mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
c085fb8774
Reading LBR registers in a perf NMI handler for a non-PEBS event causes a high overhead because the number of LBR registers is huge. To reduce the overhead, the XSAVES instruction should be used to replace the LBR registers' reading method. The XSAVES buffer used for LBR read has to be per-CPU because the NMI handler invoked the lbr_read(). The existing task_ctx_data buffer cannot be used which is per-task and only be allocated for the LBR call stack mode. A new lbr_xsave pointer is introduced in the cpu_hw_events as an XSAVES buffer for LBR read. The XSAVES buffer should be allocated only when LBR is used by a non-PEBS event on the CPU because the total size of the lbr_xsave is not small (~1.4KB). The XSAVES buffer is allocated when a non-PEBS event is added, but it is lazily released in x86_release_hardware() when perf releases the entire PMU hardware resource, because perf may frequently schedule the event, e.g. high context switch. The lazy release method reduces the overhead of frequently allocate/free the buffer. If the lbr_xsave fails to be allocated, roll back to normal Arch LBR lbr_read(). Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Link: https://lkml.kernel.org/r/1593780569-62993-24-git-send-email-kan.liang@linux.intel.com
1849 lines
48 KiB
C
1849 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/perf_event.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/perf_event.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/insn.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
static const enum {
|
|
LBR_EIP_FLAGS = 1,
|
|
LBR_TSX = 2,
|
|
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
|
|
[LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
|
|
[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
|
|
};
|
|
|
|
/*
|
|
* Intel LBR_SELECT bits
|
|
* Intel Vol3a, April 2011, Section 16.7 Table 16-10
|
|
*
|
|
* Hardware branch filter (not available on all CPUs)
|
|
*/
|
|
#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
|
|
#define LBR_USER_BIT 1 /* do not capture at ring > 0 */
|
|
#define LBR_JCC_BIT 2 /* do not capture conditional branches */
|
|
#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
|
|
#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
|
|
#define LBR_RETURN_BIT 5 /* do not capture near returns */
|
|
#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
|
|
#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
|
|
#define LBR_FAR_BIT 8 /* do not capture far branches */
|
|
#define LBR_CALL_STACK_BIT 9 /* enable call stack */
|
|
|
|
/*
|
|
* Following bit only exists in Linux; we mask it out before writing it to
|
|
* the actual MSR. But it helps the constraint perf code to understand
|
|
* that this is a separate configuration.
|
|
*/
|
|
#define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
|
|
|
|
#define LBR_KERNEL (1 << LBR_KERNEL_BIT)
|
|
#define LBR_USER (1 << LBR_USER_BIT)
|
|
#define LBR_JCC (1 << LBR_JCC_BIT)
|
|
#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
|
|
#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
|
|
#define LBR_RETURN (1 << LBR_RETURN_BIT)
|
|
#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
|
|
#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
|
|
#define LBR_FAR (1 << LBR_FAR_BIT)
|
|
#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
|
|
#define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
|
|
|
|
#define LBR_PLM (LBR_KERNEL | LBR_USER)
|
|
|
|
#define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
|
|
#define LBR_NOT_SUPP -1 /* LBR filter not supported */
|
|
#define LBR_IGN 0 /* ignored */
|
|
|
|
#define LBR_ANY \
|
|
(LBR_JCC |\
|
|
LBR_REL_CALL |\
|
|
LBR_IND_CALL |\
|
|
LBR_RETURN |\
|
|
LBR_REL_JMP |\
|
|
LBR_IND_JMP |\
|
|
LBR_FAR)
|
|
|
|
#define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
|
|
#define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
|
|
#define LBR_FROM_FLAG_ABORT BIT_ULL(61)
|
|
|
|
#define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
|
|
|
|
/*
|
|
* x86control flow change classification
|
|
* x86control flow changes include branches, interrupts, traps, faults
|
|
*/
|
|
enum {
|
|
X86_BR_NONE = 0, /* unknown */
|
|
|
|
X86_BR_USER = 1 << 0, /* branch target is user */
|
|
X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
|
|
|
|
X86_BR_CALL = 1 << 2, /* call */
|
|
X86_BR_RET = 1 << 3, /* return */
|
|
X86_BR_SYSCALL = 1 << 4, /* syscall */
|
|
X86_BR_SYSRET = 1 << 5, /* syscall return */
|
|
X86_BR_INT = 1 << 6, /* sw interrupt */
|
|
X86_BR_IRET = 1 << 7, /* return from interrupt */
|
|
X86_BR_JCC = 1 << 8, /* conditional */
|
|
X86_BR_JMP = 1 << 9, /* jump */
|
|
X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
|
|
X86_BR_IND_CALL = 1 << 11,/* indirect calls */
|
|
X86_BR_ABORT = 1 << 12,/* transaction abort */
|
|
X86_BR_IN_TX = 1 << 13,/* in transaction */
|
|
X86_BR_NO_TX = 1 << 14,/* not in transaction */
|
|
X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
|
|
X86_BR_CALL_STACK = 1 << 16,/* call stack */
|
|
X86_BR_IND_JMP = 1 << 17,/* indirect jump */
|
|
|
|
X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */
|
|
|
|
};
|
|
|
|
#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
|
|
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
|
|
|
|
#define X86_BR_ANY \
|
|
(X86_BR_CALL |\
|
|
X86_BR_RET |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_SYSRET |\
|
|
X86_BR_INT |\
|
|
X86_BR_IRET |\
|
|
X86_BR_JCC |\
|
|
X86_BR_JMP |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_ABORT |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_IND_JMP |\
|
|
X86_BR_ZERO_CALL)
|
|
|
|
#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
|
|
|
|
#define X86_BR_ANY_CALL \
|
|
(X86_BR_CALL |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_ZERO_CALL |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_INT)
|
|
|
|
/*
|
|
* Intel LBR_CTL bits
|
|
*
|
|
* Hardware branch filter for Arch LBR
|
|
*/
|
|
#define ARCH_LBR_KERNEL_BIT 1 /* capture at ring0 */
|
|
#define ARCH_LBR_USER_BIT 2 /* capture at ring > 0 */
|
|
#define ARCH_LBR_CALL_STACK_BIT 3 /* enable call stack */
