mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
aff437667b
If these flags are on the object level it will be more difficult to allow for multiple VMAs per object. v2: Simplification and cleanup after code review comments (Chris Wilson). Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
5345 lines
135 KiB
C
5345 lines
135 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include <linux/oom.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-buf.h>
|
|
|
|
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
|
|
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
|
|
bool force);
|
|
static __must_check int
|
|
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
|
|
bool readonly);
|
|
static void
|
|
i915_gem_object_retire(struct drm_i915_gem_object *obj);
|
|
|
|
static void i915_gem_write_fence(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj);
|
|
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_fence_reg *fence,
|
|
bool enable);
|
|
|
|
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
|
|
struct shrink_control *sc);
|
|
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
|
|
struct shrink_control *sc);
|
|
static int i915_gem_shrinker_oom(struct notifier_block *nb,
|
|
unsigned long event,
|
|
void *ptr);
|
|
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
|
|
|
|
static bool cpu_cache_is_coherent(struct drm_device *dev,
|
|
enum i915_cache_level level)
|
|
{
|
|
return HAS_LLC(dev) || level != I915_CACHE_NONE;
|
|
}
|
|
|
|
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
return true;
|
|
|
|
return obj->pin_display;
|
|
}
|
|
|
|
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->tiling_mode)
|
|
i915_gem_release_mmap(obj);
|
|
|
|
/* As we do not have an associated fence register, we will force
|
|
* a tiling change if we ever need to acquire one.
|
|
*/
|
|
obj->fence_dirty = false;
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
}
|
|
|
|
/* some bookkeeping */
|
|
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count++;
|
|
dev_priv->mm.object_memory += size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
|
|
size_t size)
|
|
{
|
|
spin_lock(&dev_priv->mm.object_stat_lock);
|
|
dev_priv->mm.object_count--;
|
|
dev_priv->mm.object_memory -= size;
|
|
spin_unlock(&dev_priv->mm.object_stat_lock);
|
|
}
|
|
|
|
static int
|
|
i915_gem_wait_for_error(struct i915_gpu_error *error)
|
|
{
|
|
int ret;
|
|
|
|
#define EXIT_COND (!i915_reset_in_progress(error) || \
|
|
i915_terminally_wedged(error))
|
|
if (EXIT_COND)
|
|
return 0;
|
|
|
|
/*
|
|
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
|
|
* userspace. If it takes that long something really bad is going on and
|
|
* we should simply try to bail out and fail as gracefully as possible.
|
|
*/
|
|
ret = wait_event_interruptible_timeout(error->reset_queue,
|
|
EXIT_COND,
|
|
10*HZ);
|
|
if (ret == 0) {
|
|
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
|
|
return -EIO;
|
|
} else if (ret < 0) {
|
|
return ret;
|
|
}
|
|
#undef EXIT_COND
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_mutex_lock_interruptible(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mutex_lock_interruptible(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
|
|
{
|
|
return i915_gem_obj_bound_any(obj) && !obj->active;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_init *args = data;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return -ENODEV;
|
|
|
|
if (args->gtt_start >= args->gtt_end ||
|
|
(args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
/* GEM with user mode setting was never supported on ilk and later. */
|
|
if (INTEL_INFO(dev)->gen >= 5)
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
|
|
args->gtt_end);
|
|
dev_priv->gtt.mappable_end = args->gtt_end;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
size_t pinned;
|
|
|
|
pinned = 0;
|
|
mutex_lock(&dev->struct_mutex);
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
|
|
if (i915_gem_obj_is_pinned(obj))
|
|
pinned += i915_gem_obj_ggtt_size(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
args->aper_size = dev_priv->gtt.base.total;
|
|
args->aper_available_size = args->aper_size - pinned;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
|
|
{
|
|
drm_dma_handle_t *phys = obj->phys_handle;
|
|
|
|
if (!phys)
|
|
return;
|
|
|
|
if (obj->madv == I915_MADV_WILLNEED) {
|
|
struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
|
|
char *vaddr = phys->vaddr;
|
|
int i;
|
|
|
|
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
|
|
struct page *page = shmem_read_mapping_page(mapping, i);
|
|
if (!IS_ERR(page)) {
|
|
char *dst = kmap_atomic(page);
|
|
memcpy(dst, vaddr, PAGE_SIZE);
|
|
drm_clflush_virt_range(dst, PAGE_SIZE);
|
|
kunmap_atomic(dst);
|
|
|
|
set_page_dirty(page);
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
}
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
i915_gem_chipset_flush(obj->base.dev);
|
|
}
|
|
|
|
#ifdef CONFIG_X86
|
|
set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
|
|
#endif
|
|
drm_pci_free(obj->base.dev, phys);
|
|
obj->phys_handle = NULL;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
|
|
int align)
|
|
{
|
|
drm_dma_handle_t *phys;
|
|
struct address_space *mapping;
|
|
char *vaddr;
|
|
int i;
|
|
|
|
if (obj->phys_handle) {
|
|
if ((unsigned long)obj->phys_handle->vaddr & (align -1))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED)
|
|
return -EFAULT;
|
|
|
|
if (obj->base.filp == NULL)
|
|
return -EINVAL;
|
|
|
|
/* create a new object */
|
|
phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
|
|
if (!phys)
|
|
return -ENOMEM;
|
|
|
|
vaddr = phys->vaddr;
|
|
#ifdef CONFIG_X86
|
|
set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
|
|
#endif
|
|
mapping = file_inode(obj->base.filp)->i_mapping;
|
|
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
|
|
struct page *page;
|
|
char *src;
|
|
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page)) {
|
|
#ifdef CONFIG_X86
|
|
set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
|
|
#endif
|
|
drm_pci_free(obj->base.dev, phys);
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
src = kmap_atomic(page);
|
|
memcpy(vaddr, src, PAGE_SIZE);
|
|
kunmap_atomic(src);
|
|
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
|
|
vaddr += PAGE_SIZE;
|
|
}
|
|
|
|
obj->phys_handle = phys;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
void *vaddr = obj->phys_handle->vaddr + args->offset;
|
|
char __user *user_data = to_user_ptr(args->data_ptr);
|
|
|
|
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
|
|
unsigned long unwritten;
|
|
|
|
/* The physical object once assigned is fixed for the lifetime
|
|
* of the obj, so we can safely drop the lock and continue
|
|
* to access vaddr.
|
|
*/
|
|
mutex_unlock(&dev->struct_mutex);
|
|
unwritten = copy_from_user(vaddr, user_data, args->size);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
}
|
|
|
|
i915_gem_chipset_flush(dev);
|
|
return 0;
|
|
}
|
|
|
|
void *i915_gem_object_alloc(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
|
|
}
|
|
|
|
void i915_gem_object_free(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
kmem_cache_free(dev_priv->slab, obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
uint64_t size,
|
|
uint32_t *handle_p)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
u32 handle;
|
|
|
|
size = roundup(size, PAGE_SIZE);
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
/* Allocate the new object */
|
|
obj = i915_gem_alloc_object(dev, size);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
/* drop reference from allocate - handle holds it now */
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*handle_p = handle;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_dumb_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args)
|
|
{
|
|
/* have to work out size/pitch and return them */
|
|
args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
|
|
args->size = args->pitch * args->height;
|
|
return i915_gem_create(file, dev,
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_create *args = data;
|
|
|
|
return i915_gem_create(file, dev,
|
|
args->size, &args->handle);
|
|
}
|
|
|
|
static inline int
|
|
__copy_to_user_swizzled(char __user *cpu_vaddr,
|
|
const char *gpu_vaddr, int gpu_offset,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_to_user(cpu_vaddr + cpu_offset,
|
|
gpu_vaddr + swizzled_gpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
|
|
const char __user *cpu_vaddr,
|
|
int length)
|
|
{
|
|
int ret, cpu_offset = 0;
|
|
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
|
|
cpu_vaddr + cpu_offset,
|
|
this_length);
|
|
if (ret)
|
|
return ret + length;
|
|
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pins the specified object's pages and synchronizes the object with
|
|
* GPU accesses. Sets needs_clflush to non-zero if the caller should
|
|
* flush the object from the CPU cache.
|
|
*/
|
|
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
|
|
int *needs_clflush)
|
|
{
|
|
int ret;
|
|
|
|
*needs_clflush = 0;
|
|
|
|
if (!obj->base.filp)
|
|
return -EINVAL;
|
|
|
|
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
|
|
/* If we're not in the cpu read domain, set ourself into the gtt
|
|
* read domain and manually flush cachelines (if required). This
|
|
* optimizes for the case when the gpu will dirty the data
|
|
* anyway again before the next pread happens. */
|
|
*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
|
|
obj->cache_level);
|
|
ret = i915_gem_object_wait_rendering(obj, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pread fastpath.
|
|
* Flushes invalid cachelines before reading the target if
|
|
* needs_clflush is set. */
|
|
static int
|
|
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
if (unlikely(page_do_bit17_swizzling))
|
|
return -EINVAL;
|
|
|
|
vaddr = kmap_atomic(page);
|
|
if (needs_clflush)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
ret = __copy_to_user_inatomic(user_data,
|
|
vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static void
|
|
shmem_clflush_swizzled_range(char *addr, unsigned long length,
|
|
bool swizzled)
|
|
{
|
|
if (unlikely(swizzled)) {
|
|
unsigned long start = (unsigned long) addr;
|
|
unsigned long end = (unsigned long) addr + length;
|
|
|
|
/* For swizzling simply ensure that we always flush both
|
|
* channels. Lame, but simple and it works. Swizzled
|
|
* pwrite/pread is far from a hotpath - current userspace
|
|
* doesn't use it at all. */
|
|
start = round_down(start, 128);
|
|
end = round_up(end, 128);
|
|
|
|
drm_clflush_virt_range((void *)start, end - start);
|
|
} else {
|
|
drm_clflush_virt_range(addr, length);
|
|
}
|
|
|
|
}
|
|
|
|
/* Only difference to the fast-path function is that this can handle bit17
|
|
* and uses non-atomic copy and kmap functions. */
|
|
static int
|
|
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling, bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (needs_clflush)
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_to_user_swizzled(user_data,
|
|
vaddr, shmem_page_offset,
|
|
page_length);
|
|
else
|
|
ret = __copy_to_user(user_data,
|
|
vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap(page);
|
|
|
|
return ret ? - EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pread(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file)
|
|
{
|
|
char __user *user_data;
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
int shmem_page_offset, page_length, ret = 0;
|
|
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
|
|
int prefaulted = 0;
|
|
int needs_clflush = 0;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
|
|
if (ret)
|
|
return ret;
|
|
|
|
offset = args->offset;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
|
|
offset >> PAGE_SHIFT) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
|
|
if (remain <= 0)
|
|
break;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset_in_page(offset);
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
|
|
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
|
|
(page_to_phys(page) & (1 << 17)) != 0;
|
|
|
|
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
needs_clflush);
|
|
if (ret == 0)
|
|
goto next_page;
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (likely(!i915.prefault_disable) && !prefaulted) {
|
|
ret = fault_in_multipages_writeable(user_data, remain);
|
|
/* Userspace is tricking us, but we've already clobbered
|
|
* its pages with the prefault and promised to write the
|
|
* data up to the first fault. Hence ignore any errors
|
|
* and just continue. */
|
|
(void)ret;
|
|
prefaulted = 1;
|
|
}
|
|
|
|
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
needs_clflush);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
next_page:
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_WRITE,
|
|
to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check source. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* prime objects have no backing filp to GEM pread/pwrite
|
|
* pages from.
|
|
*/
|
|
if (!obj->base.filp) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pread(obj, args->offset, args->size);
|
|
|
|
ret = i915_gem_shmem_pread(dev, obj, args, file);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline int
|
|
fast_user_write(struct io_mapping *mapping,
|
|
loff_t page_base, int page_offset,
|
|
char __user *user_data,
|
|
int length)
|
|
{
|
|
void __iomem *vaddr_atomic;
|
|
void *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = (void __force*)vaddr_atomic + page_offset;
|
|
unwritten = __copy_from_user_inatomic_nocache(vaddr,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr_atomic);
|
|
return unwritten;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length, ret;
|
|
|
|
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = offset & PAGE_MASK;
|
|
page_offset = offset_in_page(offset);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (fast_user_write(dev_priv->gtt.mappable, page_base,
|
|
page_offset, user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
goto out_unpin;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out_unpin:
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pwrite fastpath.
|
|
* Flushes invalid cachelines before writing to the target if
|
|
* needs_clflush_before is set and flushes out any written cachelines after
|
|
* writing if needs_clflush is set. */
|
|
static int
|
|
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
if (unlikely(page_do_bit17_swizzling))
|
|
return -EINVAL;
|
|
|
|
vaddr = kmap_atomic(page);
|
|
if (needs_clflush_before)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
|
|
user_data, page_length);
|
|
if (needs_clflush_after)
|
|
drm_clflush_virt_range(vaddr + shmem_page_offset,
|
|
page_length);
|
|
kunmap_atomic(vaddr);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
/* Only difference to the fast-path function is that this can handle bit17
|
|
* and uses non-atomic copy and kmap functions. */
|
|
static int
|
|
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
|
|
char __user *user_data,
|
|
bool page_do_bit17_swizzling,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
if (page_do_bit17_swizzling)
|
|
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
|
|
user_data,
|
|
page_length);
|
|
else
|
|
ret = __copy_from_user(vaddr + shmem_page_offset,
|
|
user_data,
|
|
page_length);
|
|
if (needs_clflush_after)
|
|
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
|
|
page_length,
|
|
page_do_bit17_swizzling);
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pwrite(struct drm_device *dev,
|
|
struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
ssize_t remain;
|
|
loff_t offset;
|
|
char __user *user_data;
|
|
int shmem_page_offset, page_length, ret = 0;
|
|
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
|
|
int hit_slowpath = 0;
|
|
int needs_clflush_after = 0;
|
|
int needs_clflush_before = 0;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
user_data = to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
|
|
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
|
|
/* If we're not in the cpu write domain, set ourself into the gtt
|
|
* write domain and manually flush cachelines (if required). This
|
|
* optimizes for the case when the gpu will use the data
|
|
* right away and we therefore have to clflush anyway. */
|
|
needs_clflush_after = cpu_write_needs_clflush(obj);
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
}
|
|
/* Same trick applies to invalidate partially written cachelines read
|
|
* before writing. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
|
|
needs_clflush_before =
|
|
!cpu_cache_is_coherent(dev, obj->cache_level);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
offset = args->offset;
|
|
obj->dirty = 1;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
|
|
offset >> PAGE_SHIFT) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
int partial_cacheline_write;
|
|
|
|
if (remain <= 0)
|
|
break;
|
|
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_offset = offset_in_page(offset);
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
|
|
/* If we don't overwrite a cacheline completely we need to be
|
|
* careful to have up-to-date data by first clflushing. Don't
|
|
* overcomplicate things and flush the entire patch. */
|
|
partial_cacheline_write = needs_clflush_before &&
|
|
((shmem_page_offset | page_length)
|
|
& (boot_cpu_data.x86_clflush_size - 1));
|
|
|
|
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
|
|
(page_to_phys(page) & (1 << 17)) != 0;
|
|
|
|
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
partial_cacheline_write,
|
|
needs_clflush_after);
|
|
if (ret == 0)
|
|
goto next_page;
|
|
|
|
hit_slowpath = 1;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
|
|
user_data, page_do_bit17_swizzling,
|
|
partial_cacheline_write,
|
|
needs_clflush_after);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
next_page:
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
out:
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (hit_slowpath) {
|
|
/*
|
|
* Fixup: Flush cpu caches in case we didn't flush the dirty
|
|
* cachelines in-line while writing and the object moved
|
|
* out of the cpu write domain while we've dropped the lock.
