments Removed superfluous return statements. Changed support for Gen 7 and above. Corrected indentation. Re-structured the code which finds crtc and connector from encoder. Changed some logs to be less verbose. v6: Modifying i915_drrs to include only intel connector as intel_dp can be derived from intel connector when required. v7: As per internal review comments, acquiring mutex just before accessing drrs RR. As per Chris's review comments, added documentation about the use of locking in the function. v8: Incorporated Jani's review comments. Removed reference to edp_downclock. v9: Jani's review comments. Modified comment in set_drrs. Changed index to type edp_drrs_refresh_rate_type. Check if PSR is enabled before setting registers fo DRRS. Signed-off-by: Pradeep Bhat <pradeep.bhat@intel.com> Signed-off-by: Vandana Kannan <vandana.kannan@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-04-05 13:43:28 +07:00
/* m2_n2 for eDP downclock */
struct intel_link_m_n dp_m2_n2;
bool has_drrs;
drm/i915: Add support for DRRS to switch RR This patch computes and stored 2nd M/N/TU for switching to different refresh rate dynamically. PIPECONF_EDP_RR_MODE_SWITCH bit helps toggle between alternate refresh rates programmed in 2nd M/N/TU registers. v2: Daniel's review comments Computing M2/N2 in compute_config and storing it in crtc_config v3: Modified reference to edp_downclock and edp_downclock_avail based on the changes made to move them from dev_private to intel_panel. v4: Modified references to is_drrs_supported based on the changes made to rename it to drrs_support. v5: Jani's review comments Removed superfluous return statements. Changed support for Gen 7 and above. Corrected indentation. Re-structured the code which finds crtc and connector from encoder. Changed some logs to be less verbose. v6: Modifying i915_drrs to include only intel connector as intel_dp can be derived from intel connector when required. v7: As per internal review comments, acquiring mutex just before accessing drrs RR. As per Chris's review comments, added documentation about the use of locking in the function. v8: Incorporated Jani's review comments. Removed reference to edp_downclock. v9: Jani's review comments. Modified comment in set_drrs. Changed index to type edp_drrs_refresh_rate_type. Check if PSR is enabled before setting registers fo DRRS. Signed-off-by: Pradeep Bhat <pradeep.bhat@intel.com> Signed-off-by: Vandana Kannan <vandana.kannan@intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-04-05 13:43:28 +07:00
bool has_psr;
bool has_psr2;
drm/i915: store adjusted dotclock in adjusted_mode->clock ... not the port clock. This allows us to kill the funny semantics around pixel_target_clock. Since the dpll code still needs the real port clock, add a new port_clock field to the pipe configuration. Handling the default case for that one is a bit tricky, since encoders might not consistently overwrite it when retrying the crtc/encoder bw arbitrage step in the compute config stage. Hence we need to always clear port_clock and update it again if the encoder hasn't put in something more specific. This can't be done in one step since the encoder might want to adjust the mode first. I was a bit on the fence whether I should subsume the pixel multiplier handling into the port_clock, too. But then I decided against this since it's on an abstract level still the dotclock of the adjusted mode, and only our hw makes it a bit special due to the separate pixel mulitplier setting (which requires that the dpll runs at the non-multiplied dotclock). So after this patch the adjusted_mode accurately describes the mode we feed into the port, after the panel fitter and pixel multiplier (or line doubling, if we ever bother with that) have done their job. Since the fdi link is between the pfit and the pixel multiplier steps we need to be careful with calculating the fdi link config. v2: Fix up ilk cpu pll handling. v3: Introduce an fdi_dotclock variable in ironlake_fdi_compute_config to make it clearer that we transmit the adjusted_mode without the pixel multiplier taken into account. The old code multiplied the the available link bw with the pixel multiplier, which results in the same fdi configuration, but is much more confusing. v4: Rebase on top of Imre's is_cpu_edp removal. v5: Rebase on top of Paulo's haswell watermark fixes, which introduce a new place which looked at the pixel_clock and so needed conversion. v6: Split out prep patches as requested by Paulo Zanoni. Also rebase on top of the fdi dotclock handling fix in the fdi lanes/bw computation code. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v3) Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> (v6) Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-06-01 22:16:21 +07:00
/*
* Frequence the dpll for the port should run at. Differs from the
* adjusted dotclock e.g. for DP or 12bpc hdmi mode. This is also
* already multiplied by pixel_multiplier.
*/
drm/i915: store adjusted dotclock in adjusted_mode->clock ... not the port clock. This allows us to kill the funny semantics around pixel_target_clock. Since the dpll code still needs the real port clock, add a new port_clock field to the pipe configuration. Handling the default case for that one is a bit tricky, since encoders might not consistently overwrite it when retrying the crtc/encoder bw arbitrage step in the compute config stage. Hence we need to always clear port_clock and update it again if the encoder hasn't put in something more specific. This can't be done in one step since the encoder might want to adjust the mode first. I was a bit on the fence whether I should subsume the pixel multiplier handling into the port_clock, too. But then I decided against this since it's on an abstract level still the dotclock of the adjusted mode, and only our hw makes it a bit special due to the separate pixel mulitplier setting (which requires that the dpll runs at the non-multiplied dotclock). So after this patch the adjusted_mode accurately describes the mode we feed into the port, after the panel fitter and pixel multiplier (or line doubling, if we ever bother with that) have done their job. Since the fdi link is between the pfit and the pixel multiplier steps we need to be careful with calculating the fdi link config. v2: Fix up ilk cpu pll handling. v3: Introduce an fdi_dotclock variable in ironlake_fdi_compute_config to make it clearer that we transmit the adjusted_mode without the pixel multiplier taken into account. The old code multiplied the the available link bw with the pixel multiplier, which results in the same fdi configuration, but is much more confusing. v4: Rebase on top of Imre's is_cpu_edp removal. v5: Rebase on top of Paulo's haswell watermark fixes, which introduce a new place which looked at the pixel_clock and so needed conversion. v6: Split out prep patches as requested by Paulo Zanoni. Also rebase on top of the fdi dotclock handling fix in the fdi lanes/bw computation code. Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> (v3) Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> (v6) Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-06-01 22:16:21 +07:00
int port_clock;
/* Used by SDVO (and if we ever fix it, HDMI). */
unsigned pixel_multiplier;
u8 lane_count;
/*
* Used by platforms having DP/HDMI PHY with programmable lane
* latency optimization.
*/
u8 lane_lat_optim_mask;
/* minimum acceptable voltage level */
u8 min_voltage_level;
/* Panel fitter controls for gen2-gen4 + VLV */
struct {
u32 control;
u32 pgm_ratios;
u32 lvds_border_bits;
} gmch_pfit;
/* Panel fitter placement and size for Ironlake+ */
struct {
u32 pos;
u32 size;
bool enabled;
bool force_thru;
} pch_pfit;
/* FDI configuration, only valid if has_pch_encoder is set. */
int fdi_lanes;
struct intel_link_m_n fdi_m_n;
bool ips_enabled;
bool crc_enabled;
bool enable_fbc;
bool double_wide;
2014-05-02 11:02:48 +07:00
int pbn;
struct intel_crtc_scaler_state scaler_state;
/* w/a for waiting 2 vblanks during crtc enable */
enum pipe hsw_workaround_pipe;
/* IVB sprite scaling w/a (WaCxSRDisabledForSpriteScaling:ivb) */
bool disable_lp_wm;
struct intel_crtc_wm_state wm;
drm/i915: Make sure we have enough memory bandwidth on ICL ICL has so many planes that it can easily exceed the maximum effective memory bandwidth of the system. We must therefore check that we don't exceed that limit. The algorithm is very magic number heavy and lacks sufficient explanation for now. We also have no sane way to query the memory clock and timings, so we must rely on a combination of raw readout from the memory controller and hardcoded assumptions. The memory controller values obviously change as the system jumps between the different SAGV points, so we try to stabilize it first by disabling SAGV for the duration of the readout. The utilized bandwidth is tracked via a device wide atomic private object. That is actually not robust because we can't afford to enforce strict global ordering between the pipes. Thus I think I'll need to change this to simply chop up the available bandwidth between all the active pipes. Each pipe can then do whatever it wants as long as it doesn't exceed its budget. That scheme will also require that we assume that any number of planes could be active at any time. TODO: make it robust and deal with all the open questions v2: Sleep longer after disabling SAGV v3: Poll for the dclk to get raised (seen it take 250ms!) If the system has 2133MT/s memory then we pointlessly wait one full second :( v4: Use the new pcode interface to get the qgv points rather that using hardcoded numbers v5: Move the pcode stuff into intel_bw.c (Matt) s/intel_sagv_info/intel_qgv_info/ Do the NV12/P010 as per spec for now (Matt) s/IS_ICELAKE/IS_GEN11/ v6: Ignore bandwidth limits if the pcode query fails Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Acked-by: Clint Taylor <Clinton.A.Taylor@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190524153614.32410-1-ville.syrjala@linux.intel.com
2019-05-24 22:36:14 +07:00
u32 data_rate[I915_MAX_PLANES];
/* Gamma mode programmed on the pipe */
u32 gamma_mode;
union {
/* CSC mode programmed on the pipe */
u32 csc_mode;
/* CHV CGM mode */
u32 cgm_mode;
};
/* bitmask of visible planes (enum plane_id) */
u8 active_planes;
u8 nv12_planes;
u8 c8_planes;
drm/i915: enable scrambling Geminilake platform sports a native HDMI 2.0 controller, and is capable of driving pixel-clocks upto 594Mhz. HDMI 2.0 spec mendates scrambling for these higher clocks, for reduced RF footprint. This patch checks if the monitor supports scrambling, and if required, enables it during the modeset. V2: Addressed review comments from Ville: - Do not track scrambling status in DRM layer, track somewhere in driver like in intel_crtc_state. - Don't talk to monitor at such a low layer, set monitor scrambling in intel_enable_ddi() before enabling the port. V3: Addressed review comments from Jani - In comments, function names, use "sink" instead of "monitor", so that the implementation could be close to the language of HDMI spec. V4: Addressed review comment from Maarten - scrambling -> hdmi_scrambling - high_tmds_clock_ratio -> hdmi_high_tmds_clock_ratio V5: Addressed review comments from Ville and Ander - Do not modifiy the crtc_state after compute_config. Move all scrambling and tmds_clock_ratio calcutations to compute_config. - While setting scrambling for source/sink, do not check the conditions again, just go by the crtc_state flags. This will simplyfy the condition checks. V6: Addressed review comments from Ville - Do not add IS_GLK check in disable/enable function, instead add it in compute_config, while setting state flags. - Remove unnecessary paranthesis. - Simplyfy handle_sink_scrambling function as suggested. - Add readout code for scrambling status in get_ddi_config and add a check for the same in pipe_config_compare. V7: Addressed review comments from Ander/Ville - No separate function for source scrambling, make it inline - Align the last line of the macro TRANS_DDI_HDMI_SCRAMBLING_MASK - Do not add platform check while setting source scrambling - Use pipe_config instead of crtc->config to set sink scrambling - To readout scrambling status, Compare with SCRAMBLING_MASK not any of its bits - Remove platform check in intel_pipe_config_compare while checking scrambling status V8: Fixed mege conflict, Addressed review comments from Ander - Remove the desciption/comment about scrambling fom the caller, move it to the function - Move the IS_GLK check into scrambling function - Fix alignment V9: Fixed review comments from Ville, Ander - Pass the scrambling state variables as bool input to the sink_scrambling function and let the disable call be unconditional. - Fix alignments in function calls and debug messages. - Add kernel doc for function intel_hdmi_handle_sink_scrambling V10: Rebase Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Reviewed-by: Ander Conselvan de Oliveira <conselvan2@gmail.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1489404244-16608-6-git-send-email-shashank.sharma@intel.com
2017-03-13 18:24:03 +07:00
/* bitmask of planes that will be updated during the commit */
u8 update_planes;
struct {
u32 enable;
u32 gcp;
union hdmi_infoframe avi;
union hdmi_infoframe spd;
union hdmi_infoframe hdmi;
union hdmi_infoframe drm;
} infoframes;
drm/i915: enable scrambling Geminilake platform sports a native HDMI 2.0 controller, and is capable of driving pixel-clocks upto 594Mhz. HDMI 2.0 spec mendates scrambling for these higher clocks, for reduced RF footprint. This patch checks if the monitor supports scrambling, and if required, enables it during the modeset. V2: Addressed review comments from Ville: - Do not track scrambling status in DRM layer, track somewhere in driver like in intel_crtc_state. - Don't talk to monitor at such a low layer, set monitor scrambling in intel_enable_ddi() before enabling the port. V3: Addressed review comments from Jani - In comments, function names, use "sink" instead of "monitor", so that the implementation could be close to the language of HDMI spec. V4: Addressed review comment from Maarten - scrambling -> hdmi_scrambling - high_tmds_clock_ratio -> hdmi_high_tmds_clock_ratio V5: Addressed review comments from Ville and Ander - Do not modifiy the crtc_state after compute_config. Move all scrambling and tmds_clock_ratio calcutations to compute_config. - While setting scrambling for source/sink, do not check the conditions again, just go by the crtc_state flags. This will simplyfy the condition checks. V6: Addressed review comments from Ville - Do not add IS_GLK check in disable/enable function, instead add it in compute_config, while setting state flags. - Remove unnecessary paranthesis. - Simplyfy handle_sink_scrambling function as suggested. - Add readout code for scrambling status in get_ddi_config and add a check for the same in pipe_config_compare. V7: Addressed review comments from Ander/Ville - No separate function for source scrambling, make it inline - Align the last line of the macro TRANS_DDI_HDMI_SCRAMBLING_MASK - Do not add platform check while setting source scrambling - Use pipe_config instead of crtc->config to set sink scrambling - To readout scrambling status, Compare with SCRAMBLING_MASK not any of its bits - Remove platform check in intel_pipe_config_compare while checking scrambling status V8: Fixed mege conflict, Addressed review comments from Ander - Remove the desciption/comment about scrambling fom the caller, move it to the function - Move the IS_GLK check into scrambling function - Fix alignment V9: Fixed review comments from Ville, Ander - Pass the scrambling state variables as bool input to the sink_scrambling function and let the disable call be unconditional. - Fix alignments in function calls and debug messages. - Add kernel doc for function intel_hdmi_handle_sink_scrambling V10: Rebase Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Reviewed-by: Ander Conselvan de Oliveira <conselvan2@gmail.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1489404244-16608-6-git-send-email-shashank.sharma@intel.com
