linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_dpll_mgr.c

3345 lines
88 KiB
C
Raw Normal View History

/*
* Copyright © 2006-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "intel_drv.h"
/**
* DOC: Display PLLs
*
* Display PLLs used for driving outputs vary by platform. While some have
* per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
* from a pool. In the latter scenario, it is possible that multiple pipes
* share a PLL if their configurations match.
*
* This file provides an abstraction over display PLLs. The function
* intel_shared_dpll_init() initializes the PLLs for the given platform. The
* users of a PLL are tracked and that tracking is integrated with the atomic
* modest interface. During an atomic operation, a PLL can be requested for a
* given CRTC and encoder configuration by calling intel_get_shared_dpll() and
* a previously used PLL can be released with intel_release_shared_dpll().
* Changes to the users are first staged in the atomic state, and then made
* effective by calling intel_shared_dpll_swap_state() during the atomic
* commit phase.
*/
static void
intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll_state *shared_dpll)
{
enum intel_dpll_id i;
/* Copy shared dpll state */
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
shared_dpll[i] = pll->state;
}
}
static struct intel_shared_dpll_state *
intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
{
struct intel_atomic_state *state = to_intel_atomic_state(s);
WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));
if (!state->dpll_set) {
state->dpll_set = true;
intel_atomic_duplicate_dpll_state(to_i915(s->dev),
state->shared_dpll);
}
return state->shared_dpll;
}
/**
* intel_get_shared_dpll_by_id - get a DPLL given its id
* @dev_priv: i915 device instance
* @id: pll id
*
* Returns:
* A pointer to the DPLL with @id
*/
struct intel_shared_dpll *
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
enum intel_dpll_id id)
{
return &dev_priv->shared_dplls[id];
}
/**
* intel_get_shared_dpll_id - get the id of a DPLL
* @dev_priv: i915 device instance
* @pll: the DPLL
*
* Returns:
* The id of @pll
*/
enum intel_dpll_id
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
if (WARN_ON(pll < dev_priv->shared_dplls||
pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
return -1;
return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
}
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
bool state)
{
bool cur_state;
struct intel_dpll_hw_state hw_state;
if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
return;
cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state);
I915_STATE_WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
pll->info->name, onoff(state), onoff(cur_state));
}
/**
* intel_prepare_shared_dpll - call a dpll's prepare hook
* @crtc_state: CRTC, and its state, which has a shared dpll
*
* This calls the PLL's prepare hook if it has one and if the PLL is not
* already enabled. The prepare hook is platform specific.
*/
void intel_prepare_shared_dpll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
if (WARN_ON(pll == NULL))
return;
mutex_lock(&dev_priv->dpll_lock);
WARN_ON(!pll->state.crtc_mask);
if (!pll->active_mask) {
DRM_DEBUG_DRIVER("setting up %s\n", pll->info->name);
WARN_ON(pll->on);
assert_shared_dpll_disabled(dev_priv, pll);
pll->info->funcs->prepare(dev_priv, pll);
}
mutex_unlock(&dev_priv->dpll_lock);
}
/**
* intel_enable_shared_dpll - enable a CRTC's shared DPLL
* @crtc_state: CRTC, and its state, which has a shared DPLL
*
* Enable the shared DPLL used by @crtc.
*/
void intel_enable_shared_dpll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
unsigned int old_mask;
if (WARN_ON(pll == NULL))
return;
mutex_lock(&dev_priv->dpll_lock);
old_mask = pll->active_mask;
if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
WARN_ON(pll->active_mask & crtc_mask))
goto out;
pll->active_mask |= crtc_mask;
DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
pll->info->name, pll->active_mask, pll->on,
crtc->base.base.id);
if (old_mask) {
WARN_ON(!pll->on);
assert_shared_dpll_enabled(dev_priv, pll);
goto out;
}
WARN_ON(pll->on);
DRM_DEBUG_KMS("enabling %s\n", pll->info->name);
pll->info->funcs->enable(dev_priv, pll);
pll->on = true;
out:
mutex_unlock(&dev_priv->dpll_lock);
}
/**
* intel_disable_shared_dpll - disable a CRTC's shared DPLL
* @crtc_state: CRTC, and its state, which has a shared DPLL
*
* Disable the shared DPLL used by @crtc.
*/
void intel_disable_shared_dpll(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
/* PCH only available on ILK+ */
if (INTEL_GEN(dev_priv) < 5)
return;
if (pll == NULL)
return;
mutex_lock(&dev_priv->dpll_lock);
if (WARN_ON(!(pll->active_mask & crtc_mask)))
goto out;
DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
pll->info->name, pll->active_mask, pll->on,
crtc->base.base.id);
assert_shared_dpll_enabled(dev_priv, pll);
WARN_ON(!pll->on);
pll->active_mask &= ~crtc_mask;
if (pll->active_mask)
goto out;
DRM_DEBUG_KMS("disabling %s\n", pll->info->name);
pll->info->funcs->disable(dev_priv, pll);
pll->on = false;
out:
mutex_unlock(&dev_priv->dpll_lock);
}
static struct intel_shared_dpll *
intel_find_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
enum intel_dpll_id range_min,
enum intel_dpll_id range_max)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll, *unused_pll = NULL;
struct intel_shared_dpll_state *shared_dpll;
enum intel_dpll_id i;
shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
for (i = range_min; i <= range_max; i++) {
pll = &dev_priv->shared_dplls[i];
/* Only want to check enabled timings first */
if (shared_dpll[i].crtc_mask == 0) {
if (!unused_pll)
unused_pll = pll;
continue;
}
if (memcmp(&crtc_state->dpll_hw_state,
&shared_dpll[i].hw_state,
sizeof(crtc_state->dpll_hw_state)) == 0) {
DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
crtc->base.base.id, crtc->base.name,
pll->info->name,
shared_dpll[i].crtc_mask,
pll->active_mask);
return pll;
}
}
/* Ok no matching timings, maybe there's a free one? */
if (unused_pll) {
DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
crtc->base.base.id, crtc->base.name,
unused_pll->info->name);
return unused_pll;
}
return NULL;
}
static void
intel_reference_shared_dpll(struct intel_shared_dpll *pll,
struct intel_crtc_state *crtc_state)
{
struct intel_shared_dpll_state *shared_dpll;
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
const enum intel_dpll_id id = pll->info->id;
shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
if (shared_dpll[id].crtc_mask == 0)
shared_dpll[id].hw_state =
crtc_state->dpll_hw_state;
crtc_state->shared_dpll = pll;
DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->info->name,
pipe_name(crtc->pipe));
shared_dpll[id].crtc_mask |= 1 << crtc->pipe;
}
/**
* intel_shared_dpll_swap_state - make atomic DPLL configuration effective
* @state: atomic state
*
* This is the dpll version of drm_atomic_helper_swap_state() since the
* helper does not handle driver-specific global state.
*
* For consistency with atomic helpers this function does a complete swap,
* i.e. it also puts the current state into @state, even though there is no
* need for that at this moment.
*/
void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->dev);
struct intel_shared_dpll_state *shared_dpll;
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
if (!to_intel_atomic_state(state)->dpll_set)
return;
shared_dpll = to_intel_atomic_state(state)->shared_dpll;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll_state tmp;
pll = &dev_priv->shared_dplls[i];
tmp = pll->state;
pll->state = shared_dpll[i];
shared_dpll[i] = tmp;
}
}
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
val = I915_READ(PCH_DPLL(id));
hw_state->dpll = val;
hw_state->fp0 = I915_READ(PCH_FP0(id));
hw_state->fp1 = I915_READ(PCH_FP1(id));
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return val & DPLL_VCO_ENABLE;
}
static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
I915_WRITE(PCH_FP0(id), pll->state.hw_state.fp0);
I915_WRITE(PCH_FP1(id), pll->state.hw_state.fp1);
}
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
/* PCH refclock must be enabled first */
ibx_assert_pch_refclk_enabled(dev_priv);
I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(PCH_DPLL(id));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
POSTING_READ(PCH_DPLL(id));
udelay(200);
}
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
I915_WRITE(PCH_DPLL(id), 0);
POSTING_READ(PCH_DPLL(id));
udelay(200);
}
static struct intel_shared_dpll *
ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
if (HAS_PCH_IBX(dev_priv)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = (enum intel_dpll_id) crtc->pipe;
pll = &dev_priv->shared_dplls[i];
DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
crtc->base.base.id, crtc->base.name,
pll->info->name);
} else {
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_PCH_PLL_A,
DPLL_ID_PCH_PLL_B);
}