|
|
*/
|
|
if (!needs_clflush_after &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
|
|
if (i915_gem_clflush_object(obj, obj->pin_display))
|
|
i915_gem_chipset_flush(dev);
|
|
}
|
|
}
|
|
|
|
if (needs_clflush_after)
|
|
i915_gem_chipset_flush(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(VERIFY_READ,
|
|
to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
if (likely(!i915.prefault_disable)) {
|
|
ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
|
|
args->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Bounds check destination. */
|
|
if (args->offset > obj->base.size ||
|
|
args->size > obj->base.size - args->offset) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* prime objects have no backing filp to GEM pread/pwrite
|
|
* pages from.
|
|
*/
|
|
if (!obj->base.filp) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
|
|
|
|
ret = -EFAULT;
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (obj->phys_handle) {
|
|
ret = i915_gem_phys_pwrite(obj, args, file);
|
|
goto out;
|
|
}
|
|
|
|
if (obj->tiling_mode == I915_TILING_NONE &&
|
|
obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
|
|
cpu_write_needs_clflush(obj)) {
|
|
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
|
|
/* Note that the gtt paths might fail with non-page-backed user
|
|
* pointers (e.g. gtt mappings when moving data between
|
|
* textures). Fallback to the shmem path in that case. */
|
|
}
|
|
|
|
if (ret == -EFAULT || ret == -ENOSPC)
|
|
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_check_wedge(struct i915_gpu_error *error,
|
|
bool interruptible)
|
|
{
|
|
if (i915_reset_in_progress(error)) {
|
|
/* Non-interruptible callers can't handle -EAGAIN, hence return
|
|
* -EIO unconditionally for these. */
|
|
if (!interruptible)
|
|
return -EIO;
|
|
|
|
/* Recovery complete, but the reset failed ... */
|
|
if (i915_terminally_wedged(error))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Check if GPU Reset is in progress - we need intel_ring_begin
|
|
* to work properly to reinit the hw state while the gpu is
|
|
* still marked as reset-in-progress. Handle this with a flag.
|
|
*/
|
|
if (!error->reload_in_reset)
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compare seqno against outstanding lazy request. Emit a request if they are
|
|
* equal.
|
|
*/
|
|
int
|
|
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
|
|
|
ret = 0;
|
|
if (seqno == ring->outstanding_lazy_seqno)
|
|
ret = i915_add_request(ring, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void fake_irq(unsigned long data)
|
|
{
|
|
wake_up_process((struct task_struct *)data);
|
|
}
|
|
|
|
static bool missed_irq(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
|
|
}
|
|
|
|
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
|
|
{
|
|
if (file_priv == NULL)
|
|
return true;
|
|
|
|
return !atomic_xchg(&file_priv->rps_wait_boost, true);
|
|
}
|
|
|
|
/**
|
|
* __wait_seqno - wait until execution of seqno has finished
|
|
* @ring: the ring expected to report seqno
|
|
* @seqno: duh!
|
|
* @reset_counter: reset sequence associated with the given seqno
|
|
* @interruptible: do an interruptible wait (normally yes)
|
|
* @timeout: in - how long to wait (NULL forever); out - how much time remaining
|
|
*
|
|
* Note: It is of utmost importance that the passed in seqno and reset_counter
|
|
* values have been read by the caller in an smp safe manner. Where read-side
|
|
* locks are involved, it is sufficient to read the reset_counter before
|
|
* unlocking the lock that protects the seqno. For lockless tricks, the
|
|
* reset_counter _must_ be read before, and an appropriate smp_rmb must be
|
|
* inserted.
|
|
*
|
|
* Returns 0 if the seqno was found within the alloted time. Else returns the
|
|
* errno with remaining time filled in timeout argument.
|
|
*/
|
|
static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
|
|
unsigned reset_counter,
|
|
bool interruptible,
|
|
s64 *timeout,
|
|
struct drm_i915_file_private *file_priv)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const bool irq_test_in_progress =
|
|
ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
|
|
DEFINE_WAIT(wait);
|
|
unsigned long timeout_expire;
|
|
s64 before, now;
|
|
int ret;
|
|
|
|
WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
|
|
|
|
if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
|
|
return 0;
|
|
|
|
timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
|
|
gen6_rps_boost(dev_priv);
|
|
if (file_priv)
|
|
mod_delayed_work(dev_priv->wq,
|
|
&file_priv->mm.idle_work,
|
|
msecs_to_jiffies(100));
|
|
}
|
|
|
|
if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
|
|
return -ENODEV;
|
|
|
|
/* Record current time in case interrupted by signal, or wedged */
|
|
trace_i915_gem_request_wait_begin(ring, seqno);
|
|
before = ktime_get_raw_ns();
|
|
for (;;) {
|
|
struct timer_list timer;
|
|
|
|
prepare_to_wait(&ring->irq_queue, &wait,
|
|
interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
|
|
|
|
/* We need to check whether any gpu reset happened in between
|
|
* the caller grabbing the seqno and now ... */
|
|
if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
|
|
/* ... but upgrade the -EAGAIN to an -EIO if the gpu
|
|
* is truely gone. */
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
|
|
if (ret == 0)
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
if (interruptible && signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
if (timeout && time_after_eq(jiffies, timeout_expire)) {
|
|
ret = -ETIME;
|
|
break;
|
|
}
|
|
|
|
timer.function = NULL;
|
|
if (timeout || missed_irq(dev_priv, ring)) {
|
|
unsigned long expire;
|
|
|
|
setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
|
|
expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
|
|
mod_timer(&timer, expire);
|
|
}
|
|
|
|
io_schedule();
|
|
|
|
if (timer.function) {
|
|
del_singleshot_timer_sync(&timer);
|
|
destroy_timer_on_stack(&timer);
|
|
}
|
|
}
|
|
now = ktime_get_raw_ns();
|
|
trace_i915_gem_request_wait_end(ring, seqno);
|
|
|
|
if (!irq_test_in_progress)
|
|
ring->irq_put(ring);
|
|
|
|
finish_wait(&ring->irq_queue, &wait);
|
|
|
|
if (timeout) {
|
|
s64 tres = *timeout - (now - before);
|
|
|
|
*timeout = tres < 0 ? 0 : tres;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Waits for a sequence number to be signaled, and cleans up the
|
|
* request and object lists appropriately for that event.
|
|
*/
|
|
int
|
|
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool interruptible = dev_priv->mm.interruptible;
|
|
int ret;
|
|
|
|
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
BUG_ON(seqno == 0);
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_check_olr(ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return __wait_seqno(ring, seqno,
|
|
atomic_read(&dev_priv->gpu_error.reset_counter),
|
|
interruptible, NULL, NULL);
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
if (!obj->active)
|
|
return 0;
|
|
|
|
/* Manually manage the write flush as we may have not yet
|
|
* retired the buffer.
|
|
*
|
|
* Note that the last_write_seqno is always the earlier of
|
|
* the two (read/write) seqno, so if we haved successfully waited,
|
|
* we know we have passed the last write.
|
|
*/
|
|
obj->last_write_seqno = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Ensures that all rendering to the object has completed and the object is
|
|
* safe to unbind from the GTT or access from the CPU.
|
|
*/
|
|
static __must_check int
|
|
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
|
|
bool readonly)
|
|
{
|
|
struct intel_engine_cs *ring = obj->ring;
|
|
u32 seqno;
|
|
int ret;
|
|
|
|
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
|
|
if (seqno == 0)
|
|
return 0;
|
|
|
|
ret = i915_wait_seqno(ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return i915_gem_object_wait_rendering__tail(obj, ring);
|
|
}
|
|
|
|
/* A nonblocking variant of the above wait. This is a highly dangerous routine
|
|
* as the object state may change during this call.
|
|
*/
|
|
static __must_check int
|
|
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_file_private *file_priv,
|
|
bool readonly)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = obj->ring;
|
|
unsigned reset_counter;
|
|
u32 seqno;
|
|
int ret;
|
|
|
|
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
|
|
BUG_ON(!dev_priv->mm.interruptible);
|
|
|
|
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
|
|
if (seqno == 0)
|
|
return 0;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_check_olr(ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return i915_gem_object_wait_rendering__tail(obj, ring);
|
|
}
|
|
|
|
/**
|
|
* Called when user space prepares to use an object with the CPU, either
|
|
* through the mmap ioctl's mapping or a GTT mapping.
|
|
*/
|
|
int
|
|
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_set_domain *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
uint32_t read_domains = args->read_domains;
|
|
uint32_t write_domain = args->write_domain;
|
|
int ret;
|
|
|
|
/* Only handle setting domains to types used by the CPU. */
|
|
if (write_domain & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
if (read_domains & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
/* Having something in the write domain implies it's in the read
|
|
* domain, and only that read domain. Enforce that in the request.
|
|
*/
|
|
if (write_domain != 0 && read_domains != write_domain)
|
|
return -EINVAL;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Try to flush the object off the GPU without holding the lock.
|
|
* We will repeat the flush holding the lock in the normal manner
|
|
* to catch cases where we are gazumped.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering__nonblocking(obj,
|
|
file->driver_priv,
|
|
!write_domain);
|
|
if (ret)
|
|
goto unref;
|
|
|
|
if (read_domains & I915_GEM_DOMAIN_GTT) {
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
|
|
|
|
/* Silently promote "you're not bound, there was nothing to do"
|
|
* to success, since the client was just asking us to
|
|
* make sure everything was done.
|
|
*/
|
|
if (ret == -EINVAL)
|
|
ret = 0;
|
|
} else {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
|
|
}
|
|
|
|
unref:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret = 0;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
if (obj->pin_display)
|
|
i915_gem_object_flush_cpu_write_domain(obj, true);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Maps the contents of an object, returning the address it is mapped
|
|
* into.
|
|
*
|
|
* While the mapping holds a reference on the contents of the object, it doesn't
|
|
* imply a ref on the object itself.
|
|
*
|
|
* IMPORTANT:
|
|
*
|
|
* DRM driver writers who look a this function as an example for how to do GEM
|
|
* mmap support, please don't implement mmap support like here. The modern way
|
|
* to implement DRM mmap support is with an mmap offset ioctl (like
|
|
* i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
|
|
* That way debug tooling like valgrind will understand what's going on, hiding
|
|
* the mmap call in a driver private ioctl will break that. The i915 driver only
|
|
* does cpu mmaps this way because we didn't know better.
|
|
*/
|
|
int
|
|
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap *args = data;
|
|
struct drm_gem_object *obj;
|
|
unsigned long addr;
|
|
|
|
obj = drm_gem_object_lookup(dev, file, args->handle);
|
|
if (obj == NULL)
|
|
return -ENOENT;
|
|
|
|
/* prime objects have no backing filp to GEM mmap
|
|
* pages from.
|
|
*/
|
|
if (!obj->filp) {
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
addr = vm_mmap(obj->filp, 0, args->size,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
args->offset);
|
|
drm_gem_object_unreference_unlocked(obj);
|
|
if (IS_ERR((void *)addr))
|
|
return addr;
|
|
|
|
args->addr_ptr = (uint64_t) addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_fault - fault a page into the GTT
|
|
* vma: VMA in question
|
|
* vmf: fault info
|
|
*
|
|
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
|
|
* from userspace. The fault handler takes care of binding the object to
|
|
* the GTT (if needed), allocating and programming a fence register (again,
|
|
* only if needed based on whether the old reg is still valid or the object
|
|
* is tiled) and inserting a new PTE into the faulting process.
|
|
*
|
|
* Note that the faulting process may involve evicting existing objects
|
|
* from the GTT and/or fence registers to make room. So performance may
|
|
* suffer if the GTT working set is large or there are few fence registers
|
|
* left.
|
|
*/
|
|
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
pgoff_t page_offset;
|
|
unsigned long pfn;
|
|
int ret = 0;
|
|
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
/* We don't use vmf->pgoff since that has the fake offset */
|
|
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
goto out;
|
|
|
|
trace_i915_gem_object_fault(obj, page_offset, true, write);
|
|
|
|
/* Try to flush the object off the GPU first without holding the lock.
|
|
* Upon reacquiring the lock, we will perform our sanity checks and then
|
|
* repeat the flush holding the lock in the normal manner to catch cases
|
|
* where we are gazumped.
|
|
*/
|
|
ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
/* Access to snoopable pages through the GTT is incoherent. */
|
|
if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
|
|
ret = -EFAULT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Now bind it into the GTT if needed */
|
|
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write);
|
|
if (ret)
|
|
goto unpin;
|
|
|
|
ret = i915_gem_object_get_fence(obj);
|
|
if (ret)
|
|
goto unpin;
|
|
|
|
/* Finally, remap it using the new GTT offset */
|
|
pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
|
|
pfn >>= PAGE_SHIFT;
|
|
|
|
if (!obj->fault_mappable) {
|
|
unsigned long size = min_t(unsigned long,
|
|
vma->vm_end - vma->vm_start,
|
|
obj->base.size);
|
|
int i;
|
|
|
|
for (i = 0; i < size >> PAGE_SHIFT; i++) {
|
|
ret = vm_insert_pfn(vma,
|
|
(unsigned long)vma->vm_start + i * PAGE_SIZE,
|
|
pfn + i);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
obj->fault_mappable = true;
|
|
} else
|
|
ret = vm_insert_pfn(vma,
|
|
(unsigned long)vmf->virtual_address,
|
|
pfn + page_offset);
|
|
unpin:
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
out:
|
|
switch (ret) {
|
|
case -EIO:
|
|
/*
|
|
* We eat errors when the gpu is terminally wedged to avoid
|
|
* userspace unduly crashing (gl has no provisions for mmaps to
|
|
* fail). But any other -EIO isn't ours (e.g. swap in failure)
|
|
* and so needs to be reported.