2017-03-13 18:24:03 +07:00
/* HDMI scrambling status */
bool hdmi_scrambling;
/* HDMI High TMDS char rate ratio */
bool hdmi_high_tmds_clock_ratio;
drm/i915: add config function for YCBCR420 outputs This patch checks encoder level support for YCBCR420 outputs. The logic goes as simple as this: If the input mode is YCBCR420-only mode: prepare HDMI for YCBCR420 output, else continue with RGB output mode. It checks if the mode is YCBCR420 and source can support this output then it marks the ycbcr_420 output indicator into crtc state, for further staging in driver. V2: Split the patch into two, kept helper functions in DRM layer. V3: Changed the compute_config function based on new DRM API. V4: Rebase V5: Rebase V6: Check and handle YCBCR420-only modes, discard the property based approach (Ville) V7: Addressed review comments from Ville - add else case in 12BPC check. - extract ycbcr420 state inside hdmi_12bpc_possible function. V8: Addressed review comments from Ville - Remove extra blank lines. - Remove "HDMI" from the description of ycbcr420 state variable. - Remove local variable, use crtc_state->ycbcr420 instead. Added r-b from Ville. V9: Rebase V10: Added r-b from Imre Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Ander Conselvan de Oliveira <conselvan2@gmail.com> Reviewed-by: Ville Syrjala <ville.syrjala@linux.intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/1500650709-14447-2-git-send-email-shashank.sharma@intel.com Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2017-07-21 22:25:04 +07:00
/* Output format RGB/YCBCR etc */
enum intel_output_format output_format;
drm/i915: Add YCBCR 4:2:0/4:4:4 support for LSPCON LSPCON chips can generate YCBCR outputs, if asked nicely :). In order to generate YCBCR 4:2:0 outputs, a source must: - send YCBCR 4:4:4 signals to LSPCON - program color space as 4:2:0 in AVI infoframes Whereas for YCBCR 4:4:4 outputs, the source must: - send YCBCR 4:4:4 signals to LSPCON - program color space as 4:4:4 in AVI infoframes So for both 4:2:0 as well as 4:4:4 outputs, we are driving the pipe for YCBCR 4:4:4 output, but AVI infoframe's color space information indicates LSPCON FW to start scaling down from YCBCR 4:4:4 and generate YCBCR 4:2:0 output. As the scaling is done by LSPCON device, we need not to reserve a scaler for 4:2:0 outputs. V2: rebase V3: Addressed review comments from Ville - add enum crtc_output_format instead of bool ycbcr420 - use crtc_output_format=4:4:4 for modeset of LSPCON 4:2:0 output cases in this way we will have YCBCR 4:4:4 framework ready (except the ABI part) V4: Added r-b from Maarten (for v3) Addressed review comments from Ville: - Do not add a non-atomic state variable to determine lspcon output. Instead add bool in CRTC state to indicate lspcon based scaling. V5: Addressed review comments from Ville: - Change the state bool name from external scaling to something more relavent. - Keep the info and adjusted_mode structures const. - use crtc_state instead of pipe_config. - Push all the config change into lspcon_ycbcr420_config function. V6: Rebase, small changes to accommodate changes in patch 2. V7: Fixed checkpatch warnings for alignment V8: Rebase PS: Ignored following warnings to match the current formatting: drm/i915: Add YCBCR 4:2:0/4:4:4 support for LSPCON -:53: CHECK:SPACING: spaces preferred around that '<<' (ctx:VxV) #53: FILE: drivers/gpu/drm/i915/i915_reg.h:8721: +#define TRANS_MSA_SAMPLING_444 (2<<1) ^ -:54: CHECK:SPACING: spaces preferred around that '<<' (ctx:VxV) #54: FILE: drivers/gpu/drm/i915/i915_reg.h:8722: +#define TRANS_MSA_CLRSP_YCBCR (2<<3) V9: Rebase V10: Rebase V11: Rebase Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/1539325394-20788-8-git-send-email-shashank.sharma@intel.com
2018-10-12 13:23:14 +07:00
/* Output down scaling is done in LSPCON device */
bool lspcon_downsampling;
/* enable pipe gamma? */
bool gamma_enable;
/* enable pipe csc? */
bool csc_enable;
/* Display Stream compression state */
struct {
bool compression_enable;
bool dsc_split;
u16 compressed_bpp;
u8 slice_count;
} dsc_params;
struct drm_dsc_config dp_dsc_cfg;
i915/dp/fec: Add fec_enable to the crtc state. For DP 1.4 and above, Display Stream compression can be enabled only if Forward Error Correctin can be performed. Add a crtc state for FEC. Currently, the state is determined by platform, DP and DSC being enabled. Moving forward we can use the state to have error correction on other scenarios too if needed. v2: - Control compression_enable with the fec_enable parameter in crtc state and with intel_dp_supports_fec() (Ville) - intel_dp_can_fec()/intel_dp_supports_fec()(manasi) v3: Check for FEC support along with setting crtc state. v4: add checks to intel_dp_source_supports_dsc.(manasi) - Move intel_dp_supports_fec() closer to intel_dp_supports_dsc() (Anusha) v5: Move fec check to intel_dp_supports_dsc(Ville) v6: Remove warning. rebase. v7: change crtc state to include DP sink and fec capability of source.(Manasi) v8: Set fec_enable in crtc in intel_dp_compute_config(). v9 (From Manasi): * Combine the !edp and !fec_support check * Derive dev_priv from intel_dp directly v10 (From Manasi): * Rebase Suggested-by: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Anusha Srivatsa <anusha.srivatsa@intel.com> Signed-off-by: Manasi Navare <manasi.d.navare@intel.comk> Reviewed-by: Manasi Navare <manasi.d.navare@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181128202628.20238-14-manasi.d.navare@intel.com
2018-11-29 03:26:25 +07:00
/* Forward Error correction State */
bool fec_enable;
};
struct intel_crtc {
struct drm_crtc base;
enum pipe pipe;
/*
* Whether the crtc and the connected output pipeline is active. Implies
* that crtc->enabled is set, i.e. the current mode configuration has
* some outputs connected to this crtc.
*/
bool active;
u8 plane_ids_mask;
unsigned long long enabled_power_domains;
struct intel_overlay *overlay;
drm/i915: Make intel_crtc->config a pointer To match the semantics of drm_crtc->state, which this will eventually become. The allocation of the memory for config will be fixed in a followup patch. By adding the extra _config field to intel_crtc it was possible to generate this entire patch with the cocci script below. @@ @@ struct intel_crtc { ... -struct intel_crtc_state config; +struct intel_crtc_state _config; +struct intel_crtc_state *config; ... } @@ struct intel_crtc *crtc; @@ -memset(&crtc->config, 0, sizeof(crtc->config)); +memset(crtc->config, 0, sizeof(*crtc->config)); @@ @@ __intel_set_mode(...) { <... -to_intel_crtc(crtc)->config = *pipe_config; +(*(to_intel_crtc(crtc)->config)) = *pipe_config; ...> } @@ @@ intel_crtc_init(...) { ... WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); +intel_crtc->config = &intel_crtc->_config; return; ... } @@ struct intel_crtc *crtc; @@ -&crtc->config +crtc->config @@ struct intel_crtc *crtc; identifier member; @@ -crtc->config.member +crtc->config->member @@ expression E; @@ -&(to_intel_crtc(E)->config) +to_intel_crtc(E)->config @@ expression E; identifier member; @@ -to_intel_crtc(E)->config.member +to_intel_crtc(E)->config->member v2: Clarify manual changes by splitting them into another patch. (Matt) Improve cocci script to generate even more of the changes. (Ander) Signed-off-by: Ander Conselvan de Oliveira <ander.conselvan.de.oliveira@intel.com> Reviewed-by: Matt Roper <matthew.d.roper@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-01-15 19:55:25 +07:00
struct intel_crtc_state *config;
/* Access to these should be protected by dev_priv->irq_lock. */
bool cpu_fifo_underrun_disabled;
bool pch_fifo_underrun_disabled;
/* per-pipe watermark state */
struct {
/* watermarks currently being used */
union {
struct intel_pipe_wm ilk;
struct vlv_wm_state vlv;
drm/i915: Two stage watermarks for g4x Implement proper two stage watermark programming for g4x. As with other pre-SKL platforms, the watermark registers aren't double buffered on g4x. Hence we must sequence the watermark update carefully around plane updates. The code is quite heavily modelled on the VLV/CHV code, with some fairly significant differences due to the different hardware architecture: * g4x doesn't use inverted watermark values * CxSR actually affects the watermarks since it controls memory self refresh in addition to the max FIFO mode * A further HPLL SR mode is possible with higher memory wakeup latency * g4x has FBC2 and so it also has FBC watermarks * max FIFO mode for primary plane only (cursor is allowed, sprite is not) * g4x has no manual FIFO repartitioning * some TLB miss related workarounds are needed for the watermarks Actually the hardware is quite similar to ILK+ in many ways. The most visible differences are in the actual watermakr register layout. ILK revamped that part quite heavily whereas g4x is still using the layout inherited from earlier platforms. Note that we didn't previously enable the HPLL SR on g4x. So in order to not introduce too many functional changes in this patch I've not actually enabled it here either, even though the code is now fully ready for it. We'll enable it separately later on. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170421181432.15216-13-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2017-04-22 01:14:29 +07:00
struct g4x_wm_state g4x;
} active;
} wm;
drm/i915: Make sprite updates atomic Add a mechanism by which we can evade the leading edge of vblank. This guarantees that no two sprite register writes will straddle on either side of the vblank start, and that means all the writes will be latched together in one atomic operation. We do the vblank evade by checking the scanline counter, and if it's too close to the start of vblank (too close has been hardcoded to 100usec for now), we will wait for the vblank start to pass. In order to eliminate random delayes from the rest of the system, we operate with interrupts disabled, except when waiting for the vblank obviously. Note that we now go digging through pipe_to_crtc_mapping[] in the vblank interrupt handler, which is a bit dangerous since we set up interrupts before the crtcs. However in this case since it's the vblank interrupt, we don't actually unmask it until some piece of code requests it. v2: preempt_check_resched() calls after local_irq_enable() (Jesse) Hook up the vblank irq stuff on BDW as well v3: Pass intel_crtc instead of drm_crtc (Daniel) Warn if crtc.mutex isn't locked (Daniel) Add an explicit compiler barrier and document the barriers (Daniel) Note the irq vs. modeset setup madness in the commit message (Daniel) v4: Use prepare_to_wait() & co. directly and eliminate vbl_received v5: Refactor intel_pipe_handle_vblank() vs. drm_handle_vblank() (Chris) Check for min/max scanline <= 0 (Chris) Don't call intel_pipe_update_end() if start failed totally (Chris) Check that the vblank counters match on both sides of the critical section (Chris) v6: Fix atomic update for interlaced modes v7: Reorder code for better readability (Chris) v8: Drop preempt_check_resched(). It's not available to modules anymore and isn't even needed unless we ourselves cause a wakeup needing reschedule while interrupts are off Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Reviewed-by: Sourab Gupta <sourabgupta@gmail.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-04-29 17:35:46 +07:00
int scanline_offset;
drm/i915: Refactor work that can sleep out of commit (v7) Once we integrate our work into the atomic pipeline, plane commit operations will need to happen with interrupts disabled, due to vblank evasion. Our commit functions today include sleepable work, so those operations need to be split out and run either before or after the atomic register programming. The solution here calculates which of those operations will need to be performed during the 'check' phase and sets flags in an intel_crtc sub-struct. New intel_begin_crtc_commit() and intel_finish_crtc_commit() functions are added before and after the actual register programming; these will eventually be called from the atomic plane helper's .atomic_begin() and .atomic_end() entrypoints. v2: Fix broken sprite code split v3: Make the pre/post commit work crtc-based to match how we eventually want this to be called from the atomic plane helpers. v4: Some platforms that haven't had their watermark code reworked were waiting for vblank, then calling update_sprite_watermarks in their platform-specific disable code. These also need to be flagged out of the critical section. v5: Sprite plane test for primary show/hide should just set the flag to wait for pending flips, not actually perform the wait. (Ander) v6: - Rebase onto latest di-nightly; picks up an important runtime PM fix. - Handle 'wait_for_flips' flag in intel_begin_crtc_commit(). (Ander) - Use wait_for_flips flag for primary plane update rather than performing the wait in the check routine. - Added kerneldoc to pre_disable/post_enable functions that are no longer static. (Ander) - Replace assert_pipe_enabled() in intel_disable_primary_hw_plane() with an intel_crtc->active test; it turns out assert_pipe_enabled() grabs some mutexes and can sleep, which we can't do with interrupts disabled. v7: - Check for fb != NULL when deciding whether the sprite plane hides the primary plane during a sprite update. (PRTS) Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Ander Conselvan de Oliveira <conselvan2@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-12-24 22:59:06 +07:00
struct {
unsigned start_vbl_count;
ktime_t start_vbl_time;
int min_vbl, max_vbl;
int scanline_start;
} debug;
/* scalers available on this crtc */
int num_scalers;
};