drm/i915: Fix NULL pointer deference when out of PLLs in IVB In commit f9476a6c6d0c ("drm/i915: Refactor platform specifics out of intel_get_shared_dpll()"), the ibx_get_dpll() function lacked an error check, that can lead to a NULL pointer dereference when trying to enable three pipes. BUG: unable to handle kernel NULL pointer dereference at 0000000000000068 IP: [<ffffffffa0482275>] intel_reference_shared_dpll+0x15/0x100 [i915] PGD cec87067 PUD d30ce067 PMD 0 Oops: 0000 [#1] PREEMPT SMP Modules linked in: snd_hda_intel i915 drm_kms_helper drm intel_gtt sch_fq_codel cfg80211 binfmt_misc i2c_algo_bit cfbfillrect syscopyarea cfbimgblt sysfillrect sysimgblt fb_sys_fops cfbcopyarea intel_rapl iosf_mbi x86_pkg_temp_thermal coretemp agpgart kvm_intel snd_hda_codec_hdmi kvm iTCO_wdt snd_hda_codec_realtek snd_hda_codec_generic irqbypass aesni_intel aes_x86_64 glue_helper lrw gf128mul ablk_helper cryptd psmouse pcspkr snd_hda_codec i2c_i801 snd_hwdep snd_hda_core snd_pcm snd_timer lpc_ich mfd_core snd soundcore wmi evdev tpm_tis tpm [last unloaded: drm] CPU: 3 PID: 5810 Comm: kms_flip Tainted: G U W 4.6.0-test+ #3 Hardware name: /DZ77BH-55K, BIOS BHZ7710H.86A.0100.2013.0517.0942 05/17/2013 task: ffff8800d3908040 ti: ffff8801166c8000 task.ti: ffff8801166c8000 RIP: 0010:[<ffffffffa0482275>] [<ffffffffa0482275>] intel_reference_shared_dpll+0x15/0x100 [i915] RSP: 0018:ffff8801166cba60 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000002 RDX: 0000000000000001 RSI: ffff8800d07f1bf8 RDI: 0000000000000000 RBP: ffff8801166cba88 R08: 0000000000000002 R09: ffff8800d32e5698 R10: 0000000000000001 R11: ffff8800cc89ac88 R12: ffff8800d07f1bf8 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f4c3fc8d8c0(0000) GS:ffff88011bcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000068 CR3: 00000000d3b4c000 CR4: 00000000001406e0 Stack: 0000000000000000 ffff8800d07f1bf8 0000000000000000 ffff8800d04c0000 0000000000000000 ffff8801166cbaa8 ffffffffa04823a7 ffff8800d07f1bf8 ffff8800d32e5698 ffff8801166cbab8 ffffffffa04840cf ffff8801166cbaf0 Call Trace: [<ffffffffa04823a7>] ibx_get_dpll+0x47/0xa0 [i915] [<ffffffffa04840cf>] intel_get_shared_dpll+0x1f/0x50 [i915] [<ffffffffa046d080>] ironlake_crtc_compute_clock+0x280/0x430 [i915] [<ffffffffa0472ac0>] intel_crtc_atomic_check+0x240/0x320 [i915] [<ffffffffa03da18e>] drm_atomic_helper_check_planes+0x14e/0x1d0 [drm_kms_helper] [<ffffffffa0474a0c>] intel_atomic_check+0x5dc/0x1110 [i915] [<ffffffffa029d3aa>] drm_atomic_check_only+0x14a/0x660 [drm] [<ffffffffa029d086>] ? drm_atomic_set_crtc_for_connector+0x96/0x100 [drm] [<ffffffffa029d8d7>] drm_atomic_commit+0x17/0x60 [drm] [<ffffffffa03dc3b7>] restore_fbdev_mode+0x237/0x260 [drm_kms_helper] [<ffffffffa029c65a>] ? drm_modeset_lock_all_ctx+0x9a/0xb0 [drm] [<ffffffffa03de9b3>] drm_fb_helper_restore_fbdev_mode_unlocked+0x33/0x80 [drm_kms_helper] [<ffffffffa03dea2d>] drm_fb_helper_set_par+0x2d/0x50 [drm_kms_helper] [<ffffffffa03de93a>] drm_fb_helper_hotplug_event+0xaa/0xf0 [drm_kms_helper] [<ffffffffa03de9d6>] drm_fb_helper_restore_fbdev_mode_unlocked+0x56/0x80 [drm_kms_helper] [<ffffffffa0490f72>] intel_fbdev_restore_mode+0x22/0x80 [i915] [<ffffffffa04ba45e>] i915_driver_lastclose+0xe/0x20 [i915] [<ffffffffa02810de>] drm_lastclose+0x2e/0x130 [drm] [<ffffffffa028148c>] drm_release+0x2ac/0x4b0 [drm] [<ffffffff811a6b2d>] __fput+0xed/0x1f0 [<ffffffff811a6c6e>] ____fput+0xe/0x10 [<ffffffff81079156>] task_work_run+0x76/0xb0 [<ffffffff8105aaab>] do_exit+0x3ab/0xc60 [<ffffffff810a145f>] ? trace_hardirqs_on_caller+0x12f/0x1c0 [<ffffffff8105c67e>] do_group_exit+0x4e/0xc0 [<ffffffff8105c704>] SyS_exit_group+0x14/0x20 [<ffffffff8158bb25>] entry_SYSCALL_64_fastpath+0x18/0xa8 Code: 14 80 48 8d 34 90 b8 01 00 00 00 d3 e0 09 04 b3 5b 41 5c 5d c3 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 49 89 fe 41 55 41 54 53 <44> 8b 67 68 48 89 f3 48 8b be 08 02 00 00 4c 8b 2e e8 15 9d fd RIP [<ffffffffa0482275>] intel_reference_shared_dpll+0x15/0x100 [i915] RSP <ffff8801166cba60> CR2: 0000000000000068 Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: drm-intel-fixes@lists.freedesktop.org Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Fixes: f9476a6c6d0c ("drm/i915: Refactor platform specifics out of intel_get_shared_dpll()") Signed-off-by: Ander Conselvan de Oliveira <ander.conselvan.de.oliveira@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Tested-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1463748426-5956-1-git-send-email-ander.conselvan.de.oliveira@intel.com
2016-05-20 19:47:06 +07:00
if (!pll)
return NULL;
/* reference the pll */
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
hw_state->dpll,
hw_state->dpll_md,
hw_state->fp0,
hw_state->fp1);
}
static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
.prepare = ibx_pch_dpll_prepare,
.enable = ibx_pch_dpll_enable,
.disable = ibx_pch_dpll_disable,
.get_hw_state = ibx_pch_dpll_get_hw_state,
};
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
I915_WRITE(WRPLL_CTL(id), pll->state.hw_state.wrpll);
POSTING_READ(WRPLL_CTL(id));
udelay(20);
}
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
POSTING_READ(SPLL_CTL);
udelay(20);
}
static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
val = I915_READ(WRPLL_CTL(id));
I915_WRITE(WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE);
POSTING_READ(WRPLL_CTL(id));
}
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
u32 val;
val = I915_READ(SPLL_CTL);
I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
POSTING_READ(SPLL_CTL);
}
static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
val = I915_READ(WRPLL_CTL(id));
hw_state->wrpll = val;
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return val & WRPLL_PLL_ENABLE;
}
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
intel_wakeref_t wakeref;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
val = I915_READ(SPLL_CTL);
hw_state->spll = val;
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return val & SPLL_PLL_ENABLE;
}
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
#define P_MIN 2
#define P_MAX 64
#define P_INC 2
/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800
struct hsw_wrpll_rnp {
unsigned p, n2, r2;
};
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
{
unsigned budget;
switch (clock) {
case 25175000:
case 25200000:
case 27000000:
case 27027000:
case 37762500:
case 37800000:
case 40500000:
case 40541000:
case 54000000:
case 54054000:
case 59341000:
case 59400000:
case 72000000:
case 74176000:
case 74250000:
case 81000000:
case 81081000:
case 89012000:
case 89100000:
case 108000000:
case 108108000:
case 111264000:
case 111375000:
case 148352000:
case 148500000:
case 162000000:
case 162162000:
case 222525000:
case 222750000:
case 296703000:
case 297000000:
budget = 0;
break;
case 233500000:
case 245250000:
case 247750000:
case 253250000:
case 298000000:
budget = 1500;
break;
case 169128000:
case 169500000:
case 179500000:
case 202000000:
budget = 2000;
break;
case 256250000:
case 262500000:
case 270000000:
case 272500000:
case 273750000:
case 280750000:
case 281250000:
case 286000000:
case 291750000:
budget = 4000;
break;
case 267250000:
case 268500000:
budget = 5000;
break;
default:
budget = 1000;
break;
}
return budget;
}
static void hsw_wrpll_update_rnp(u64 freq2k, unsigned int budget,
unsigned int r2, unsigned int n2,
unsigned int p,
struct hsw_wrpll_rnp *best)
{
u64 a, b, c, d, diff, diff_best;
/* No best (r,n,p) yet */
if (best->p == 0) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
return;
}
/*
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
* freq2k.
*
* delta = 1e6 *
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
* freq2k;
*
* and we would like delta <= budget.
*
* If the discrepancy is above the PPM-based budget, always prefer to
* improve upon the previous solution. However, if you're within the
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
*/
a = freq2k * budget * p * r2;
b = freq2k * budget * best->p * best->r2;
diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
diff_best = abs_diff(freq2k * best->p * best->r2,
LC_FREQ_2K * best->n2);
c = 1000000 * diff;
d = 1000000 * diff_best;
if (a < c && b < d) {
/* If both are above the budget, pick the closer */
if (best->p * best->r2 * diff < p * r2 * diff_best) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
} else if (a >= c && b < d) {
/* If A is below the threshold but B is above it? Update. */
best->p = p;
best->n2 = n2;
best->r2 = r2;
} else if (a >= c && b >= d) {
/* Both are below the limit, so pick the higher n2/(r2*r2) */
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
best->p = p;
best->n2 = n2;
best->r2 = r2;
}
}
/* Otherwise a < c && b >= d, do nothing */
}
static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
u64 freq2k;
unsigned p, n2, r2;
struct hsw_wrpll_rnp best = { 0, 0, 0 };
unsigned budget;
freq2k = clock / 100;
budget = hsw_wrpll_get_budget_for_freq(clock);
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
* and directly pass the LC PLL to it. */
if (freq2k == 5400000) {
*n2_out = 2;
*p_out = 1;
*r2_out = 2;
return;
}
/*
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
* the WR PLL.
*
* We want R so that REF_MIN <= Ref <= REF_MAX.