|
|
*/
|
|
if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
case -EAGAIN:
|
|
/*
|
|
* EAGAIN means the gpu is hung and we'll wait for the error
|
|
* handler to reset everything when re-faulting in
|
|
* i915_mutex_lock_interruptible.
|
|
*/
|
|
case 0:
|
|
case -ERESTARTSYS:
|
|
case -EINTR:
|
|
case -EBUSY:
|
|
/*
|
|
* EBUSY is ok: this just means that another thread
|
|
* already did the job.
|
|
*/
|
|
ret = VM_FAULT_NOPAGE;
|
|
break;
|
|
case -ENOMEM:
|
|
ret = VM_FAULT_OOM;
|
|
break;
|
|
case -ENOSPC:
|
|
case -EFAULT:
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
default:
|
|
WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
|
|
ret = VM_FAULT_SIGBUS;
|
|
break;
|
|
}
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_release_mmap - remove physical page mappings
|
|
* @obj: obj in question
|
|
*
|
|
* Preserve the reservation of the mmapping with the DRM core code, but
|
|
* relinquish ownership of the pages back to the system.
|
|
*
|
|
* It is vital that we remove the page mapping if we have mapped a tiled
|
|
* object through the GTT and then lose the fence register due to
|
|
* resource pressure. Similarly if the object has been moved out of the
|
|
* aperture, than pages mapped into userspace must be revoked. Removing the
|
|
* mapping will then trigger a page fault on the next user access, allowing
|
|
* fixup by i915_gem_fault().
|
|
*/
|
|
void
|
|
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!obj->fault_mappable)
|
|
return;
|
|
|
|
drm_vma_node_unmap(&obj->base.vma_node,
|
|
obj->base.dev->anon_inode->i_mapping);
|
|
obj->fault_mappable = false;
|
|
}
|
|
|
|
void
|
|
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
|
|
i915_gem_release_mmap(obj);
|
|
}
|
|
|
|
uint32_t
|
|
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
|
|
{
|
|
uint32_t gtt_size;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 4 ||
|
|
tiling_mode == I915_TILING_NONE)
|
|
return size;
|
|
|
|
/* Previous chips need a power-of-two fence region when tiling */
|
|
if (INTEL_INFO(dev)->gen == 3)
|
|
gtt_size = 1024*1024;
|
|
else
|
|
gtt_size = 512*1024;
|
|
|
|
while (gtt_size < size)
|
|
gtt_size <<= 1;
|
|
|
|
return gtt_size;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
|
|
* @obj: object to check
|
|
*
|
|
* Return the required GTT alignment for an object, taking into account
|
|
* potential fence register mapping.
|
|
*/
|
|
uint32_t
|
|
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
|
|
int tiling_mode, bool fenced)
|
|
{
|
|
/*
|
|
* Minimum alignment is 4k (GTT page size), but might be greater
|
|
* if a fence register is needed for the object.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
|
|
tiling_mode == I915_TILING_NONE)
|
|
return 4096;
|
|
|
|
/*
|
|
* Previous chips need to be aligned to the size of the smallest
|
|
* fence register that can contain the object.
|
|
*/
|
|
return i915_gem_get_gtt_size(dev, size, tiling_mode);
|
|
}
|
|
|
|
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_vma_node_has_offset(&obj->base.vma_node))
|
|
return 0;
|
|
|
|
dev_priv->mm.shrinker_no_lock_stealing = true;
|
|
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
if (ret != -ENOSPC)
|
|
goto out;
|
|
|
|
/* Badly fragmented mmap space? The only way we can recover
|
|
* space is by destroying unwanted objects. We can't randomly release
|
|
* mmap_offsets as userspace expects them to be persistent for the
|
|
* lifetime of the objects. The closest we can is to release the
|
|
* offsets on purgeable objects by truncating it and marking it purged,
|
|
* which prevents userspace from ever using that object again.
|
|
*/
|
|
i915_gem_shrink(dev_priv,
|
|
obj->base.size >> PAGE_SHIFT,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND |
|
|
I915_SHRINK_PURGEABLE);
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
if (ret != -ENOSPC)
|
|
goto out;
|
|
|
|
i915_gem_shrink_all(dev_priv);
|
|
ret = drm_gem_create_mmap_offset(&obj->base);
|
|
out:
|
|
dev_priv->mm.shrinker_no_lock_stealing = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
|
|
{
|
|
drm_gem_free_mmap_offset(&obj->base);
|
|
}
|
|
|
|
int
|
|
i915_gem_mmap_gtt(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
uint32_t handle,
|
|
uint64_t *offset)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->base.size > dev_priv->gtt.mappable_end) {
|
|
ret = -E2BIG;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_object_create_mmap_offset(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
|
|
* @dev: DRM device
|
|
* @data: GTT mapping ioctl data
|
|
* @file: GEM object info
|
|
*
|
|
* Simply returns the fake offset to userspace so it can mmap it.
|
|
* The mmap call will end up in drm_gem_mmap(), which will set things
|
|
* up so we can get faults in the handler above.
|
|
*
|
|
* The fault handler will take care of binding the object into the GTT
|
|
* (since it may have been evicted to make room for something), allocating
|
|
* a fence register, and mapping the appropriate aperture address into
|
|
* userspace.
|
|
*/
|
|
int
|
|
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_mmap_gtt *args = data;
|
|
|
|
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
|
|
}
|
|
|
|
static inline int
|
|
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
|
|
{
|
|
return obj->madv == I915_MADV_DONTNEED;
|
|
}
|
|
|
|
/* Immediately discard the backing storage */
|
|
static void
|
|
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_object_free_mmap_offset(obj);
|
|
|
|
if (obj->base.filp == NULL)
|
|
return;
|
|
|
|
/* Our goal here is to return as much of the memory as
|
|
* is possible back to the system as we are called from OOM.
|
|
* To do this we must instruct the shmfs to drop all of its
|
|
* backing pages, *now*.
|
|
*/
|
|
shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
|
|
obj->madv = __I915_MADV_PURGED;
|
|
}
|
|
|
|
/* Try to discard unwanted pages */
|
|
static void
|
|
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
switch (obj->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
i915_gem_object_truncate(obj);
|
|
case __I915_MADV_PURGED:
|
|
return;
|
|
}
|
|
|
|
if (obj->base.filp == NULL)
|
|
return;
|
|
|
|
mapping = file_inode(obj->base.filp)->i_mapping,
|
|
invalidate_mapping_pages(mapping, 0, (loff_t)-1);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct sg_page_iter sg_iter;
|
|
int ret;
|
|
|
|
BUG_ON(obj->madv == __I915_MADV_PURGED);
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, true);
|
|
if (ret) {
|
|
/* In the event of a disaster, abandon all caches and
|
|
* hope for the best.
|
|
*/
|
|
WARN_ON(ret != -EIO);
|
|
i915_gem_clflush_object(obj, true);
|
|
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_save_bit_17_swizzle(obj);
|
|
|
|
if (obj->madv == I915_MADV_DONTNEED)
|
|
obj->dirty = 0;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
|
|
|
if (obj->dirty)
|
|
set_page_dirty(page);
|
|
|
|
if (obj->madv == I915_MADV_WILLNEED)
|
|
mark_page_accessed(page);
|
|
|
|
page_cache_release(page);
|
|
}
|
|
obj->dirty = 0;
|
|
|
|
sg_free_table(obj->pages);
|
|
kfree(obj->pages);
|
|
}
|
|
|
|
int
|
|
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
const struct drm_i915_gem_object_ops *ops = obj->ops;
|
|
|
|
if (obj->pages == NULL)
|
|
return 0;
|
|
|
|
if (obj->pages_pin_count)
|
|
return -EBUSY;
|
|
|
|
BUG_ON(i915_gem_obj_bound_any(obj));
|
|
|
|
/* ->put_pages might need to allocate memory for the bit17 swizzle
|
|
* array, hence protect them from being reaped by removing them from gtt
|
|
* lists early. */
|
|
list_del(&obj->global_list);
|
|
|
|
ops->put_pages(obj);
|
|
obj->pages = NULL;
|
|
|
|
i915_gem_object_invalidate(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long
|
|
i915_gem_shrink(struct drm_i915_private *dev_priv,
|
|
long target, unsigned flags)
|
|
{
|
|
const struct {
|
|
struct list_head *list;
|
|
unsigned int bit;
|
|
} phases[] = {
|
|
{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
|
|
{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
|
|
{ NULL, 0 },
|
|
}, *phase;
|
|
unsigned long count = 0;
|
|
|
|
/*
|
|
* As we may completely rewrite the (un)bound list whilst unbinding
|
|
* (due to retiring requests) we have to strictly process only
|
|
* one element of the list at the time, and recheck the list
|
|
* on every iteration.
|
|
*
|
|
* In particular, we must hold a reference whilst removing the
|
|
* object as we may end up waiting for and/or retiring the objects.
|
|
* This might release the final reference (held by the active list)
|
|
* and result in the object being freed from under us. This is
|
|
* similar to the precautions the eviction code must take whilst
|
|
* removing objects.
|
|
*
|
|
* Also note that although these lists do not hold a reference to
|
|
* the object we can safely grab one here: The final object
|
|
* unreferencing and the bound_list are both protected by the
|
|
* dev->struct_mutex and so we won't ever be able to observe an
|
|
* object on the bound_list with a reference count equals 0.
|
|
*/
|
|
for (phase = phases; phase->list; phase++) {
|
|
struct list_head still_in_list;
|
|
|
|
if ((flags & phase->bit) == 0)
|
|
continue;
|
|
|
|
INIT_LIST_HEAD(&still_in_list);
|
|
while (count < target && !list_empty(phase->list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma, *v;
|
|
|
|
obj = list_first_entry(phase->list,
|
|
typeof(*obj), global_list);
|
|
list_move_tail(&obj->global_list, &still_in_list);
|
|
|
|
if (flags & I915_SHRINK_PURGEABLE &&
|
|
!i915_gem_object_is_purgeable(obj))
|
|
continue;
|
|
|
|
drm_gem_object_reference(&obj->base);
|
|
|
|
/* For the unbound phase, this should be a no-op! */
|
|
list_for_each_entry_safe(vma, v,
|
|
&obj->vma_list, vma_link)
|
|
if (i915_vma_unbind(vma))
|
|
break;
|
|
|
|
if (i915_gem_object_put_pages(obj) == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
}
|
|
list_splice(&still_in_list, phase->list);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_evict_everything(dev_priv->dev);
|
|
return i915_gem_shrink(dev_priv, LONG_MAX,
|
|
I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int page_count, i;
|
|
struct address_space *mapping;
|
|
struct sg_table *st;
|
|
struct scatterlist *sg;
|
|
struct sg_page_iter sg_iter;
|
|
struct page *page;
|
|
unsigned long last_pfn = 0; /* suppress gcc warning */
|
|
gfp_t gfp;
|
|
|
|
/* Assert that the object is not currently in any GPU domain. As it
|
|
* wasn't in the GTT, there shouldn't be any way it could have been in
|
|
* a GPU cache
|
|
*/
|
|
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
|
|
|
|
st = kmalloc(sizeof(*st), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return -ENOMEM;
|
|
|
|
page_count = obj->base.size / PAGE_SIZE;
|
|
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
|
|
kfree(st);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get the list of pages out of our struct file. They'll be pinned
|
|
* at this point until we release them.
|
|
*
|
|
* Fail silently without starting the shrinker
|
|
*/
|
|
mapping = file_inode(obj->base.filp)->i_mapping;
|
|
gfp = mapping_gfp_mask(mapping);
|
|
gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
|
|
gfp &= ~(__GFP_IO | __GFP_WAIT);
|
|
sg = st->sgl;
|
|
st->nents = 0;
|
|
for (i = 0; i < page_count; i++) {
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
if (IS_ERR(page)) {
|
|
i915_gem_shrink(dev_priv,
|
|
page_count,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND |
|
|
I915_SHRINK_PURGEABLE);
|
|
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
|
|
}
|
|
if (IS_ERR(page)) {
|
|
/* We've tried hard to allocate the memory by reaping
|
|
* our own buffer, now let the real VM do its job and
|
|
* go down in flames if truly OOM.
|
|
*/
|
|
i915_gem_shrink_all(dev_priv);
|
|
page = shmem_read_mapping_page(mapping, i);
|
|
if (IS_ERR(page))
|
|
goto err_pages;
|
|
}
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (swiotlb_nr_tbl()) {
|
|
st->nents++;
|
|
sg_set_page(sg, page, PAGE_SIZE, 0);
|
|
sg = sg_next(sg);
|
|
continue;
|
|
}
|
|
#endif
|
|
if (!i || page_to_pfn(page) != last_pfn + 1) {
|
|
if (i)
|
|
sg = sg_next(sg);
|
|
st->nents++;
|
|
sg_set_page(sg, page, PAGE_SIZE, 0);
|
|
} else {
|
|
sg->length += PAGE_SIZE;
|
|
}
|
|
last_pfn = page_to_pfn(page);
|
|
|
|
/* Check that the i965g/gm workaround works. */
|
|
WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
|
|
}
|
|
#ifdef CONFIG_SWIOTLB
|
|
if (!swiotlb_nr_tbl())
|
|
#endif
|
|
sg_mark_end(sg);
|
|
obj->pages = st;
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj))
|
|
i915_gem_object_do_bit_17_swizzle(obj);
|
|
|
|
return 0;
|
|
|
|
err_pages:
|
|
sg_mark_end(sg);
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
|
|
page_cache_release(sg_page_iter_page(&sg_iter));
|
|
sg_free_table(st);
|
|
kfree(st);
|
|
|
|
/* shmemfs first checks if there is enough memory to allocate the page
|
|
* and reports ENOSPC should there be insufficient, along with the usual
|
|
* ENOMEM for a genuine allocation failure.
|
|
*
|
|
* We use ENOSPC in our driver to mean that we have run out of aperture
|
|
* space and so want to translate the error from shmemfs back to our
|
|
* usual understanding of ENOMEM.
|
|
*/
|
|
if (PTR_ERR(page) == -ENOSPC)
|
|
return -ENOMEM;
|
|
else
|
|
return PTR_ERR(page);
|
|
}
|
|
|
|
/* Ensure that the associated pages are gathered from the backing storage
|
|
* and pinned into our object. i915_gem_object_get_pages() may be called
|
|
* multiple times before they are released by a single call to
|
|
* i915_gem_object_put_pages() - once the pages are no longer referenced
|
|
* either as a result of memory pressure (reaping pages under the shrinker)
|
|
* or as the object is itself released.