drm/i915: add SNB and IVB video sprite support v6 The video sprites support various video surface formats natively and can handle scaling as well. So add support for them using the new DRM core sprite support functions. v2: use drm specific fourcc header and defines v3: address Daniel's comments: - don't take struct mutex around register access (only needed for regs in the GT power well) - don't hold struct mutex across vblank waits - fix up update_plane API (pass obj instead of GTT offset) - add interlaced defines for sprite regs - drop unnecessary 'reg' variables - comment double buffered reg flushing Also fix w/h confusion when writing the scaling reg. v4: more fixes, address more comments from Daniel, and include Hai's fix - prevent divide by zero in scaling calculation (Hai Lan) - update to Ville's new DRM_FORMAT_* types - fix sprite watermark handling (calc based on CRTC size, separate from normal display wm) - remove private refcounts now that the fb cleanups handles things v5: add linear surface support v6: remove color key clearing & setting from update_plane For this version, I tested DPMS since it came up in the last review; DPMS off/on works ok when a video player is working under X, but for power saving we'll probably want to do something smarter. I'll leave that for a separate patch on top. Likewise with the refcounting/fb layer handling, which are really separate cleanups. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Keith Packard <keithp@keithp.com>
2011-12-14 04:19:38 +07:00
struct intel_plane {
struct drm_plane base;
enum i9xx_plane_id i9xx_plane;
enum plane_id id;
drm/i915: add SNB and IVB video sprite support v6 The video sprites support various video surface formats natively and can handle scaling as well. So add support for them using the new DRM core sprite support functions. v2: use drm specific fourcc header and defines v3: address Daniel's comments: - don't take struct mutex around register access (only needed for regs in the GT power well) - don't hold struct mutex across vblank waits - fix up update_plane API (pass obj instead of GTT offset) - add interlaced defines for sprite regs - drop unnecessary 'reg' variables - comment double buffered reg flushing Also fix w/h confusion when writing the scaling reg. v4: more fixes, address more comments from Daniel, and include Hai's fix - prevent divide by zero in scaling calculation (Hai Lan) - update to Ville's new DRM_FORMAT_* types - fix sprite watermark handling (calc based on CRTC size, separate from normal display wm) - remove private refcounts now that the fb cleanups handles things v5: add linear surface support v6: remove color key clearing & setting from update_plane For this version, I tested DPMS since it came up in the last review; DPMS off/on works ok when a video player is working under X, but for power saving we'll probably want to do something smarter. I'll leave that for a separate patch on top. Likewise with the refcounting/fb layer handling, which are really separate cleanups. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Keith Packard <keithp@keithp.com>
2011-12-14 04:19:38 +07:00
enum pipe pipe;
bool has_fbc;
bool has_ccs;
u32 frontbuffer_bit;
struct {
u32 base, cntl, size;
} cursor;
/*
* NOTE: Do not place new plane state fields here (e.g., when adding
* new plane properties). New runtime state should now be placed in
* the intel_plane_state structure and accessed via plane_state.
*/
unsigned int (*max_stride)(struct intel_plane *plane,
u32 pixel_format, u64 modifier,
unsigned int rotation);
void (*update_plane)(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state);
drm/i915/gen11: Link nv12 Y and UV planes in the atomic state, v5. To make NV12 working on icl, we need to update 2 planes simultaneously. I've chosen to do this in the CRTC step after plane validation is done, so we know what planes are (in)visible. The linked Y plane will get updated in intel_plane_update_planes_on_crtc(), by the call to update_slave, which gets the master's plane_state as argument. The link requires both planes for atomic_update to work, so make sure skl_ddb_add_affected_planes() adds both states. Changes since v1: - Introduce icl_is_nv12_y_plane(), instead of hardcoding sprite numbers. - Put all the state updating login in intel_plane_atomic_check_with_state(). - Clean up changes in intel_plane_atomic_check(). Changes since v2: - Fix intel_atomic_get_old_plane_state() to actually return old state. - Move visibility changes to preparation patch. - Only try to find a Y plane on gen11, earlier platforms only require a single plane. Changes since v3: - Fix checkpatch warning about to_intel_crtc() usage. - Add affected planes from icl_add_linked_planes() before check_planes(), it's a cleaner way to do this. (Ville) Changes since v4: - Clear plane links in icl_check_nv12_planes() for clarity. - Only pass crtc_state to icl_check_nv12_planes(). - Use for_each_new_intel_plane_in_state() in icl_check_nv12_planes. - Rename aux to linked. (Ville) Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181022135152.15324-1-maarten.lankhorst@linux.intel.com [mlankhorst: Change bool slave to u32, to satisfy checkpatch] [mlankhorst: Add WARN_ON's based on Ville's suggestion]
2018-10-22 20:51:52 +07:00
void (*update_slave)(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state);
void (*disable_plane)(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state);
bool (*get_hw_state)(struct intel_plane *plane, enum pipe *pipe);
int (*check_plane)(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state);
drm/i915: add SNB and IVB video sprite support v6 The video sprites support various video surface formats natively and can handle scaling as well. So add support for them using the new DRM core sprite support functions. v2: use drm specific fourcc header and defines v3: address Daniel's comments: - don't take struct mutex around register access (only needed for regs in the GT power well) - don't hold struct mutex across vblank waits - fix up update_plane API (pass obj instead of GTT offset) - add interlaced defines for sprite regs - drop unnecessary 'reg' variables - comment double buffered reg flushing Also fix w/h confusion when writing the scaling reg. v4: more fixes, address more comments from Daniel, and include Hai's fix - prevent divide by zero in scaling calculation (Hai Lan) - update to Ville's new DRM_FORMAT_* types - fix sprite watermark handling (calc based on CRTC size, separate from normal display wm) - remove private refcounts now that the fb cleanups handles things v5: add linear surface support v6: remove color key clearing & setting from update_plane For this version, I tested DPMS since it came up in the last review; DPMS off/on works ok when a video player is working under X, but for power saving we'll probably want to do something smarter. I'll leave that for a separate patch on top. Likewise with the refcounting/fb layer handling, which are really separate cleanups. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Keith Packard <keithp@keithp.com>
2011-12-14 04:19:38 +07:00
};
struct intel_watermark_params {
u16 fifo_size;
u16 max_wm;
u8 default_wm;
u8 guard_size;
u8 cacheline_size;
};
struct cxsr_latency {
bool is_desktop : 1;
bool is_ddr3 : 1;
u16 fsb_freq;
u16 mem_freq;
u16 display_sr;
u16 display_hpll_disable;
u16 cursor_sr;
u16 cursor_hpll_disable;
};
#define to_intel_atomic_state(x) container_of(x, struct intel_atomic_state, base)
#define to_intel_crtc(x) container_of(x, struct intel_crtc, base)
#define to_intel_crtc_state(x) container_of(x, struct intel_crtc_state, base)
#define to_intel_connector(x) container_of(x, struct intel_connector, base)
#define to_intel_encoder(x) container_of(x, struct intel_encoder, base)
#define to_intel_framebuffer(x) container_of(x, struct intel_framebuffer, base)
drm/i915: add SNB and IVB video sprite support v6 The video sprites support various video surface formats natively and can handle scaling as well. So add support for them using the new DRM core sprite support functions. v2: use drm specific fourcc header and defines v3: address Daniel's comments: - don't take struct mutex around register access (only needed for regs in the GT power well) - don't hold struct mutex across vblank waits - fix up update_plane API (pass obj instead of GTT offset) - add interlaced defines for sprite regs - drop unnecessary 'reg' variables - comment double buffered reg flushing Also fix w/h confusion when writing the scaling reg. v4: more fixes, address more comments from Daniel, and include Hai's fix - prevent divide by zero in scaling calculation (Hai Lan) - update to Ville's new DRM_FORMAT_* types - fix sprite watermark handling (calc based on CRTC size, separate from normal display wm) - remove private refcounts now that the fb cleanups handles things v5: add linear surface support v6: remove color key clearing & setting from update_plane For this version, I tested DPMS since it came up in the last review; DPMS off/on works ok when a video player is working under X, but for power saving we'll probably want to do something smarter. I'll leave that for a separate patch on top. Likewise with the refcounting/fb layer handling, which are really separate cleanups. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Keith Packard <keithp@keithp.com>
2011-12-14 04:19:38 +07:00
#define to_intel_plane(x) container_of(x, struct intel_plane, base)
drm/i915: Move to atomic plane helpers (v9) Switch plane handling to use the atomic plane helpers. This means that rather than provide our own implementations of .update_plane() and .disable_plane(), we expose the lower-level check/prepare/commit/cleanup entrypoints and let the DRM core implement update/disable for us using those entrypoints. The other main change that falls out of this patch is that our drm_plane's will now always have a valid plane->state that contains the relevant plane state (initial state is allocated at plane creation). The base drm_plane_state pointed to holds the requested source/dest coordinates, and the subclassed intel_plane_state holds the adjusted values that our driver actually uses. v2: - Renamed file from intel_atomic.c to intel_atomic_plane.c (Daniel) - Fix a copy/paste comment mistake (Bob) v3: - Use prepare/cleanup functions that we've already factored out - Use newly refactored pre_commit/commit/post_commit to avoid sleeping during vblank evasion v4: - Rebase to latest di-nightly requires adding an 'old_state' parameter to atomic_update; v5: - Must have botched a rebase somewhere and lost some work. Restore state 'dirty' flag to let begin/end code know which planes to run the pre_commit/post_commit hooks for. This would have actually shown up as broken in the next commit rather than this one. v6: - Squash kerneldoc patch into this one. - Previous patches have now already taken care of most of the infrastructure that used to be in this patch. All we're adding here now is some thin wrappers. v7: - Check return of intel_plane_duplicate_state() for allocation failures. v8: - Drop unused drm_plane_state -> intel_plane_state cast. (Ander) - Squash in actual transition to plane helpers. Significant refactoring earlier in the patchset has made the combined prep+transition much easier to swallow than it was in earlier iterations. (Ander) v9: - s/track_fbs/disabled_planes/ in the atomic crtc flags. The only fb's we need to update frontbuffer tracking for are those on a plane about to be disabled (since the atomic helpers never call prepare_fb() when disabling a plane), so the new name more accurately describes what we're actually tracking. Testcase: igt/kms_plane Testcase: igt/kms_universal_plane Testcase: igt/kms_cursor_crc Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Ander Conselvan de Oliveira <conselvan2@gmail.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-12-24 01:41:52 +07:00
#define to_intel_plane_state(x) container_of(x, struct intel_plane_state, base)
#define intel_fb_obj(x) ((x) ? to_intel_bo((x)->obj[0]) : NULL)
struct intel_hdmi {
drm/i915: Type safe register read/write Make I915_READ and I915_WRITE more type safe by wrapping the register offset in a struct. This should eliminate most of the fumbles we've had with misplaced parens. This only takes care of normal mmio registers. We could extend the idea to other register types and define each with its own struct. That way you wouldn't be able to accidentally pass the wrong thing to a specific register access function. The gpio_reg setup is probably the ugliest thing left. But I figure I'd just leave it for now, and wait for some divine inspiration to strike before making it nice. As for the generated code, it's actually a bit better sometimes. Eg. looking at i915_irq_handler(), we can see the following change: lea 0x70024(%rdx,%rax,1),%r9d mov $0x1,%edx - movslq %r9d,%r9 - mov %r9,%rsi - mov %r9,-0x58(%rbp) - callq *0xd8(%rbx) + mov %r9d,%esi + mov %r9d,-0x48(%rbp) callq *0xd8(%rbx) So previously gcc thought the register offset might be signed and decided to sign extend it, just in case. The rest appears to be mostly just minor shuffling of instructions. v2: i915_mmio_reg_{offset,equal,valid}() helpers added s/_REG/_MMIO/ in the register defines mo more switch statements left to worry about ring_emit stuff got sorted in a prep patch cmd parser, lrc context and w/a batch buildup also in prep patch vgpu stuff cleaned up and moved to a prep patch all other unrelated changes split out v3: Rebased due to BXT DSI/BLC, MOCS, etc. v4: Rebased due to churn, s/i915_mmio_reg_t/i915_reg_t/ Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1447853606-2751-1-git-send-email-ville.syrjala@linux.intel.com
2015-11-18 20:33:26 +07:00
i915_reg_t hdmi_reg;
int ddc_bus;
drm/i915: Respect DP++ adaptor TMDS clock limit Try to detect the max TMDS clock limit for the DP++ adaptor (if any) and take it into account when checking the port clock. Note that as with the sink (HDMI vs. DVI) TMDS clock limit we'll ignore the adaptor TMDS clock limit in the modeset path, in case users are already "overclocking" their TMDS links. One subtle change here is that we'll have to respect the adaptor TMDS clock limit when we decide whether to do 12bpc or 8bpc, otherwise we might end up picking 12bpc and accidentally driving the TMDS link out of spec even when the user chose a mode that fits wihting the limits at 8bpc. This means you can't "overclock" your DP++ dongle at 12bpc anymore, but you can continue to do so at 8bpc. Note that for simplicity we'll use the I2C access method for all dual mode adaptors including type 2. Otherwise we'd have to start mixing DP AUX and HDMI together. In the future we may need to do that if we come across any board designs that don't hook up the DDC pins to the DP++ connectors. Such boards would obviously only work with type 2 dual mode adaptors, and not type 1. v2: Store adaptor type under indel_hdmi->dp_dual_mode Deal with DRM_DP_DUAL_MODE_UNKNOWN Pass adaptor type to drm_dp_dual_mode_max_tmds_clock(), and use it for type1 adaptors as well Cc: stable@vger.kernel.org Reported-by: Tore Anderson <tore@fud.no> Fixes: 7a0baa623446 ("Revert "drm/i915: Disable 12bpc hdmi for now"") Cc: Paulo Zanoni <paulo.r.zanoni@intel.com> Cc: Shashank Sharma <shashank.sharma@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1462216105-20881-3-git-send-email-ville.syrjala@linux.intel.com Reviewed-by: Shashank Sharma <shashank.sharma@intel.com>
2016-05-03 02:08:23 +07:00
struct {
enum drm_dp_dual_mode_type type;
int max_tmds_clock;
} dp_dual_mode;
bool has_hdmi_sink;
bool has_audio;
struct intel_connector *attached_connector;
struct cec_notifier *cec_notifier;
};
2014-05-02 11:02:48 +07:00
struct intel_dp_mst_encoder;
#define DP_MAX_DOWNSTREAM_PORTS 0x10
/*
* enum link_m_n_set:
* When platform provides two set of M_N registers for dp, we can
* program them and switch between them incase of DRRS.
