mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-12 19:46:50 +07:00
eb036ad2dd
In order to avoid TLB corruption whilst invalidating TLBs on CPUs affected by erratum 1165522, we need to prevent S1 page tables from being usable. For this, we set the EL1 S1 MMU on, and also disable the page table walker (by setting the TCR_EL1.EPD* bits to 1). This ensures that once we switch to the EL1/EL0 translation regime, speculated AT instructions won't be able to parse the page tables. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
210 lines
5.8 KiB
C
210 lines
5.8 KiB
C
/*
|
|
* Copyright (C) 2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/irqflags.h>
|
|
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
struct tlb_inv_context {
|
|
unsigned long flags;
|
|
u64 tcr;
|
|
u64 sctlr;
|
|
};
|
|
|
|
static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm,
|
|
struct tlb_inv_context *cxt)
|
|
{
|
|
u64 val;
|
|
|
|
local_irq_save(cxt->flags);
|
|
|
|
if (cpus_have_const_cap(ARM64_WORKAROUND_1165522)) {
|
|
/*
|
|
* For CPUs that are affected by ARM erratum 1165522, we
|
|
* cannot trust stage-1 to be in a correct state at that
|
|
* point. Since we do not want to force a full load of the
|
|
* vcpu state, we prevent the EL1 page-table walker to
|
|
* allocate new TLBs. This is done by setting the EPD bits
|
|
* in the TCR_EL1 register. We also need to prevent it to
|
|
* allocate IPA->PA walks, so we enable the S1 MMU...
|
|
*/
|
|
val = cxt->tcr = read_sysreg_el1(tcr);
|
|
val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
|
|
write_sysreg_el1(val, tcr);
|
|
val = cxt->sctlr = read_sysreg_el1(sctlr);
|
|
val |= SCTLR_ELx_M;
|
|
write_sysreg_el1(val, sctlr);
|
|
}
|
|
|
|
/*
|
|
* With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
|
|
* most TLB operations target EL2/EL0. In order to affect the
|
|
* guest TLBs (EL1/EL0), we need to change one of these two
|
|
* bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
|
|
* let's flip TGE before executing the TLB operation.
|
|
*
|
|
* ARM erratum 1165522 requires some special handling (again),
|
|
* as we need to make sure both stages of translation are in
|
|
* place before clearing TGE. __load_guest_stage2() already
|
|
* has an ISB in order to deal with this.
|
|
*/
|
|
__load_guest_stage2(kvm);
|
|
val = read_sysreg(hcr_el2);
|
|
val &= ~HCR_TGE;
|
|
write_sysreg(val, hcr_el2);
|
|
isb();
|
|
}
|
|
|
|
static void __hyp_text __tlb_switch_to_guest_nvhe(struct kvm *kvm,
|
|
struct tlb_inv_context *cxt)
|
|
{
|
|
__load_guest_stage2(kvm);
|
|
isb();
|
|
}
|
|
|
|
static hyp_alternate_select(__tlb_switch_to_guest,
|
|
__tlb_switch_to_guest_nvhe,
|
|
__tlb_switch_to_guest_vhe,
|
|
ARM64_HAS_VIRT_HOST_EXTN);
|
|
|
|
static void __hyp_text __tlb_switch_to_host_vhe(struct kvm *kvm,
|
|
struct tlb_inv_context *cxt)
|
|
{
|
|
/*
|
|
* We're done with the TLB operation, let's restore the host's
|
|
* view of HCR_EL2.