|
|
*/
|
|
int
|
|
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
const struct drm_i915_gem_object_ops *ops = obj->ops;
|
|
int ret;
|
|
|
|
if (obj->pages)
|
|
return 0;
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to obtain a purgeable object\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
BUG_ON(obj->pages_pin_count);
|
|
|
|
ret = ops->get_pages(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
u32 seqno = intel_ring_get_seqno(ring);
|
|
|
|
BUG_ON(ring == NULL);
|
|
if (obj->ring != ring && obj->last_write_seqno) {
|
|
/* Keep the seqno relative to the current ring */
|
|
obj->last_write_seqno = seqno;
|
|
}
|
|
obj->ring = ring;
|
|
|
|
/* Add a reference if we're newly entering the active list. */
|
|
if (!obj->active) {
|
|
drm_gem_object_reference(&obj->base);
|
|
obj->active = 1;
|
|
}
|
|
|
|
list_move_tail(&obj->ring_list, &ring->active_list);
|
|
|
|
obj->last_read_seqno = seqno;
|
|
}
|
|
|
|
void i915_vma_move_to_active(struct i915_vma *vma,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
list_move_tail(&vma->mm_list, &vma->vm->active_list);
|
|
return i915_gem_object_move_to_active(vma->obj, ring);
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct i915_address_space *vm;
|
|
struct i915_vma *vma;
|
|
|
|
BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(!obj->active);
|
|
|
|
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
|
|
vma = i915_gem_obj_to_vma(obj, vm);
|
|
if (vma && !list_empty(&vma->mm_list))
|
|
list_move_tail(&vma->mm_list, &vm->inactive_list);
|
|
}
|
|
|
|
intel_fb_obj_flush(obj, true);
|
|
|
|
list_del_init(&obj->ring_list);
|
|
obj->ring = NULL;
|
|
|
|
obj->last_read_seqno = 0;
|
|
obj->last_write_seqno = 0;
|
|
obj->base.write_domain = 0;
|
|
|
|
obj->last_fenced_seqno = 0;
|
|
|
|
obj->active = 0;
|
|
drm_gem_object_unreference(&obj->base);
|
|
|
|
WARN_ON(i915_verify_lists(dev));
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_retire(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct intel_engine_cs *ring = obj->ring;
|
|
|
|
if (ring == NULL)
|
|
return;
|
|
|
|
if (i915_seqno_passed(ring->get_seqno(ring, true),
|
|
obj->last_read_seqno))
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
static int
|
|
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int ret, i, j;
|
|
|
|
/* Carefully retire all requests without writing to the rings */
|
|
for_each_ring(ring, dev_priv, i) {
|
|
ret = intel_ring_idle(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
i915_gem_retire_requests(dev);
|
|
|
|
/* Finally reset hw state */
|
|
for_each_ring(ring, dev_priv, i) {
|
|
intel_ring_init_seqno(ring, seqno);
|
|
|
|
for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
|
|
ring->semaphore.sync_seqno[j] = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (seqno == 0)
|
|
return -EINVAL;
|
|
|
|
/* HWS page needs to be set less than what we
|
|
* will inject to ring
|
|
*/
|
|
ret = i915_gem_init_seqno(dev, seqno - 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Carefully set the last_seqno value so that wrap
|
|
* detection still works
|
|
*/
|
|
dev_priv->next_seqno = seqno;
|
|
dev_priv->last_seqno = seqno - 1;
|
|
if (dev_priv->last_seqno == 0)
|
|
dev_priv->last_seqno--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* reserve 0 for non-seqno */
|
|
if (dev_priv->next_seqno == 0) {
|
|
int ret = i915_gem_init_seqno(dev, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_priv->next_seqno = 1;
|
|
}
|
|
|
|
*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
|
|
return 0;
|
|
}
|
|
|
|
int __i915_add_request(struct intel_engine_cs *ring,
|
|
struct drm_file *file,
|
|
struct drm_i915_gem_object *obj,
|
|
u32 *out_seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
struct drm_i915_gem_request *request;
|
|
struct intel_ringbuffer *ringbuf;
|
|
u32 request_ring_position, request_start;
|
|
int ret;
|
|
|
|
request = ring->preallocated_lazy_request;
|
|
if (WARN_ON(request == NULL))
|
|
return -ENOMEM;
|
|
|
|
if (i915.enable_execlists) {
|
|
struct intel_context *ctx = request->ctx;
|
|
ringbuf = ctx->engine[ring->id].ringbuf;
|
|
} else
|
|
ringbuf = ring->buffer;
|
|
|
|
request_start = intel_ring_get_tail(ringbuf);
|
|
/*
|
|
* Emit any outstanding flushes - execbuf can fail to emit the flush
|
|
* after having emitted the batchbuffer command. Hence we need to fix
|
|
* things up similar to emitting the lazy request. The difference here
|
|
* is that the flush _must_ happen before the next request, no matter
|
|
* what.
|
|
*/
|
|
if (i915.enable_execlists) {
|
|
ret = logical_ring_flush_all_caches(ringbuf);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
ret = intel_ring_flush_all_caches(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Record the position of the start of the request so that
|
|
* should we detect the updated seqno part-way through the
|
|
* GPU processing the request, we never over-estimate the
|
|
* position of the head.
|
|
*/
|
|
request_ring_position = intel_ring_get_tail(ringbuf);
|
|
|
|
if (i915.enable_execlists) {
|
|
ret = ring->emit_request(ringbuf);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
ret = ring->add_request(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
request->seqno = intel_ring_get_seqno(ring);
|
|
request->ring = ring;
|
|
request->head = request_start;
|
|
request->tail = request_ring_position;
|
|
|
|
/* Whilst this request exists, batch_obj will be on the
|
|
* active_list, and so will hold the active reference. Only when this
|
|
* request is retired will the the batch_obj be moved onto the
|
|
* inactive_list and lose its active reference. Hence we do not need
|
|
* to explicitly hold another reference here.
|
|
*/
|
|
request->batch_obj = obj;
|
|
|
|
if (!i915.enable_execlists) {
|
|
/* Hold a reference to the current context so that we can inspect
|
|
* it later in case a hangcheck error event fires.
|
|
*/
|
|
request->ctx = ring->last_context;
|
|
if (request->ctx)
|
|
i915_gem_context_reference(request->ctx);
|
|
}
|
|
|
|
request->emitted_jiffies = jiffies;
|
|
list_add_tail(&request->list, &ring->request_list);
|
|
request->file_priv = NULL;
|
|
|
|
if (file) {
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
request->file_priv = file_priv;
|
|
list_add_tail(&request->client_list,
|
|
&file_priv->mm.request_list);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
trace_i915_gem_request_add(ring, request->seqno);
|
|
ring->outstanding_lazy_seqno = 0;
|
|
ring->preallocated_lazy_request = NULL;
|
|
|
|
if (!dev_priv->ums.mm_suspended) {
|
|
i915_queue_hangcheck(ring->dev);
|
|
|
|
cancel_delayed_work_sync(&dev_priv->mm.idle_work);
|
|
queue_delayed_work(dev_priv->wq,
|
|
&dev_priv->mm.retire_work,
|
|
round_jiffies_up_relative(HZ));
|
|
intel_mark_busy(dev_priv->dev);
|
|
}
|
|
|
|
if (out_seqno)
|
|
*out_seqno = request->seqno;
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
|
|
{
|
|
struct drm_i915_file_private *file_priv = request->file_priv;
|
|
|
|
if (!file_priv)
|
|
return;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
|
|
const struct intel_context *ctx)
|
|
{
|
|
unsigned long elapsed;
|
|
|
|
elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
|
|
|
|
if (ctx->hang_stats.banned)
|
|
return true;
|
|
|
|
if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
|
|
if (!i915_gem_context_is_default(ctx)) {
|
|
DRM_DEBUG("context hanging too fast, banning!\n");
|
|
return true;
|
|
} else if (i915_stop_ring_allow_ban(dev_priv)) {
|
|
if (i915_stop_ring_allow_warn(dev_priv))
|
|
DRM_ERROR("gpu hanging too fast, banning!\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
|
|
struct intel_context *ctx,
|
|
const bool guilty)
|
|
{
|
|
struct i915_ctx_hang_stats *hs;
|
|
|
|
if (WARN_ON(!ctx))
|
|
return;
|
|
|
|
hs = &ctx->hang_stats;
|
|
|
|
if (guilty) {
|
|
hs->banned = i915_context_is_banned(dev_priv, ctx);
|
|
hs->batch_active++;
|
|
hs->guilty_ts = get_seconds();
|
|
} else {
|
|
hs->batch_pending++;
|
|
}
|
|
}
|
|
|
|
static void i915_gem_free_request(struct drm_i915_gem_request *request)
|
|
{
|
|
list_del(&request->list);
|
|
i915_gem_request_remove_from_client(request);
|
|
|
|
if (request->ctx)
|
|
i915_gem_context_unreference(request->ctx);
|
|
|
|
kfree(request);
|
|
}
|
|
|
|
struct drm_i915_gem_request *
|
|
i915_gem_find_active_request(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
u32 completed_seqno;
|
|
|
|
completed_seqno = ring->get_seqno(ring, false);
|
|
|
|
list_for_each_entry(request, &ring->request_list, list) {
|
|
if (i915_seqno_passed(completed_seqno, request->seqno))
|
|
continue;
|
|
|
|
return request;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_gem_request *request;
|
|
bool ring_hung;
|
|
|
|
request = i915_gem_find_active_request(ring);
|
|
|
|
if (request == NULL)
|
|
return;
|
|
|
|
ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
|
|
|
|
i915_set_reset_status(dev_priv, request->ctx, ring_hung);
|
|
|
|
list_for_each_entry_continue(request, &ring->request_list, list)
|
|
i915_set_reset_status(dev_priv, request->ctx, false);
|
|
}
|
|
|
|
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
while (!list_empty(&ring->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = list_first_entry(&ring->active_list,
|
|
struct drm_i915_gem_object,
|
|
ring_list);
|
|
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
/*
|
|
* We must free the requests after all the corresponding objects have
|
|
* been moved off active lists. Which is the same order as the normal
|
|
* retire_requests function does. This is important if object hold
|
|
* implicit references on things like e.g. ppgtt address spaces through
|
|
* the request.
|
|
*/
|
|
while (!list_empty(&ring->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&ring->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
i915_gem_free_request(request);
|
|
}
|
|
|
|
while (!list_empty(&ring->execlist_queue)) {
|
|
struct intel_ctx_submit_request *submit_req;
|
|
|
|
submit_req = list_first_entry(&ring->execlist_queue,
|
|
struct intel_ctx_submit_request,
|
|
execlist_link);
|
|
list_del(&submit_req->execlist_link);
|
|
intel_runtime_pm_put(dev_priv);
|
|
i915_gem_context_unreference(submit_req->ctx);
|
|
kfree(submit_req);
|
|
}
|
|
|
|
/* These may not have been flush before the reset, do so now */
|
|
kfree(ring->preallocated_lazy_request);
|
|
ring->preallocated_lazy_request = NULL;
|
|
ring->outstanding_lazy_seqno = 0;
|
|
}
|
|
|
|
void i915_gem_restore_fences(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
for (i = 0; i < dev_priv->num_fence_regs; i++) {
|
|
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
|
|
|
|
/*
|
|
* Commit delayed tiling changes if we have an object still
|
|
* attached to the fence, otherwise just clear the fence.
|
|
*/
|
|
if (reg->obj) {
|
|
i915_gem_object_update_fence(reg->obj, reg,
|
|
reg->obj->tiling_mode);
|
|
} else {
|
|
i915_gem_write_fence(dev, i, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
void i915_gem_reset(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int i;
|
|
|
|
/*
|
|
* Before we free the objects from the requests, we need to inspect
|
|
* them for finding the guilty party. As the requests only borrow
|
|
* their reference to the objects, the inspection must be done first.
|
|
*/
|
|
for_each_ring(ring, dev_priv, i)
|
|
i915_gem_reset_ring_status(dev_priv, ring);
|
|
|
|
for_each_ring(ring, dev_priv, i)
|
|
i915_gem_reset_ring_cleanup(dev_priv, ring);
|
|
|
|
i915_gem_context_reset(dev);
|
|
|
|
i915_gem_restore_fences(dev);
|
|
}
|
|
|
|
/**
|
|
* This function clears the request list as sequence numbers are passed.
|
|
*/
|
|
void
|
|
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
|
|
{
|
|
uint32_t seqno;
|
|
|
|
if (list_empty(&ring->request_list))
|
|
return;
|
|
|
|
WARN_ON(i915_verify_lists(ring->dev));
|
|
|
|
seqno = ring->get_seqno(ring, true);
|
|
|
|
/* Move any buffers on the active list that are no longer referenced
|
|
* by the ringbuffer to the flushing/inactive lists as appropriate,
|
|
* before we free the context associated with the requests.
|
|
*/
|
|
while (!list_empty(&ring->active_list)) {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = list_first_entry(&ring->active_list,
|
|
struct drm_i915_gem_object,
|
|
ring_list);
|
|
|
|
if (!i915_seqno_passed(seqno, obj->last_read_seqno))
|
|
break;
|
|
|
|
i915_gem_object_move_to_inactive(obj);
|
|
}
|
|
|
|
|
|
while (!list_empty(&ring->request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
struct intel_ringbuffer *ringbuf;
|
|
|
|
request = list_first_entry(&ring->request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
if (!i915_seqno_passed(seqno, request->seqno))
|
|
break;
|
|
|
|
trace_i915_gem_request_retire(ring, request->seqno);
|
|
|
|
/* This is one of the few common intersection points
|
|
* between legacy ringbuffer submission and execlists:
|
|
* we need to tell them apart in order to find the correct
|
|
* ringbuffer to which the request belongs to.
|
|
*/
|
|
if (i915.enable_execlists) {
|
|
struct intel_context *ctx = request->ctx;
|
|
ringbuf = ctx->engine[ring->id].ringbuf;
|
|
} else
|
|
ringbuf = ring->buffer;
|
|
|
|
/* We know the GPU must have read the request to have
|
|
* sent us the seqno + interrupt, so use the position
|
|
* of tail of the request to update the last known position
|
|
* of the GPU head.