* But When only one such register is provided, we have to program the
* required divider value on that registers itself based on the DRRS state.
*
* M1_N1 : Program dp_m_n on M1_N1 registers
* dp_m2_n2 on M2_N2 registers (If supported)
*
* M2_N2 : Program dp_m2_n2 on M1_N1 registers
* M2_N2 registers are not supported
*/
enum link_m_n_set {
/* Sets the m1_n1 and m2_n2 */
M1_N1 = 0,
M2_N2
};
struct intel_dp_compliance_data {
unsigned long edid;
u8 video_pattern;
u16 hdisplay, vdisplay;
u8 bpc;
};
struct intel_dp_compliance {
unsigned long test_type;
struct intel_dp_compliance_data test_data;
bool test_active;
int test_link_rate;
u8 test_lane_count;
};
struct intel_dp {
drm/i915: Type safe register read/write Make I915_READ and I915_WRITE more type safe by wrapping the register offset in a struct. This should eliminate most of the fumbles we've had with misplaced parens. This only takes care of normal mmio registers. We could extend the idea to other register types and define each with its own struct. That way you wouldn't be able to accidentally pass the wrong thing to a specific register access function. The gpio_reg setup is probably the ugliest thing left. But I figure I'd just leave it for now, and wait for some divine inspiration to strike before making it nice. As for the generated code, it's actually a bit better sometimes. Eg. looking at i915_irq_handler(), we can see the following change: lea 0x70024(%rdx,%rax,1),%r9d mov $0x1,%edx - movslq %r9d,%r9 - mov %r9,%rsi - mov %r9,-0x58(%rbp) - callq *0xd8(%rbx) + mov %r9d,%esi + mov %r9d,-0x48(%rbp) callq *0xd8(%rbx) So previously gcc thought the register offset might be signed and decided to sign extend it, just in case. The rest appears to be mostly just minor shuffling of instructions. v2: i915_mmio_reg_{offset,equal,valid}() helpers added s/_REG/_MMIO/ in the register defines mo more switch statements left to worry about ring_emit stuff got sorted in a prep patch cmd parser, lrc context and w/a batch buildup also in prep patch vgpu stuff cleaned up and moved to a prep patch all other unrelated changes split out v3: Rebased due to BXT DSI/BLC, MOCS, etc. v4: Rebased due to churn, s/i915_mmio_reg_t/i915_reg_t/ Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1447853606-2751-1-git-send-email-ville.syrjala@linux.intel.com
2015-11-18 20:33:26 +07:00
i915_reg_t output_reg;
u32 DP;
int link_rate;
u8 lane_count;
u8 sink_count;
bool link_mst;
bool link_trained;
bool has_audio;
bool reset_link_params;
u8 dpcd[DP_RECEIVER_CAP_SIZE];
u8 psr_dpcd[EDP_PSR_RECEIVER_CAP_SIZE];
u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS];
u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
2018-10-31 07:19:19 +07:00
u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE];
u8 fec_capable;
/* source rates */
int num_source_rates;
const int *source_rates;
drm/i915/dp: generate and cache sink rate array for all DP, not just eDP 1.4 There is some conflation related to sink rates, making this change more complicated than it would otherwise have to be. There are three changes here that are rather difficult to split up: 1) Use the intel_dp->sink_rates array for all DP, not just eDP 1.4. We initialize it from DPCD on eDP 1.4 like before, but generate it based on DP_MAX_LINK_RATE on others. This reduces code complexity when we need to use the sink rates; they are all always in the sink_rates array. 2) Update the sink rate array whenever we read DPCD, and use the information from there. This increases code readability when we need the sink rates. 3) Disentangle fallback rate limiting from sink rates. In the code, the max rate is a dynamic property of the *link*, not of the *sink*. Do the limiting after intersecting the source and sink rates, which are static properties of the devices. This paves the way for follow-up refactoring that I've refrained from doing here to keep this change as simple as it possibly can. v2: introduce use_rate_select and handle non-confirming eDP (Ville) v3: don't clobber cached eDP rates on short pulse (Ville) Cc: Manasi Navare <manasi.d.navare@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/071bad76467f8ab2e73f3f61ad52d5a468004c71.1490712890.git.jani.nikula@intel.com
2017-03-28 21:59:05 +07:00
/* sink rates as reported by DP_MAX_LINK_RATE/DP_SUPPORTED_LINK_RATES */
int num_sink_rates;
int sink_rates[DP_MAX_SUPPORTED_RATES];
drm/i915/dp: generate and cache sink rate array for all DP, not just eDP 1.4 There is some conflation related to sink rates, making this change more complicated than it would otherwise have to be. There are three changes here that are rather difficult to split up: 1) Use the intel_dp->sink_rates array for all DP, not just eDP 1.4. We initialize it from DPCD on eDP 1.4 like before, but generate it based on DP_MAX_LINK_RATE on others. This reduces code complexity when we need to use the sink rates; they are all always in the sink_rates array. 2) Update the sink rate array whenever we read DPCD, and use the information from there. This increases code readability when we need the sink rates. 3) Disentangle fallback rate limiting from sink rates. In the code, the max rate is a dynamic property of the *link*, not of the *sink*. Do the limiting after intersecting the source and sink rates, which are static properties of the devices. This paves the way for follow-up refactoring that I've refrained from doing here to keep this change as simple as it possibly can. v2: introduce use_rate_select and handle non-confirming eDP (Ville) v3: don't clobber cached eDP rates on short pulse (Ville) Cc: Manasi Navare <manasi.d.navare@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Manasi Navare <manasi.d.navare@intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/071bad76467f8ab2e73f3f61ad52d5a468004c71.1490712890.git.jani.nikula@intel.com
2017-03-28 21:59:05 +07:00
bool use_rate_select;
/* intersection of source and sink rates */
int num_common_rates;
int common_rates[DP_MAX_SUPPORTED_RATES];
/* Max lane count for the current link */
int max_link_lane_count;
/* Max rate for the current link */
int max_link_rate;
/* sink or branch descriptor */
struct drm_dp_desc desc;
struct drm_dp_aux aux;
u8 train_set[4];
int panel_power_up_delay;
int panel_power_down_delay;
int panel_power_cycle_delay;
int backlight_on_delay;
int backlight_off_delay;
struct delayed_work panel_vdd_work;
bool want_panel_vdd;
unsigned long last_power_on;
unsigned long last_backlight_off;
ktime_t panel_power_off_time;
struct notifier_block edp_notifier;
/*
* Pipe whose power sequencer is currently locked into
* this port. Only relevant on VLV/CHV.
*/
enum pipe pps_pipe;
/*
* Pipe currently driving the port. Used for preventing
* the use of the PPS for any pipe currentrly driving
* external DP as that will mess things up on VLV.
*/
enum pipe active_pipe;
/*
* Set if the sequencer may be reset due to a power transition,
* requiring a reinitialization. Only relevant on BXT.
*/
bool pps_reset;
struct edp_power_seq pps_delays;
2014-05-02 11:02:48 +07:00
bool can_mst; /* this port supports mst */
bool is_mst;
int active_mst_links;
2014-05-02 11:02:48 +07:00
/* connector directly attached - won't be use for modeset in mst world */
struct intel_connector *attached_connector;
2014-05-02 11:02:48 +07:00
/* mst connector list */
struct intel_dp_mst_encoder *mst_encoders[I915_MAX_PIPES];
struct drm_dp_mst_topology_mgr mst_mgr;
u32 (*get_aux_clock_divider)(struct intel_dp *dp, int index);
/*
* This function returns the value we have to program the AUX_CTL
* register with to kick off an AUX transaction.