|
|
#define ARCH_LBR_JCC_BIT 16 /* capture conditional branches */
|
|
#define ARCH_LBR_REL_JMP_BIT 17 /* capture relative jumps */
|
|
#define ARCH_LBR_IND_JMP_BIT 18 /* capture indirect jumps */
|
|
#define ARCH_LBR_REL_CALL_BIT 19 /* capture relative calls */
|
|
#define ARCH_LBR_IND_CALL_BIT 20 /* capture indirect calls */
|
|
#define ARCH_LBR_RETURN_BIT 21 /* capture near returns */
|
|
#define ARCH_LBR_OTHER_BRANCH_BIT 22 /* capture other branches */
|
|
|
|
#define ARCH_LBR_KERNEL (1ULL << ARCH_LBR_KERNEL_BIT)
|
|
#define ARCH_LBR_USER (1ULL << ARCH_LBR_USER_BIT)
|
|
#define ARCH_LBR_CALL_STACK (1ULL << ARCH_LBR_CALL_STACK_BIT)
|
|
#define ARCH_LBR_JCC (1ULL << ARCH_LBR_JCC_BIT)
|
|
#define ARCH_LBR_REL_JMP (1ULL << ARCH_LBR_REL_JMP_BIT)
|
|
#define ARCH_LBR_IND_JMP (1ULL << ARCH_LBR_IND_JMP_BIT)
|
|
#define ARCH_LBR_REL_CALL (1ULL << ARCH_LBR_REL_CALL_BIT)
|
|
#define ARCH_LBR_IND_CALL (1ULL << ARCH_LBR_IND_CALL_BIT)
|
|
#define ARCH_LBR_RETURN (1ULL << ARCH_LBR_RETURN_BIT)
|
|
#define ARCH_LBR_OTHER_BRANCH (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
|
|
|
|
#define ARCH_LBR_ANY \
|
|
(ARCH_LBR_JCC |\
|
|
ARCH_LBR_REL_JMP |\
|
|
ARCH_LBR_IND_JMP |\
|
|
ARCH_LBR_REL_CALL |\
|
|
ARCH_LBR_IND_CALL |\
|
|
ARCH_LBR_RETURN |\
|
|
ARCH_LBR_OTHER_BRANCH)
|
|
|
|
#define ARCH_LBR_CTL_MASK 0x7f000e
|
|
|
|
static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
|
|
|
|
static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
|
|
{
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
|
|
return !!(config & ARCH_LBR_CALL_STACK);
|
|
|
|
return !!(config & LBR_CALL_STACK);
|
|
}
|
|
|
|
/*
|
|
* We only support LBR implementations that have FREEZE_LBRS_ON_PMI
|
|
* otherwise it becomes near impossible to get a reliable stack.
|
|
*/
|
|
|
|
static void __intel_pmu_lbr_enable(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
u64 debugctl, lbr_select = 0, orig_debugctl;
|
|
|
|
/*
|
|
* No need to unfreeze manually, as v4 can do that as part
|
|
* of the GLOBAL_STATUS ack.
|
|
*/
|
|
if (pmi && x86_pmu.version >= 4)
|
|
return;
|
|
|
|
/*
|
|
* No need to reprogram LBR_SELECT in a PMI, as it
|
|
* did not change.
|
|
*/
|
|
if (cpuc->lbr_sel)
|
|
lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
|
|
if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
|
|
wrmsrl(MSR_LBR_SELECT, lbr_select);
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
orig_debugctl = debugctl;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
|
|
debugctl |= DEBUGCTLMSR_LBR;
|
|
/*
|
|
* LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
|
|
* If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
|
|
* may cause superfluous increase/decrease of LBR_TOS.
|
|
*/
|
|
if (is_lbr_call_stack_bit_set(lbr_select))
|
|
debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
|
|
else
|
|
debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
|
|
|
|
if (orig_debugctl != debugctl)
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
|
|
wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
|
|
}
|
|
|
|
static void __intel_pmu_lbr_disable(void)
|
|
{
|
|
u64 debugctl;
|
|
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
|
|
wrmsrl(MSR_ARCH_LBR_CTL, 0);
|
|
return;
|
|
}
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
void intel_pmu_lbr_reset_32(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++)
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
}
|
|
|
|
void intel_pmu_lbr_reset_64(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
wrmsrl(x86_pmu.lbr_to + i, 0);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrmsrl(x86_pmu.lbr_info + i, 0);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_arch_lbr_reset(void)
|
|
{
|
|
/* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
|
|
wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
|
|
}
|
|
|
|
void intel_pmu_lbr_reset(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
x86_pmu.lbr_reset();
|
|
|
|
cpuc->last_task_ctx = NULL;
|
|
cpuc->last_log_id = 0;
|
|
}
|
|
|
|
/*
|
|
* TOS = most recently recorded branch
|
|
*/
|
|
static inline u64 intel_pmu_lbr_tos(void)
|
|
{
|
|
u64 tos;
|
|
|
|
rdmsrl(x86_pmu.lbr_tos, tos);
|
|
return tos;
|
|
}
|
|
|
|
enum {
|
|
LBR_NONE,
|
|
LBR_VALID,
|
|
};
|
|
|
|
/*
|
|
* For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
|
|
* MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
|
|
* TSX is not supported they have no consistent behavior:
|
|
*
|
|
* - For wrmsr(), bits 61:62 are considered part of the sign extension.
|
|
* - For HW updates (branch captures) bits 61:62 are always OFF and are not
|
|
* part of the sign extension.
|
|
*
|
|
* Therefore, if:
|
|
*
|
|
* 1) LBR has TSX format
|
|
* 2) CPU has no TSX support enabled
|
|
*
|
|
* ... then any value passed to wrmsr() must be sign extended to 63 bits and any
|
|
* value from rdmsr() must be converted to have a 61 bits sign extension,
|
|
* ignoring the TSX flags.
|
|
*/
|
|
static inline bool lbr_from_signext_quirk_needed(void)
|
|
{
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
|
bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
|
|
boot_cpu_has(X86_FEATURE_RTM);
|
|
|
|
return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
|
|
}
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
|
|
|
|
/* If quirk is enabled, ensure sign extension is 63 bits: */
|
|
inline u64 lbr_from_signext_quirk_wr(u64 val)
|
|
{
|
|
if (static_branch_unlikely(&lbr_from_quirk_key)) {
|
|
/*
|
|
* Sign extend into bits 61:62 while preserving bit 63.
|
|
*
|
|
* Quirk is enabled when TSX is disabled. Therefore TSX bits
|
|
* in val are always OFF and must be changed to be sign
|
|
* extension bits. Since bits 59:60 are guaranteed to be
|
|
* part of the sign extension bits, we can just copy them
|
|
* to 61:62.
|
|
*/
|
|
val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* If quirk is needed, ensure sign extension is 61 bits:
|
|
*/
|
|
static u64 lbr_from_signext_quirk_rd(u64 val)
|
|
{
|
|
if (static_branch_unlikely(&lbr_from_quirk_key)) {
|
|
/*
|
|
* Quirk is on when TSX is not enabled. Therefore TSX
|
|
* flags must be read as OFF.