|
|
*/
|
|
ringbuf->last_retired_head = request->tail;
|
|
|
|
i915_gem_free_request(request);
|
|
}
|
|
|
|
if (unlikely(ring->trace_irq_seqno &&
|
|
i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
|
|
ring->irq_put(ring);
|
|
ring->trace_irq_seqno = 0;
|
|
}
|
|
|
|
WARN_ON(i915_verify_lists(ring->dev));
|
|
}
|
|
|
|
bool
|
|
i915_gem_retire_requests(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
bool idle = true;
|
|
int i;
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
i915_gem_retire_requests_ring(ring);
|
|
idle &= list_empty(&ring->request_list);
|
|
}
|
|
|
|
if (idle)
|
|
mod_delayed_work(dev_priv->wq,
|
|
&dev_priv->mm.idle_work,
|
|
msecs_to_jiffies(100));
|
|
|
|
return idle;
|
|
}
|
|
|
|
static void
|
|
i915_gem_retire_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), mm.retire_work.work);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
bool idle;
|
|
|
|
/* Come back later if the device is busy... */
|
|
idle = false;
|
|
if (mutex_trylock(&dev->struct_mutex)) {
|
|
idle = i915_gem_retire_requests(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
if (!idle)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
|
|
round_jiffies_up_relative(HZ));
|
|
}
|
|
|
|
static void
|
|
i915_gem_idle_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), mm.idle_work.work);
|
|
|
|
intel_mark_idle(dev_priv->dev);
|
|
}
|
|
|
|
/**
|
|
* Ensures that an object will eventually get non-busy by flushing any required
|
|
* write domains, emitting any outstanding lazy request and retiring and
|
|
* completed requests.
|
|
*/
|
|
static int
|
|
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
|
|
{
|
|
int ret;
|
|
|
|
if (obj->active) {
|
|
ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_retire_requests_ring(obj->ring);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
|
|
* @DRM_IOCTL_ARGS: standard ioctl arguments
|
|
*
|
|
* Returns 0 if successful, else an error is returned with the remaining time in
|
|
* the timeout parameter.
|
|
* -ETIME: object is still busy after timeout
|
|
* -ERESTARTSYS: signal interrupted the wait
|
|
* -ENONENT: object doesn't exist
|
|
* Also possible, but rare:
|
|
* -EAGAIN: GPU wedged
|
|
* -ENOMEM: damn
|
|
* -ENODEV: Internal IRQ fail
|
|
* -E?: The add request failed
|
|
*
|
|
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
|
|
* non-zero timeout parameter the wait ioctl will wait for the given number of
|
|
* nanoseconds on an object becoming unbusy. Since the wait itself does so
|
|
* without holding struct_mutex the object may become re-busied before this
|
|
* function completes. A similar but shorter * race condition exists in the busy
|
|
* ioctl
|
|
*/
|
|
int
|
|
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_wait *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
struct intel_engine_cs *ring = NULL;
|
|
unsigned reset_counter;
|
|
u32 seqno = 0;
|
|
int ret = 0;
|
|
|
|
if (args->flags != 0)
|
|
return -EINVAL;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
|
|
if (&obj->base == NULL) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Need to make sure the object gets inactive eventually. */
|
|
ret = i915_gem_object_flush_active(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (obj->active) {
|
|
seqno = obj->last_read_seqno;
|
|
ring = obj->ring;
|
|
}
|
|
|
|
if (seqno == 0)
|
|
goto out;
|
|
|
|
/* Do this after OLR check to make sure we make forward progress polling
|
|
* on this IOCTL with a timeout <=0 (like busy ioctl)
|
|
*/
|
|
if (args->timeout_ns <= 0) {
|
|
ret = -ETIME;
|
|
goto out;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
|
|
file->driver_priv);
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_sync - sync an object to a ring.
|
|
*
|
|
* @obj: object which may be in use on another ring.
|
|
* @to: ring we wish to use the object on. May be NULL.
|
|
*
|
|
* This code is meant to abstract object synchronization with the GPU.
|
|
* Calling with NULL implies synchronizing the object with the CPU
|
|
* rather than a particular GPU ring.
|
|
*
|
|
* Returns 0 if successful, else propagates up the lower layer error.
|
|
*/
|
|
int
|
|
i915_gem_object_sync(struct drm_i915_gem_object *obj,
|
|
struct intel_engine_cs *to)
|
|
{
|
|
struct intel_engine_cs *from = obj->ring;
|
|
u32 seqno;
|
|
int ret, idx;
|
|
|
|
if (from == NULL || to == from)
|
|
return 0;
|
|
|
|
if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
|
|
return i915_gem_object_wait_rendering(obj, false);
|
|
|
|
idx = intel_ring_sync_index(from, to);
|
|
|
|
seqno = obj->last_read_seqno;
|
|
/* Optimization: Avoid semaphore sync when we are sure we already
|
|
* waited for an object with higher seqno */
|
|
if (seqno <= from->semaphore.sync_seqno[idx])
|
|
return 0;
|
|
|
|
ret = i915_gem_check_olr(obj->ring, seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trace_i915_gem_ring_sync_to(from, to, seqno);
|
|
ret = to->semaphore.sync_to(to, from, seqno);
|
|
if (!ret)
|
|
/* We use last_read_seqno because sync_to()
|
|
* might have just caused seqno wrap under
|
|
* the radar.
|
|
*/
|
|
from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
u32 old_write_domain, old_read_domains;
|
|
|
|
/* Force a pagefault for domain tracking on next user access */
|
|
i915_gem_release_mmap(obj);
|
|
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
|
|
return;
|
|
|
|
/* Wait for any direct GTT access to complete */
|
|
mb();
|
|
|
|
old_read_domains = obj->base.read_domains;
|
|
old_write_domain = obj->base.write_domain;
|
|
|
|
obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
int i915_vma_unbind(struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int ret;
|
|
|
|
if (list_empty(&vma->vma_link))
|
|
return 0;
|
|
|
|
if (!drm_mm_node_allocated(&vma->node)) {
|
|
i915_gem_vma_destroy(vma);
|
|
return 0;
|
|
}
|
|
|
|
if (vma->pin_count)
|
|
return -EBUSY;
|
|
|
|
BUG_ON(obj->pages == NULL);
|
|
|
|
ret = i915_gem_object_finish_gpu(obj);
|
|
if (ret)
|
|
return ret;
|
|
/* Continue on if we fail due to EIO, the GPU is hung so we
|
|
* should be safe and we need to cleanup or else we might
|
|
* cause memory corruption through use-after-free.
|
|
*/
|
|
|
|
/* Throw away the active reference before moving to the unbound list */
|
|
i915_gem_object_retire(obj);
|
|
|
|
if (i915_is_ggtt(vma->vm)) {
|
|
i915_gem_object_finish_gtt(obj);
|
|
|
|
/* release the fence reg _after_ flushing */
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
trace_i915_vma_unbind(vma);
|
|
|
|
vma->unbind_vma(vma);
|
|
|
|
list_del_init(&vma->mm_list);
|
|
if (i915_is_ggtt(vma->vm))
|
|
obj->map_and_fenceable = false;
|
|
|
|
drm_mm_remove_node(&vma->node);
|
|
i915_gem_vma_destroy(vma);
|
|
|
|
/* Since the unbound list is global, only move to that list if
|
|
* no more VMAs exist. */
|
|
if (list_empty(&obj->vma_list)) {
|
|
i915_gem_gtt_finish_object(obj);
|
|
list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
|
|
}
|
|
|
|
/* And finally now the object is completely decoupled from this vma,
|
|
* we can drop its hold on the backing storage and allow it to be
|
|
* reaped by the shrinker.
|
|
*/
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gpu_idle(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int ret, i;
|
|
|
|
/* Flush everything onto the inactive list. */
|
|
for_each_ring(ring, dev_priv, i) {
|
|
if (!i915.enable_execlists) {
|
|
ret = i915_switch_context(ring, ring->default_context);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = intel_ring_idle(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i965_write_fence_reg(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int fence_reg;
|
|
int fence_pitch_shift;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6) {
|
|
fence_reg = FENCE_REG_SANDYBRIDGE_0;
|
|
fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
|
|
} else {
|
|
fence_reg = FENCE_REG_965_0;
|
|
fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
|
|
}
|
|
|
|
fence_reg += reg * 8;
|
|
|
|
/* To w/a incoherency with non-atomic 64-bit register updates,
|
|
* we split the 64-bit update into two 32-bit writes. In order
|
|
* for a partial fence not to be evaluated between writes, we
|
|
* precede the update with write to turn off the fence register,
|
|
* and only enable the fence as the last step.
|
|
*
|
|
* For extra levels of paranoia, we make sure each step lands
|
|
* before applying the next step.
|
|
*/
|
|
I915_WRITE(fence_reg, 0);
|
|
POSTING_READ(fence_reg);
|
|
|
|
if (obj) {
|
|
u32 size = i915_gem_obj_ggtt_size(obj);
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
|
|
0xfffff000) << 32;
|
|
val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
|
|
val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
|
|
val |= I965_FENCE_REG_VALID;
|
|
|
|
I915_WRITE(fence_reg + 4, val >> 32);
|
|
POSTING_READ(fence_reg + 4);
|
|
|
|
I915_WRITE(fence_reg + 0, val);
|
|
POSTING_READ(fence_reg);
|
|
} else {
|
|
I915_WRITE(fence_reg + 4, 0);
|
|
POSTING_READ(fence_reg + 4);
|
|
}
|
|
}
|
|
|
|
static void i915_write_fence_reg(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 val;
|
|
|
|
if (obj) {
|
|
u32 size = i915_gem_obj_ggtt_size(obj);
|
|
int pitch_val;
|
|
int tile_width;
|
|
|
|
WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
|
|
(size & -size) != size ||
|
|
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
|
|
"object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
|
|
i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
|
|
|
|
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
|
|
tile_width = 128;
|
|
else
|
|
tile_width = 512;
|
|
|
|
/* Note: pitch better be a power of two tile widths */
|
|
pitch_val = obj->stride / tile_width;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = i915_gem_obj_ggtt_offset(obj);
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I915_FENCE_SIZE_BITS(size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
} else
|
|
val = 0;
|
|
|
|
if (reg < 8)
|
|
reg = FENCE_REG_830_0 + reg * 4;
|
|
else
|
|
reg = FENCE_REG_945_8 + (reg - 8) * 4;
|
|
|
|
I915_WRITE(reg, val);
|
|
POSTING_READ(reg);
|
|
}
|
|
|
|
static void i830_write_fence_reg(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t val;
|
|
|
|
if (obj) {
|
|
u32 size = i915_gem_obj_ggtt_size(obj);
|
|
uint32_t pitch_val;
|
|
|
|
WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
|
|
(size & -size) != size ||
|
|
(i915_gem_obj_ggtt_offset(obj) & (size - 1)),
|
|
"object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
|
|
i915_gem_obj_ggtt_offset(obj), size);
|
|
|
|
pitch_val = obj->stride / 128;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = i915_gem_obj_ggtt_offset(obj);
|
|
if (obj->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I830_FENCE_SIZE_BITS(size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
} else
|
|
val = 0;
|
|
|
|
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
|
|
POSTING_READ(FENCE_REG_830_0 + reg * 4);
|
|
}
|
|
|
|
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
|
|
{
|
|
return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
|
|
}
|
|
|
|
static void i915_gem_write_fence(struct drm_device *dev, int reg,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* Ensure that all CPU reads are completed before installing a fence
|
|
* and all writes before removing the fence.
|
|
*/
|
|
if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
|
|
mb();
|
|
|
|
WARN(obj && (!obj->stride || !obj->tiling_mode),
|
|
"bogus fence setup with stride: 0x%x, tiling mode: %i\n",
|
|
obj->stride, obj->tiling_mode);
|
|
|
|
switch (INTEL_INFO(dev)->gen) {
|
|
case 9:
|
|
case 8:
|
|
case 7:
|
|
case 6:
|
|
case 5:
|
|
case 4: i965_write_fence_reg(dev, reg, obj); break;
|
|
case 3: i915_write_fence_reg(dev, reg, obj); break;
|
|
case 2: i830_write_fence_reg(dev, reg, obj); break;
|
|
default: BUG();
|
|
}
|
|
|
|
/* And similarly be paranoid that no direct access to this region
|
|
* is reordered to before the fence is installed.
|
|
*/
|
|
if (i915_gem_object_needs_mb(obj))
|
|
mb();
|
|
}
|
|
|
|
static inline int fence_number(struct drm_i915_private *dev_priv,
|
|
struct drm_i915_fence_reg *fence)
|
|
{
|
|
return fence - dev_priv->fence_regs;
|
|
}
|
|
|
|
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_fence_reg *fence,
|
|
bool enable)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
int reg = fence_number(dev_priv, fence);
|
|
|
|
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
|
|
|
|
if (enable) {
|
|
obj->fence_reg = reg;
|
|
fence->obj = obj;
|
|
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
|
|
} else {
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
fence->obj = NULL;
|
|
list_del_init(&fence->lru_list);
|
|
}
|
|
obj->fence_dirty = false;
|
|
}
|
|
|
|
static int
|
|
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->last_fenced_seqno) {
|
|
int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj->last_fenced_seqno = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct drm_i915_fence_reg *fence;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_wait_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (obj->fence_reg == I915_FENCE_REG_NONE)
|
|
return 0;
|
|
|
|
fence = &dev_priv->fence_regs[obj->fence_reg];
|
|
|
|
if (WARN_ON(fence->pin_count))
|
|
return -EBUSY;
|
|
|
|
i915_gem_object_fence_lost(obj);
|
|
i915_gem_object_update_fence(obj, fence, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct drm_i915_fence_reg *
|
|
i915_find_fence_reg(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_fence_reg *reg, *avail;
|
|
int i;
|
|
|
|
/* First try to find a free reg */
|
|
avail = NULL;
|
|
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
|
|
reg = &dev_priv->fence_regs[i];
|
|
if (!reg->obj)
|
|
return reg;
|
|
|
|
if (!reg->pin_count)
|
|
avail = reg;
|
|
}
|
|
|
|
if (avail == NULL)
|
|
goto deadlock;
|
|
|
|
/* None available, try to steal one or wait for a user to finish */
|
|
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
|
|
if (reg->pin_count)
|
|
continue;
|
|
|
|
return reg;
|
|
}
|
|
|
|
deadlock:
|
|
/* Wait for completion of pending flips which consume fences */
|
|
if (intel_has_pending_fb_unpin(dev))
|
|
return ERR_PTR(-EAGAIN);
|
|
|
|
return ERR_PTR(-EDEADLK);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_get_fence - set up fencing for an object
|
|
* @obj: object to map through a fence reg
|
|
*
|
|
* When mapping objects through the GTT, userspace wants to be able to write
|
|
* to them without having to worry about swizzling if the object is tiled.
|
|
* This function walks the fence regs looking for a free one for @obj,
|
|
* stealing one if it can't find any.
|
|
*
|
|
* It then sets up the reg based on the object's properties: address, pitch
|
|
* and tiling format.
|
|
*
|
|
* For an untiled surface, this removes any existing fence.
|
|
*/
|
|
int
|
|
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool enable = obj->tiling_mode != I915_TILING_NONE;
|
|
struct drm_i915_fence_reg *reg;
|
|
int ret;
|
|
|
|
/* Have we updated the tiling parameters upon the object and so
|
|
* will need to serialise the write to the associated fence register?