*/
u32 (*get_aux_send_ctl)(struct intel_dp *dp, int send_bytes,
u32 aux_clock_divider);
i915_reg_t (*aux_ch_ctl_reg)(struct intel_dp *dp);
i915_reg_t (*aux_ch_data_reg)(struct intel_dp *dp, int index);
/* This is called before a link training is starterd */
void (*prepare_link_retrain)(struct intel_dp *intel_dp);
drm/i915: Add automated testing support for Displayport compliance testing Add the skeleton framework for supporting automation for Displayport compliance testing. This patch adds the necessary framework for the source device to appropriately respond to test automation requests from a sink device. V2: - Addressed previous mailing list feedback - Fixed compilation issue (struct members declared in a later patch) - Updated debug messages to be more accurate - Added status checks for the DPCD read/write calls - Removed excess comments and debug messages - Fixed debug message compilation warnings - Fixed compilation issue with missing variables - Updated link training autotest to ACK V3: - Fixed the checks on the DPCD return code to be <= 0 rather than != 0 - Removed extraneous assignment of a NAK return code in the DPCD read failure case - Changed the return in the DPCD read failure case to a goto to the exit point where the status code is written to the sink - Removed FAUX test case since it's deprecated now - Removed the compliance flag assignment in handle_test_request V4: - Moved declaration of type_type here - Removed declaration of test_data (moved to a later patch) - Added reset to 0 for compliance test variables V5: - Moved test_active variable declaration and initialization out of this patch and into the patch where it's used - Changed variable name compliance_testing_active to compliance_test_active to unify the naming convention - Added initialization for compliance_test_type variable Signed-off-by: Todd Previte <tprevite@gmail.com> Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-15 22:38:38 +07:00
/* Displayport compliance testing */
struct intel_dp_compliance compliance;
drm/i915/dsc: Add Per connector debugfs node for DSC support/enable DSC can be supported per DP connector. This patch adds a per connector debugfs node to expose DSC support capability by the kernel. The same node can be used from userspace to force DSC enable. force_dsc_en written through this debugfs node is used to force DSC even for lower resolutions. Credits to Ville Syrjala for suggesting the proper locks to be used and to Lyude Paul for explaining how to use them in this context v8: * Add else if (ret) for drm_modeset_lock (Lyude) v7: * Get crtc, crtc_state from connector atomic state and add proper locks and backoff (Ville, Chris Wilson, Lyude) (Suggested-by: Ville Syrjala <ville.syrjala@linux.intel.com>) * Use %zu for printing size_t variable (Lyude) v6: * Read fec_capable only for non edp (Manasi) v5: * Name it dsc sink support and also add fec support in the same node (Ville) v4: * Add missed connector_status check (Manasi) * Create i915_dsc_support node only for Gen >=10 (manasi) * Access intel_dp->dsc_dpcd only if its not NULL (Manasi) v3: * Combine Force_dsc_en with this patch (Ville) v2: * Use kstrtobool_from_user to avoid explicit error checking (Lyude) * Rebase on drm-tip (Manasi) Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Anusha Srivatsa <anusha.srivatsa@intel.com> Cc: Lyude Paul <lyude@redhat.com> Signed-off-by: Manasi Navare <manasi.d.navare@intel.com> Reviewed-by: Lyude Paul <lyude@redhat.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181206005407.4698-1-manasi.d.navare@intel.com
2018-12-06 07:54:07 +07:00
/* Display stream compression testing */
bool force_dsc_en;
};
enum lspcon_vendor {
LSPCON_VENDOR_MCA,
LSPCON_VENDOR_PARADE
};
struct intel_lspcon {
bool active;
enum drm_lspcon_mode mode;
enum lspcon_vendor vendor;
};
struct intel_digital_port {
struct intel_encoder base;
u32 saved_port_bits;
struct intel_dp dp;
struct intel_hdmi hdmi;
struct intel_lspcon lspcon;
enum irqreturn (*hpd_pulse)(struct intel_digital_port *, bool);
drm/i915: Trick CL2 into life on CHV when using pipe B with port B Normmally the common lane in a PHY channel gets powered up when some of the data lanes get powered up. But when we're driving port B with pipe B we don't want to enabled any of the data lanes, and just want the DPLL in the common lane to be active. To make that happens we have to temporarily enable some data lanes after which we can access the DPLL registers in the common lane. Once the pipe is up and running we can drop the power override on the data lanes allowing them to shut down. From this point forward the common lane will in fact stay powered on until the data lanes in the other channel get powered down. Ville's extended explanation from the review thread: On Wed, Aug 19, 2015 at 07:47:41AM +0530, Deepak wrote: > One Q, why only for port B? Port C is also in same common lane right? Port B is in the first PHY channel which also houses CL1. CL1 always powers up whenever any lanes in either PHY channel are powered up. CL2 only powers up if lanes in the second channel (ie. the one with port C) powers up. So in this scenario (pipe B->port B) we want the DPLL from CL2, but ideally we only want to power up the lanes for port B. Powering up port B lanes will only power up CL1, but as we need CL2 instead we need to, temporarily, power up some lanes in port C as well. Crossing the streams the other way (pipe A->port C) is not a problem since CL1 powers up whenever anything else powers up. So powering up some port C lanes is enough on its own to make the CL1 DPLL operational, even though CL1 and the lanes live in separate channels. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Deepak S <deepak.s@linux.intel.com> [danvet: Amend commit message with extended explanation.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-09 03:45:55 +07:00
bool release_cl2_override;
u8 max_lanes;
/* Used for DP and ICL+ TypeC/DP and TypeC/HDMI ports. */
enum aux_ch aux_ch;
enum intel_display_power_domain ddi_io_power_domain;
drm/i915/icl: Fix HPD handling for TypeC legacy ports Atm HPD disconnect events on TypeC ports will break things, since we'll switch the TypeC mode (between legacy and disconnected modes as well as among USB DP alternate, Thunderbolt alternate and disconnected modes) on the fly from the HPD disconnect interrupt work while the port may be still active. Even if the port happens to be not active during the disconnect we'd still have a problem during a subsequent modeset or AUX transfer that could happen regardless of the port's connected state. For instance the system resume display mode restore code and userspace could perform a modeset on the port or userspace could start an AUX transfer even if the port is in disconnected state. To fix this keep TypeC legacy ports in legacy mode whenever we're not suspended. This mode is a static configuration as opposed to the Thunderbolt and USB DP alternate modes between which we can switch dynamically. We determine if a TypeC port is legacy (wired to a legacy HDMI or a legacy DP connector) via the VBT DDI port specific USB-TypeC and Thunderbolt flags. If both these flags are cleared then the port is configured for legacy mode. On such legacy ports we'll run the TypeC PHY connect sequence explicitly during driver loading and system resume (vs. running the sequence during HPD processing). The connect will succeed even if the display is not connected to begin with (or disappears during the suspended state) since for legacy ports the PORT_TX_DFLEXDPPMS / DP_PHY_MODE_STATUS_COMPLETED flag is always set (as opposed to the USB DP alternate mode where it gets set only when a display is connected). Correspondingly run the TypeC PHY disconnect sequence during system suspend and driver unloading. For the unloading case I had to split up intel_dp_encoder_destroy() to be able to have the 1. flush any pending encoder work, 2. disconnect TC PHY, 3. call DRM core cleanup and kfree on the encoder object. For now run the PHY disconnect during suspend only for TypeC legacy ports. We will need to disconnect even in USB DP alternate mode in the future, but atm we don't have a way to reconnect the port in this mode during resume if the display disappears while being suspended. So for now punt on this case. Note that we do not disconnect the port during runtime suspend; in legacy mode there are no shared HW resources (PHY lanes) with other HW blocks (USB), so no need to release / reacquire these resources as with USB DP alternate mode. The only reason to disconnect legacy ports during system suspend is that the PORT_TX_DFLEXDPPMS / DP_PHY_MODE_STATUS_COMPLETED flag must be rechecked and the port must be connected again during system resume. We'll also have to turn the check for this flag into a poll, after figuring out what's the proper timeout value for it. v2: - Remove the redundant special casing of legacy mode when doing a disconnect in icl_tc_port_connected(). It's guaranteed already that we won't disconnect legacy ports in that function. - Add a note about the new intel_ddi_encoder_destroy() hook. - Reword the commit message after switching to the VBT based detection. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=108070 Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=108924 Cc: Paulo Zanoni <paulo.r.zanoni@intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: José Roberto de Souza <jose.souza@intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181214182703.18865-4-imre.deak@intel.com
2018-12-15 01:27:02 +07:00
bool tc_legacy_port:1;
enum tc_port_type tc_type;
void (*write_infoframe)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len);
void (*read_infoframe)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
void *frame, ssize_t len);
void (*set_infoframes)(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state);
u32 (*infoframes_enabled)(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config);
};
2014-05-02 11:02:48 +07:00
struct intel_dp_mst_encoder {
struct intel_encoder base;
enum pipe pipe;
struct intel_digital_port *primary;
struct intel_connector *connector;
2014-05-02 11:02:48 +07:00
};
static inline enum dpio_channel
drm/i915: update VLV PLL and DPIO code v11 In Valleyview voltage swing, pre-emphasis and lane control registers can be programmed only through the h/w side band fabric. Update vlv_update_pll, i9xx_crtc_enable, and intel_enable_pll with the appropriate programming. We need to make sure that the tx lane reset occurs in both the full mode set and DPMS paths, so factor things out to allow that. v2: use different DPIO_DIVISOR values for VGA and DisplayPort v3: Fix update pll logic to use same DPIO_DIVISOR & DPIO_REFSFR values for all display interfaces v4: collapse with various updates v5: squash with crtc enable/pll enable bits v6: split out DP code (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) remove unneeded check in 9xx pll div update (Jani) wrap VLV pll update call in IS_VALLEYVIEW (Jani) move port enable back to end of crtc enable (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) v7: fix up conflicts against latest drm-intel-next-queued v8: use DPIO reg names, fix pipes (Jani) from mPhy_registers_VLV2_ww20p5 doc v9: update to latest info from driver enabling notes doc driver_vbios_notes_9 v10: fixup a bit of pipe/port confusion to allow eDP and HDMI to work simultaneously (Jesse) v11: use pll/port callbacks for DPIO port activity (Daniel) use separate VLV CRTC enable function (Daniel) move around port ready checks (Jesse) Signed-off-by: Pallavi G <pallavi.g@intel.com> Signed-off-by: Vijay Purushothaman <vijay.a.purushothaman@intel.com> Signed-off-by: Gajanan Bhat <gajanan.bhat@intel.com> Signed-off-by: Ben Widawsky <benjamin.widawsky@intel.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: Drop pfit changes and add a little comment explaining that vlv has a different enable sequence and so needs it's own crtc_enable callback. Also apply a fixup patch from Wu Fengguang to shut up some compiler warnings.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-04-19 04:51:36 +07:00
vlv_dport_to_channel(struct intel_digital_port *dport)
{
drm/i915: Nuke intel_digital_port->port Remove intel_digital_port->port and replace its users with intel_encoder->port. intel_encoder->port is a superset of intel_digital_port->port, and it works correctly even for MST encoders. v2: Eliminate a few dp_to_dig_port()->base.port cases too (DK) Performed with cocci: @@ @@ struct intel_digital_port { ... - enum port port; ... } @@ struct intel_digital_port *D; expression E; @@ - D->port = E; @@ struct intel_digital_port *D; @@ - D->port + D->base.port @ expression E; @@ ( - dp_to_dig_port(E)->port + dp_to_dig_port(E)->base.port | - enc_to_dig_port(E)->port + to_intel_encoder(E)->port ) @@ expression E; @@ - to_intel_encoder(&E->base) + E @@ struct intel_digital_port *D; identifier I, M; @@ I = &D->base <... ( - D->base.M + I->M | - &D->base + I ) ...> @@ identifier D; expression E; identifier M; @@ D = enc_to_dig_port(&E->base) <... ( - D->base.M + E->M | - &D->base + E ) ...> @@ identifier D, DP; expression E; identifier M; @@ DP = enc_to_intel_dp(&E->base) <... ( - dp_to_dig_port(DP)->base.M + E->M | - &dp_to_dig_port(DP)->base + E ) ...> @@ expression E; identifier M; @@ ( - enc_to_dig_port(&E->base)->base.M + E->M | - enc_to_dig_port(&E->base)->base + E | - enc_to_mst(&E->base)->primary->base.port + E->port ) @@ expression E; identifier D; @@ - struct intel_digital_port *D = E; ... when != D Cc: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Reviewed-by: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Acked-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171109152434.32074-1-ville.syrjala@linux.intel.com