* Injecting R2 = 2 * R gives:
* REF_MAX * r2 > LC_FREQ * 2 and
* REF_MIN * r2 < LC_FREQ * 2
*
* Which means the desired boundaries for r2 are:
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
*
*/
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
r2 <= LC_FREQ * 2 / REF_MIN;
r2++) {
/*
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
*
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
* VCO_MAX * r2 > n2 * LC_FREQ and
* VCO_MIN * r2 < n2 * LC_FREQ)
*
* Which means the desired boundaries for n2 are:
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
*/
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
n2 <= VCO_MAX * r2 / LC_FREQ;
n2++) {
for (p = P_MIN; p <= P_MAX; p += P_INC)
hsw_wrpll_update_rnp(freq2k, budget,
r2, n2, p, &best);
}
}
*n2_out = best.n2;
*p_out = best.p;
*r2_out = best.r2;
}
static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct intel_shared_dpll *pll;
u32 val;
unsigned int p, n2, r2;
hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
WRPLL_DIVIDER_POST(p);
crtc_state->dpll_hw_state.wrpll = val;
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
if (!pll)
return NULL;
return pll;
}
static struct intel_shared_dpll *
hsw_ddi_dp_get_dpll(struct intel_encoder *encoder, int clock)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_shared_dpll *pll;
enum intel_dpll_id pll_id;
switch (clock / 2) {
case 81000:
pll_id = DPLL_ID_LCPLL_810;
break;
case 135000:
pll_id = DPLL_ID_LCPLL_1350;
break;
case 270000:
pll_id = DPLL_ID_LCPLL_2700;
break;
default:
DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
return NULL;
}
pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
if (!pll)
return NULL;
return pll;
}
static struct intel_shared_dpll *
hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_shared_dpll *pll;
int clock = crtc_state->port_clock;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
pll = hsw_ddi_dp_get_dpll(encoder, clock);
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
if (WARN_ON(crtc_state->port_clock / 2 != 135000))
return NULL;
crtc_state->dpll_hw_state.spll =
SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SPLL, DPLL_ID_SPLL);
} else {
return NULL;
}
if (!pll)
return NULL;
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
hw_state->wrpll, hw_state->spll);
}
static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
.enable = hsw_ddi_wrpll_enable,
.disable = hsw_ddi_wrpll_disable,
.get_hw_state = hsw_ddi_wrpll_get_hw_state,
};
static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
.enable = hsw_ddi_spll_enable,
.disable = hsw_ddi_spll_disable,
.get_hw_state = hsw_ddi_spll_get_hw_state,
};
static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
return true;
}
static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
.enable = hsw_ddi_lcpll_enable,
.disable = hsw_ddi_lcpll_disable,
.get_hw_state = hsw_ddi_lcpll_get_hw_state,
};
struct skl_dpll_regs {
i915_reg_t ctl, cfgcr1, cfgcr2;
};
/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[4] = {
{
/* DPLL 0 */
.ctl = LCPLL1_CTL,
/* DPLL 0 doesn't support HDMI mode */
},
{
/* DPLL 1 */
.ctl = LCPLL2_CTL,
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
},
{
/* DPLL 2 */
.ctl = WRPLL_CTL(0),
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
},
{
/* DPLL 3 */
.ctl = WRPLL_CTL(1),
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
},
};
static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
val = I915_READ(DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(id) |
DPLL_CTRL1_SSC(id) |
DPLL_CTRL1_LINK_RATE_MASK(id));
val |= pll->state.hw_state.ctrl1 << (id * 6);
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
}
static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
skl_ddi_pll_write_ctrl1(dev_priv, pll);
I915_WRITE(regs[id].cfgcr1, pll->state.hw_state.cfgcr1);
I915_WRITE(regs[id].cfgcr2, pll->state.hw_state.cfgcr2);
POSTING_READ(regs[id].cfgcr1);
POSTING_READ(regs[id].cfgcr2);
/* the enable bit is always bit 31 */
I915_WRITE(regs[id].ctl,
I915_READ(regs[id].ctl) | LCPLL_PLL_ENABLE);
if (intel_wait_for_register(dev_priv,
DPLL_STATUS,
DPLL_LOCK(id),
DPLL_LOCK(id),
5))
DRM_ERROR("DPLL %d not locked\n", id);
}
static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
skl_ddi_pll_write_ctrl1(dev_priv, pll);
}
static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
/* the enable bit is always bit 31 */
I915_WRITE(regs[id].ctl,
I915_READ(regs[id].ctl) & ~LCPLL_PLL_ENABLE);
POSTING_READ(regs[id].ctl);
}
static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
}
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
u32 val;
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
ret = false;
val = I915_READ(regs[id].ctl);
if (!(val & LCPLL_PLL_ENABLE))
goto out;
val = I915_READ(DPLL_CTRL1);
hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CTRL1_HDMI_MODE(id)) {
hw_state->cfgcr1 = I915_READ(regs[id].cfgcr1);
hw_state->cfgcr2 = I915_READ(regs[id].cfgcr2);
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return ret;
}
static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const struct skl_dpll_regs *regs = skl_dpll_regs;
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
ret = false;
/* DPLL0 is always enabled since it drives CDCLK */
val = I915_READ(regs[id].ctl);
if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
goto out;
val = I915_READ(DPLL_CTRL1);
hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return ret;
}
struct skl_wrpll_context {
u64 min_deviation; /* current minimal deviation */
u64 central_freq; /* chosen central freq */
u64 dco_freq; /* chosen dco freq */
unsigned int p; /* chosen divider */
};
static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
memset(ctx, 0, sizeof(*ctx));
ctx->min_deviation = U64_MAX;
}
/* DCO freq must be within +1%/-6% of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION 100
#define SKL_DCO_MAX_NDEVIATION 600
static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
u64 central_freq,
u64 dco_freq,
unsigned int divider)
{
u64 deviation;
deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
central_freq);
/* positive deviation */
if (dco_freq >= central_freq) {
if (deviation < SKL_DCO_MAX_PDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
/* negative deviation */
} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
}
static void skl_wrpll_get_multipliers(unsigned int p,
unsigned int *p0 /* out */,
unsigned int *p1 /* out */,
unsigned int *p2 /* out */)
{
/* even dividers */
if (p % 2 == 0) {
unsigned int half = p / 2;
if (half == 1 || half == 2 || half == 3 || half == 5) {
*p0 = 2;
*p1 = 1;
*p2 = half;
} else if (half % 2 == 0) {
*p0 = 2;
*p1 = half / 2;
*p2 = 2;
} else if (half % 3 == 0) {
*p0 = 3;
*p1 = half / 3;
*p2 = 2;
} else if (half % 7 == 0) {
*p0 = 7;
*p1 = half / 7;
*p2 = 2;
}
} else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
*p0 = 3;
*p1 = 1;
*p2 = p / 3;
} else if (p == 5 || p == 7) {
*p0 = p;
*p1 = 1;
*p2 = 1;
} else if (p == 15) {
*p0 = 3;
*p1 = 1;
*p2 = 5;
} else if (p == 21) {
*p0 = 7;
*p1 = 1;
*p2 = 3;
} else if (p == 35) {
*p0 = 7;
*p1 = 1;
*p2 = 5;
}
}
struct skl_wrpll_params {
u32 dco_fraction;
u32 dco_integer;
u32 qdiv_ratio;
u32 qdiv_mode;
u32 kdiv;
u32 pdiv;
u32 central_freq;
};
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
u64 afe_clock,
u64 central_freq,
u32 p0, u32 p1, u32 p2)
{
u64 dco_freq;
switch (central_freq) {
case 9600000000ULL:
params->central_freq = 0;
break;
case 9000000000ULL:
params->central_freq = 1;
break;
case 8400000000ULL:
params->central_freq = 3;
}
switch (p0) {
case 1:
params->pdiv = 0;
break;
case 2:
params->pdiv = 1;
break;
case 3:
params->pdiv = 2;
break;
case 7:
params->pdiv = 4;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
switch (p2) {
case 5:
params->kdiv = 0;
break;
case 2:
params->kdiv = 1;
break;
case 3:
params->kdiv = 2;
break;
case 1:
params->kdiv = 3;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
params->qdiv_ratio = p1;
params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
dco_freq = p0 * p1 * p2 * afe_clock;
/*
* Intermediate values are in Hz.
* Divide by MHz to match bsepc
*/
params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
params->dco_fraction =
div_u64((div_u64(dco_freq, 24) -
params->dco_integer * MHz(1)) * 0x8000, MHz(1));
}
static bool
skl_ddi_calculate_wrpll(int clock /* in Hz */,
struct skl_wrpll_params *wrpll_params)
{
u64 afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
u64 dco_central_freq[3] = { 8400000000ULL,
9000000000ULL,
9600000000ULL };
static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
24, 28, 30, 32, 36, 40, 42, 44,
48, 52, 54, 56, 60, 64, 66, 68,
70, 72, 76, 78, 80, 84, 88, 90,
92, 96, 98 };
static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
static const struct {
const int *list;
int n_dividers;
} dividers[] = {
{ even_dividers, ARRAY_SIZE(even_dividers) },
{ odd_dividers, ARRAY_SIZE(odd_dividers) },
};
struct skl_wrpll_context ctx;
unsigned int dco, d, i;
unsigned int p0, p1, p2;
skl_wrpll_context_init(&ctx);
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
for (i = 0; i < dividers[d].n_dividers; i++) {
unsigned int p = dividers[d].list[i];
u64 dco_freq = p * afe_clock;
skl_wrpll_try_divider(&ctx,
dco_central_freq[dco],
dco_freq,
p);
/*
* Skip the remaining dividers if we're sure to
* have found the definitive divider, we can't
* improve a 0 deviation.
*/
if (ctx.min_deviation == 0)
goto skip_remaining_dividers;
}
}
skip_remaining_dividers:
/*
* If a solution is found with an even divider, prefer
* this one.
*/
if (d == 0 && ctx.p)
break;
}
if (!ctx.p) {
DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
return false;
}
/*
* gcc incorrectly analyses that these can be used without being
* initialized. To be fair, it's hard to guess.
*/
p0 = p1 = p2 = 0;
skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
p0, p1, p2);
return true;
}
static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
int clock)
{
u32 ctrl1, cfgcr1, cfgcr2;
struct skl_wrpll_params wrpll_params = { 0, };
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
return false;
cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
wrpll_params.central_freq;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
return true;
}
static bool
skl_ddi_dp_set_dpll_hw_state(int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
u32 ctrl1;
/*
* See comment in intel_dpll_hw_state to understand why we always use 0
* as the DPLL id in this function.
*/
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
switch (clock / 2) {
case 81000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
break;
case 135000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
break;
case 270000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
break;
/* eDP 1.4 rates */
case 162000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
break;
case 108000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
break;
case 216000:
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
break;
}
dpll_hw_state->ctrl1 = ctrl1;
return true;
}
static struct intel_shared_dpll *
skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_shared_dpll *pll;
int clock = crtc_state->port_clock;
bool bret;
struct intel_dpll_hw_state dpll_hw_state;
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
if (!bret) {
DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
return NULL;
}
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
if (!bret) {
DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
return NULL;
}
crtc_state->dpll_hw_state = dpll_hw_state;
} else {
return NULL;
}
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SKL_DPLL0,
DPLL_ID_SKL_DPLL0);
else
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SKL_DPLL1,
DPLL_ID_SKL_DPLL3);
if (!pll)
return NULL;
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: "
"ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
hw_state->ctrl1,
hw_state->cfgcr1,
hw_state->cfgcr2);
}
static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
.enable = skl_ddi_pll_enable,
.disable = skl_ddi_pll_disable,
.get_hw_state = skl_ddi_pll_get_hw_state,
};
static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
.enable = skl_ddi_dpll0_enable,
.disable = skl_ddi_dpll0_disable,
.get_hw_state = skl_ddi_dpll0_get_hw_state,
};
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
u32 temp;
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
enum dpio_phy phy;
enum dpio_channel ch;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
/* Non-SSC reference */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_REF_SEL;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
if (IS_GEMINILAKE(dev_priv)) {
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_POWER_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_POWER_STATE), 200))
DRM_ERROR("Power state not set for PLL:%d\n", port);
}
/* Disable 10 bit clock */
temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
/* Write P1 & P2 */
temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
temp |= pll->state.hw_state.ebb0;
I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
/* Write M2 integer */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
temp &= ~PORT_PLL_M2_MASK;
temp |= pll->state.hw_state.pll0;
I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
/* Write N */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
temp &= ~PORT_PLL_N_MASK;
temp |= pll->state.hw_state.pll1;
I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
/* Write M2 fraction */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
temp &= ~PORT_PLL_M2_FRAC_MASK;
temp |= pll->state.hw_state.pll2;
I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
/* Write M2 fraction enable */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
temp &= ~PORT_PLL_M2_FRAC_ENABLE;
temp |= pll->state.hw_state.pll3;
I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
/* Write coeff */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
temp &= ~PORT_PLL_PROP_COEFF_MASK;
temp &= ~PORT_PLL_INT_COEFF_MASK;
temp &= ~PORT_PLL_GAIN_CTL_MASK;
temp |= pll->state.hw_state.pll6;
I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
/* Write calibration val */
temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
temp &= ~PORT_PLL_TARGET_CNT_MASK;
temp |= pll->state.hw_state.pll8;
I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
temp |= pll->state.hw_state.pll9;
I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
temp &= ~PORT_PLL_DCO_AMP_MASK;
temp |= pll->state.hw_state.pll10;
I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
/* Recalibrate with new settings */
temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
temp |= PORT_PLL_RECALIBRATE;
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
temp |= pll->state.hw_state.ebb4;
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
/* Enable PLL */
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp |= PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
200))
DRM_ERROR("PLL %d not locked\n", port);
if (IS_GEMINILAKE(dev_priv)) {
temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
temp |= DCC_DELAY_RANGE_2;
I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
}
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
temp &= ~LANE_STAGGER_MASK;
temp &= ~LANESTAGGER_STRAP_OVRD;
temp |= pll->state.hw_state.pcsdw12;
I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
}
static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
u32 temp;
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
if (IS_GEMINILAKE(dev_priv)) {
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
temp &= ~PORT_PLL_POWER_ENABLE;
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
PORT_PLL_POWER_STATE), 200))
DRM_ERROR("Power state not reset for PLL:%d\n", port);
}
}
static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
intel_wakeref_t wakeref;
enum dpio_phy phy;
enum dpio_channel ch;
u32 val;
bool ret;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
ret = false;
val = I915_READ(BXT_PORT_PLL_ENABLE(port));
if (!(val & PORT_PLL_ENABLE))
goto out;
hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
hw_state->pll0 &= PORT_PLL_M2_MASK;
hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
hw_state->pll1 &= PORT_PLL_N_MASK;
hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
PORT_PLL_INT_COEFF_MASK |
PORT_PLL_GAIN_CTL_MASK;
hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
PORT_PLL_DCO_AMP_MASK;
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers. We configure all lanes the same way, so
* here just read out lanes 0/1 and output a note if lanes 2/3 differ.