|
|
*/
|
|
if (obj->fence_dirty) {
|
|
ret = i915_gem_object_wait_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Just update our place in the LRU if our fence is getting reused. */
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE) {
|
|
reg = &dev_priv->fence_regs[obj->fence_reg];
|
|
if (!obj->fence_dirty) {
|
|
list_move_tail(®->lru_list,
|
|
&dev_priv->mm.fence_list);
|
|
return 0;
|
|
}
|
|
} else if (enable) {
|
|
if (WARN_ON(!obj->map_and_fenceable))
|
|
return -EINVAL;
|
|
|
|
reg = i915_find_fence_reg(dev);
|
|
if (IS_ERR(reg))
|
|
return PTR_ERR(reg);
|
|
|
|
if (reg->obj) {
|
|
struct drm_i915_gem_object *old = reg->obj;
|
|
|
|
ret = i915_gem_object_wait_fence(old);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_fence_lost(old);
|
|
}
|
|
} else
|
|
return 0;
|
|
|
|
i915_gem_object_update_fence(obj, reg, enable);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
|
|
unsigned long cache_level)
|
|
{
|
|
struct drm_mm_node *gtt_space = &vma->node;
|
|
struct drm_mm_node *other;
|
|
|
|
/*
|
|
* On some machines we have to be careful when putting differing types
|
|
* of snoopable memory together to avoid the prefetcher crossing memory
|
|
* domains and dying. During vm initialisation, we decide whether or not
|
|
* these constraints apply and set the drm_mm.color_adjust
|
|
* appropriately.
|
|
*/
|
|
if (vma->vm->mm.color_adjust == NULL)
|
|
return true;
|
|
|
|
if (!drm_mm_node_allocated(gtt_space))
|
|
return true;
|
|
|
|
if (list_empty(>t_space->node_list))
|
|
return true;
|
|
|
|
other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
|
|
if (other->allocated && !other->hole_follows && other->color != cache_level)
|
|
return false;
|
|
|
|
other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
|
|
if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Finds free space in the GTT aperture and binds the object there.
|
|
*/
|
|
static struct i915_vma *
|
|
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
unsigned alignment,
|
|
uint64_t flags)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 size, fence_size, fence_alignment, unfenced_alignment;
|
|
unsigned long start =
|
|
flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
|
|
unsigned long end =
|
|
flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
fence_size = i915_gem_get_gtt_size(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode);
|
|
fence_alignment = i915_gem_get_gtt_alignment(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode, true);
|
|
unfenced_alignment =
|
|
i915_gem_get_gtt_alignment(dev,
|
|
obj->base.size,
|
|
obj->tiling_mode, false);
|
|
|
|
if (alignment == 0)
|
|
alignment = flags & PIN_MAPPABLE ? fence_alignment :
|
|
unfenced_alignment;
|
|
if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
|
|
DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
|
|
|
|
/* If the object is bigger than the entire aperture, reject it early
|
|
* before evicting everything in a vain attempt to find space.
|
|
*/
|
|
if (obj->base.size > end) {
|
|
DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
|
|
obj->base.size,
|
|
flags & PIN_MAPPABLE ? "mappable" : "total",
|
|
end);
|
|
return ERR_PTR(-E2BIG);
|
|
}
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
|
|
if (IS_ERR(vma))
|
|
goto err_unpin;
|
|
|
|
search_free:
|
|
ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
|
|
size, alignment,
|
|
obj->cache_level,
|
|
start, end,
|
|
DRM_MM_SEARCH_DEFAULT,
|
|
DRM_MM_CREATE_DEFAULT);
|
|
if (ret) {
|
|
ret = i915_gem_evict_something(dev, vm, size, alignment,
|
|
obj->cache_level,
|
|
start, end,
|
|
flags);
|
|
if (ret == 0)
|
|
goto search_free;
|
|
|
|
goto err_free_vma;
|
|
}
|
|
if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
|
|
ret = -EINVAL;
|
|
goto err_remove_node;
|
|
}
|
|
|
|
ret = i915_gem_gtt_prepare_object(obj);
|
|
if (ret)
|
|
goto err_remove_node;
|
|
|
|
list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
|
|
list_add_tail(&vma->mm_list, &vm->inactive_list);
|
|
|
|
if (i915_is_ggtt(vm)) {
|
|
bool mappable, fenceable;
|
|
|
|
fenceable = (vma->node.size == fence_size &&
|
|
(vma->node.start & (fence_alignment - 1)) == 0);
|
|
|
|
mappable = (vma->node.start + obj->base.size <=
|
|
dev_priv->gtt.mappable_end);
|
|
|
|
obj->map_and_fenceable = mappable && fenceable;
|
|
}
|
|
|
|
WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
|
|
|
|
trace_i915_vma_bind(vma, flags);
|
|
vma->bind_vma(vma, obj->cache_level,
|
|
flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
|
|
|
|
return vma;
|
|
|
|
err_remove_node:
|
|
drm_mm_remove_node(&vma->node);
|
|
err_free_vma:
|
|
i915_gem_vma_destroy(vma);
|
|
vma = ERR_PTR(ret);
|
|
err_unpin:
|
|
i915_gem_object_unpin_pages(obj);
|
|
return vma;
|
|
}
|
|
|
|
bool
|
|
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
|
|
bool force)
|
|
{
|
|
/* If we don't have a page list set up, then we're not pinned
|
|
* to GPU, and we can ignore the cache flush because it'll happen
|
|
* again at bind time.
|
|
*/
|
|
if (obj->pages == NULL)
|
|
return false;
|
|
|
|
/*
|
|
* Stolen memory is always coherent with the GPU as it is explicitly
|
|
* marked as wc by the system, or the system is cache-coherent.
|
|
*/
|
|
if (obj->stolen)
|
|
return false;
|
|
|
|
/* If the GPU is snooping the contents of the CPU cache,
|
|
* we do not need to manually clear the CPU cache lines. However,
|
|
* the caches are only snooped when the render cache is
|
|
* flushed/invalidated. As we always have to emit invalidations
|
|
* and flushes when moving into and out of the RENDER domain, correct
|
|
* snooping behaviour occurs naturally as the result of our domain
|
|
* tracking.
|
|
*/
|
|
if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
|
|
return false;
|
|
|
|
trace_i915_gem_object_clflush(obj);
|
|
drm_clflush_sg(obj->pages);
|
|
|
|
return true;
|
|
}
|
|
|
|
/** Flushes the GTT write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
|
|
return;
|
|
|
|
/* No actual flushing is required for the GTT write domain. Writes
|
|
* to it immediately go to main memory as far as we know, so there's
|
|
* no chipset flush. It also doesn't land in render cache.
|
|
*
|
|
* However, we do have to enforce the order so that all writes through
|
|
* the GTT land before any writes to the device, such as updates to
|
|
* the GATT itself.
|
|
*/
|
|
wmb();
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
intel_fb_obj_flush(obj, false);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/** Flushes the CPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
|
|
bool force)
|
|
{
|
|
uint32_t old_write_domain;
|
|
|
|
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
|
|
return;
|
|
|
|
if (i915_gem_clflush_object(obj, force))
|
|
i915_gem_chipset_flush(obj->base.dev);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
obj->base.write_domain = 0;
|
|
|
|
intel_fb_obj_flush(obj, false);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
obj->base.read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the GTT read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
/* Not valid to be called on unbound objects. */
|
|
if (vma == NULL)
|
|
return -EINVAL;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, !write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
i915_gem_object_flush_cpu_write_domain(obj, false);
|
|
|
|
/* Serialise direct access to this object with the barriers for
|
|
* coherent writes from the GPU, by effectively invalidating the
|
|
* GTT domain upon first access.
|
|
*/
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
|
|
mb();
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
|
|
obj->dirty = 1;
|
|
}
|
|
|
|
if (write)
|
|
intel_fb_obj_invalidate(obj, NULL);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
/* And bump the LRU for this access */
|
|
if (i915_gem_object_is_inactive(obj))
|
|
list_move_tail(&vma->mm_list,
|
|
&dev_priv->gtt.base.inactive_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct i915_vma *vma, *next;
|
|
int ret;
|
|
|
|
if (obj->cache_level == cache_level)
|
|
return 0;
|
|
|
|
if (i915_gem_obj_is_pinned(obj)) {
|
|
DRM_DEBUG("can not change the cache level of pinned objects\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
|
|
if (!i915_gem_valid_gtt_space(vma, cache_level)) {
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (i915_gem_obj_bound_any(obj)) {
|
|
ret = i915_gem_object_finish_gpu(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_finish_gtt(obj);
|
|
|
|
/* Before SandyBridge, you could not use tiling or fence
|
|
* registers with snooped memory, so relinquish any fences
|
|
* currently pointing to our region in the aperture.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 6) {
|
|
ret = i915_gem_object_put_fence(obj);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link)
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
vma->bind_vma(vma, cache_level,
|
|
vma->bound & GLOBAL_BIND);
|
|
}
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link)
|
|
vma->node.color = cache_level;
|
|
obj->cache_level = cache_level;
|
|
|
|
if (cpu_write_needs_clflush(obj)) {
|
|
u32 old_read_domains, old_write_domain;
|
|
|
|
/* If we're coming from LLC cached, then we haven't
|
|
* actually been tracking whether the data is in the
|
|
* CPU cache or not, since we only allow one bit set
|
|
* in obj->write_domain and have been skipping the clflushes.
|
|
* Just set it to the CPU cache for now.
|
|
*/
|
|
i915_gem_object_retire(obj);
|
|
WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
|
|
|
|
old_read_domains = obj->base.read_domains;
|
|
old_write_domain = obj->base.write_domain;
|
|
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
switch (obj->cache_level) {
|
|
case I915_CACHE_LLC:
|
|
case I915_CACHE_L3_LLC:
|
|
args->caching = I915_CACHING_CACHED;
|
|
break;
|
|
|
|
case I915_CACHE_WT:
|
|
args->caching = I915_CACHING_DISPLAY;
|
|
break;
|
|
|
|
default:
|
|
args->caching = I915_CACHING_NONE;
|
|
break;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_caching *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
enum i915_cache_level level;
|
|
int ret;
|
|
|
|
switch (args->caching) {
|
|
case I915_CACHING_NONE:
|
|
level = I915_CACHE_NONE;
|
|
break;
|
|
case I915_CACHING_CACHED:
|
|
level = I915_CACHE_LLC;
|
|
break;
|
|
case I915_CACHING_DISPLAY:
|
|
level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cache_level(obj, level);
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static bool is_pin_display(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
vma = i915_gem_obj_to_ggtt(obj);
|
|
if (!vma)
|
|
return false;
|
|
|
|
/* There are 3 sources that pin objects:
|
|
* 1. The display engine (scanouts, sprites, cursors);
|
|
* 2. Reservations for execbuffer;
|
|
* 3. The user.
|
|
*
|
|
* We can ignore reservations as we hold the struct_mutex and
|
|
* are only called outside of the reservation path. The user
|
|
* can only increment pin_count once, and so if after
|
|
* subtracting the potential reference by the user, any pin_count
|
|
* remains, it must be due to another use by the display engine.
|
|
*/
|
|
return vma->pin_count - !!obj->user_pin_count;
|
|
}
|
|
|
|
/*
|
|
* Prepare buffer for display plane (scanout, cursors, etc).
|
|
* Can be called from an uninterruptible phase (modesetting) and allows
|
|
* any flushes to be pipelined (for pageflips).
|
|
*/
|
|
int
|
|
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
|
|
u32 alignment,
|
|
struct intel_engine_cs *pipelined)
|
|
{
|
|
u32 old_read_domains, old_write_domain;
|
|
bool was_pin_display;
|
|
int ret;
|
|
|
|
if (pipelined != obj->ring) {
|
|
ret = i915_gem_object_sync(obj, pipelined);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Mark the pin_display early so that we account for the
|
|
* display coherency whilst setting up the cache domains.
|
|
*/
|
|
was_pin_display = obj->pin_display;
|
|
obj->pin_display = true;
|
|
|
|
/* The display engine is not coherent with the LLC cache on gen6. As
|
|
* a result, we make sure that the pinning that is about to occur is
|
|
* done with uncached PTEs. This is lowest common denominator for all
|
|
* chipsets.
|
|
*
|
|
* However for gen6+, we could do better by using the GFDT bit instead
|
|
* of uncaching, which would allow us to flush all the LLC-cached data
|
|
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
|
|
*/
|
|
ret = i915_gem_object_set_cache_level(obj,
|
|
HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
|
|
if (ret)
|
|
goto err_unpin_display;
|
|
|
|
/* As the user may map the buffer once pinned in the display plane
|
|
* (e.g. libkms for the bootup splash), we have to ensure that we
|
|
* always use map_and_fenceable for all scanout buffers.
|
|
*/
|
|
ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
|
|
if (ret)
|
|
goto err_unpin_display;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj, true);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
obj->base.write_domain = 0;
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
|
|
err_unpin_display:
|
|
WARN_ON(was_pin_display != is_pin_display(obj));
|
|
obj->pin_display = was_pin_display;
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
|
|
{
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
obj->pin_display = is_pin_display(obj);
|
|
}
|
|
|
|
int
|
|
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
|
|
{
|
|
int ret;
|
|
|
|
if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure that we invalidate the GPU's caches and TLBs. */
|
|
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the CPU read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
|
|
{
|
|
uint32_t old_write_domain, old_read_domains;
|
|
int ret;
|
|
|
|
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
|
|
return 0;
|
|
|
|
ret = i915_gem_object_wait_rendering(obj, !write);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_object_retire(obj);
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
old_write_domain = obj->base.write_domain;
|
|
old_read_domains = obj->base.read_domains;
|
|
|
|
/* Flush the CPU cache if it's still invalid. */
|
|
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
|
|
i915_gem_clflush_object(obj, false);
|
|
|
|
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
/* If we're writing through the CPU, then the GPU read domains will
|
|
* need to be invalidated at next use.
|
|
*/
|
|
if (write) {
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
if (write)
|
|
intel_fb_obj_invalidate(obj, NULL);
|
|
|
|
trace_i915_gem_object_change_domain(obj,
|
|
old_read_domains,
|
|
old_write_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Throttle our rendering by waiting until the ring has completed our requests
|
|
* emitted over 20 msec ago.
|
|
*
|
|
* Note that if we were to use the current jiffies each time around the loop,
|
|
* we wouldn't escape the function with any frames outstanding if the time to
|
|
* render a frame was over 20ms.
|
|
*
|
|
* This should get us reasonable parallelism between CPU and GPU but also
|
|
* relatively low latency when blocking on a particular request to finish.