|
|
*/
|
|
val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static __always_inline void wrlbr_from(unsigned int idx, u64 val)
|
|
{
|
|
val = lbr_from_signext_quirk_wr(val);
|
|
wrmsrl(x86_pmu.lbr_from + idx, val);
|
|
}
|
|
|
|
static __always_inline void wrlbr_to(unsigned int idx, u64 val)
|
|
{
|
|
wrmsrl(x86_pmu.lbr_to + idx, val);
|
|
}
|
|
|
|
static __always_inline void wrlbr_info(unsigned int idx, u64 val)
|
|
{
|
|
wrmsrl(x86_pmu.lbr_info + idx, val);
|
|
}
|
|
|
|
static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
|
|
{
|
|
u64 val;
|
|
|
|
if (lbr)
|
|
return lbr->from;
|
|
|
|
rdmsrl(x86_pmu.lbr_from + idx, val);
|
|
|
|
return lbr_from_signext_quirk_rd(val);
|
|
}
|
|
|
|
static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
|
|
{
|
|
u64 val;
|
|
|
|
if (lbr)
|
|
return lbr->to;
|
|
|
|
rdmsrl(x86_pmu.lbr_to + idx, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
|
|
{
|
|
u64 val;
|
|
|
|
if (lbr)
|
|
return lbr->info;
|
|
|
|
rdmsrl(x86_pmu.lbr_info + idx, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static inline void
|
|
wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
|
|
{
|
|
wrlbr_from(idx, lbr->from);
|
|
wrlbr_to(idx, lbr->to);
|
|
if (need_info)
|
|
wrlbr_info(idx, lbr->info);
|
|
}
|
|
|
|
static inline bool
|
|
rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
|
|
{
|
|
u64 from = rdlbr_from(idx, NULL);
|
|
|
|
/* Don't read invalid entry */
|
|
if (!from)
|
|
return false;
|
|
|
|
lbr->from = from;
|
|
lbr->to = rdlbr_to(idx, NULL);
|
|
if (need_info)
|
|
lbr->info = rdlbr_info(idx, NULL);
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_pmu_lbr_restore(void *ctx)
|
|
{
|
|
bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO;
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx = ctx;
|
|
int i;
|
|
unsigned lbr_idx, mask;
|
|
u64 tos = task_ctx->tos;
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
for (i = 0; i < task_ctx->valid_lbrs; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
|
|
}
|
|
|
|
for (; i < x86_pmu.lbr_nr; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
wrlbr_from(lbr_idx, 0);
|
|
wrlbr_to(lbr_idx, 0);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrlbr_info(lbr_idx, 0);
|
|
}
|
|
|
|
wrmsrl(x86_pmu.lbr_tos, tos);
|
|
|
|
if (cpuc->lbr_select)
|
|
wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
|
|
}
|
|
|
|
static void intel_pmu_arch_lbr_restore(void *ctx)
|
|
{
|
|
struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
|
|
struct lbr_entry *entries = task_ctx->entries;
|
|
int i;
|
|
|
|
/* Fast reset the LBRs before restore if the call stack is not full. */
|
|
if (!entries[x86_pmu.lbr_nr - 1].from)
|
|
intel_pmu_arch_lbr_reset();
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
if (!entries[i].from)
|
|
break;
|
|
wrlbr_all(&entries[i], i, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore the Architecture LBR state from the xsave area in the perf
|
|
* context data for the task via the XRSTORS instruction.
|
|
*/
|
|
static void intel_pmu_arch_lbr_xrstors(void *ctx)
|
|
{
|
|
struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
|
|
|
|
copy_kernel_to_dynamic_supervisor(&task_ctx->xsave, XFEATURE_MASK_LBR);
|
|
}
|
|
|
|
static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
|
|
{
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR))
|
|
return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
|
|
|
|
return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
|
|
}
|
|
|
|
static void __intel_pmu_lbr_restore(void *ctx)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
|
|
task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
|
|
intel_pmu_lbr_reset();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Does not restore the LBR registers, if
|
|
* - No one else touched them, and
|
|
* - Was not cleared in Cstate
|
|
*/
|
|
if ((ctx == cpuc->last_task_ctx) &&
|
|
(task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
|
|
!lbr_is_reset_in_cstate(ctx)) {
|
|
task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
|
|
return;
|
|
}
|
|
|
|
x86_pmu.lbr_restore(ctx);
|
|
|
|
task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
|
|
}
|
|
|
|
void intel_pmu_lbr_save(void *ctx)
|
|
{
|
|
bool need_info = x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO;
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx = ctx;
|
|
unsigned lbr_idx, mask;
|
|
u64 tos;
|
|
int i;
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
tos = intel_pmu_lbr_tos();
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
|
|
break;
|
|
}
|
|
task_ctx->valid_lbrs = i;
|
|
task_ctx->tos = tos;
|
|
|
|
if (cpuc->lbr_select)
|
|
rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
|
|
}
|
|
|
|
static void intel_pmu_arch_lbr_save(void *ctx)
|
|
{
|
|
struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
|
|
struct lbr_entry *entries = task_ctx->entries;
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
if (!rdlbr_all(&entries[i], i, true))
|
|
break;
|
|
}
|
|
|
|
/* LBR call stack is not full. Reset is required in restore. */
|
|
if (i < x86_pmu.lbr_nr)
|
|
entries[x86_pmu.lbr_nr - 1].from = 0;
|
|
}
|
|
|
|
/*
|
|
* Save the Architecture LBR state to the xsave area in the perf
|
|
* context data for the task via the XSAVES instruction.
|
|
*/
|
|
static void intel_pmu_arch_lbr_xsaves(void *ctx)
|
|
{
|
|
struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
|
|
|
|
copy_dynamic_supervisor_to_kernel(&task_ctx->xsave, XFEATURE_MASK_LBR);
|
|
}
|
|
|
|
static void __intel_pmu_lbr_save(void *ctx)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (task_context_opt(ctx)->lbr_callstack_users == 0) {
|
|
task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
|
|
return;
|
|
}
|
|
|
|
x86_pmu.lbr_save(ctx);
|
|
|
|
task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
|
|
|
|
cpuc->last_task_ctx = ctx;
|
|
cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
|
|
}
|
|
|
|
void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev,
|
|
struct perf_event_context *next)
|
|
{
|
|
void *prev_ctx_data, *next_ctx_data;
|
|
|
|
swap(prev->task_ctx_data, next->task_ctx_data);
|
|
|
|
/*
|
|
* Architecture specific synchronization makes sense in
|
|
* case both prev->task_ctx_data and next->task_ctx_data
|
|
* pointers are allocated.
|
|
*/
|
|
|
|
prev_ctx_data = next->task_ctx_data;
|
|
next_ctx_data = prev->task_ctx_data;
|
|
|
|
if (!prev_ctx_data || !next_ctx_data)
|
|
return;
|
|
|
|
swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
|
|
task_context_opt(next_ctx_data)->lbr_callstack_users);
|
|
}
|
|
|
|
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
void *task_ctx;
|
|
|
|
if (!cpuc->lbr_users)
|
|
return;
|
|
|
|
/*
|
|
* If LBR callstack feature is enabled and the stack was saved when
|
|
* the task was scheduled out, restore the stack. Otherwise flush
|
|
* the LBR stack.