*/
hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
hw_state->pcsdw12,
I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return ret;
}
/* bxt clock parameters */
struct bxt_clk_div {
int clock;
u32 p1;
u32 p2;
u32 m2_int;
u32 m2_frac;
bool m2_frac_en;
u32 n;
int vco;
};
/* pre-calculated values for DP linkrates */
static const struct bxt_clk_div bxt_dp_clk_val[] = {
{162000, 4, 2, 32, 1677722, 1, 1},
{270000, 4, 1, 27, 0, 0, 1},
{540000, 2, 1, 27, 0, 0, 1},
{216000, 3, 2, 32, 1677722, 1, 1},
{243000, 4, 1, 24, 1258291, 1, 1},
{324000, 4, 1, 32, 1677722, 1, 1},
{432000, 3, 1, 32, 1677722, 1, 1}
};
static bool
bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state, int clock,
struct bxt_clk_div *clk_div)
{
struct dpll best_clock;
/* Calculate HDMI div */
/*
* FIXME: tie the following calculation into
* i9xx_crtc_compute_clock
*/
if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
clock, pipe_name(intel_crtc->pipe));
return false;
}
clk_div->p1 = best_clock.p1;
clk_div->p2 = best_clock.p2;
WARN_ON(best_clock.m1 != 2);
clk_div->n = best_clock.n;
clk_div->m2_int = best_clock.m2 >> 22;
clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
clk_div->m2_frac_en = clk_div->m2_frac != 0;
clk_div->vco = best_clock.vco;
return true;
}
static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
{
int i;
*clk_div = bxt_dp_clk_val[0];
for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
if (bxt_dp_clk_val[i].clock == clock) {
*clk_div = bxt_dp_clk_val[i];
break;
}
}
clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
}
static bool bxt_ddi_set_dpll_hw_state(int clock,
struct bxt_clk_div *clk_div,
struct intel_dpll_hw_state *dpll_hw_state)
{
int vco = clk_div->vco;
u32 prop_coef, int_coef, gain_ctl, targ_cnt;
u32 lanestagger;
if (vco >= 6200000 && vco <= 6700000) {
prop_coef = 4;
int_coef = 9;
gain_ctl = 3;
targ_cnt = 8;
} else if ((vco > 5400000 && vco < 6200000) ||
(vco >= 4800000 && vco < 5400000)) {
prop_coef = 5;
int_coef = 11;
gain_ctl = 3;
targ_cnt = 9;
} else if (vco == 5400000) {
prop_coef = 3;
int_coef = 8;
gain_ctl = 1;
targ_cnt = 9;
} else {
DRM_ERROR("Invalid VCO\n");
return false;
}
if (clock > 270000)
lanestagger = 0x18;
else if (clock > 135000)
lanestagger = 0x0d;
else if (clock > 67000)
lanestagger = 0x07;
else if (clock > 33000)
lanestagger = 0x04;
else
lanestagger = 0x02;
dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
dpll_hw_state->pll0 = clk_div->m2_int;
dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
dpll_hw_state->pll2 = clk_div->m2_frac;
if (clk_div->m2_frac_en)
dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
dpll_hw_state->pll8 = targ_cnt;
dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
dpll_hw_state->pll10 =
PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
| PORT_PLL_DCO_AMP_OVR_EN_H;
dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
return true;
}
static bool
bxt_ddi_dp_set_dpll_hw_state(int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
struct bxt_clk_div clk_div = {0};
bxt_ddi_dp_pll_dividers(clock, &clk_div);
return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}
static bool
bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state, int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
struct bxt_clk_div clk_div = { };
bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}
static struct intel_shared_dpll *
bxt_get_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_dpll_hw_state dpll_hw_state = { };
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_shared_dpll *pll;
int i, clock = crtc_state->port_clock;
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
!bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
&dpll_hw_state))
return NULL;
if (intel_crtc_has_dp_encoder(crtc_state) &&
!bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
return NULL;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state = dpll_hw_state;
/* 1:1 mapping between ports and PLLs */
i = (enum intel_dpll_id) encoder->port;
pll = intel_get_shared_dpll_by_id(dev_priv, i);
DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
crtc->base.base.id, crtc->base.name, pll->info->name);
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
"pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
"pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
hw_state->ebb0,
hw_state->ebb4,
hw_state->pll0,
hw_state->pll1,
hw_state->pll2,
hw_state->pll3,
hw_state->pll6,
hw_state->pll8,
hw_state->pll9,
hw_state->pll10,
hw_state->pcsdw12);
}
static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
.enable = bxt_ddi_pll_enable,
.disable = bxt_ddi_pll_disable,
.get_hw_state = bxt_ddi_pll_get_hw_state,
};
static void intel_ddi_pll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
if (INTEL_GEN(dev_priv) < 9) {
u32 val = I915_READ(LCPLL_CTL);
/*
* The LCPLL register should be turned on by the BIOS. For now
* let's just check its state and print errors in case
* something is wrong. Don't even try to turn it on.
*/
if (val & LCPLL_CD_SOURCE_FCLK)
DRM_ERROR("CDCLK source is not LCPLL\n");
if (val & LCPLL_PLL_DISABLE)
DRM_ERROR("LCPLL is disabled\n");
}
}
struct intel_dpll_mgr {
const struct dpll_info *dpll_info;
struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder);
void (*dump_hw_state)(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state);
};
static const struct dpll_info pch_plls[] = {
{ "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 },
{ "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 },
{ },
};
static const struct intel_dpll_mgr pch_pll_mgr = {
.dpll_info = pch_plls,
.get_dpll = ibx_get_dpll,
.dump_hw_state = ibx_dump_hw_state,
};
static const struct dpll_info hsw_plls[] = {
{ "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 },
{ "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 },
{ "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 },
{ "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON },
{ "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON },
{ "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON },
{ },
};
static const struct intel_dpll_mgr hsw_pll_mgr = {
.dpll_info = hsw_plls,
.get_dpll = hsw_get_dpll,
.dump_hw_state = hsw_dump_hw_state,
};
static const struct dpll_info skl_plls[] = {
{ "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON },
{ "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
{ "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
{ "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 },
{ },
};
static const struct intel_dpll_mgr skl_pll_mgr = {
.dpll_info = skl_plls,
.get_dpll = skl_get_dpll,
.dump_hw_state = skl_dump_hw_state,
};
static const struct dpll_info bxt_plls[] = {
{ "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
{ "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
{ "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
{ },
};
static const struct intel_dpll_mgr bxt_pll_mgr = {
.dpll_info = bxt_plls,
.get_dpll = bxt_get_dpll,
.dump_hw_state = bxt_dump_hw_state,
};
static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
/* 1. Enable DPLL power in DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(id));
val |= PLL_POWER_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(id), val);
/* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(id),
PLL_POWER_STATE,
PLL_POWER_STATE,
5))
DRM_ERROR("PLL %d Power not enabled\n", id);
/*
* 3. Configure DPLL_CFGCR0 to set SSC enable/disable,
* select DP mode, and set DP link rate.
*/
val = pll->state.hw_state.cfgcr0;
I915_WRITE(CNL_DPLL_CFGCR0(id), val);
/* 4. Reab back to ensure writes completed */
POSTING_READ(CNL_DPLL_CFGCR0(id));
/* 3. Configure DPLL_CFGCR0 */
/* Avoid touch CFGCR1 if HDMI mode is not enabled */
if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
val = pll->state.hw_state.cfgcr1;
I915_WRITE(CNL_DPLL_CFGCR1(id), val);
/* 4. Reab back to ensure writes completed */
POSTING_READ(CNL_DPLL_CFGCR1(id));
}
/*
* 5. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence Before Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/* 6. Enable DPLL in DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(id));
val |= PLL_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(id), val);
/* 7. Wait for PLL lock status in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(id),
PLL_LOCK,
PLL_LOCK,
5))
DRM_ERROR("PLL %d not locked\n", id);
/*
* 8. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence After Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/*
* 9. turn on the clock for the DDI and map the DPLL to the DDI
* Done at intel_ddi_clk_select
*/
}
static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
u32 val;
/*
* 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI.
* Done at intel_ddi_post_disable
*/
/*
* 2. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence Before Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/* 3. Disable DPLL through DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(id));
val &= ~PLL_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(id), val);
/* 4. Wait for PLL not locked status in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(id),
PLL_LOCK,
0,
5))
DRM_ERROR("PLL %d locked\n", id);
/*
* 5. If the frequency will result in a change to the voltage
* requirement, follow the Display Voltage Frequency Switching
* Sequence After Frequency Change
*
* Note: DVFS is actually handled via the cdclk code paths,
* hence we do nothing here.