2017-11-09 22:24:34 +07:00
switch (dport->base.port) {
drm/i915: update VLV PLL and DPIO code v11 In Valleyview voltage swing, pre-emphasis and lane control registers can be programmed only through the h/w side band fabric. Update vlv_update_pll, i9xx_crtc_enable, and intel_enable_pll with the appropriate programming. We need to make sure that the tx lane reset occurs in both the full mode set and DPMS paths, so factor things out to allow that. v2: use different DPIO_DIVISOR values for VGA and DisplayPort v3: Fix update pll logic to use same DPIO_DIVISOR & DPIO_REFSFR values for all display interfaces v4: collapse with various updates v5: squash with crtc enable/pll enable bits v6: split out DP code (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) remove unneeded check in 9xx pll div update (Jani) wrap VLV pll update call in IS_VALLEYVIEW (Jani) move port enable back to end of crtc enable (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) v7: fix up conflicts against latest drm-intel-next-queued v8: use DPIO reg names, fix pipes (Jani) from mPhy_registers_VLV2_ww20p5 doc v9: update to latest info from driver enabling notes doc driver_vbios_notes_9 v10: fixup a bit of pipe/port confusion to allow eDP and HDMI to work simultaneously (Jesse) v11: use pll/port callbacks for DPIO port activity (Daniel) use separate VLV CRTC enable function (Daniel) move around port ready checks (Jesse) Signed-off-by: Pallavi G <pallavi.g@intel.com> Signed-off-by: Vijay Purushothaman <vijay.a.purushothaman@intel.com> Signed-off-by: Gajanan Bhat <gajanan.bhat@intel.com> Signed-off-by: Ben Widawsky <benjamin.widawsky@intel.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: Drop pfit changes and add a little comment explaining that vlv has a different enable sequence and so needs it's own crtc_enable callback. Also apply a fixup patch from Wu Fengguang to shut up some compiler warnings.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-04-19 04:51:36 +07:00
case PORT_B:
case PORT_D:
return DPIO_CH0;
drm/i915: update VLV PLL and DPIO code v11 In Valleyview voltage swing, pre-emphasis and lane control registers can be programmed only through the h/w side band fabric. Update vlv_update_pll, i9xx_crtc_enable, and intel_enable_pll with the appropriate programming. We need to make sure that the tx lane reset occurs in both the full mode set and DPMS paths, so factor things out to allow that. v2: use different DPIO_DIVISOR values for VGA and DisplayPort v3: Fix update pll logic to use same DPIO_DIVISOR & DPIO_REFSFR values for all display interfaces v4: collapse with various updates v5: squash with crtc enable/pll enable bits v6: split out DP code (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) remove unneeded check in 9xx pll div update (Jani) wrap VLV pll update call in IS_VALLEYVIEW (Jani) move port enable back to end of crtc enable (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) v7: fix up conflicts against latest drm-intel-next-queued v8: use DPIO reg names, fix pipes (Jani) from mPhy_registers_VLV2_ww20p5 doc v9: update to latest info from driver enabling notes doc driver_vbios_notes_9 v10: fixup a bit of pipe/port confusion to allow eDP and HDMI to work simultaneously (Jesse) v11: use pll/port callbacks for DPIO port activity (Daniel) use separate VLV CRTC enable function (Daniel) move around port ready checks (Jesse) Signed-off-by: Pallavi G <pallavi.g@intel.com> Signed-off-by: Vijay Purushothaman <vijay.a.purushothaman@intel.com> Signed-off-by: Gajanan Bhat <gajanan.bhat@intel.com> Signed-off-by: Ben Widawsky <benjamin.widawsky@intel.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: Drop pfit changes and add a little comment explaining that vlv has a different enable sequence and so needs it's own crtc_enable callback. Also apply a fixup patch from Wu Fengguang to shut up some compiler warnings.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-04-19 04:51:36 +07:00
case PORT_C:
return DPIO_CH1;
drm/i915: update VLV PLL and DPIO code v11 In Valleyview voltage swing, pre-emphasis and lane control registers can be programmed only through the h/w side band fabric. Update vlv_update_pll, i9xx_crtc_enable, and intel_enable_pll with the appropriate programming. We need to make sure that the tx lane reset occurs in both the full mode set and DPMS paths, so factor things out to allow that. v2: use different DPIO_DIVISOR values for VGA and DisplayPort v3: Fix update pll logic to use same DPIO_DIVISOR & DPIO_REFSFR values for all display interfaces v4: collapse with various updates v5: squash with crtc enable/pll enable bits v6: split out DP code (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) remove unneeded check in 9xx pll div update (Jani) wrap VLV pll update call in IS_VALLEYVIEW (Jani) move port enable back to end of crtc enable (jbarnes) put phyready check under IS_VALLEYVIEW (jbarnes) v7: fix up conflicts against latest drm-intel-next-queued v8: use DPIO reg names, fix pipes (Jani) from mPhy_registers_VLV2_ww20p5 doc v9: update to latest info from driver enabling notes doc driver_vbios_notes_9 v10: fixup a bit of pipe/port confusion to allow eDP and HDMI to work simultaneously (Jesse) v11: use pll/port callbacks for DPIO port activity (Daniel) use separate VLV CRTC enable function (Daniel) move around port ready checks (Jesse) Signed-off-by: Pallavi G <pallavi.g@intel.com> Signed-off-by: Vijay Purushothaman <vijay.a.purushothaman@intel.com> Signed-off-by: Gajanan Bhat <gajanan.bhat@intel.com> Signed-off-by: Ben Widawsky <benjamin.widawsky@intel.com> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> [danvet: Drop pfit changes and add a little comment explaining that vlv has a different enable sequence and so needs it's own crtc_enable callback. Also apply a fixup patch from Wu Fengguang to shut up some compiler warnings.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2013-04-19 04:51:36 +07:00
default:
BUG();
}
}
static inline enum dpio_phy
vlv_dport_to_phy(struct intel_digital_port *dport)
{
drm/i915: Nuke intel_digital_port->port Remove intel_digital_port->port and replace its users with intel_encoder->port. intel_encoder->port is a superset of intel_digital_port->port, and it works correctly even for MST encoders. v2: Eliminate a few dp_to_dig_port()->base.port cases too (DK) Performed with cocci: @@ @@ struct intel_digital_port { ... - enum port port; ... } @@ struct intel_digital_port *D; expression E; @@ - D->port = E; @@ struct intel_digital_port *D; @@ - D->port + D->base.port @ expression E; @@ ( - dp_to_dig_port(E)->port + dp_to_dig_port(E)->base.port | - enc_to_dig_port(E)->port + to_intel_encoder(E)->port ) @@ expression E; @@ - to_intel_encoder(&E->base) + E @@ struct intel_digital_port *D; identifier I, M; @@ I = &D->base <... ( - D->base.M + I->M | - &D->base + I ) ...> @@ identifier D; expression E; identifier M; @@ D = enc_to_dig_port(&E->base) <... ( - D->base.M + E->M | - &D->base + E ) ...> @@ identifier D, DP; expression E; identifier M; @@ DP = enc_to_intel_dp(&E->base) <... ( - dp_to_dig_port(DP)->base.M + E->M | - &dp_to_dig_port(DP)->base + E ) ...> @@ expression E; identifier M; @@ ( - enc_to_dig_port(&E->base)->base.M + E->M | - enc_to_dig_port(&E->base)->base + E | - enc_to_mst(&E->base)->primary->base.port + E->port ) @@ expression E; identifier D; @@ - struct intel_digital_port *D = E; ... when != D Cc: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Reviewed-by: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com> Acked-by: Jani Nikula <jani.nikula@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171109152434.32074-1-ville.syrjala@linux.intel.com
2017-11-09 22:24:34 +07:00
switch (dport->base.port) {
case PORT_B:
case PORT_C:
return DPIO_PHY0;
case PORT_D:
return DPIO_PHY1;
default:
BUG();
}
}
static inline enum dpio_channel
vlv_pipe_to_channel(enum pipe pipe)
{
switch (pipe) {
case PIPE_A:
case PIPE_C:
return DPIO_CH0;
case PIPE_B:
return DPIO_CH1;
default:
BUG();
}
}
static inline struct intel_crtc *
intel_get_crtc_for_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
return dev_priv->pipe_to_crtc_mapping[pipe];
}
static inline struct intel_crtc *
intel_get_crtc_for_plane(struct drm_i915_private *dev_priv, enum i9xx_plane_id plane)
{
return dev_priv->plane_to_crtc_mapping[plane];
}
struct intel_load_detect_pipe {
struct drm_atomic_state *restore_state;
};
static inline struct intel_encoder *
intel_attached_encoder(struct drm_connector *connector)
{
return to_intel_connector(connector)->encoder;
}
static inline bool intel_encoder_is_dig_port(struct intel_encoder *encoder)
{
switch (encoder->type) {
drm/i915: Stop frobbing with DDI encoder->type Currently the DDI encoder->type will change at runtime depending on what kind of hotplugs we've processed. That's quite bad since we can't really trust that that current value of encoder->type actually matches the type of signal we're trying to drive through it. Let's eliminate that problem by declaring that non-eDP DDI port will always have the encoder type as INTEL_OUTPUT_DDI. This means the code can no longer try to distinguish DP vs. HDMI based on encoder->type. We'll leave eDP as INTEL_OUTPUT_EDP, since it'll never change and there's a bunch of code that relies on that value to identify eDP encoders. We'll introduce a new encoder .compute_output_type() hook. This allows us to compute the full output_types before any encoder .compute_config() hooks get called, thus those hooks can rely on output_types being correct, which is useful for cloning on oldr platforms. For now we'll just look at the connector type and pick the correct mode based on that. In the future the new hook could be used to implement dynamic switching between LS and PCON modes for LSPCON. v2: Fix BXT/GLK PPS explosion with DSI/MST encoders v3: Avoid the PPS warn on pure HDMI/DVI DDI encoders by checking dp.output_reg v4: Rebase v5: Populate output_types in .get_config() rather than in the caller v5: Split out populating output_types in .get_config() (Maarten) Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20171027193128.14483-3-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2017-10-28 02:31:24 +07:00
case INTEL_OUTPUT_DDI:
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_EDP:
case INTEL_OUTPUT_HDMI:
return true;
default:
return false;
}
}
static inline struct intel_digital_port *
enc_to_dig_port(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
if (intel_encoder_is_dig_port(intel_encoder))
return container_of(encoder, struct intel_digital_port,
base.base);
else
return NULL;
}
static inline struct intel_digital_port *
conn_to_dig_port(struct intel_connector *connector)
{
return enc_to_dig_port(&intel_attached_encoder(&connector->base)->base);
}
2014-05-02 11:02:48 +07:00
static inline struct intel_dp_mst_encoder *
enc_to_mst(struct drm_encoder *encoder)
{
return container_of(encoder, struct intel_dp_mst_encoder, base.base);
}
static inline struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
{
return &enc_to_dig_port(encoder)->dp;
}
static inline bool intel_encoder_is_dp(struct intel_encoder *encoder)
{
switch (encoder->type) {
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_EDP:
return true;
case INTEL_OUTPUT_DDI:
/* Skip pure HDMI/DVI DDI encoders */
return i915_mmio_reg_valid(enc_to_intel_dp(&encoder->base)->output_reg);
default:
return false;
}
}
static inline struct intel_lspcon *
enc_to_intel_lspcon(struct drm_encoder *encoder)
{
return &enc_to_dig_port(encoder)->lspcon;
}
static inline struct intel_digital_port *
dp_to_dig_port(struct intel_dp *intel_dp)
{
return container_of(intel_dp, struct intel_digital_port, dp);
}
static inline struct intel_lspcon *
dp_to_lspcon(struct intel_dp *intel_dp)
{
return &dp_to_dig_port(intel_dp)->lspcon;
}
static inline struct drm_i915_private *
dp_to_i915(struct intel_dp *intel_dp)
{
return to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
}
static inline struct intel_digital_port *
hdmi_to_dig_port(struct intel_hdmi *intel_hdmi)
{
return container_of(intel_hdmi, struct intel_digital_port, hdmi);
}
drm/i915/gen11: Link nv12 Y and UV planes in the atomic state, v5. To make NV12 working on icl, we need to update 2 planes simultaneously. I've chosen to do this in the CRTC step after plane validation is done, so we know what planes are (in)visible. The linked Y plane will get updated in intel_plane_update_planes_on_crtc(), by the call to update_slave, which gets the master's plane_state as argument. The link requires both planes for atomic_update to work, so make sure skl_ddb_add_affected_planes() adds both states. Changes since v1: - Introduce icl_is_nv12_y_plane(), instead of hardcoding sprite numbers. - Put all the state updating login in intel_plane_atomic_check_with_state(). - Clean up changes in intel_plane_atomic_check(). Changes since v2: - Fix intel_atomic_get_old_plane_state() to actually return old state. - Move visibility changes to preparation patch. - Only try to find a Y plane on gen11, earlier platforms only require a single plane. Changes since v3: - Fix checkpatch warning about to_intel_crtc() usage. - Add affected planes from icl_add_linked_planes() before check_planes(), it's a cleaner way to do this. (Ville) Changes since v4: - Clear plane links in icl_check_nv12_planes() for clarity. - Only pass crtc_state to icl_check_nv12_planes(). - Use for_each_new_intel_plane_in_state() in icl_check_nv12_planes. - Rename aux to linked. (Ville) Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181022135152.15324-1-maarten.lankhorst@linux.intel.com [mlankhorst: Change bool slave to u32, to satisfy checkpatch] [mlankhorst: Add WARN_ON's based on Ville's suggestion]