|
|
*/
|
|
task_ctx = ctx ? ctx->task_ctx_data : NULL;
|
|
if (task_ctx) {
|
|
if (sched_in)
|
|
__intel_pmu_lbr_restore(task_ctx);
|
|
else
|
|
__intel_pmu_lbr_save(task_ctx);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Since a context switch can flip the address space and LBR entries
|
|
* are not tagged with an identifier, we need to wipe the LBR, even for
|
|
* per-cpu events. You simply cannot resolve the branches from the old
|
|
* address space.
|
|
*/
|
|
if (sched_in)
|
|
intel_pmu_lbr_reset();
|
|
}
|
|
|
|
static inline bool branch_user_callstack(unsigned br_sel)
|
|
{
|
|
return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
|
|
}
|
|
|
|
void intel_pmu_lbr_add(struct perf_event *event)
|
|
{
|
|
struct kmem_cache *kmem_cache = event->pmu->task_ctx_cache;
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
|
|
cpuc->lbr_select = 1;
|
|
|
|
cpuc->br_sel = event->hw.branch_reg.reg;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data)
|
|
task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users++;
|
|
|
|
/*
|
|
* Request pmu::sched_task() callback, which will fire inside the
|
|
* regular perf event scheduling, so that call will:
|
|
*
|
|
* - restore or wipe; when LBR-callstack,
|
|
* - wipe; otherwise,
|
|
*
|
|
* when this is from __perf_event_task_sched_in().
|
|
*
|
|
* However, if this is from perf_install_in_context(), no such callback
|
|
* will follow and we'll need to reset the LBR here if this is the
|
|
* first LBR event.
|
|
*
|
|
* The problem is, we cannot tell these cases apart... but we can
|
|
* exclude the biggest chunk of cases by looking at
|
|
* event->total_time_running. An event that has accrued runtime cannot
|
|
* be 'new'. Conversely, a new event can get installed through the
|
|
* context switch path for the first time.
|
|
*/
|
|
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
|
|
cpuc->lbr_pebs_users++;
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
|
if (!cpuc->lbr_users++ && !event->total_time_running)
|
|
intel_pmu_lbr_reset();
|
|
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
|
|
kmem_cache && !cpuc->lbr_xsave &&
|
|
(cpuc->lbr_users != cpuc->lbr_pebs_users))
|
|
cpuc->lbr_xsave = kmem_cache_alloc(kmem_cache, GFP_KERNEL);
|
|
}
|
|
|
|
void release_lbr_buffers(void)
|
|
{
|
|
struct kmem_cache *kmem_cache = x86_get_pmu()->task_ctx_cache;
|
|
struct cpu_hw_events *cpuc;
|
|
int cpu;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
|
|
return;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
|
|
if (kmem_cache && cpuc->lbr_xsave) {
|
|
kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
|
|
cpuc->lbr_xsave = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void intel_pmu_lbr_del(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) &&
|
|
event->ctx->task_ctx_data)
|
|
task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users--;
|
|
|
|
if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
|
|
cpuc->lbr_select = 0;
|
|
|
|
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
|
|
cpuc->lbr_pebs_users--;
|
|
cpuc->lbr_users--;
|
|
WARN_ON_ONCE(cpuc->lbr_users < 0);
|
|
WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
}
|
|
|
|
static inline bool vlbr_exclude_host(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
|
|
(unsigned long *)&cpuc->intel_ctrl_guest_mask);
|
|
}
|
|
|
|
void intel_pmu_lbr_enable_all(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users && !vlbr_exclude_host())
|
|
__intel_pmu_lbr_enable(pmi);
|
|
}
|
|
|
|
void intel_pmu_lbr_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users && !vlbr_exclude_host())
|
|
__intel_pmu_lbr_disable();
|
|
}
|
|
|
|
void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
|
|
{
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
union {
|
|
struct {
|
|
u32 from;
|
|
u32 to;
|
|
};
|
|
u64 lbr;
|
|
} msr_lastbranch;
|
|
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
|
|
|
|
cpuc->lbr_entries[i].from = msr_lastbranch.from;
|
|
cpuc->lbr_entries[i].to = msr_lastbranch.to;
|
|
cpuc->lbr_entries[i].mispred = 0;
|
|
cpuc->lbr_entries[i].predicted = 0;
|
|
cpuc->lbr_entries[i].in_tx = 0;
|
|
cpuc->lbr_entries[i].abort = 0;
|
|
cpuc->lbr_entries[i].cycles = 0;
|
|
cpuc->lbr_entries[i].type = 0;
|
|
cpuc->lbr_entries[i].reserved = 0;
|
|
}
|
|
cpuc->lbr_stack.nr = i;
|
|
cpuc->lbr_stack.hw_idx = tos;
|
|
}
|
|
|
|
/*
|
|
* Due to lack of segmentation in Linux the effective address (offset)
|
|
* is the same as the linear address, allowing us to merge the LIP and EIP
|
|
* LBR formats.
|
|
*/
|
|
void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
|
|
{
|
|
bool need_info = false, call_stack = false;
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
int out = 0;
|
|
int num = x86_pmu.lbr_nr;
|
|
|
|
if (cpuc->lbr_sel) {
|
|
need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
|
|
if (cpuc->lbr_sel->config & LBR_CALL_STACK)
|
|
call_stack = true;
|
|
}
|
|
|
|
for (i = 0; i < num; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
|
|
int skip = 0;
|
|
u16 cycles = 0;
|
|
int lbr_flags = lbr_desc[lbr_format];
|
|
|
|
from = rdlbr_from(lbr_idx, NULL);
|
|
to = rdlbr_to(lbr_idx, NULL);
|
|
|
|
/*
|
|
* Read LBR call stack entries
|
|
* until invalid entry (0s) is detected.
|
|
*/
|
|
if (call_stack && !from)
|
|
break;
|
|
|
|
if (lbr_format == LBR_FORMAT_INFO && need_info) {
|
|
u64 info;
|
|
|
|
info = rdlbr_info(lbr_idx, NULL);
|
|
mis = !!(info & LBR_INFO_MISPRED);
|
|
pred = !mis;
|
|
in_tx = !!(info & LBR_INFO_IN_TX);
|
|
abort = !!(info & LBR_INFO_ABORT);
|
|
cycles = (info & LBR_INFO_CYCLES);
|
|
}
|
|
|
|
if (lbr_format == LBR_FORMAT_TIME) {
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
pred = !mis;
|
|
skip = 1;
|
|
cycles = ((to >> 48) & LBR_INFO_CYCLES);
|
|
|
|
to = (u64)((((s64)to) << 16) >> 16);
|
|
}
|
|
|
|
if (lbr_flags & LBR_EIP_FLAGS) {
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
pred = !mis;
|
|
skip = 1;
|
|
}
|
|
if (lbr_flags & LBR_TSX) {
|
|
in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
|
|
abort = !!(from & LBR_FROM_FLAG_ABORT);
|
|
skip = 3;
|
|
}
|
|
from = (u64)((((s64)from) << skip) >> skip);
|
|
|
|
/*
|
|
* Some CPUs report duplicated abort records,
|
|
* with the second entry not having an abort bit set.