*/
/* 6. Disable DPLL power in DPLL_ENABLE. */
val = I915_READ(CNL_DPLL_ENABLE(id));
val &= ~PLL_POWER_ENABLE;
I915_WRITE(CNL_DPLL_ENABLE(id), val);
/* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */
if (intel_wait_for_register(dev_priv,
CNL_DPLL_ENABLE(id),
PLL_POWER_STATE,
0,
5))
DRM_ERROR("PLL %d Power not disabled\n", id);
}
static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
u32 val;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
ret = false;
val = I915_READ(CNL_DPLL_ENABLE(id));
if (!(val & PLL_ENABLE))
goto out;
val = I915_READ(CNL_DPLL_CFGCR0(id));
hw_state->cfgcr0 = val;
/* avoid reading back stale values if HDMI mode is not enabled */
if (val & DPLL_CFGCR0_HDMI_MODE) {
hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(id));
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return ret;
}
static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv,
int *qdiv, int *kdiv)
{
/* even dividers */
if (bestdiv % 2 == 0) {
if (bestdiv == 2) {
*pdiv = 2;
*qdiv = 1;
*kdiv = 1;
} else if (bestdiv % 4 == 0) {
*pdiv = 2;
*qdiv = bestdiv / 4;
*kdiv = 2;
} else if (bestdiv % 6 == 0) {
*pdiv = 3;
*qdiv = bestdiv / 6;
*kdiv = 2;
} else if (bestdiv % 5 == 0) {
*pdiv = 5;
*qdiv = bestdiv / 10;
*kdiv = 2;
} else if (bestdiv % 14 == 0) {
*pdiv = 7;
*qdiv = bestdiv / 14;
*kdiv = 2;
}
} else {
if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) {
*pdiv = bestdiv;
*qdiv = 1;
*kdiv = 1;
} else { /* 9, 15, 21 */
*pdiv = bestdiv / 3;
*qdiv = 1;
*kdiv = 3;
}
}
}
static void cnl_wrpll_params_populate(struct skl_wrpll_params *params,
u32 dco_freq, u32 ref_freq,
int pdiv, int qdiv, int kdiv)
{
u32 dco;
switch (kdiv) {
case 1:
params->kdiv = 1;
break;
case 2:
params->kdiv = 2;
break;
case 3:
params->kdiv = 4;
break;
default:
WARN(1, "Incorrect KDiv\n");
}
switch (pdiv) {
case 2:
params->pdiv = 1;
break;
case 3:
params->pdiv = 2;
break;
case 5:
params->pdiv = 4;
break;
case 7:
params->pdiv = 8;
break;
default:
WARN(1, "Incorrect PDiv\n");
}
WARN_ON(kdiv != 2 && qdiv != 1);
params->qdiv_ratio = qdiv;
params->qdiv_mode = (qdiv == 1) ? 0 : 1;
dco = div_u64((u64)dco_freq << 15, ref_freq);
params->dco_integer = dco >> 15;
params->dco_fraction = dco & 0x7fff;
}
int cnl_hdmi_pll_ref_clock(struct drm_i915_private *dev_priv)
{
int ref_clock = dev_priv->cdclk.hw.ref;
/*
* For ICL+, the spec states: if reference frequency is 38.4,
* use 19.2 because the DPLL automatically divides that by 2.
*/
if (INTEL_GEN(dev_priv) >= 11 && ref_clock == 38400)
ref_clock = 19200;
return ref_clock;
}
static bool
cnl_ddi_calculate_wrpll(int clock,
struct drm_i915_private *dev_priv,
struct skl_wrpll_params *wrpll_params)
{
u32 afe_clock = clock * 5;
u32 ref_clock;
u32 dco_min = 7998000;
u32 dco_max = 10000000;
u32 dco_mid = (dco_min + dco_max) / 2;
static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 24, 28, 30, 32, 36, 40,
42, 44, 48, 50, 52, 54, 56, 60,
64, 66, 68, 70, 72, 76, 78, 80,
84, 88, 90, 92, 96, 98, 100, 102,
3, 5, 7, 9, 15, 21 };
u32 dco, best_dco = 0, dco_centrality = 0;
u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */
int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0;
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
dco = afe_clock * dividers[d];
if ((dco <= dco_max) && (dco >= dco_min)) {
dco_centrality = abs(dco - dco_mid);
if (dco_centrality < best_dco_centrality) {
best_dco_centrality = dco_centrality;
best_div = dividers[d];
best_dco = dco;
}
}
}
if (best_div == 0)
return false;
cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv);
ref_clock = cnl_hdmi_pll_ref_clock(dev_priv);
cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock, pdiv, qdiv,
kdiv);
return true;
}
static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
int clock)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 cfgcr0, cfgcr1;
struct skl_wrpll_params wrpll_params = { 0, };
cfgcr0 = DPLL_CFGCR0_HDMI_MODE;
if (!cnl_ddi_calculate_wrpll(clock, dev_priv, &wrpll_params))
return false;
cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) |
wrpll_params.dco_integer;
cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) |
DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) |
DPLL_CFGCR1_KDIV(wrpll_params.kdiv) |
DPLL_CFGCR1_PDIV(wrpll_params.pdiv) |
DPLL_CFGCR1_CENTRAL_FREQ;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
return true;
}
static bool
cnl_ddi_dp_set_dpll_hw_state(int clock,
struct intel_dpll_hw_state *dpll_hw_state)
{
u32 cfgcr0;
cfgcr0 = DPLL_CFGCR0_SSC_ENABLE;
switch (clock / 2) {
case 81000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810;
break;
case 135000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350;
break;
case 270000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700;
break;
/* eDP 1.4 rates */
case 162000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620;
break;
case 108000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080;
break;
case 216000:
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160;
break;
case 324000:
/* Some SKUs may require elevated I/O voltage to support this */
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240;
break;
case 405000:
/* Some SKUs may require elevated I/O voltage to support this */
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050;
break;
}
dpll_hw_state->cfgcr0 = cfgcr0;
return true;
}
static struct intel_shared_dpll *
cnl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct intel_shared_dpll *pll;
int clock = crtc_state->port_clock;
bool bret;
struct intel_dpll_hw_state dpll_hw_state;
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
bret = cnl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
if (!bret) {
DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
return NULL;
}
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
bret = cnl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
if (!bret) {
DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
return NULL;
}
crtc_state->dpll_hw_state = dpll_hw_state;
} else {
DRM_DEBUG_KMS("Skip DPLL setup for output_types 0x%x\n",
crtc_state->output_types);
return NULL;
}
pll = intel_find_shared_dpll(crtc, crtc_state,
DPLL_ID_SKL_DPLL0,
DPLL_ID_SKL_DPLL2);
if (!pll) {
DRM_DEBUG_KMS("No PLL selected\n");
return NULL;
}
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static void cnl_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: "
"cfgcr0: 0x%x, cfgcr1: 0x%x\n",
hw_state->cfgcr0,
hw_state->cfgcr1);
}
static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = {
.enable = cnl_ddi_pll_enable,
.disable = cnl_ddi_pll_disable,
.get_hw_state = cnl_ddi_pll_get_hw_state,
};
static const struct dpll_info cnl_plls[] = {
{ "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
{ "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
{ "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
{ },
};
static const struct intel_dpll_mgr cnl_pll_mgr = {
.dpll_info = cnl_plls,
.get_dpll = cnl_get_dpll,
.dump_hw_state = cnl_dump_hw_state,
};
/*
* These values alrea already adjusted: they're the bits we write to the
* registers, not the logical values.
*/
static const struct skl_wrpll_params icl_dp_combo_pll_24MHz_values[] = {
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */
.pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */
.pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2},
{ .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */
.pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
};
/* Also used for 38.4 MHz values. */
static const struct skl_wrpll_params icl_dp_combo_pll_19_2MHz_values[] = {
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */
.pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */
.pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2},
{ .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */
.pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0},
};
static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = {
.dco_integer = 0x151, .dco_fraction = 0x4000,
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
};
static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = {
.dco_integer = 0x1A5, .dco_fraction = 0x7000,
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
};
static bool icl_calc_dp_combo_pll(struct drm_i915_private *dev_priv, int clock,
struct skl_wrpll_params *pll_params)
{
const struct skl_wrpll_params *params;
params = dev_priv->cdclk.hw.ref == 24000 ?
icl_dp_combo_pll_24MHz_values :
icl_dp_combo_pll_19_2MHz_values;
switch (clock) {
case 540000:
*pll_params = params[0];
break;
case 270000:
*pll_params = params[1];
break;
case 162000:
*pll_params = params[2];
break;
case 324000:
*pll_params = params[3];
break;
case 216000:
*pll_params = params[4];
break;
case 432000:
*pll_params = params[5];
break;
case 648000:
*pll_params = params[6];
break;
case 810000:
*pll_params = params[7];
break;
default:
MISSING_CASE(clock);
return false;
}
return true;
}
static bool icl_calc_tbt_pll(struct drm_i915_private *dev_priv, int clock,
struct skl_wrpll_params *pll_params)
{
*pll_params = dev_priv->cdclk.hw.ref == 24000 ?
icl_tbt_pll_24MHz_values : icl_tbt_pll_19_2MHz_values;
return true;
}
static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder, int clock,
struct intel_dpll_hw_state *pll_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 cfgcr0, cfgcr1;
struct skl_wrpll_params pll_params = { 0 };
bool ret;
if (intel_port_is_tc(dev_priv, encoder->port))
ret = icl_calc_tbt_pll(dev_priv, clock, &pll_params);
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
ret = cnl_ddi_calculate_wrpll(clock, dev_priv, &pll_params);
else
ret = icl_calc_dp_combo_pll(dev_priv, clock, &pll_params);
if (!ret)
return false;
cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) |
pll_params.dco_integer;
cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) |
DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) |
DPLL_CFGCR1_KDIV(pll_params.kdiv) |
DPLL_CFGCR1_PDIV(pll_params.pdiv) |
DPLL_CFGCR1_CENTRAL_FREQ_8400;
pll_state->cfgcr0 = cfgcr0;
pll_state->cfgcr1 = cfgcr1;
return true;
}
int icl_calc_dp_combo_pll_link(struct drm_i915_private *dev_priv,
u32 pll_id)
{
u32 cfgcr0, cfgcr1;
u32 pdiv, kdiv, qdiv_mode, qdiv_ratio, dco_integer, dco_fraction;
const struct skl_wrpll_params *params;
int index, n_entries, link_clock;
/* Read back values from DPLL CFGCR registers */
cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(pll_id));
cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(pll_id));
dco_integer = cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK;
dco_fraction = (cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >>
DPLL_CFGCR0_DCO_FRACTION_SHIFT;
pdiv = (cfgcr1 & DPLL_CFGCR1_PDIV_MASK) >> DPLL_CFGCR1_PDIV_SHIFT;
kdiv = (cfgcr1 & DPLL_CFGCR1_KDIV_MASK) >> DPLL_CFGCR1_KDIV_SHIFT;
qdiv_mode = (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1)) >>
DPLL_CFGCR1_QDIV_MODE_SHIFT;
qdiv_ratio = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >>
DPLL_CFGCR1_QDIV_RATIO_SHIFT;
params = dev_priv->cdclk.hw.ref == 24000 ?