|
|
*/
|
|
static int
|
|
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
|
|
struct drm_i915_gem_request *request;
|
|
struct intel_engine_cs *ring = NULL;
|
|
unsigned reset_counter;
|
|
u32 seqno = 0;
|
|
int ret;
|
|
|
|
ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
|
|
if (time_after_eq(request->emitted_jiffies, recent_enough))
|
|
break;
|
|
|
|
ring = request->ring;
|
|
seqno = request->seqno;
|
|
}
|
|
reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
|
|
spin_unlock(&file_priv->mm.lock);
|
|
|
|
if (seqno == 0)
|
|
return 0;
|
|
|
|
ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
|
|
if (ret == 0)
|
|
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool
|
|
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
|
|
{
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
if (alignment &&
|
|
vma->node.start & (alignment - 1))
|
|
return true;
|
|
|
|
if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
|
|
return true;
|
|
|
|
if (flags & PIN_OFFSET_BIAS &&
|
|
vma->node.start < (flags & PIN_OFFSET_MASK))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_pin(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
uint32_t alignment,
|
|
uint64_t flags)
|
|
{
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
|
|
return -ENODEV;
|
|
|
|
if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
|
|
return -EINVAL;
|
|
|
|
vma = i915_gem_obj_to_vma(obj, vm);
|
|
if (vma) {
|
|
if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
|
|
return -EBUSY;
|
|
|
|
if (i915_vma_misplaced(vma, alignment, flags)) {
|
|
WARN(vma->pin_count,
|
|
"bo is already pinned with incorrect alignment:"
|
|
" offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
|
|
" obj->map_and_fenceable=%d\n",
|
|
i915_gem_obj_offset(obj, vm), alignment,
|
|
!!(flags & PIN_MAPPABLE),
|
|
obj->map_and_fenceable);
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vma = NULL;
|
|
}
|
|
}
|
|
|
|
if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
|
|
vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
}
|
|
|
|
if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
|
|
vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
|
|
|
|
vma->pin_count++;
|
|
if (flags & PIN_MAPPABLE)
|
|
obj->pin_mappable |= true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
|
|
|
|
BUG_ON(!vma);
|
|
BUG_ON(vma->pin_count == 0);
|
|
BUG_ON(!i915_gem_obj_ggtt_bound(obj));
|
|
|
|
if (--vma->pin_count == 0)
|
|
obj->pin_mappable = false;
|
|
}
|
|
|
|
bool
|
|
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE) {
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
|
|
|
|
WARN_ON(!ggtt_vma ||
|
|
dev_priv->fence_regs[obj->fence_reg].pin_count >
|
|
ggtt_vma->pin_count);
|
|
dev_priv->fence_regs[obj->fence_reg].pin_count++;
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->fence_reg != I915_FENCE_REG_NONE) {
|
|
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
|
|
WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
|
|
dev_priv->fence_regs[obj->fence_reg].pin_count--;
|
|
}
|
|
}
|
|
|
|
int
|
|
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6)
|
|
return -ENODEV;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED) {
|
|
DRM_DEBUG("Attempting to pin a purgeable buffer\n");
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->pin_filp != NULL && obj->pin_filp != file) {
|
|
DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->user_pin_count == ULONG_MAX) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->user_pin_count == 0) {
|
|
ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
obj->user_pin_count++;
|
|
obj->pin_filp = file;
|
|
|
|
args->offset = i915_gem_obj_ggtt_offset(obj);
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (obj->pin_filp != file) {
|
|
DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
obj->user_pin_count--;
|
|
if (obj->user_pin_count == 0) {
|
|
obj->pin_filp = NULL;
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
}
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_busy *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Count all active objects as busy, even if they are currently not used
|
|
* by the gpu. Users of this interface expect objects to eventually
|
|
* become non-busy without any further actions, therefore emit any
|
|
* necessary flushes here.
|
|
*/
|
|
ret = i915_gem_object_flush_active(obj);
|
|
|
|
args->busy = obj->active;
|
|
if (obj->ring) {
|
|
BUILD_BUG_ON(I915_NUM_RINGS > 16);
|
|
args->busy |= intel_ring_flag(obj->ring) << 16;
|
|
}
|
|
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
return i915_gem_ring_throttle(dev, file_priv);
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_mutex_lock_interruptible(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
|
|
if (&obj->base == NULL) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (i915_gem_obj_is_pinned(obj)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (obj->madv != __I915_MADV_PURGED)
|
|
obj->madv = args->madv;
|
|
|
|
/* if the object is no longer attached, discard its backing storage */
|
|
if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj->madv != __I915_MADV_PURGED;
|
|
|
|
out:
|
|
drm_gem_object_unreference(&obj->base);
|
|
unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_object_init(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_object_ops *ops)
|
|
{
|
|
INIT_LIST_HEAD(&obj->global_list);
|
|
INIT_LIST_HEAD(&obj->ring_list);
|
|
INIT_LIST_HEAD(&obj->obj_exec_link);
|
|
INIT_LIST_HEAD(&obj->vma_list);
|
|
|
|
obj->ops = ops;
|
|
|
|
obj->fence_reg = I915_FENCE_REG_NONE;
|
|
obj->madv = I915_MADV_WILLNEED;
|
|
|
|
i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
|
|
}
|
|
|
|
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
|
|
.get_pages = i915_gem_object_get_pages_gtt,
|
|
.put_pages = i915_gem_object_put_pages_gtt,
|
|
};
|
|
|
|
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
|
|
size_t size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct address_space *mapping;
|
|
gfp_t mask;
|
|
|
|
obj = i915_gem_object_alloc(dev);
|
|
if (obj == NULL)
|
|
return NULL;
|
|
|
|
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
|
|
i915_gem_object_free(obj);
|
|
return NULL;
|
|
}
|
|
|
|
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
|
|
if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
|
|
/* 965gm cannot relocate objects above 4GiB. */
|
|
mask &= ~__GFP_HIGHMEM;
|
|
mask |= __GFP_DMA32;
|
|
}
|
|
|
|
mapping = file_inode(obj->base.filp)->i_mapping;
|
|
mapping_set_gfp_mask(mapping, mask);
|
|
|
|
i915_gem_object_init(obj, &i915_gem_object_ops);
|
|
|
|
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
if (HAS_LLC(dev)) {
|
|
/* On some devices, we can have the GPU use the LLC (the CPU
|
|
* cache) for about a 10% performance improvement
|
|
* compared to uncached. Graphics requests other than
|
|
* display scanout are coherent with the CPU in
|
|
* accessing this cache. This means in this mode we
|
|
* don't need to clflush on the CPU side, and on the
|
|
* GPU side we only need to flush internal caches to
|
|
* get data visible to the CPU.
|
|
*
|
|
* However, we maintain the display planes as UC, and so
|
|
* need to rebind when first used as such.
|
|
*/
|
|
obj->cache_level = I915_CACHE_LLC;
|
|
} else
|
|
obj->cache_level = I915_CACHE_NONE;
|
|
|
|
trace_i915_gem_object_create(obj);
|
|
|
|
return obj;
|
|
}
|
|
|
|
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
|
|
{
|
|
/* If we are the last user of the backing storage (be it shmemfs
|
|
* pages or stolen etc), we know that the pages are going to be
|
|
* immediately released. In this case, we can then skip copying
|
|
* back the contents from the GPU.
|
|
*/
|
|
|
|
if (obj->madv != I915_MADV_WILLNEED)
|
|
return false;
|
|
|
|
if (obj->base.filp == NULL)
|
|
return true;
|
|
|
|
/* At first glance, this looks racy, but then again so would be
|
|
* userspace racing mmap against close. However, the first external
|
|
* reference to the filp can only be obtained through the
|
|
* i915_gem_mmap_ioctl() which safeguards us against the user
|
|
* acquiring such a reference whilst we are in the middle of
|
|
* freeing the object.
|
|
*/
|
|
return atomic_long_read(&obj->base.filp->f_count) == 1;
|
|
}
|
|
|
|
void i915_gem_free_object(struct drm_gem_object *gem_obj)
|
|
{
|
|
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_vma *vma, *next;
|
|
|
|
intel_runtime_pm_get(dev_priv);
|
|
|
|
trace_i915_gem_object_destroy(obj);
|
|
|
|
list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
|
|
int ret;
|
|
|
|
vma->pin_count = 0;
|
|
ret = i915_vma_unbind(vma);
|
|
if (WARN_ON(ret == -ERESTARTSYS)) {
|
|
bool was_interruptible;
|
|
|
|
was_interruptible = dev_priv->mm.interruptible;
|
|
dev_priv->mm.interruptible = false;
|
|
|
|
WARN_ON(i915_vma_unbind(vma));
|
|
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
}
|
|
}
|
|
|
|
i915_gem_object_detach_phys(obj);
|
|
|
|
/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
|
|
* before progressing. */
|
|
if (obj->stolen)
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
WARN_ON(obj->frontbuffer_bits);
|
|
|
|
if (WARN_ON(obj->pages_pin_count))
|
|
obj->pages_pin_count = 0;
|
|
if (discard_backing_storage(obj))
|
|
obj->madv = I915_MADV_DONTNEED;
|
|
i915_gem_object_put_pages(obj);
|
|
i915_gem_object_free_mmap_offset(obj);
|
|
|
|
BUG_ON(obj->pages);
|
|
|
|
if (obj->base.import_attach)
|
|
drm_prime_gem_destroy(&obj->base, NULL);
|
|
|
|
if (obj->ops->release)
|
|
obj->ops->release(obj);
|
|
|
|
drm_gem_object_release(&obj->base);
|
|
i915_gem_info_remove_obj(dev_priv, obj->base.size);
|
|
|
|
kfree(obj->bit_17);
|
|
i915_gem_object_free(obj);
|
|
|
|
intel_runtime_pm_put(dev_priv);
|
|
}
|
|
|
|
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link)
|
|
if (vma->vm == vm)
|
|
return vma;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void i915_gem_vma_destroy(struct i915_vma *vma)
|
|
{
|
|
struct i915_address_space *vm = NULL;
|
|
WARN_ON(vma->node.allocated);
|
|
|
|
/* Keep the vma as a placeholder in the execbuffer reservation lists */
|
|
if (!list_empty(&vma->exec_list))
|
|
return;
|
|
|
|
vm = vma->vm;
|
|
|
|
if (!i915_is_ggtt(vm))
|
|
i915_ppgtt_put(i915_vm_to_ppgtt(vm));
|
|
|
|
list_del(&vma->vma_link);
|
|
|
|
kfree(vma);
|
|
}
|
|
|
|
static void
|
|
i915_gem_stop_ringbuffers(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int i;
|
|
|
|
for_each_ring(ring, dev_priv, i)
|
|
dev_priv->gt.stop_ring(ring);
|
|
}
|
|
|
|
int
|
|
i915_gem_suspend(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (dev_priv->ums.mm_suspended)
|
|
goto err;
|
|
|
|
ret = i915_gpu_idle(dev);
|
|
if (ret)
|
|
goto err;
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
/* Under UMS, be paranoid and evict. */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
i915_gem_evict_everything(dev);
|
|
|
|
i915_kernel_lost_context(dev);
|
|
i915_gem_stop_ringbuffers(dev);
|
|
|
|
/* Hack! Don't let anybody do execbuf while we don't control the chip.
|
|
* We need to replace this with a semaphore, or something.
|
|
* And not confound ums.mm_suspended!
|
|
*/
|
|
dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
|
|
DRIVER_MODESET);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
|
|
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
|
|
flush_delayed_work(&dev_priv->mm.idle_work);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
|
|
u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
|
|
int i, ret;
|
|
|
|
if (!HAS_L3_DPF(dev) || !remap_info)
|
|
return 0;
|
|
|
|
ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Note: We do not worry about the concurrent register cacheline hang
|
|
* here because no other code should access these registers other than
|
|
* at initialization time.
|
|
*/
|
|
for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, reg_base + i);
|
|
intel_ring_emit(ring, remap_info[i/4]);
|
|
}
|
|
|
|
intel_ring_advance(ring);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_init_swizzling(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (INTEL_INFO(dev)->gen < 5 ||
|
|
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
|
|
return;
|
|
|
|
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
|
|
DISP_TILE_SURFACE_SWIZZLING);
|
|
|
|
if (IS_GEN5(dev))
|
|
return;
|
|
|
|
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
|
|
if (IS_GEN6(dev))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
|
|
else if (IS_GEN7(dev))
|
|
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
|
|
else if (IS_GEN8(dev))
|
|
I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
static bool
|
|
intel_enable_blt(struct drm_device *dev)
|
|
{
|
|
if (!HAS_BLT(dev))
|
|
return false;
|
|
|
|
/* The blitter was dysfunctional on early prototypes */
|
|
if (IS_GEN6(dev) && dev->pdev->revision < 8) {
|
|
DRM_INFO("BLT not supported on this pre-production hardware;"
|
|
" graphics performance will be degraded.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void init_unused_ring(struct drm_device *dev, u32 base)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
I915_WRITE(RING_CTL(base), 0);
|
|
I915_WRITE(RING_HEAD(base), 0);
|
|
I915_WRITE(RING_TAIL(base), 0);
|
|
I915_WRITE(RING_START(base), 0);
|
|
}
|
|
|
|
static void init_unused_rings(struct drm_device *dev)
|
|
{
|
|
if (IS_I830(dev)) {
|
|
init_unused_ring(dev, PRB1_BASE);
|
|
init_unused_ring(dev, SRB0_BASE);
|
|
init_unused_ring(dev, SRB1_BASE);
|
|
init_unused_ring(dev, SRB2_BASE);
|
|
init_unused_ring(dev, SRB3_BASE);
|
|
} else if (IS_GEN2(dev)) {
|
|
init_unused_ring(dev, SRB0_BASE);
|
|
init_unused_ring(dev, SRB1_BASE);
|
|
} else if (IS_GEN3(dev)) {
|
|
init_unused_ring(dev, PRB1_BASE);
|
|
init_unused_ring(dev, PRB2_BASE);
|
|
}
|
|
}
|
|
|
|
int i915_gem_init_rings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/*
|
|
* At least 830 can leave some of the unused rings
|
|
* "active" (ie. head != tail) after resume which
|
|
* will prevent c3 entry. Makes sure all unused rings
|
|
* are totally idle.