|
|
* Skip them here. This loop runs backwards,
|
|
* so we need to undo the previous record.
|
|
* If the abort just happened outside the window
|
|
* the extra entry cannot be removed.
|
|
*/
|
|
if (abort && x86_pmu.lbr_double_abort && out > 0)
|
|
out--;
|
|
|
|
cpuc->lbr_entries[out].from = from;
|
|
cpuc->lbr_entries[out].to = to;
|
|
cpuc->lbr_entries[out].mispred = mis;
|
|
cpuc->lbr_entries[out].predicted = pred;
|
|
cpuc->lbr_entries[out].in_tx = in_tx;
|
|
cpuc->lbr_entries[out].abort = abort;
|
|
cpuc->lbr_entries[out].cycles = cycles;
|
|
cpuc->lbr_entries[out].type = 0;
|
|
cpuc->lbr_entries[out].reserved = 0;
|
|
out++;
|
|
}
|
|
cpuc->lbr_stack.nr = out;
|
|
cpuc->lbr_stack.hw_idx = tos;
|
|
}
|
|
|
|
static __always_inline int get_lbr_br_type(u64 info)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_ARCH_LBR) || !x86_pmu.lbr_br_type)
|
|
return 0;
|
|
|
|
return (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
|
|
}
|
|
|
|
static __always_inline bool get_lbr_mispred(u64 info)
|
|
{
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred)
|
|
return 0;
|
|
|
|
return !!(info & LBR_INFO_MISPRED);
|
|
}
|
|
|
|
static __always_inline bool get_lbr_predicted(u64 info)
|
|
{
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR) && !x86_pmu.lbr_mispred)
|
|
return 0;
|
|
|
|
return !(info & LBR_INFO_MISPRED);
|
|
}
|
|
|
|
static __always_inline bool get_lbr_cycles(u64 info)
|
|
{
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
|
|
!(x86_pmu.lbr_timed_lbr && info & LBR_INFO_CYC_CNT_VALID))
|
|
return 0;
|
|
|
|
return info & LBR_INFO_CYCLES;
|
|
}
|
|
|
|
static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
|
|
struct lbr_entry *entries)
|
|
{
|
|
struct perf_branch_entry *e;
|
|
struct lbr_entry *lbr;
|
|
u64 from, to, info;
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
lbr = entries ? &entries[i] : NULL;
|
|
e = &cpuc->lbr_entries[i];
|
|
|
|
from = rdlbr_from(i, lbr);
|
|
/*
|
|
* Read LBR entries until invalid entry (0s) is detected.
|
|
*/
|
|
if (!from)
|
|
break;
|
|
|
|
to = rdlbr_to(i, lbr);
|
|
info = rdlbr_info(i, lbr);
|
|
|
|
e->from = from;
|
|
e->to = to;
|
|
e->mispred = get_lbr_mispred(info);
|
|
e->predicted = get_lbr_predicted(info);
|
|
e->in_tx = !!(info & LBR_INFO_IN_TX);
|
|
e->abort = !!(info & LBR_INFO_ABORT);
|
|
e->cycles = get_lbr_cycles(info);
|
|
e->type = get_lbr_br_type(info);
|
|
e->reserved = 0;
|
|
}
|
|
|
|
cpuc->lbr_stack.nr = i;
|
|
}
|
|
|
|
static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
|
|
{
|
|
intel_pmu_store_lbr(cpuc, NULL);
|
|
}
|
|
|
|
static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
|
|
|
|
if (!xsave) {
|
|
intel_pmu_store_lbr(cpuc, NULL);
|
|
return;
|
|
}
|
|
copy_dynamic_supervisor_to_kernel(&xsave->xsave, XFEATURE_MASK_LBR);
|
|
|
|
intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
|
|
}
|
|
|
|
void intel_pmu_lbr_read(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/*
|
|
* Don't read when all LBRs users are using adaptive PEBS.
|
|
*
|
|
* This could be smarter and actually check the event,
|
|
* but this simple approach seems to work for now.
|
|
*/
|
|
if (!cpuc->lbr_users || vlbr_exclude_host() ||
|
|
cpuc->lbr_users == cpuc->lbr_pebs_users)
|
|
return;
|
|
|
|
x86_pmu.lbr_read(cpuc);
|
|
|
|
intel_pmu_lbr_filter(cpuc);
|
|
}
|
|
|
|
/*
|
|
* SW filter is used:
|
|
* - in case there is no HW filter
|
|
* - in case the HW filter has errata or limitations
|
|
*/
|
|
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
|
|
{
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
int mask = 0;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_USER)
|
|
mask |= X86_BR_USER;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
|
|
mask |= X86_BR_KERNEL;
|
|
|
|
/* we ignore BRANCH_HV here */
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY)
|
|
mask |= X86_BR_ANY;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
|
|
mask |= X86_BR_ANY_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
|
|
mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
|
|
mask |= X86_BR_IND_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
|
|
mask |= X86_BR_ABORT;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
|
|
mask |= X86_BR_IN_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
|
|
mask |= X86_BR_NO_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_COND)
|
|
mask |= X86_BR_JCC;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
|
|
if (!x86_pmu_has_lbr_callstack())
|
|
return -EOPNOTSUPP;
|
|
if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
|
|
return -EINVAL;
|
|
mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
|
|
X86_BR_CALL_STACK;
|
|
}
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
|
|
mask |= X86_BR_IND_JMP;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL)
|
|
mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
|
|
mask |= X86_BR_TYPE_SAVE;
|
|
|
|
/*
|
|
* stash actual user request into reg, it may
|
|
* be used by fixup code for some CPU
|
|
*/
|
|
event->hw.branch_reg.reg = mask;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* setup the HW LBR filter
|
|
* Used only when available, may not be enough to disambiguate
|
|
* all branches, may need the help of the SW filter
|
|
*/
|
|
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
u64 mask = 0, v;
|
|
int i;
|
|
|
|
for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
|
|
if (!(br_type & (1ULL << i)))
|
|
continue;
|
|
|
|
v = x86_pmu.lbr_sel_map[i];
|
|
if (v == LBR_NOT_SUPP)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (v != LBR_IGN)
|
|
mask |= v;
|
|
}
|
|
|
|
reg = &event->hw.branch_reg;
|
|
reg->idx = EXTRA_REG_LBR;
|
|
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
|
|
reg->config = mask;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
|
|
* in suppress mode. So LBR_SELECT should be set to
|
|
* (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
|
|
* But the 10th bit LBR_CALL_STACK does not operate
|
|
* in suppress mode.