icl_dp_combo_pll_24MHz_values :
icl_dp_combo_pll_19_2MHz_values;
n_entries = ARRAY_SIZE(icl_dp_combo_pll_24MHz_values);
for (index = 0; index < n_entries; index++) {
if (dco_integer == params[index].dco_integer &&
dco_fraction == params[index].dco_fraction &&
pdiv == params[index].pdiv &&
kdiv == params[index].kdiv &&
qdiv_mode == params[index].qdiv_mode &&
qdiv_ratio == params[index].qdiv_ratio)
break;
}
/* Map PLL Index to Link Clock */
switch (index) {
default:
MISSING_CASE(index);
/* fall through */
case 0:
link_clock = 540000;
break;
case 1:
link_clock = 270000;
break;
case 2:
link_clock = 162000;
break;
case 3:
link_clock = 324000;
break;
case 4:
link_clock = 216000;
break;
case 5:
link_clock = 432000;
break;
case 6:
link_clock = 648000;
break;
case 7:
link_clock = 810000;
break;
}
return link_clock;
}
static enum tc_port icl_pll_id_to_tc_port(enum intel_dpll_id id)
{
return id - DPLL_ID_ICL_MGPLL1;
}
enum intel_dpll_id icl_tc_port_to_pll_id(enum tc_port tc_port)
{
return tc_port + DPLL_ID_ICL_MGPLL1;
}
bool intel_dpll_is_combophy(enum intel_dpll_id id)
{
return id == DPLL_ID_ICL_DPLL0 || id == DPLL_ID_ICL_DPLL1;
}
static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc,
u32 *target_dco_khz,
struct intel_dpll_hw_state *state)
{
u32 dco_min_freq, dco_max_freq;
int div1_vals[] = {7, 5, 3, 2};
unsigned int i;
int div2;
dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000;
dco_max_freq = is_dp ? 8100000 : 10000000;
for (i = 0; i < ARRAY_SIZE(div1_vals); i++) {
int div1 = div1_vals[i];
for (div2 = 10; div2 > 0; div2--) {
int dco = div1 * div2 * clock_khz * 5;
int a_divratio, tlinedrv, inputsel;
u32 hsdiv;
if (dco < dco_min_freq || dco > dco_max_freq)
continue;
if (div2 >= 2) {
a_divratio = is_dp ? 10 : 5;
tlinedrv = 2;
} else {
a_divratio = 5;
tlinedrv = 0;
}
inputsel = is_dp ? 0 : 1;
switch (div1) {
default:
MISSING_CASE(div1);
/* fall through */
case 2:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2;
break;
case 3:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3;
break;
case 5:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5;
break;
case 7:
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7;
break;
}
*target_dco_khz = dco;
state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1);
state->mg_clktop2_coreclkctl1 =
MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio);
state->mg_clktop2_hsclkctl =
MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) |
hsdiv |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2);
return true;
}
}
return false;
}
/*
* The specification for this function uses real numbers, so the math had to be
* adapted to integer-only calculation, that's why it looks so different.
*/
static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder, int clock,
struct intel_dpll_hw_state *pll_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int refclk_khz = dev_priv->cdclk.hw.ref;
u32 dco_khz, m1div, m2div_int, m2div_rem, m2div_frac;
u32 iref_ndiv, iref_trim, iref_pulse_w;
u32 prop_coeff, int_coeff;
u32 tdc_targetcnt, feedfwgain;
u64 ssc_stepsize, ssc_steplen, ssc_steplog;
u64 tmp;
bool use_ssc = false;
bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI);
if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz,
pll_state)) {
DRM_DEBUG_KMS("Failed to find divisors for clock %d\n", clock);
return false;
}
m1div = 2;
m2div_int = dco_khz / (refclk_khz * m1div);
if (m2div_int > 255) {
m1div = 4;
m2div_int = dco_khz / (refclk_khz * m1div);
if (m2div_int > 255) {
DRM_DEBUG_KMS("Failed to find mdiv for clock %d\n",
clock);
return false;
}
}
m2div_rem = dco_khz % (refclk_khz * m1div);
tmp = (u64)m2div_rem * (1 << 22);
do_div(tmp, refclk_khz * m1div);
m2div_frac = tmp;
switch (refclk_khz) {
case 19200:
iref_ndiv = 1;
iref_trim = 28;
iref_pulse_w = 1;
break;
case 24000:
iref_ndiv = 1;
iref_trim = 25;
iref_pulse_w = 2;
break;
case 38400:
iref_ndiv = 2;
iref_trim = 28;
iref_pulse_w = 1;
break;
default:
MISSING_CASE(refclk_khz);
return false;
}
/*
* tdc_res = 0.000003
* tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5)
*
* The multiplication by 1000 is due to refclk MHz to KHz conversion. It
* was supposed to be a division, but we rearranged the operations of
* the formula to avoid early divisions so we don't multiply the
* rounding errors.
*
* 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which
* we also rearrange to work with integers.
*
* The 0.5 transformed to 5 results in a multiplication by 10 and the
* last division by 10.
*/
tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10;
/*
* Here we divide dco_khz by 10 in order to allow the dividend to fit in
* 32 bits. That's not a problem since we round the division down
* anyway.
*/
feedfwgain = (use_ssc || m2div_rem > 0) ?
m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0;
if (dco_khz >= 9000000) {
prop_coeff = 5;
int_coeff = 10;
} else {
prop_coeff = 4;
int_coeff = 8;
}
if (use_ssc) {
tmp = (u64)dco_khz * 47 * 32;
do_div(tmp, refclk_khz * m1div * 10000);
ssc_stepsize = tmp;
tmp = (u64)dco_khz * 1000;
ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32);
} else {
ssc_stepsize = 0;
ssc_steplen = 0;
}
ssc_steplog = 4;
pll_state->mg_pll_div0 = (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) |
MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) |
MG_PLL_DIV0_FBDIV_INT(m2div_int);
pll_state->mg_pll_div1 = MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) |
MG_PLL_DIV1_DITHER_DIV_2 |
MG_PLL_DIV1_NDIVRATIO(1) |
MG_PLL_DIV1_FBPREDIV(m1div);
pll_state->mg_pll_lf = MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) |
MG_PLL_LF_AFCCNTSEL_512 |
MG_PLL_LF_GAINCTRL(1) |
MG_PLL_LF_INT_COEFF(int_coeff) |
MG_PLL_LF_PROP_COEFF(prop_coeff);
pll_state->mg_pll_frac_lock = MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 |
MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 |
MG_PLL_FRAC_LOCK_LOCKTHRESH(10) |
MG_PLL_FRAC_LOCK_DCODITHEREN |
MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain);
if (use_ssc || m2div_rem > 0)
pll_state->mg_pll_frac_lock |= MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN;
pll_state->mg_pll_ssc = (use_ssc ? MG_PLL_SSC_EN : 0) |
MG_PLL_SSC_TYPE(2) |
MG_PLL_SSC_STEPLENGTH(ssc_steplen) |
MG_PLL_SSC_STEPNUM(ssc_steplog) |
MG_PLL_SSC_FLLEN |
MG_PLL_SSC_STEPSIZE(ssc_stepsize);
pll_state->mg_pll_tdc_coldst_bias = MG_PLL_TDC_COLDST_COLDSTART |
MG_PLL_TDC_COLDST_IREFINT_EN |
MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) |
MG_PLL_TDC_TDCOVCCORR_EN |
MG_PLL_TDC_TDCSEL(3);
pll_state->mg_pll_bias = MG_PLL_BIAS_BIAS_GB_SEL(3) |
MG_PLL_BIAS_INIT_DCOAMP(0x3F) |
MG_PLL_BIAS_BIAS_BONUS(10) |
MG_PLL_BIAS_BIASCAL_EN |
MG_PLL_BIAS_CTRIM(12) |
MG_PLL_BIAS_VREF_RDAC(4) |
MG_PLL_BIAS_IREFTRIM(iref_trim);
if (refclk_khz == 38400) {
pll_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
pll_state->mg_pll_bias_mask = 0;
} else {
pll_state->mg_pll_tdc_coldst_bias_mask = -1U;
pll_state->mg_pll_bias_mask = -1U;
}
pll_state->mg_pll_tdc_coldst_bias &= pll_state->mg_pll_tdc_coldst_bias_mask;
pll_state->mg_pll_bias &= pll_state->mg_pll_bias_mask;
return true;
}
static struct intel_shared_dpll *
icl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
drm/i915/icl: Fix crash when getting DPLL of a MST encoder in TC ports enc_to_dig_port() returns NULL for encoders of type INTEL_OUTPUT_DP_MST causing the crash bellow: [ 2832.836101] BUG: unable to handle kernel paging request at 00000000000012b8 [ 2832.843062] PGD 0 P4D 0 [ 2832.845610] Oops: 0000 [#1] SMP [ 2832.848764] CPU: 2 PID: 3577 Comm: kworker/2:0 Tainted: G W 4.19.0-rc7+ #491 [ 2832.857106] Hardware name: Intel Corporation Ice Lake Client Platform/IceLake U DDR4 SODIMM PD RVP TLC, BIOS ICLSFWR1.R00.2352.A01.1808281852 08/28/2018 [ 2832.870734] Workqueue: events output_poll_execute [ 2832.875480] RIP: 0010:icl_get_dpll+0xa4/0x5d0 [i915] [ 2832.880449] Code: e9 03 f3 48 ab 8b 6e 74 41 8b 8c 24 5c 03 00 00 85 ed 0f 88 3f 02 00 00 83 fd 01 0f 8e ad 01 00 00 83 fd 05 0f 8f 2d 02 00 00 <83> ba b8 12 00 00 02 48 8b 36 0f 84 39 02 00 00 44 8b be ec 89 00 [ 2832.899176] RSP: 0018:ffffc90001b57a78 EFLAGS: 00010293 [ 2832.904404] RAX: 0000000000000000 RBX: ffffc90001b57a94 RCX: 0000000000083d60 [ 2832.911536] RDX: 0000000000000000 RSI: ffff8804a8c0dc00 RDI: ffffc90001b57b18 [ 2832.918668] RBP: 0000000000000003 R08: ffff8804a8c1f990 R09: ffff8804a8c1f990 [ 2832.925797] R10: 0000000000000000 R11: ffff8804a8e99600 R12: ffff8804a7760000 [ 2832.932930] R13: ffff88049e94d000 R14: ffff88049e94d000 R15: 000000000000000e [ 2832.940063] FS: 0000000000000000(0000) GS:ffff8804b0300000(0000) knlGS:0000000000000000 [ 2832.948147] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2832.953893] CR2: 00000000000012b8 CR3: 0000000004a1d004 CR4: 0000000000760ee0 [ 2832.961027] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2832.968155] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2832.975286] PKRU: 55555554 [ 2832.978003] Call Trace: [ 2832.980496] haswell_crtc_compute_clock+0x3d/0x68 [i915] [ 2832.985841] intel_crtc_atomic_check+0x61/0x340 [i915] [ 2832.990987] drm_atomic_helper_check_planes+0x130/0x1c0 [ 2832.996245] intel_atomic_check+0x4d5/0x10f0 [i915] [ 2833.001147] drm_atomic_check_only+0x484/0x690 [ 2833.005629] drm_atomic_commit+0x13/0x50 [ 2833.009564] restore_fbdev_mode_atomic+0x1c9/0x1e0 [ 2833.014363] drm_fb_helper_restore_fbdev_mode_unlocked+0x47/0x90 [ 2833.020368] drm_fb_helper_set_par+0x29/0x50 [ 2833.024641] drm_fb_helper_hotplug_event.part.33+0x92/0xb0 [ 2833.030130] drm_kms_helper_hotplug_event+0x26/0x30 [ 2833.035013] output_poll_execute+0x192/0x1b0 [ 2833.039293] process_one_work+0x2a5/0x5f0 [ 2833.043315] worker_thread+0x2d/0x3d0 [ 2833.046988] ? rescuer_thread+0x340/0x340 [ 2833.051009] kthread+0x112/0x130 [ 2833.054247] ? kthread_create_worker_on_cpu+0x70/0x70 [ 2833.059307] ret_from_fork+0x3a/0x50 [ 2833.062893] Modules linked in: i915 prime_numbers snd_hda_codec_realtek snd_hda_codec_generic asix snd_usb_audio snd_usbmidi_lib snd_seq_midi snd_seq_midi_event snd_rawmidi cdc_ether usbnet x86_pkg_temp_thermal xhci_pci xhci_hcd ucsi_acpi typec_ucsi typec efivarfs [last unloaded: prime_numbers] [ 2833.088917] CR2: 00000000000012b8 [ 2833.092241] ---[ end trace 25f9fe3d47af2e75 ]--- [ 2833.096895] RIP: 0010:icl_get_dpll+0xa4/0x5d0 [i915] [ 2833.101866] Code: e9 03 f3 48 ab 8b 6e 74 41 8b 8c 24 5c 03 00 00 85 ed 0f 88 3f 02 00 00 83 fd 01 0f 8e ad 01 00 00 83 fd 05 0f 8f 2d 02 00 00 <83> ba b8 12 00 00 02 48 8b 36 0f 84 39 02 00 00 44 8b be ec 89 00 [ 2833.120589] RSP: 0018:ffffc90001b57a78 EFLAGS: 00010293 [ 2833.125815] RAX: 0000000000000000 RBX: ffffc90001b57a94 RCX: 0000000000083d60 [ 2833.132946] RDX: 0000000000000000 RSI: ffff8804a8c0dc00 RDI: ffffc90001b57b18 [ 2833.140080] RBP: 0000000000000003 R08: ffff8804a8c1f990 R09: ffff8804a8c1f990 [ 2833.147213] R10: 0000000000000000 R11: ffff8804a8e99600 R12: ffff8804a7760000 [ 2833.154350] R13: ffff88049e94d000 R14: ffff88049e94d000 R15: 000000000000000e [ 2833.161483] FS: 0000000000000000(0000) GS:ffff8804b0300000(0000) knlGS:0000000000000000 [ 2833.169565] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2833.175313] CR2: 00000000000012b8 CR3: 0000000004a1d004 CR4: 0000000000760ee0 [ 2833.182449] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2833.189578] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2833.196712] PKRU: 55555554 MST ports are allocated from struct intel_dp_mst_encoder not from struct intel_digital_port as regular ports, so to get the TC type it is necessary check the primary digital port of the mst encoder. Cc: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181030215750.28213-5-jose.souza@intel.com