2018-10-22 20:51:52 +07:00
static inline struct intel_plane_state *
intel_atomic_get_plane_state(struct intel_atomic_state *state,
struct intel_plane *plane)
{
struct drm_plane_state *ret =
drm_atomic_get_plane_state(&state->base, &plane->base);
if (IS_ERR(ret))
return ERR_CAST(ret);
return to_intel_plane_state(ret);
}
static inline struct intel_plane_state *
intel_atomic_get_old_plane_state(struct intel_atomic_state *state,
struct intel_plane *plane)
{
return to_intel_plane_state(drm_atomic_get_old_plane_state(&state->base,
&plane->base));
}
static inline struct intel_plane_state *
intel_atomic_get_new_plane_state(struct intel_atomic_state *state,
struct intel_plane *plane)
{
return to_intel_plane_state(drm_atomic_get_new_plane_state(&state->base,
&plane->base));
}
static inline struct intel_crtc_state *
intel_atomic_get_old_crtc_state(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
return to_intel_crtc_state(drm_atomic_get_old_crtc_state(&state->base,
&crtc->base));
}
static inline struct intel_crtc_state *
intel_atomic_get_new_crtc_state(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
return to_intel_crtc_state(drm_atomic_get_new_crtc_state(&state->base,
&crtc->base));
}
/* intel_display.c */
void intel_plane_destroy(struct drm_plane *plane);
void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe);
void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe);
enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc);
int vlv_get_hpll_vco(struct drm_i915_private *dev_priv);
int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
const char *name, u32 reg, int ref_freq);
int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
const char *name, u32 reg);
void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv);
void lpt_disable_iclkip(struct drm_i915_private *dev_priv);
void intel_init_display_hooks(struct drm_i915_private *dev_priv);
drm/i915: Rewrite fb rotation GTT handling Redo the fb rotation handling in order to: - eliminate the NV12 special casing - handle fb->offsets[] properly - make the rotation handling easier for the plane code To achieve these goals we reduce intel_rotation_info to only contain (for each plane) the rotated view width,height,stride in tile units, and the page offset into the object where the plane starts. Each plane is handled exactly the same way, no special casing for NV12 or other formats. We then store the computed rotation_info under intel_framebuffer so that we don't have to recompute it again. To handle fb->offsets[] we treat them as a linear offsets and convert them to x/y offsets from the start of the relevant GTT mapping (either normal or rotated). We store the x/y offsets under intel_framebuffer, and for some extra convenience we also store the rotated pitch (ie. tile aligned plane height). So for each plane we have the normal x/y offsets, rotated x/y offsets, and the rotated pitch. The normal pitch is available already in fb->pitches[]. While we're gathering up all that extra information, we can also easily compute the storage requirements for the framebuffer, so that we can check that the object is big enough to hold it. When it comes time to deal with the plane source coordinates, we first rotate the clipped src coordinates to match the relevant GTT view orientation, then add to them the fb x/y offsets. Next we compute the aligned surface page offset, and as a result we're left with some residual x/y offsets. Finally, if required by the hardware, we convert the remaining x/y offsets into a linear offset. For gen2/3 we simply skip computing the final page offset, and just convert the src+fb x/y offsets directly into a linear offset since that's what the hardware wants. After this all platforms, incluing SKL+, compute these things in exactly the same way (excluding alignemnt differences). v2: Use BIT(DRM_ROTATE_270) instead of ROTATE_270 when rotating plane src coordinates Drop some spurious changes that got left behind during development v3: Split out more changes to prep patches (Daniel) s/intel_fb->plane[].foo.bar/intel_fb->foo[].bar/ for brevity Rename intel_surf_gtt_offset to intel_fb_gtt_offset Kill the pointless 'plane' parameter from intel_fb_gtt_offset() v4: Fix alignment vs. alignment-1 when calling _intel_compute_tile_offset() from intel_fill_fb_info() Pass the pitch in tiles in stad of pixels to intel_adjust_tile_offset() from intel_fill_fb_info() Pass the full width/height of the rotated area to drm_rect_rotate() for clarity Use u32 for more offsets v5: Preserve the upper_32_bits()/lower_32_bits() handling for the fb ggtt offset (Sivakumar) v6: Rebase due to drm_plane_state src/dst rects Cc: Sivakumar Thulasimani <sivakumar.thulasimani@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Sivakumar Thulasimani <sivakumar.thulasimani@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470821001-25272-2-git-send-email-ville.syrjala@linux.intel.com Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-15 17:16:41 +07:00
unsigned int intel_fb_xy_to_linear(int x, int y,
const struct intel_plane_state *state,
int plane);
unsigned int intel_fb_align_height(const struct drm_framebuffer *fb,
int color_plane, unsigned int height);
drm/i915: Rewrite fb rotation GTT handling Redo the fb rotation handling in order to: - eliminate the NV12 special casing - handle fb->offsets[] properly - make the rotation handling easier for the plane code To achieve these goals we reduce intel_rotation_info to only contain (for each plane) the rotated view width,height,stride in tile units, and the page offset into the object where the plane starts. Each plane is handled exactly the same way, no special casing for NV12 or other formats. We then store the computed rotation_info under intel_framebuffer so that we don't have to recompute it again. To handle fb->offsets[] we treat them as a linear offsets and convert them to x/y offsets from the start of the relevant GTT mapping (either normal or rotated). We store the x/y offsets under intel_framebuffer, and for some extra convenience we also store the rotated pitch (ie. tile aligned plane height). So for each plane we have the normal x/y offsets, rotated x/y offsets, and the rotated pitch. The normal pitch is available already in fb->pitches[]. While we're gathering up all that extra information, we can also easily compute the storage requirements for the framebuffer, so that we can check that the object is big enough to hold it. When it comes time to deal with the plane source coordinates, we first rotate the clipped src coordinates to match the relevant GTT view orientation, then add to them the fb x/y offsets. Next we compute the aligned surface page offset, and as a result we're left with some residual x/y offsets. Finally, if required by the hardware, we convert the remaining x/y offsets into a linear offset. For gen2/3 we simply skip computing the final page offset, and just convert the src+fb x/y offsets directly into a linear offset since that's what the hardware wants. After this all platforms, incluing SKL+, compute these things in exactly the same way (excluding alignemnt differences). v2: Use BIT(DRM_ROTATE_270) instead of ROTATE_270 when rotating plane src coordinates Drop some spurious changes that got left behind during development v3: Split out more changes to prep patches (Daniel) s/intel_fb->plane[].foo.bar/intel_fb->foo[].bar/ for brevity Rename intel_surf_gtt_offset to intel_fb_gtt_offset Kill the pointless 'plane' parameter from intel_fb_gtt_offset() v4: Fix alignment vs. alignment-1 when calling _intel_compute_tile_offset() from intel_fill_fb_info() Pass the pitch in tiles in stad of pixels to intel_adjust_tile_offset() from intel_fill_fb_info() Pass the full width/height of the rotated area to drm_rect_rotate() for clarity Use u32 for more offsets v5: Preserve the upper_32_bits()/lower_32_bits() handling for the fb ggtt offset (Sivakumar) v6: Rebase due to drm_plane_state src/dst rects Cc: Sivakumar Thulasimani <sivakumar.thulasimani@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Sivakumar Thulasimani <sivakumar.thulasimani@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1470821001-25272-2-git-send-email-ville.syrjala@linux.intel.com Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-15 17:16:41 +07:00
void intel_add_fb_offsets(int *x, int *y,
const struct intel_plane_state *state, int plane);
unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info);
unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info);
bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv);
int intel_display_suspend(struct drm_device *dev);
void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv);
void intel_encoder_destroy(struct drm_encoder *encoder);
struct drm_display_mode *
intel_encoder_current_mode(struct intel_encoder *encoder);
bool intel_port_is_combophy(struct drm_i915_private *dev_priv, enum port port);
bool intel_port_is_tc(struct drm_i915_private *dev_priv, enum port port);
enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv,
enum port port);
int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe);
static inline bool
intel_crtc_has_type(const struct intel_crtc_state *crtc_state,
enum intel_output_type type)
{
return crtc_state->output_types & (1 << type);
}
static inline bool
intel_crtc_has_dp_encoder(const struct intel_crtc_state *crtc_state)
{
return crtc_state->output_types &
((1 << INTEL_OUTPUT_DP) |
(1 << INTEL_OUTPUT_DP_MST) |
(1 << INTEL_OUTPUT_EDP));
}
static inline void
intel_wait_for_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
{
drm_wait_one_vblank(&dev_priv->drm, pipe);
}
static inline void
intel_wait_for_vblank_if_active(struct drm_i915_private *dev_priv, int pipe)
{
const struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
if (crtc->active)
intel_wait_for_vblank(dev_priv, pipe);
}
u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc);
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp);
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
struct intel_digital_port *dport,
unsigned int expected_mask);
int intel_get_load_detect_pipe(struct drm_connector *connector,
const struct drm_display_mode *mode,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx);
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx);
struct i915_vma *
drm/i915: Move the policy for placement of the GGTT vma into the caller Currently we make the unilateral decision inside i915_gem_object_pin_to_display() where the VMA should resided (inside the fence and mappable region or above?). This is not our decision to make as it impacts on how the display engine can use the resulting scanout object, and it would rather instruct us where to place the VMA so that it can enable the features it wants. As such, make the pin flags an argument to i915_gem_object_pin_to_display() and control them from intel_pin_and_fence_fb_obj() Whilst taking control of the mapping for ourselves, start tracking how we use it to avoid trying to free a fence we never claimed: <3>[ 227.151869] GEM_BUG_ON(vma->fence->pin_count <= 0) <4>[ 227.152064] ------------[ cut here ]------------ <2>[ 227.152068] kernel BUG at drivers/gpu/drm/i915/i915_vma.h:391! <4>[ 227.152084] invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI <0>[ 227.152092] Dumping ftrace buffer: <0>[ 227.152099] (ftrace buffer empty) <4>[ 227.152102] Modules linked in: i915 snd_hda_codec_analog snd_hda_codec_generic coretemp snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm lpc_ich e1000e mei_me mei prime_numbers <4>[ 227.152131] CPU: 1 PID: 1587 Comm: kworker/u16:49 Tainted: G U 4.16.0-rc1-gbab67b2f6177-kasan_7+ #1 <4>[ 227.152134] Hardware name: Dell Inc. OptiPlex 755 /0PU052, BIOS A08 02/19/2008 <4>[ 227.152236] Workqueue: events_unbound intel_atomic_commit_work [i915] <4>[ 227.152292] RIP: 0010:intel_unpin_fb_vma+0x23a/0x2a0 [i915] <4>[ 227.152295] RSP: 0018:ffff88005aad7b68 EFLAGS: 00010286 <4>[ 227.152300] RAX: 0000000000000026 RBX: ffff88005c359580 RCX: 0000000000000000 <4>[ 227.152304] RDX: 0000000000000026 RSI: ffffffff8707d840 RDI: ffffed000b55af63 <4>[ 227.152307] RBP: ffff880056817e58 R08: 0000000000000001 R09: 0000000000000000 <4>[ 227.152311] R10: ffff88005aad7b88 R11: 0000000000000000 R12: ffff8800568184d0 <4>[ 227.152314] R13: ffff880065b5ab08 R14: 0000000000000000 R15: dffffc0000000000 <4>[ 227.152318] FS: 0000000000000000(0000) GS:ffff88006ac40000(0000) knlGS:0000000000000000 <4>[ 227.152322] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 227.152325] CR2: 00007f5fb25550a8 CR3: 0000000068c78000 CR4: 00000000000006e0 <4>[ 227.152328] Call Trace: <4>[ 227.152385] intel_cleanup_plane_fb+0x6b/0xd0 [i915] <4>[ 227.152395] drm_atomic_helper_cleanup_planes+0x166/0x280 <4>[ 227.152452] intel_atomic_commit_tail+0x159d/0x3380 [i915] <4>[ 227.152463] ? process_one_work+0x66e/0x1460 <4>[ 227.152516] ? skl_update_crtcs+0x9c0/0x9c0 [i915] <4>[ 227.152523] ? lock_acquire+0x13d/0x390 <4>[ 227.152527] ? lock_acquire+0x13d/0x390 <4>[ 227.152534] process_one_work+0x71a/0x1460 <4>[ 227.152540] ? __schedule+0x815/0x1e20 <4>[ 227.152547] ? pwq_dec_nr_in_flight+0x2b0/0x2b0 <4>[ 227.152553] ? _raw_spin_lock_irq+0xa/0x40 <4>[ 227.152559] worker_thread+0xdf/0xf60 <4>[ 227.152569] ? process_one_work+0x1460/0x1460 <4>[ 227.152573] kthread+0x2cf/0x3c0 <4>[ 227.152578] ? _kthread_create_on_node+0xa0/0xa0 <4>[ 227.152583] ret_from_fork+0x3a/0x50 <4>[ 227.152591] Code: c6 00 11 86 c0 48 c7 c7 e0 bd 85 c0 e8 60 e7 a9 c4 0f ff e9 1f fe ff ff 48 c7 c6 40 10 86 c0 48 c7 c7 e0 ca 85 c0 e8 2b 95 bd c4 <0f> 0b 48 89 ef e8 4c 44 e8 c4 e9 ef fd ff ff e8 42 44 e8 c4 e9 <1>[ 227.152720] RIP: intel_unpin_fb_vma+0x23a/0x2a0 [i915] RSP: ffff88005aad7b68 v2: i915_vma_pin_fence() is a no-op if a fence isn't required, so check vma->fence as well. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180220134208.24988-2-chris@chris-wilson.co.uk