|
|
*/
|
|
reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
|
|
|
|
if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
|
|
(br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
|
|
(x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
|
|
reg->config |= LBR_NO_INFO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_pmu_setup_lbr_filter(struct perf_event *event)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* no LBR on this PMU
|
|
*/
|
|
if (!x86_pmu.lbr_nr)
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* setup SW LBR filter
|
|
*/
|
|
ret = intel_pmu_setup_sw_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* setup HW LBR filter, if any
|
|
*/
|
|
if (x86_pmu.lbr_sel_map)
|
|
ret = intel_pmu_setup_hw_lbr_filter(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return the type of control flow change at address "from"
|
|
* instruction is not necessarily a branch (in case of interrupt).
|
|
*
|
|
* The branch type returned also includes the priv level of the
|
|
* target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
|
|
*
|
|
* If a branch type is unknown OR the instruction cannot be
|
|
* decoded (e.g., text page not present), then X86_BR_NONE is
|
|
* returned.
|
|
*/
|
|
static int branch_type(unsigned long from, unsigned long to, int abort)
|
|
{
|
|
struct insn insn;
|
|
void *addr;
|
|
int bytes_read, bytes_left;
|
|
int ret = X86_BR_NONE;
|
|
int ext, to_plm, from_plm;
|
|
u8 buf[MAX_INSN_SIZE];
|
|
int is64 = 0;
|
|
|
|
to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
|
|
from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
|
|
|
|
/*
|
|
* maybe zero if lbr did not fill up after a reset by the time
|
|
* we get a PMU interrupt
|
|
*/
|
|
if (from == 0 || to == 0)
|
|
return X86_BR_NONE;
|
|
|
|
if (abort)
|
|
return X86_BR_ABORT | to_plm;
|
|
|
|
if (from_plm == X86_BR_USER) {
|
|
/*
|
|
* can happen if measuring at the user level only
|
|
* and we interrupt in a kernel thread, e.g., idle.
|
|
*/
|
|
if (!current->mm)
|
|
return X86_BR_NONE;
|
|
|
|
/* may fail if text not present */
|
|
bytes_left = copy_from_user_nmi(buf, (void __user *)from,
|
|
MAX_INSN_SIZE);
|
|
bytes_read = MAX_INSN_SIZE - bytes_left;
|
|
if (!bytes_read)
|
|
return X86_BR_NONE;
|
|
|
|
addr = buf;
|
|
} else {
|
|
/*
|
|
* The LBR logs any address in the IP, even if the IP just
|
|
* faulted. This means userspace can control the from address.
|
|
* Ensure we don't blindy read any address by validating it is
|
|
* a known text address.
|
|
*/
|
|
if (kernel_text_address(from)) {
|
|
addr = (void *)from;
|
|
/*
|
|
* Assume we can get the maximum possible size
|
|
* when grabbing kernel data. This is not
|
|
* _strictly_ true since we could possibly be
|
|
* executing up next to a memory hole, but
|
|
* it is very unlikely to be a problem.
|
|
*/
|
|
bytes_read = MAX_INSN_SIZE;
|
|
} else {
|
|
return X86_BR_NONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decoder needs to know the ABI especially
|
|
* on 64-bit systems running 32-bit apps
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
|
|
#endif
|
|
insn_init(&insn, addr, bytes_read, is64);
|
|
insn_get_opcode(&insn);
|
|
if (!insn.opcode.got)
|
|
return X86_BR_ABORT;
|
|
|
|
switch (insn.opcode.bytes[0]) {
|
|
case 0xf:
|
|
switch (insn.opcode.bytes[1]) {
|
|
case 0x05: /* syscall */
|
|
case 0x34: /* sysenter */
|
|
ret = X86_BR_SYSCALL;
|
|
break;
|
|
case 0x07: /* sysret */
|
|
case 0x35: /* sysexit */
|
|
ret = X86_BR_SYSRET;
|
|
break;
|
|
case 0x80 ... 0x8f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
break;
|
|
case 0x70 ... 0x7f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xc2: /* near ret */
|
|
case 0xc3: /* near ret */
|
|
case 0xca: /* far ret */
|
|
case 0xcb: /* far ret */
|
|
ret = X86_BR_RET;
|
|
break;
|
|
case 0xcf: /* iret */
|
|
ret = X86_BR_IRET;
|
|
break;
|
|
case 0xcc ... 0xce: /* int */
|
|
ret = X86_BR_INT;
|
|
break;
|
|
case 0xe8: /* call near rel */
|
|
insn_get_immediate(&insn);
|
|
if (insn.immediate1.value == 0) {
|
|
/* zero length call */
|
|
ret = X86_BR_ZERO_CALL;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0x9a: /* call far absolute */
|
|
ret = X86_BR_CALL;
|
|
break;
|
|
case 0xe0 ... 0xe3: /* loop jmp */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xe9 ... 0xeb: /* jmp */
|
|
ret = X86_BR_JMP;
|
|
break;
|
|
case 0xff: /* call near absolute, call far absolute ind */
|
|
insn_get_modrm(&insn);
|
|
ext = (insn.modrm.bytes[0] >> 3) & 0x7;
|
|
switch (ext) {
|
|
case 2: /* near ind call */
|
|
case 3: /* far ind call */
|
|
ret = X86_BR_IND_CALL;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
ret = X86_BR_IND_JMP;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
/*
|
|
* interrupts, traps, faults (and thus ring transition) may
|
|
* occur on any instructions. Thus, to classify them correctly,
|
|
* we need to first look at the from and to priv levels. If they
|
|
* are different and to is in the kernel, then it indicates
|
|
* a ring transition. If the from instruction is not a ring
|
|
* transition instr (syscall, systenter, int), then it means
|
|
* it was a irq, trap or fault.
|
|
*
|
|
* we have no way of detecting kernel to kernel faults.