|
|
*/
|
|
write_sysreg(0, vttbr_el2);
|
|
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
|
|
isb();
|
|
|
|
if (cpus_have_const_cap(ARM64_WORKAROUND_1165522)) {
|
|
/* Restore the registers to what they were */
|
|
write_sysreg_el1(cxt->tcr, tcr);
|
|
write_sysreg_el1(cxt->sctlr, sctlr);
|
|
}
|
|
|
|
local_irq_restore(cxt->flags);
|
|
}
|
|
|
|
static void __hyp_text __tlb_switch_to_host_nvhe(struct kvm *kvm,
|
|
struct tlb_inv_context *cxt)
|
|
{
|
|
write_sysreg(0, vttbr_el2);
|
|
}
|
|
|
|
static hyp_alternate_select(__tlb_switch_to_host,
|
|
__tlb_switch_to_host_nvhe,
|
|
__tlb_switch_to_host_vhe,
|
|
ARM64_HAS_VIRT_HOST_EXTN);
|
|
|
|
void __hyp_text __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
|
{
|
|
struct tlb_inv_context cxt;
|
|
|
|
dsb(ishst);
|
|
|
|
/* Switch to requested VMID */
|
|
kvm = kern_hyp_va(kvm);
|
|
__tlb_switch_to_guest()(kvm, &cxt);
|
|
|
|
/*
|
|
* We could do so much better if we had the VA as well.
|
|
* Instead, we invalidate Stage-2 for this IPA, and the
|
|
* whole of Stage-1. Weep...
|
|
*/
|
|
ipa >>= 12;
|
|
__tlbi(ipas2e1is, ipa);
|
|
|
|
/*
|
|
* We have to ensure completion of the invalidation at Stage-2,
|
|
* since a table walk on another CPU could refill a TLB with a
|
|
* complete (S1 + S2) walk based on the old Stage-2 mapping if
|
|
* the Stage-1 invalidation happened first.
|
|
*/
|
|
dsb(ish);
|
|
__tlbi(vmalle1is);
|
|
dsb(ish);
|
|
isb();
|
|
|
|
/*
|
|
* If the host is running at EL1 and we have a VPIPT I-cache,
|
|
* then we must perform I-cache maintenance at EL2 in order for
|
|
* it to have an effect on the guest. Since the guest cannot hit
|
|
* I-cache lines allocated with a different VMID, we don't need
|
|
* to worry about junk out of guest reset (we nuke the I-cache on
|
|
* VMID rollover), but we do need to be careful when remapping
|
|
* executable pages for the same guest. This can happen when KSM
|
|
* takes a CoW fault on an executable page, copies the page into
|
|
* a page that was previously mapped in the guest and then needs
|
|
* to invalidate the guest view of the I-cache for that page
|
|
* from EL1. To solve this, we invalidate the entire I-cache when
|
|
* unmapping a page from a guest if we have a VPIPT I-cache but
|
|
* the host is running at EL1. As above, we could do better if
|
|
* we had the VA.
|
|
*
|
|
* The moral of this story is: if you have a VPIPT I-cache, then
|
|
* you should be running with VHE enabled.
|
|
*/
|
|
if (!has_vhe() && icache_is_vpipt())
|
|
__flush_icache_all();
|
|
|
|
__tlb_switch_to_host()(kvm, &cxt);
|
|
}
|
|
|
|
void __hyp_text __kvm_tlb_flush_vmid(struct kvm *kvm)
|
|
{
|
|
struct tlb_inv_context cxt;
|
|
|
|
dsb(ishst);
|
|
|
|
/* Switch to requested VMID */
|
|
kvm = kern_hyp_va(kvm);
|
|
__tlb_switch_to_guest()(kvm, &cxt);
|
|
|
|
__tlbi(vmalls12e1is);
|
|
dsb(ish);
|
|
isb();
|
|
|
|
__tlb_switch_to_host()(kvm, &cxt);
|
|
}
|
|
|
|
void __hyp_text __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = kern_hyp_va(kern_hyp_va(vcpu)->kvm);
|
|
struct tlb_inv_context cxt;
|
|
|
|
/* Switch to requested VMID */
|
|
__tlb_switch_to_guest()(kvm, &cxt);
|
|
|
|
__tlbi(vmalle1);
|
|
dsb(nsh);
|
|
isb();
|
|
|
|
__tlb_switch_to_host()(kvm, &cxt);
|
|
}
|
|
|
|
void __hyp_text __kvm_flush_vm_context(void)
|
|
{
|
|
dsb(ishst);
|
|
__tlbi(alle1is);
|
|
asm volatile("ic ialluis" : : );
|
|
dsb(ish);
|
|
}
|