|
|
*/
|
|
init_unused_rings(dev);
|
|
|
|
ret = intel_init_render_ring_buffer(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (HAS_BSD(dev)) {
|
|
ret = intel_init_bsd_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_render_ring;
|
|
}
|
|
|
|
if (intel_enable_blt(dev)) {
|
|
ret = intel_init_blt_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_bsd_ring;
|
|
}
|
|
|
|
if (HAS_VEBOX(dev)) {
|
|
ret = intel_init_vebox_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_blt_ring;
|
|
}
|
|
|
|
if (HAS_BSD2(dev)) {
|
|
ret = intel_init_bsd2_ring_buffer(dev);
|
|
if (ret)
|
|
goto cleanup_vebox_ring;
|
|
}
|
|
|
|
ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
|
|
if (ret)
|
|
goto cleanup_bsd2_ring;
|
|
|
|
return 0;
|
|
|
|
cleanup_bsd2_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
|
|
cleanup_vebox_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
|
|
cleanup_blt_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
|
|
cleanup_bsd_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
|
|
cleanup_render_ring:
|
|
intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_hw(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret, i;
|
|
|
|
if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
|
|
return -EIO;
|
|
|
|
if (dev_priv->ellc_size)
|
|
I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
|
|
|
|
if (IS_HASWELL(dev))
|
|
I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
|
|
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
|
|
|
|
if (HAS_PCH_NOP(dev)) {
|
|
if (IS_IVYBRIDGE(dev)) {
|
|
u32 temp = I915_READ(GEN7_MSG_CTL);
|
|
temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
|
|
I915_WRITE(GEN7_MSG_CTL, temp);
|
|
} else if (INTEL_INFO(dev)->gen >= 7) {
|
|
u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
|
|
temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
|
|
I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
|
|
}
|
|
}
|
|
|
|
i915_gem_init_swizzling(dev);
|
|
|
|
ret = dev_priv->gt.init_rings(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < NUM_L3_SLICES(dev); i++)
|
|
i915_gem_l3_remap(&dev_priv->ring[RCS], i);
|
|
|
|
/*
|
|
* XXX: Contexts should only be initialized once. Doing a switch to the
|
|
* default context switch however is something we'd like to do after
|
|
* reset or thaw (the latter may not actually be necessary for HW, but
|
|
* goes with our code better). Context switching requires rings (for
|
|
* the do_switch), but before enabling PPGTT. So don't move this.
|
|
*/
|
|
ret = i915_gem_context_enable(dev_priv);
|
|
if (ret && ret != -EIO) {
|
|
DRM_ERROR("Context enable failed %d\n", ret);
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_ppgtt_init_hw(dev);
|
|
if (ret && ret != -EIO) {
|
|
DRM_ERROR("PPGTT enable failed %d\n", ret);
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
i915.enable_execlists = intel_sanitize_enable_execlists(dev,
|
|
i915.enable_execlists);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (IS_VALLEYVIEW(dev)) {
|
|
/* VLVA0 (potential hack), BIOS isn't actually waking us */
|
|
I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
|
|
if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
|
|
VLV_GTLC_ALLOWWAKEACK), 10))
|
|
DRM_DEBUG_DRIVER("allow wake ack timed out\n");
|
|
}
|
|
|
|
if (!i915.enable_execlists) {
|
|
dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
|
|
dev_priv->gt.init_rings = i915_gem_init_rings;
|
|
dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
|
|
dev_priv->gt.stop_ring = intel_stop_ring_buffer;
|
|
} else {
|
|
dev_priv->gt.do_execbuf = intel_execlists_submission;
|
|
dev_priv->gt.init_rings = intel_logical_rings_init;
|
|
dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
|
|
dev_priv->gt.stop_ring = intel_logical_ring_stop;
|
|
}
|
|
|
|
ret = i915_gem_init_userptr(dev);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
i915_gem_init_global_gtt(dev);
|
|
|
|
ret = i915_gem_context_init(dev);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_gem_init_hw(dev);
|
|
if (ret == -EIO) {
|
|
/* Allow ring initialisation to fail by marking the GPU as
|
|
* wedged. But we only want to do this where the GPU is angry,
|
|
* for all other failure, such as an allocation failure, bail.
|
|
*/
|
|
DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
|
|
atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
|
|
ret = 0;
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
dev_priv->dri1.allow_batchbuffer = 1;
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int i;
|
|
|
|
for_each_ring(ring, dev_priv, i)
|
|
dev_priv->gt.cleanup_ring(ring);
|
|
}
|
|
|
|
int
|
|
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
if (i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
DRM_ERROR("Reenabling wedged hardware, good luck\n");
|
|
atomic_set(&dev_priv->gpu_error.reset_counter, 0);
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->ums.mm_suspended = 0;
|
|
|
|
ret = i915_gem_init_hw(dev);
|
|
if (ret != 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
|
|
|
|
ret = drm_irq_install(dev, dev->pdev->irq);
|
|
if (ret)
|
|
goto cleanup_ringbuffer;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
|
|
cleanup_ringbuffer:
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
dev_priv->ums.mm_suspended = 1;
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_irq_uninstall(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return i915_gem_suspend(dev);
|
|
}
|
|
|
|
void
|
|
i915_gem_lastclose(struct drm_device *dev)
|
|
{
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return;
|
|
|
|
ret = i915_gem_suspend(dev);
|
|
if (ret)
|
|
DRM_ERROR("failed to idle hardware: %d\n", ret);
|
|
}
|
|
|
|
static void
|
|
init_ring_lists(struct intel_engine_cs *ring)
|
|
{
|
|
INIT_LIST_HEAD(&ring->active_list);
|
|
INIT_LIST_HEAD(&ring->request_list);
|
|
}
|
|
|
|
void i915_init_vm(struct drm_i915_private *dev_priv,
|
|
struct i915_address_space *vm)
|
|
{
|
|
if (!i915_is_ggtt(vm))
|
|
drm_mm_init(&vm->mm, vm->start, vm->total);
|
|
vm->dev = dev_priv->dev;
|
|
INIT_LIST_HEAD(&vm->active_list);
|
|
INIT_LIST_HEAD(&vm->inactive_list);
|
|
INIT_LIST_HEAD(&vm->global_link);
|
|
list_add_tail(&vm->global_link, &dev_priv->vm_list);
|
|
}
|
|
|
|
void
|
|
i915_gem_load(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int i;
|
|
|
|
dev_priv->slab =
|
|
kmem_cache_create("i915_gem_object",
|
|
sizeof(struct drm_i915_gem_object), 0,
|
|
SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
|
|
INIT_LIST_HEAD(&dev_priv->vm_list);
|
|
i915_init_vm(dev_priv, &dev_priv->gtt.base);
|
|
|
|
INIT_LIST_HEAD(&dev_priv->context_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
for (i = 0; i < I915_NUM_RINGS; i++)
|
|
init_ring_lists(&dev_priv->ring[i]);
|
|
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
|
|
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
|
|
i915_gem_retire_work_handler);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
|
|
i915_gem_idle_work_handler);
|
|
init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
|
|
|
|
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
|
|
I915_WRITE(MI_ARB_STATE,
|
|
_MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
|
|
}
|
|
|
|
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
|
|
|
|
/* Old X drivers will take 0-2 for front, back, depth buffers */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
dev_priv->fence_reg_start = 3;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
|
|
dev_priv->num_fence_regs = 32;
|
|
else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
dev_priv->num_fence_regs = 16;
|
|
else
|
|
dev_priv->num_fence_regs = 8;
|
|
|
|
/* Initialize fence registers to zero */
|
|
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
|
|
i915_gem_restore_fences(dev);
|
|
|
|
i915_gem_detect_bit_6_swizzle(dev);
|
|
init_waitqueue_head(&dev_priv->pending_flip_queue);
|
|
|
|
dev_priv->mm.interruptible = true;
|
|
|
|
dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
|
|
dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
|
|
dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
|
|
register_shrinker(&dev_priv->mm.shrinker);
|
|
|
|
dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
|
|
register_oom_notifier(&dev_priv->mm.oom_notifier);
|
|
|
|
mutex_init(&dev_priv->fb_tracking.lock);
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
cancel_delayed_work_sync(&file_priv->mm.idle_work);
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
spin_lock(&file_priv->mm.lock);
|
|
while (!list_empty(&file_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&file_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
client_list);
|
|
list_del(&request->client_list);
|
|
request->file_priv = NULL;
|
|
}
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
static void
|
|
i915_gem_file_idle_work_handler(struct work_struct *work)
|
|
{
|
|
struct drm_i915_file_private *file_priv =
|
|
container_of(work, typeof(*file_priv), mm.idle_work.work);
|
|
|
|
atomic_set(&file_priv->rps_wait_boost, false);
|
|
}
|
|
|
|
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv;
|
|
int ret;
|
|
|
|
DRM_DEBUG_DRIVER("\n");
|
|
|
|
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
|
|
if (!file_priv)
|
|
return -ENOMEM;
|
|
|
|
file->driver_priv = file_priv;
|
|
file_priv->dev_priv = dev->dev_private;
|
|
file_priv->file = file;
|
|
|
|
spin_lock_init(&file_priv->mm.lock);
|
|
INIT_LIST_HEAD(&file_priv->mm.request_list);
|
|
INIT_DELAYED_WORK(&file_priv->mm.idle_work,
|
|
i915_gem_file_idle_work_handler);
|
|
|
|
ret = i915_gem_context_open(dev, file);
|
|
if (ret)
|
|
kfree(file_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_track_fb - update frontbuffer tracking
|
|
* old: current GEM buffer for the frontbuffer slots
|
|
* new: new GEM buffer for the frontbuffer slots
|
|
* frontbuffer_bits: bitmask of frontbuffer slots
|
|
*
|
|
* This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
|
|
* from @old and setting them in @new. Both @old and @new can be NULL.
|
|
*/
|
|
void i915_gem_track_fb(struct drm_i915_gem_object *old,
|
|
struct drm_i915_gem_object *new,
|
|
unsigned frontbuffer_bits)
|
|
{
|
|
if (old) {
|
|
WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
|
|
WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
|
|
old->frontbuffer_bits &= ~frontbuffer_bits;
|
|
}
|
|
|
|
if (new) {
|
|
WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
|
|
WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
|
|
new->frontbuffer_bits |= frontbuffer_bits;
|
|
}
|
|
}
|
|
|
|
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
|
|
{
|
|
if (!mutex_is_locked(mutex))
|
|
return false;
|
|
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
|
|
return mutex->owner == task;
|
|
#else
|
|
/* Since UP may be pre-empted, we cannot assume that we own the lock */
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
|
|
{
|
|
if (!mutex_trylock(&dev->struct_mutex)) {
|
|
if (!mutex_is_locked_by(&dev->struct_mutex, current))
|
|
return false;
|
|
|
|
if (to_i915(dev)->mm.shrinker_no_lock_stealing)
|
|
return false;
|
|
|
|
*unlock = false;
|
|
} else
|
|
*unlock = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int num_vma_bound(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma;
|
|
int count = 0;
|
|
|
|
list_for_each_entry(vma, &obj->vma_list, vma_link)
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(shrinker, struct drm_i915_private, mm.shrinker);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long count;
|
|
bool unlock;
|
|
|
|
if (!i915_gem_shrinker_lock(dev, &unlock))
|
|
return 0;
|
|
|
|
count = 0;
|
|
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
|
|
if (obj->pages_pin_count == 0)
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
if (!i915_gem_obj_is_pinned(obj) &&
|
|
obj->pages_pin_count == num_vma_bound(obj))
|
|
count += obj->base.size >> PAGE_SHIFT;
|
|
}
|
|
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
/* All the new VM stuff */
|
|
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
|
|
WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
|
|
|
|
list_for_each_entry(vma, &o->vma_list, vma_link) {
|
|
if (vma->vm == vm)
|
|
return vma->node.start;
|
|
|
|
}
|
|
WARN(1, "%s vma for this object not found.\n",
|
|
i915_is_ggtt(vm) ? "global" : "ppgtt");
|
|
return -1;
|
|
}
|
|
|
|
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, vma_link)
|
|
if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &o->vma_list, vma_link)
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct drm_i915_private *dev_priv = o->base.dev->dev_private;
|
|
struct i915_vma *vma;
|
|
|
|
WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
|
|
|
|
BUG_ON(list_empty(&o->vma_list));
|
|
|
|
list_for_each_entry(vma, &o->vma_list, vma_link)
|
|
if (vma->vm == vm)
|
|
return vma->node.size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long
|
|
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(shrinker, struct drm_i915_private, mm.shrinker);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
unsigned long freed;
|
|
bool unlock;
|
|
|
|
if (!i915_gem_shrinker_lock(dev, &unlock))
|
|
return SHRINK_STOP;
|
|
|
|
freed = i915_gem_shrink(dev_priv,
|
|
sc->nr_to_scan,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND |
|
|
I915_SHRINK_PURGEABLE);
|
|
if (freed < sc->nr_to_scan)
|
|
freed += i915_gem_shrink(dev_priv,
|
|
sc->nr_to_scan - freed,
|
|
I915_SHRINK_BOUND |
|
|
I915_SHRINK_UNBOUND);
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return freed;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(nb, struct drm_i915_private, mm.oom_notifier);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long timeout = msecs_to_jiffies(5000) + 1;
|
|
unsigned long pinned, bound, unbound, freed_pages;
|
|
bool was_interruptible;
|
|
bool unlock;
|
|
|
|
while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
|
|
schedule_timeout_killable(1);
|
|
if (fatal_signal_pending(current))
|
|
return NOTIFY_DONE;
|
|
}
|
|
if (timeout == 0) {
|
|
pr_err("Unable to purge GPU memory due lock contention.\n");
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
was_interruptible = dev_priv->mm.interruptible;
|
|
dev_priv->mm.interruptible = false;
|
|
|
|
freed_pages = i915_gem_shrink_all(dev_priv);
|
|
|
|
dev_priv->mm.interruptible = was_interruptible;
|
|
|
|
/* Because we may be allocating inside our own driver, we cannot
|
|
* assert that there are no objects with pinned pages that are not
|
|
* being pointed to by hardware.
|
|
*/
|
|
unbound = bound = pinned = 0;
|
|
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
|
|
if (!obj->base.filp) /* not backed by a freeable object */
|
|
continue;
|
|
|
|
if (obj->pages_pin_count)
|
|
pinned += obj->base.size;
|
|
else
|
|
unbound += obj->base.size;
|
|
}
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
if (!obj->base.filp)
|
|
continue;
|
|
|
|
if (obj->pages_pin_count)
|
|
pinned += obj->base.size;
|
|
else
|
|
bound += obj->base.size;
|
|
}
|
|
|
|
if (unlock)
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (freed_pages || unbound || bound)
|
|
pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
|
|
freed_pages << PAGE_SHIFT, pinned);
|
|
if (unbound || bound)
|
|
pr_err("%lu and %lu bytes still available in the "
|
|
"bound and unbound GPU page lists.\n",
|
|
bound, unbound);
|
|
|
|
*(unsigned long *)ptr += freed_pages;
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
|
|
if (vma->vm != i915_obj_to_ggtt(obj))
|
|
return NULL;
|
|
|
|
return vma;
|
|
}
|