|
|
*/
|
|
if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
|
|
&& ret != X86_BR_SYSCALL && ret != X86_BR_INT)
|
|
ret = X86_BR_IRQ;
|
|
|
|
/*
|
|
* branch priv level determined by target as
|
|
* is done by HW when LBR_SELECT is implemented
|
|
*/
|
|
if (ret != X86_BR_NONE)
|
|
ret |= to_plm;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define X86_BR_TYPE_MAP_MAX 16
|
|
|
|
static int branch_map[X86_BR_TYPE_MAP_MAX] = {
|
|
PERF_BR_CALL, /* X86_BR_CALL */
|
|
PERF_BR_RET, /* X86_BR_RET */
|
|
PERF_BR_SYSCALL, /* X86_BR_SYSCALL */
|
|
PERF_BR_SYSRET, /* X86_BR_SYSRET */
|
|
PERF_BR_UNKNOWN, /* X86_BR_INT */
|
|
PERF_BR_UNKNOWN, /* X86_BR_IRET */
|
|
PERF_BR_COND, /* X86_BR_JCC */
|
|
PERF_BR_UNCOND, /* X86_BR_JMP */
|
|
PERF_BR_UNKNOWN, /* X86_BR_IRQ */
|
|
PERF_BR_IND_CALL, /* X86_BR_IND_CALL */
|
|
PERF_BR_UNKNOWN, /* X86_BR_ABORT */
|
|
PERF_BR_UNKNOWN, /* X86_BR_IN_TX */
|
|
PERF_BR_UNKNOWN, /* X86_BR_NO_TX */
|
|
PERF_BR_CALL, /* X86_BR_ZERO_CALL */
|
|
PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */
|
|
PERF_BR_IND, /* X86_BR_IND_JMP */
|
|
};
|
|
|
|
static int
|
|
common_branch_type(int type)
|
|
{
|
|
int i;
|
|
|
|
type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
|
|
|
|
if (type) {
|
|
i = __ffs(type);
|
|
if (i < X86_BR_TYPE_MAP_MAX)
|
|
return branch_map[i];
|
|
}
|
|
|
|
return PERF_BR_UNKNOWN;
|
|
}
|
|
|
|
enum {
|
|
ARCH_LBR_BR_TYPE_JCC = 0,
|
|
ARCH_LBR_BR_TYPE_NEAR_IND_JMP = 1,
|
|
ARCH_LBR_BR_TYPE_NEAR_REL_JMP = 2,
|
|
ARCH_LBR_BR_TYPE_NEAR_IND_CALL = 3,
|
|
ARCH_LBR_BR_TYPE_NEAR_REL_CALL = 4,
|
|
ARCH_LBR_BR_TYPE_NEAR_RET = 5,
|
|
ARCH_LBR_BR_TYPE_KNOWN_MAX = ARCH_LBR_BR_TYPE_NEAR_RET,
|
|
|
|
ARCH_LBR_BR_TYPE_MAP_MAX = 16,
|
|
};
|
|
|
|
static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
|
|
[ARCH_LBR_BR_TYPE_JCC] = X86_BR_JCC,
|
|
[ARCH_LBR_BR_TYPE_NEAR_IND_JMP] = X86_BR_IND_JMP,
|
|
[ARCH_LBR_BR_TYPE_NEAR_REL_JMP] = X86_BR_JMP,
|
|
[ARCH_LBR_BR_TYPE_NEAR_IND_CALL] = X86_BR_IND_CALL,
|
|
[ARCH_LBR_BR_TYPE_NEAR_REL_CALL] = X86_BR_CALL,
|
|
[ARCH_LBR_BR_TYPE_NEAR_RET] = X86_BR_RET,
|
|
};
|
|
|
|
/*
|
|
* implement actual branch filter based on user demand.
|
|
* Hardware may not exactly satisfy that request, thus
|
|
* we need to inspect opcodes. Mismatched branches are
|
|
* discarded. Therefore, the number of branches returned
|
|
* in PERF_SAMPLE_BRANCH_STACK sample may vary.
|
|
*/
|
|
static void
|
|
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
|
|
{
|
|
u64 from, to;
|
|
int br_sel = cpuc->br_sel;
|
|
int i, j, type, to_plm;
|
|
bool compress = false;
|
|
|
|
/* if sampling all branches, then nothing to filter */
|
|
if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
|
|
((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
|
|
return;
|
|
|
|
for (i = 0; i < cpuc->lbr_stack.nr; i++) {
|
|
|
|
from = cpuc->lbr_entries[i].from;
|
|
to = cpuc->lbr_entries[i].to;
|
|
type = cpuc->lbr_entries[i].type;
|
|
|
|
/*
|
|
* Parse the branch type recorded in LBR_x_INFO MSR.
|
|
* Doesn't support OTHER_BRANCH decoding for now.
|
|
* OTHER_BRANCH branch type still rely on software decoding.
|
|
*/
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
|
|
type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
|
|
to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
|
|
type = arch_lbr_br_type_map[type] | to_plm;
|
|
} else
|
|
type = branch_type(from, to, cpuc->lbr_entries[i].abort);
|
|
if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
|
|
if (cpuc->lbr_entries[i].in_tx)
|
|
type |= X86_BR_IN_TX;
|
|
else
|
|
type |= X86_BR_NO_TX;
|
|
}
|
|
|
|
/* if type does not correspond, then discard */
|
|
if (type == X86_BR_NONE || (br_sel & type) != type) {
|
|
cpuc->lbr_entries[i].from = 0;
|
|
compress = true;
|
|
}
|
|
|
|
if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
|
|
cpuc->lbr_entries[i].type = common_branch_type(type);
|
|
}
|
|
|
|
if (!compress)
|
|
return;
|
|
|
|
/* remove all entries with from=0 */
|
|
for (i = 0; i < cpuc->lbr_stack.nr; ) {
|
|
if (!cpuc->lbr_entries[i].from) {
|
|
j = i;
|
|
while (++j < cpuc->lbr_stack.nr)
|
|
cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
|
|
cpuc->lbr_stack.nr--;
|
|
if (!cpuc->lbr_entries[i].from)
|
|
continue;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/* Cannot get TOS for large PEBS and Arch LBR */
|
|
if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
|
|
(cpuc->n_pebs == cpuc->n_large_pebs))
|
|
cpuc->lbr_stack.hw_idx = -1ULL;
|
|
else
|
|
cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
|
|
|
|
intel_pmu_store_lbr(cpuc, lbr);
|
|
intel_pmu_lbr_filter(cpuc);
|
|
}
|
|
|
|
/*
|
|
* Map interface branch filters onto LBR filters
|
|
*/
|
|
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
|
|
| LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
|
|
LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include IND_JMP to capture IND_CALL
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
};
|
|
|
|
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
|
};
|
|
|
|
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_RETURN | LBR_CALL_STACK,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
|
|
};
|
|
|
|
static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = ARCH_LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = ARCH_LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = ARCH_LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = ARCH_LBR_RETURN |
|
|
ARCH_LBR_OTHER_BRANCH,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = ARCH_LBR_REL_CALL |
|
|
ARCH_LBR_IND_CALL |
|
|
ARCH_LBR_OTHER_BRANCH,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = ARCH_LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = ARCH_LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = ARCH_LBR_REL_CALL |
|
|
ARCH_LBR_IND_CALL |
|
|
ARCH_LBR_RETURN |
|
|
ARCH_LBR_CALL_STACK,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = ARCH_LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_CALL_SHIFT] = ARCH_LBR_REL_CALL,
|
|
};
|
|
|
|
/* core */
|
|
void __init intel_pmu_lbr_init_core(void)
|
|
{
|
|
x86_pmu.lbr_nr = 4;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
}
|
|
|
|
/* nehalem/westmere */
|
|
void __init intel_pmu_lbr_init_nhm(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - workaround LBR_SEL errata (see above)
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
}
|
|
|
|
/* sandy bridge */
|