2018-10-31 04:57:50 +07:00
struct intel_digital_port *intel_dig_port;
struct intel_shared_dpll *pll;
struct intel_dpll_hw_state pll_state = {};
enum port port = encoder->port;
enum intel_dpll_id min, max;
int clock = crtc_state->port_clock;
bool ret;
if (intel_port_is_combophy(dev_priv, port)) {
min = DPLL_ID_ICL_DPLL0;
max = DPLL_ID_ICL_DPLL1;
ret = icl_calc_dpll_state(crtc_state, encoder, clock,
&pll_state);
} else if (intel_port_is_tc(dev_priv, port)) {
drm/i915/icl: Fix crash when getting DPLL of a MST encoder in TC ports enc_to_dig_port() returns NULL for encoders of type INTEL_OUTPUT_DP_MST causing the crash bellow: [ 2832.836101] BUG: unable to handle kernel paging request at 00000000000012b8 [ 2832.843062] PGD 0 P4D 0 [ 2832.845610] Oops: 0000 [#1] SMP [ 2832.848764] CPU: 2 PID: 3577 Comm: kworker/2:0 Tainted: G W 4.19.0-rc7+ #491 [ 2832.857106] Hardware name: Intel Corporation Ice Lake Client Platform/IceLake U DDR4 SODIMM PD RVP TLC, BIOS ICLSFWR1.R00.2352.A01.1808281852 08/28/2018 [ 2832.870734] Workqueue: events output_poll_execute [ 2832.875480] RIP: 0010:icl_get_dpll+0xa4/0x5d0 [i915] [ 2832.880449] Code: e9 03 f3 48 ab 8b 6e 74 41 8b 8c 24 5c 03 00 00 85 ed 0f 88 3f 02 00 00 83 fd 01 0f 8e ad 01 00 00 83 fd 05 0f 8f 2d 02 00 00 <83> ba b8 12 00 00 02 48 8b 36 0f 84 39 02 00 00 44 8b be ec 89 00 [ 2832.899176] RSP: 0018:ffffc90001b57a78 EFLAGS: 00010293 [ 2832.904404] RAX: 0000000000000000 RBX: ffffc90001b57a94 RCX: 0000000000083d60 [ 2832.911536] RDX: 0000000000000000 RSI: ffff8804a8c0dc00 RDI: ffffc90001b57b18 [ 2832.918668] RBP: 0000000000000003 R08: ffff8804a8c1f990 R09: ffff8804a8c1f990 [ 2832.925797] R10: 0000000000000000 R11: ffff8804a8e99600 R12: ffff8804a7760000 [ 2832.932930] R13: ffff88049e94d000 R14: ffff88049e94d000 R15: 000000000000000e [ 2832.940063] FS: 0000000000000000(0000) GS:ffff8804b0300000(0000) knlGS:0000000000000000 [ 2832.948147] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2832.953893] CR2: 00000000000012b8 CR3: 0000000004a1d004 CR4: 0000000000760ee0 [ 2832.961027] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2832.968155] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2832.975286] PKRU: 55555554 [ 2832.978003] Call Trace: [ 2832.980496] haswell_crtc_compute_clock+0x3d/0x68 [i915] [ 2832.985841] intel_crtc_atomic_check+0x61/0x340 [i915] [ 2832.990987] drm_atomic_helper_check_planes+0x130/0x1c0 [ 2832.996245] intel_atomic_check+0x4d5/0x10f0 [i915] [ 2833.001147] drm_atomic_check_only+0x484/0x690 [ 2833.005629] drm_atomic_commit+0x13/0x50 [ 2833.009564] restore_fbdev_mode_atomic+0x1c9/0x1e0 [ 2833.014363] drm_fb_helper_restore_fbdev_mode_unlocked+0x47/0x90 [ 2833.020368] drm_fb_helper_set_par+0x29/0x50 [ 2833.024641] drm_fb_helper_hotplug_event.part.33+0x92/0xb0 [ 2833.030130] drm_kms_helper_hotplug_event+0x26/0x30 [ 2833.035013] output_poll_execute+0x192/0x1b0 [ 2833.039293] process_one_work+0x2a5/0x5f0 [ 2833.043315] worker_thread+0x2d/0x3d0 [ 2833.046988] ? rescuer_thread+0x340/0x340 [ 2833.051009] kthread+0x112/0x130 [ 2833.054247] ? kthread_create_worker_on_cpu+0x70/0x70 [ 2833.059307] ret_from_fork+0x3a/0x50 [ 2833.062893] Modules linked in: i915 prime_numbers snd_hda_codec_realtek snd_hda_codec_generic asix snd_usb_audio snd_usbmidi_lib snd_seq_midi snd_seq_midi_event snd_rawmidi cdc_ether usbnet x86_pkg_temp_thermal xhci_pci xhci_hcd ucsi_acpi typec_ucsi typec efivarfs [last unloaded: prime_numbers] [ 2833.088917] CR2: 00000000000012b8 [ 2833.092241] ---[ end trace 25f9fe3d47af2e75 ]--- [ 2833.096895] RIP: 0010:icl_get_dpll+0xa4/0x5d0 [i915] [ 2833.101866] Code: e9 03 f3 48 ab 8b 6e 74 41 8b 8c 24 5c 03 00 00 85 ed 0f 88 3f 02 00 00 83 fd 01 0f 8e ad 01 00 00 83 fd 05 0f 8f 2d 02 00 00 <83> ba b8 12 00 00 02 48 8b 36 0f 84 39 02 00 00 44 8b be ec 89 00 [ 2833.120589] RSP: 0018:ffffc90001b57a78 EFLAGS: 00010293 [ 2833.125815] RAX: 0000000000000000 RBX: ffffc90001b57a94 RCX: 0000000000083d60 [ 2833.132946] RDX: 0000000000000000 RSI: ffff8804a8c0dc00 RDI: ffffc90001b57b18 [ 2833.140080] RBP: 0000000000000003 R08: ffff8804a8c1f990 R09: ffff8804a8c1f990 [ 2833.147213] R10: 0000000000000000 R11: ffff8804a8e99600 R12: ffff8804a7760000 [ 2833.154350] R13: ffff88049e94d000 R14: ffff88049e94d000 R15: 000000000000000e [ 2833.161483] FS: 0000000000000000(0000) GS:ffff8804b0300000(0000) knlGS:0000000000000000 [ 2833.169565] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2833.175313] CR2: 00000000000012b8 CR3: 0000000004a1d004 CR4: 0000000000760ee0 [ 2833.182449] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2833.189578] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2833.196712] PKRU: 55555554 MST ports are allocated from struct intel_dp_mst_encoder not from struct intel_digital_port as regular ports, so to get the TC type it is necessary check the primary digital port of the mst encoder. Cc: Paulo Zanoni <paulo.r.zanoni@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: José Roberto de Souza <jose.souza@intel.com> Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20181030215750.28213-5-jose.souza@intel.com
2018-10-31 04:57:50 +07:00
if (encoder->type == INTEL_OUTPUT_DP_MST) {
struct intel_dp_mst_encoder *mst_encoder;
mst_encoder = enc_to_mst(&encoder->base);
intel_dig_port = mst_encoder->primary;
} else {
intel_dig_port = enc_to_dig_port(&encoder->base);
}
if (intel_dig_port->tc_type == TC_PORT_TBT) {
min = DPLL_ID_ICL_TBTPLL;
max = min;
ret = icl_calc_dpll_state(crtc_state, encoder, clock,
&pll_state);
} else {
enum tc_port tc_port;
tc_port = intel_port_to_tc(dev_priv, port);
min = icl_tc_port_to_pll_id(tc_port);
max = min;
ret = icl_calc_mg_pll_state(crtc_state, encoder, clock,
&pll_state);
}
} else {
MISSING_CASE(port);
return NULL;
}
if (!ret) {
DRM_DEBUG_KMS("Could not calculate PLL state.\n");
return NULL;
}
crtc_state->dpll_hw_state = pll_state;
pll = intel_find_shared_dpll(crtc, crtc_state, min, max);
if (!pll) {
DRM_DEBUG_KMS("No PLL selected\n");
return NULL;
}
intel_reference_shared_dpll(pll, crtc_state);
return pll;
}
static i915_reg_t icl_pll_id_to_enable_reg(enum intel_dpll_id id)
{
if (intel_dpll_is_combophy(id))
return CNL_DPLL_ENABLE(id);
else if (id == DPLL_ID_ICL_TBTPLL)
return TBT_PLL_ENABLE;
return MG_PLL_ENABLE(icl_pll_id_to_tc_port(id));
}
static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
const enum intel_dpll_id id = pll->info->id;
intel_wakeref_t wakeref;
bool ret = false;
u32 val;
wakeref = intel_display_power_get_if_enabled(dev_priv,
POWER_DOMAIN_PLLS);
if (!wakeref)
return false;
val = I915_READ(icl_pll_id_to_enable_reg(id));
if (!(val & PLL_ENABLE))
goto out;
if (intel_dpll_is_combophy(id) ||
id == DPLL_ID_ICL_TBTPLL) {
hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(id));
hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(id));
} else {
enum tc_port tc_port = icl_pll_id_to_tc_port(id);
hw_state->mg_refclkin_ctl = I915_READ(MG_REFCLKIN_CTL(tc_port));
hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK;
hw_state->mg_clktop2_coreclkctl1 =
I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port));
hw_state->mg_clktop2_coreclkctl1 &=
MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
hw_state->mg_clktop2_hsclkctl =
I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port));
hw_state->mg_clktop2_hsclkctl &=
MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK;
hw_state->mg_pll_div0 = I915_READ(MG_PLL_DIV0(tc_port));
hw_state->mg_pll_div1 = I915_READ(MG_PLL_DIV1(tc_port));
hw_state->mg_pll_lf = I915_READ(MG_PLL_LF(tc_port));
hw_state->mg_pll_frac_lock = I915_READ(MG_PLL_FRAC_LOCK(tc_port));
hw_state->mg_pll_ssc = I915_READ(MG_PLL_SSC(tc_port));
hw_state->mg_pll_bias = I915_READ(MG_PLL_BIAS(tc_port));
hw_state->mg_pll_tdc_coldst_bias =
I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
if (dev_priv->cdclk.hw.ref == 38400) {
hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
hw_state->mg_pll_bias_mask = 0;
} else {
hw_state->mg_pll_tdc_coldst_bias_mask = -1U;
hw_state->mg_pll_bias_mask = -1U;
}
hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask;
hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask;
}
ret = true;
out:
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS, wakeref);
return ret;
}
static void icl_dpll_write(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
const enum intel_dpll_id id = pll->info->id;
I915_WRITE(ICL_DPLL_CFGCR0(id), hw_state->cfgcr0);
I915_WRITE(ICL_DPLL_CFGCR1(id), hw_state->cfgcr1);
POSTING_READ(ICL_DPLL_CFGCR1(id));
}
static void icl_mg_pll_write(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id);
u32 val;
/*
* Some of the following registers have reserved fields, so program
* these with RMW based on a mask. The mask can be fixed or generated
* during the calc/readout phase if the mask depends on some other HW
* state like refclk, see icl_calc_mg_pll_state().