2018-02-20 20:42:06 +07:00
intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
const struct i915_ggtt_view *view,
bool uses_fence,
drm/i915: Move the policy for placement of the GGTT vma into the caller Currently we make the unilateral decision inside i915_gem_object_pin_to_display() where the VMA should resided (inside the fence and mappable region or above?). This is not our decision to make as it impacts on how the display engine can use the resulting scanout object, and it would rather instruct us where to place the VMA so that it can enable the features it wants. As such, make the pin flags an argument to i915_gem_object_pin_to_display() and control them from intel_pin_and_fence_fb_obj() Whilst taking control of the mapping for ourselves, start tracking how we use it to avoid trying to free a fence we never claimed: <3>[ 227.151869] GEM_BUG_ON(vma->fence->pin_count <= 0) <4>[ 227.152064] ------------[ cut here ]------------ <2>[ 227.152068] kernel BUG at drivers/gpu/drm/i915/i915_vma.h:391! <4>[ 227.152084] invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI <0>[ 227.152092] Dumping ftrace buffer: <0>[ 227.152099] (ftrace buffer empty) <4>[ 227.152102] Modules linked in: i915 snd_hda_codec_analog snd_hda_codec_generic coretemp snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm lpc_ich e1000e mei_me mei prime_numbers <4>[ 227.152131] CPU: 1 PID: 1587 Comm: kworker/u16:49 Tainted: G U 4.16.0-rc1-gbab67b2f6177-kasan_7+ #1 <4>[ 227.152134] Hardware name: Dell Inc. OptiPlex 755 /0PU052, BIOS A08 02/19/2008 <4>[ 227.152236] Workqueue: events_unbound intel_atomic_commit_work [i915] <4>[ 227.152292] RIP: 0010:intel_unpin_fb_vma+0x23a/0x2a0 [i915] <4>[ 227.152295] RSP: 0018:ffff88005aad7b68 EFLAGS: 00010286 <4>[ 227.152300] RAX: 0000000000000026 RBX: ffff88005c359580 RCX: 0000000000000000 <4>[ 227.152304] RDX: 0000000000000026 RSI: ffffffff8707d840 RDI: ffffed000b55af63 <4>[ 227.152307] RBP: ffff880056817e58 R08: 0000000000000001 R09: 0000000000000000 <4>[ 227.152311] R10: ffff88005aad7b88 R11: 0000000000000000 R12: ffff8800568184d0 <4>[ 227.152314] R13: ffff880065b5ab08 R14: 0000000000000000 R15: dffffc0000000000 <4>[ 227.152318] FS: 0000000000000000(0000) GS:ffff88006ac40000(0000) knlGS:0000000000000000 <4>[ 227.152322] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 227.152325] CR2: 00007f5fb25550a8 CR3: 0000000068c78000 CR4: 00000000000006e0 <4>[ 227.152328] Call Trace: <4>[ 227.152385] intel_cleanup_plane_fb+0x6b/0xd0 [i915] <4>[ 227.152395] drm_atomic_helper_cleanup_planes+0x166/0x280 <4>[ 227.152452] intel_atomic_commit_tail+0x159d/0x3380 [i915] <4>[ 227.152463] ? process_one_work+0x66e/0x1460 <4>[ 227.152516] ? skl_update_crtcs+0x9c0/0x9c0 [i915] <4>[ 227.152523] ? lock_acquire+0x13d/0x390 <4>[ 227.152527] ? lock_acquire+0x13d/0x390 <4>[ 227.152534] process_one_work+0x71a/0x1460 <4>[ 227.152540] ? __schedule+0x815/0x1e20 <4>[ 227.152547] ? pwq_dec_nr_in_flight+0x2b0/0x2b0 <4>[ 227.152553] ? _raw_spin_lock_irq+0xa/0x40 <4>[ 227.152559] worker_thread+0xdf/0xf60 <4>[ 227.152569] ? process_one_work+0x1460/0x1460 <4>[ 227.152573] kthread+0x2cf/0x3c0 <4>[ 227.152578] ? _kthread_create_on_node+0xa0/0xa0 <4>[ 227.152583] ret_from_fork+0x3a/0x50 <4>[ 227.152591] Code: c6 00 11 86 c0 48 c7 c7 e0 bd 85 c0 e8 60 e7 a9 c4 0f ff e9 1f fe ff ff 48 c7 c6 40 10 86 c0 48 c7 c7 e0 ca 85 c0 e8 2b 95 bd c4 <0f> 0b 48 89 ef e8 4c 44 e8 c4 e9 ef fd ff ff e8 42 44 e8 c4 e9 <1>[ 227.152720] RIP: intel_unpin_fb_vma+0x23a/0x2a0 [i915] RSP: ffff88005aad7b68 v2: i915_vma_pin_fence() is a no-op if a fence isn't required, so check vma->fence as well. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180220134208.24988-2-chris@chris-wilson.co.uk
2018-02-20 20:42:06 +07:00
unsigned long *out_flags);
void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags);
struct drm_framebuffer *
intel_framebuffer_create(struct drm_i915_gem_object *obj,
struct drm_mode_fb_cmd2 *mode_cmd);
int intel_prepare_plane_fb(struct drm_plane *plane,
struct drm_plane_state *new_state);
void intel_cleanup_plane_fb(struct drm_plane *plane,
struct drm_plane_state *old_state);
void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe);
int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
const struct dpll *dpll);
void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe);
int lpt_get_iclkip(struct drm_i915_private *dev_priv);
bool intel_fuzzy_clock_check(int clock1, int clock2);
/* modesetting asserts */
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
enum pipe pipe);
void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state);
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state);
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state);
#define assert_fdi_rx_pll_enabled(d, p) assert_fdi_rx_pll(d, p, true)
#define assert_fdi_rx_pll_disabled(d, p) assert_fdi_rx_pll(d, p, false)
void assert_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool state);
drm/i915: add SNB and IVB video sprite support v6 The video sprites support various video surface formats natively and can handle scaling as well. So add support for them using the new DRM core sprite support functions. v2: use drm specific fourcc header and defines v3: address Daniel's comments: - don't take struct mutex around register access (only needed for regs in the GT power well) - don't hold struct mutex across vblank waits - fix up update_plane API (pass obj instead of GTT offset) - add interlaced defines for sprite regs - drop unnecessary 'reg' variables - comment double buffered reg flushing Also fix w/h confusion when writing the scaling reg. v4: more fixes, address more comments from Daniel, and include Hai's fix - prevent divide by zero in scaling calculation (Hai Lan) - update to Ville's new DRM_FORMAT_* types - fix sprite watermark handling (calc based on CRTC size, separate from normal display wm) - remove private refcounts now that the fb cleanups handles things v5: add linear surface support v6: remove color key clearing & setting from update_plane For this version, I tested DPMS since it came up in the last review; DPMS off/on works ok when a video player is working under X, but for power saving we'll probably want to do something smarter. I'll leave that for a separate patch on top. Likewise with the refcounting/fb layer handling, which are really separate cleanups. Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org> Signed-off-by: Keith Packard <keithp@keithp.com>
2011-12-14 04:19:38 +07:00
#define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
#define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
void intel_prepare_reset(struct drm_i915_private *dev_priv);
void intel_finish_reset(struct drm_i915_private *dev_priv);
void intel_dp_get_m_n(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config);
void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state,
enum link_m_n_set m_n);
drm/i915/dp: Program VSC Header and DB for Pixel Encoding/Colorimetry Format Function intel_pixel_encoding_setup_vsc handles vsc header and data block setup for pixel encoding / colorimetry format. Setup VSC header and data block in function intel_pixel_encoding_setup_vsc for pixel encoding / colorimetry format as per dp 1.4a spec, section 2.2.5.7.1, table 2-119: VSC SDP Header Bytes, section 2.2.5.7.5, table 2-120:VSC SDP Payload for DB16 through DB18. v2: Minor style fix. [Maarten] Refer to commit ids instead of patchwork. [Maarten] v6: Rebase v7: Rebase and addressed review comments from Ville. Use a structure initializer instead of memset(). Fix non-standard comment format. Remove a referring to specific commit. Add a setting of dynamic range bit to vsc_sdp.DB17. Add a setting of bpc which is based on pipe_bpp. Remove duplicated checking of connector's ycbcr_420_allowed from intel_pixel_encoding_setup_vsc(). It is already checked from intel_dp_ycbcr420_config(). Remove comments for VSC_SDP_EXTENSION_FOR_COLORIMETRY_SUPPORTED. It is already implemented on intel_dp_get_colorimetry_status(). v8: A missing of setting bpc to VSC setup is the pretty fatal case, it replaces DRM_DEBUG_KMS() to MISSING_CASE(). [Maarten] v9: Use a changed member name of struct dp_sdp. it renamed to db from DB. Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com> Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190521121721.32010-4-gwan-gyeong.mun@intel.com
2019-05-21 19:17:18 +07:00
void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state);
int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n);
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
struct dpll *best_clock);
int chv_calc_dpll_params(int refclk, struct dpll *pll_clock);
bool intel_crtc_active(struct intel_crtc *crtc);
bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state);
void hsw_enable_ips(const struct intel_crtc_state *crtc_state);
void hsw_disable_ips(const struct intel_crtc_state *crtc_state);
enum intel_display_power_domain intel_port_to_power_domain(enum port port);
enum intel_display_power_domain
intel_aux_power_domain(struct intel_digital_port *dig_port);
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
struct intel_crtc_state *pipe_config);
void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state);
u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_center);
int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state);
int skl_max_scale(const struct intel_crtc_state *crtc_state,
u32 pixel_format);
static inline u32 intel_plane_ggtt_offset(const struct intel_plane_state *state)
{
return i915_ggtt_offset(state->vma);
}
u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state);
drm/i915: Split the gamma/csc enable bits from the plane_ctl() function On g4x+ the pipe gamma enable bit for the primary plane affects the pipe bottom color as well. The same for the pipe csc enable bit on ilk+. Thus we must configure those bits correctly even when the primary plane is disabled. To make the feasible let's split those settings from the plane_ctl() function into a seprate funciton that we can call from the ->disable_plane() hook as well. For consistency we'll do that on all the plane types. While that has no real benefits at this time, it'll become useful when we start to control the pipe gamma/csc enable bits dynamically when we overhaul the color management code. On pre-g4x there doesn't appear to be any way to gamma correct the pipe bottom color, but sticking to the same pattern doesn't hurt. And it'll still help us to do crtc state readout correctly for the pipe gamma enable bit for the color management overhaul. An alternative apporach would be to still precompute these bits into plane_state->ctl, but that would require that we run through the plane check even when the plane isn't logically enabled on any crtc. Currently that condition causes us to short circuit the entire thing and not call ->check_plane(). There would also be some chicken and egg problems with ->check_plane() vs. crtc color state check that would requite splitting certain things into multiple steps. So all in all this seems like the easier route. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190205160848.24662-2-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2019-02-05 23:08:36 +07:00
u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state);
u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state);
drm/i915: Split the gamma/csc enable bits from the plane_ctl() function On g4x+ the pipe gamma enable bit for the primary plane affects the pipe bottom color as well. The same for the pipe csc enable bit on ilk+. Thus we must configure those bits correctly even when the primary plane is disabled. To make the feasible let's split those settings from the plane_ctl() function into a seprate funciton that we can call from the ->disable_plane() hook as well. For consistency we'll do that on all the plane types. While that has no real benefits at this time, it'll become useful when we start to control the pipe gamma/csc enable bits dynamically when we overhaul the color management code. On pre-g4x there doesn't appear to be any way to gamma correct the pipe bottom color, but sticking to the same pattern doesn't hurt. And it'll still help us to do crtc state readout correctly for the pipe gamma enable bit for the color management overhaul. An alternative apporach would be to still precompute these bits into plane_state->ctl, but that would require that we run through the plane check even when the plane isn't logically enabled on any crtc. Currently that condition causes us to short circuit the entire thing and not call ->check_plane(). There would also be some chicken and egg problems with ->check_plane() vs. crtc color state check that would requite splitting certain things into multiple steps. So all in all this seems like the easier route. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190205160848.24662-2-ville.syrjala@linux.intel.com Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2019-02-05 23:08:36 +07:00
u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state);
u32 skl_plane_stride(const struct intel_plane_state *plane_state,
int plane);
int skl_check_plane_surface(struct intel_plane_state *plane_state);
int i9xx_check_plane_surface(struct intel_plane_state *plane_state);
int skl_format_to_fourcc(int format, bool rgb_order, bool alpha);
unsigned int i9xx_plane_max_stride(struct intel_plane *plane,
u32 pixel_format, u64 modifier,
unsigned int rotation);
int bdw_get_pipemisc_bpp(struct intel_crtc *crtc);
#endif /* __INTEL_DRV_H__ */