|
void __init intel_pmu_lbr_init_snb(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
}
|
|
|
|
static inline struct kmem_cache *
|
|
create_lbr_kmem_cache(size_t size, size_t align)
|
|
{
|
|
return kmem_cache_create("x86_lbr", size, align, 0, NULL);
|
|
}
|
|
|
|
/* haswell */
|
|
void intel_pmu_lbr_init_hsw(void)
|
|
{
|
|
size_t size = sizeof(struct x86_perf_task_context);
|
|
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
x86_get_pmu()->task_ctx_cache = create_lbr_kmem_cache(size, 0);
|
|
|
|
if (lbr_from_signext_quirk_needed())
|
|
static_branch_enable(&lbr_from_quirk_key);
|
|
}
|
|
|
|
/* skylake */
|
|
__init void intel_pmu_lbr_init_skl(void)
|
|
{
|
|
size_t size = sizeof(struct x86_perf_task_context);
|
|
|
|
x86_pmu.lbr_nr = 32;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
x86_pmu.lbr_info = MSR_LBR_INFO_0;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
x86_get_pmu()->task_ctx_cache = create_lbr_kmem_cache(size, 0);
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
}
|
|
|
|
/* atom */
|
|
void __init intel_pmu_lbr_init_atom(void)
|
|
{
|
|
/*
|
|
* only models starting at stepping 10 seems
|
|
* to have an operational LBR which can freeze
|
|
* on PMU interrupt
|
|
*/
|
|
if (boot_cpu_data.x86_model == 28
|
|
&& boot_cpu_data.x86_stepping < 10) {
|
|
pr_cont("LBR disabled due to erratum");
|
|
return;
|
|
}
|
|
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
}
|
|
|
|
/* slm */
|
|
void __init intel_pmu_lbr_init_slm(void)
|
|
{
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
pr_cont("8-deep LBR, ");
|
|
}
|
|
|
|
/* Knights Landing */
|
|
void intel_pmu_lbr_init_knl(void)
|
|
{
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
|
|
|
/* Knights Landing does have MISPREDICT bit */
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
|
|
x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
|
|
}
|
|
|
|
/*
|
|
* LBR state size is variable based on the max number of registers.
|
|
* This calculates the expected state size, which should match
|
|
* what the hardware enumerates for the size of XFEATURE_LBR.
|
|
*/
|
|
static inline unsigned int get_lbr_state_size(void)
|
|
{
|
|
return sizeof(struct arch_lbr_state) +
|
|
x86_pmu.lbr_nr * sizeof(struct lbr_entry);
|
|
}
|
|
|
|
static bool is_arch_lbr_xsave_available(void)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVES))
|
|
return false;
|
|
|
|
/*
|
|
* Check the LBR state with the corresponding software structure.
|
|
* Disable LBR XSAVES support if the size doesn't match.
|
|
*/
|
|
if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void __init intel_pmu_arch_lbr_init(void)
|
|
{
|
|
struct pmu *pmu = x86_get_pmu();
|
|
union cpuid28_eax eax;
|
|
union cpuid28_ebx ebx;
|
|
union cpuid28_ecx ecx;
|
|
unsigned int unused_edx;
|
|
bool arch_lbr_xsave;
|
|
size_t size;
|
|
u64 lbr_nr;
|
|
|
|
/* Arch LBR Capabilities */
|
|
cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
|
|
|
|
lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
|
|
if (!lbr_nr)
|
|
goto clear_arch_lbr;
|
|
|
|
/* Apply the max depth of Arch LBR */
|
|
if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
|
|
goto clear_arch_lbr;
|
|
|
|
x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
|
|
x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
|
|
x86_pmu.lbr_lip = eax.split.lbr_lip;
|
|
x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
|
|
x86_pmu.lbr_filter = ebx.split.lbr_filter;
|
|
x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
|
|
x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
|
|
x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
|
|
x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
|
|
x86_pmu.lbr_nr = lbr_nr;
|
|
|
|
|
|
arch_lbr_xsave = is_arch_lbr_xsave_available();
|
|
if (arch_lbr_xsave) {
|
|
size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
|
|
get_lbr_state_size();
|
|
pmu->task_ctx_cache = create_lbr_kmem_cache(size,
|
|
XSAVE_ALIGNMENT);
|
|
}
|
|
|
|
if (!pmu->task_ctx_cache) {
|
|
arch_lbr_xsave = false;
|
|
|
|
size = sizeof(struct x86_perf_task_context_arch_lbr) +
|
|
lbr_nr * sizeof(struct lbr_entry);
|
|
pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
|
|
}
|
|
|
|
x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
|
|
x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
|
|
x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
|
|
|
|
/* LBR callstack requires both CPL and Branch Filtering support */
|
|
if (!x86_pmu.lbr_cpl ||
|
|
!x86_pmu.lbr_filter ||
|
|
!x86_pmu.lbr_call_stack)
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
|
|
|
|
if (!x86_pmu.lbr_cpl) {
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
|
|
} else if (!x86_pmu.lbr_filter) {
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
|
|
arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
|
|
}
|
|
|
|
x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
|
|
x86_pmu.lbr_ctl_map = arch_lbr_ctl_map;
|
|
|
|
if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
|
|
x86_pmu.lbr_ctl_map = NULL;
|
|
|
|
x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
|
|
if (arch_lbr_xsave) {
|
|
x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
|
|
x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
|
|
x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
|
|
pr_cont("XSAVE ");
|
|
} else {
|
|
x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
|
|
x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
|
|
x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
|
|
}
|
|
|
|
pr_cont("Architectural LBR, ");
|
|
|
|
return;
|
|
|
|
clear_arch_lbr:
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_ARCH_LBR);
|
|
}
|
|
|
|
/**
|
|
* x86_perf_get_lbr - get the LBR records information
|
|
*
|
|
* @lbr: the caller's memory to store the LBR records information
|
|
*
|
|
* Returns: 0 indicates the LBR info has been successfully obtained
|
|
*/
|
|
int x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
|
|
{
|
|
int lbr_fmt = x86_pmu.intel_cap.lbr_format;
|
|
|
|
lbr->nr = x86_pmu.lbr_nr;
|
|
lbr->from = x86_pmu.lbr_from;
|
|
lbr->to = x86_pmu.lbr_to;
|
|
lbr->info = (lbr_fmt == LBR_FORMAT_INFO) ? x86_pmu.lbr_info : 0;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
|
|
|
|
struct event_constraint vlbr_constraint =
|
|
__EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
|
|
FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
|