*/
val = I915_READ(MG_REFCLKIN_CTL(tc_port));
val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK;
val |= hw_state->mg_refclkin_ctl;
I915_WRITE(MG_REFCLKIN_CTL(tc_port), val);
val = I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port));
val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
val |= hw_state->mg_clktop2_coreclkctl1;
I915_WRITE(MG_CLKTOP2_CORECLKCTL1(tc_port), val);
val = I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port));
val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK);
val |= hw_state->mg_clktop2_hsclkctl;
I915_WRITE(MG_CLKTOP2_HSCLKCTL(tc_port), val);
I915_WRITE(MG_PLL_DIV0(tc_port), hw_state->mg_pll_div0);
I915_WRITE(MG_PLL_DIV1(tc_port), hw_state->mg_pll_div1);
I915_WRITE(MG_PLL_LF(tc_port), hw_state->mg_pll_lf);
I915_WRITE(MG_PLL_FRAC_LOCK(tc_port), hw_state->mg_pll_frac_lock);
I915_WRITE(MG_PLL_SSC(tc_port), hw_state->mg_pll_ssc);
val = I915_READ(MG_PLL_BIAS(tc_port));
val &= ~hw_state->mg_pll_bias_mask;
val |= hw_state->mg_pll_bias;
I915_WRITE(MG_PLL_BIAS(tc_port), val);
val = I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
val &= ~hw_state->mg_pll_tdc_coldst_bias_mask;
val |= hw_state->mg_pll_tdc_coldst_bias;
I915_WRITE(MG_PLL_TDC_COLDST_BIAS(tc_port), val);
POSTING_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
}
static void icl_pll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id);
u32 val;
val = I915_READ(enable_reg);
val |= PLL_POWER_ENABLE;
I915_WRITE(enable_reg, val);
/*
* The spec says we need to "wait" but it also says it should be
* immediate.
*/
if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE,
PLL_POWER_STATE, 1))
DRM_ERROR("PLL %d Power not enabled\n", id);
if (intel_dpll_is_combophy(id) || id == DPLL_ID_ICL_TBTPLL)
icl_dpll_write(dev_priv, pll);
else
icl_mg_pll_write(dev_priv, pll);
/*
* DVFS pre sequence would be here, but in our driver the cdclk code
* paths should already be setting the appropriate voltage, hence we do
* nothign here.
*/
val = I915_READ(enable_reg);
val |= PLL_ENABLE;
I915_WRITE(enable_reg, val);
if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, PLL_LOCK,
1)) /* 600us actually. */
DRM_ERROR("PLL %d not locked\n", id);
/* DVFS post sequence would be here. See the comment above. */
}
static void icl_pll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
const enum intel_dpll_id id = pll->info->id;
i915_reg_t enable_reg = icl_pll_id_to_enable_reg(id);
u32 val;
/* The first steps are done by intel_ddi_post_disable(). */
/*
* DVFS pre sequence would be here, but in our driver the cdclk code
* paths should already be setting the appropriate voltage, hence we do
* nothign here.
*/
val = I915_READ(enable_reg);
val &= ~PLL_ENABLE;
I915_WRITE(enable_reg, val);
/* Timeout is actually 1us. */
if (intel_wait_for_register(dev_priv, enable_reg, PLL_LOCK, 0, 1))
DRM_ERROR("PLL %d locked\n", id);
/* DVFS post sequence would be here. See the comment above. */
val = I915_READ(enable_reg);
val &= ~PLL_POWER_ENABLE;
I915_WRITE(enable_reg, val);
/*
* The spec says we need to "wait" but it also says it should be
* immediate.
*/
if (intel_wait_for_register(dev_priv, enable_reg, PLL_POWER_STATE, 0,
1))
DRM_ERROR("PLL %d Power not disabled\n", id);
}
static void icl_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
DRM_DEBUG_KMS("dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, "
"mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, "
"mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, "
"mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, "
"mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, "
"mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n",
hw_state->cfgcr0, hw_state->cfgcr1,
hw_state->mg_refclkin_ctl,
hw_state->mg_clktop2_coreclkctl1,
hw_state->mg_clktop2_hsclkctl,
hw_state->mg_pll_div0,
hw_state->mg_pll_div1,
hw_state->mg_pll_lf,
hw_state->mg_pll_frac_lock,
hw_state->mg_pll_ssc,
hw_state->mg_pll_bias,
hw_state->mg_pll_tdc_coldst_bias);
}
static const struct intel_shared_dpll_funcs icl_pll_funcs = {
.enable = icl_pll_enable,
.disable = icl_pll_disable,
.get_hw_state = icl_pll_get_hw_state,
};
static const struct dpll_info icl_plls[] = {
{ "DPLL 0", &icl_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
{ "DPLL 1", &icl_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
{ "TBT PLL", &icl_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 },
{ "MG PLL 1", &icl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
{ "MG PLL 2", &icl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
{ "MG PLL 3", &icl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
{ "MG PLL 4", &icl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
{ },
};
static const struct intel_dpll_mgr icl_pll_mgr = {
.dpll_info = icl_plls,
.get_dpll = icl_get_dpll,
.dump_hw_state = icl_dump_hw_state,
};
/**
* intel_shared_dpll_init - Initialize shared DPLLs
* @dev: drm device
*
* Initialize shared DPLLs for @dev.
*/
void intel_shared_dpll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
const struct intel_dpll_mgr *dpll_mgr = NULL;
const struct dpll_info *dpll_info;
int i;
if (IS_ICELAKE(dev_priv))
dpll_mgr = &icl_pll_mgr;
else if (IS_CANNONLAKE(dev_priv))
dpll_mgr = &cnl_pll_mgr;
else if (IS_GEN9_BC(dev_priv))
dpll_mgr = &skl_pll_mgr;
else if (IS_GEN9_LP(dev_priv))
dpll_mgr = &bxt_pll_mgr;
else if (HAS_DDI(dev_priv))
dpll_mgr = &hsw_pll_mgr;
else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
dpll_mgr = &pch_pll_mgr;
if (!dpll_mgr) {
dev_priv->num_shared_dpll = 0;
return;
}
dpll_info = dpll_mgr->dpll_info;
for (i = 0; dpll_info[i].name; i++) {
WARN_ON(i != dpll_info[i].id);
dev_priv->shared_dplls[i].info = &dpll_info[i];
}
dev_priv->dpll_mgr = dpll_mgr;
dev_priv->num_shared_dpll = i;
mutex_init(&dev_priv->dpll_lock);
BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
/* FIXME: Move this to a more suitable place */
if (HAS_DDI(dev_priv))
intel_ddi_pll_init(dev);
}
/**
* intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination
* @crtc: CRTC
* @crtc_state: atomic state for @crtc
* @encoder: encoder
*
* Find an appropriate DPLL for the given CRTC and encoder combination. A
* reference from the @crtc to the returned pll is registered in the atomic
* state. That configuration is made effective by calling
* intel_shared_dpll_swap_state(). The reference should be released by calling
* intel_release_shared_dpll().
*
* Returns:
* A shared DPLL to be used by @crtc and @encoder with the given @crtc_state.
*/
struct intel_shared_dpll *
intel_get_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
if (WARN_ON(!dpll_mgr))
return NULL;
return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
}
/**
* intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
* @dpll: dpll in use by @crtc
* @crtc: crtc
* @state: atomic state
*
* This function releases the reference from @crtc to @dpll from the
* atomic @state. The new configuration is made effective by calling
* intel_shared_dpll_swap_state().
*/
void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
struct intel_crtc *crtc,
struct drm_atomic_state *state)
{
struct intel_shared_dpll_state *shared_dpll_state;
shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
shared_dpll_state[dpll->info->id].crtc_mask &= ~(1 << crtc->pipe);
}
/**
* intel_shared_dpll_dump_hw_state - write hw_state to dmesg
* @dev_priv: i915 drm device
* @hw_state: hw state to be written to the log
*
* Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
*/
void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
struct intel_dpll_hw_state *hw_state)
{
if (dev_priv->dpll_mgr) {
dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
} else {
/* fallback for platforms that don't use the shared dpll
* infrastructure
*/
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
hw_state->dpll,
hw_state->dpll_md,
hw_state->fp0,
hw_state->fp1);
}
}