linux_dsm_epyc7002/drivers/mmc/host/sdhci-of-esdhc.c
Yinbo Zhu 5dd1955225 mmc: sdhci-of-esdhc: add erratum A-009204 support
In the event of that any data error (like, IRQSTAT[DCE]) occurs
during an eSDHC data transaction where DMA is used for data
transfer to/from the system memory, setting the SYSCTL[RSTD]
register may cause a system hang. If software sets the register
SYSCTL[RSTD] to 1 for error recovery while DMA transferring is
not complete, eSDHC may hang the system bus. This happens because
the software register SYSCTL[RSTD] resets the DMA engine without
waiting for the completion of pending system transactions. This
erratum is to fix this issue.

Signed-off-by: Yinbo Zhu <yinbo.zhu@nxp.com>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2019-04-15 11:55:54 +02:00

1137 lines
30 KiB
C

/*
* Freescale eSDHC controller driver.
*
* Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
* Copyright (c) 2009 MontaVista Software, Inc.
*
* Authors: Xiaobo Xie <X.Xie@freescale.com>
* Anton Vorontsov <avorontsov@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/sys_soc.h>
#include <linux/clk.h>
#include <linux/ktime.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include "sdhci-pltfm.h"
#include "sdhci-esdhc.h"
#define VENDOR_V_22 0x12
#define VENDOR_V_23 0x13
#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
struct esdhc_clk_fixup {
const unsigned int sd_dflt_max_clk;
const unsigned int max_clk[MMC_TIMING_NUM];
};
static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
.sd_dflt_max_clk = 25000000,
.max_clk[MMC_TIMING_MMC_HS] = 46500000,
.max_clk[MMC_TIMING_SD_HS] = 46500000,
};
static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
.sd_dflt_max_clk = 25000000,
.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
};
static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
.sd_dflt_max_clk = 25000000,
.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
};
static const struct esdhc_clk_fixup p1010_esdhc_clk = {
.sd_dflt_max_clk = 20000000,
.max_clk[MMC_TIMING_LEGACY] = 20000000,
.max_clk[MMC_TIMING_MMC_HS] = 42000000,
.max_clk[MMC_TIMING_SD_HS] = 40000000,
};
static const struct of_device_id sdhci_esdhc_of_match[] = {
{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
{ .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk},
{ .compatible = "fsl,mpc8379-esdhc" },
{ .compatible = "fsl,mpc8536-esdhc" },
{ .compatible = "fsl,esdhc" },
{ }
};
MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
struct sdhci_esdhc {
u8 vendor_ver;
u8 spec_ver;
bool quirk_incorrect_hostver;
bool quirk_limited_clk_division;
bool quirk_unreliable_pulse_detection;
bool quirk_fixup_tuning;
unsigned int peripheral_clock;
const struct esdhc_clk_fixup *clk_fixup;
u32 div_ratio;
};
/**
* esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
* to make it compatible with SD spec.
*
* @host: pointer to sdhci_host
* @spec_reg: SD spec register address
* @value: 32bit eSDHC register value on spec_reg address
*
* In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
* registers are 32 bits. There are differences in register size, register
* address, register function, bit position and function between eSDHC spec
* and SD spec.
*
* Return a fixed up register value
*/
static u32 esdhc_readl_fixup(struct sdhci_host *host,
int spec_reg, u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
u32 ret;
/*
* The bit of ADMA flag in eSDHC is not compatible with standard
* SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
* supported by eSDHC.
* And for many FSL eSDHC controller, the reset value of field
* SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
* only these vendor version is greater than 2.2/0x12 support ADMA.
*/
if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
if (esdhc->vendor_ver > VENDOR_V_22) {
ret = value | SDHCI_CAN_DO_ADMA2;
return ret;
}
}
/*
* The DAT[3:0] line signal levels and the CMD line signal level are
* not compatible with standard SDHC register. The line signal levels
* DAT[7:0] are at bits 31:24 and the command line signal level is at
* bit 23. All other bits are the same as in the standard SDHC
* register.
*/
if (spec_reg == SDHCI_PRESENT_STATE) {
ret = value & 0x000fffff;
ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
ret |= (value << 1) & SDHCI_CMD_LVL;
return ret;
}
/*
* DTS properties of mmc host are used to enable each speed mode
* according to soc and board capability. So clean up
* SDR50/SDR104/DDR50 support bits here.
*/
if (spec_reg == SDHCI_CAPABILITIES_1) {
ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_DDR50);
return ret;
}
ret = value;
return ret;
}
static u16 esdhc_readw_fixup(struct sdhci_host *host,
int spec_reg, u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
u16 ret;
int shift = (spec_reg & 0x2) * 8;
if (spec_reg == SDHCI_HOST_VERSION)
ret = value & 0xffff;
else
ret = (value >> shift) & 0xffff;
/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
* vendor version and spec version information.
*/
if ((spec_reg == SDHCI_HOST_VERSION) &&
(esdhc->quirk_incorrect_hostver))
ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
return ret;
}
static u8 esdhc_readb_fixup(struct sdhci_host *host,
int spec_reg, u32 value)
{
u8 ret;
u8 dma_bits;
int shift = (spec_reg & 0x3) * 8;
ret = (value >> shift) & 0xff;
/*
* "DMA select" locates at offset 0x28 in SD specification, but on
* P5020 or P3041, it locates at 0x29.
*/
if (spec_reg == SDHCI_HOST_CONTROL) {
/* DMA select is 22,23 bits in Protocol Control Register */
dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
/* fixup the result */
ret &= ~SDHCI_CTRL_DMA_MASK;
ret |= dma_bits;
}
return ret;
}
/**
* esdhc_write*_fixup - Fixup the SD spec register value so that it could be
* written into eSDHC register.
*
* @host: pointer to sdhci_host
* @spec_reg: SD spec register address
* @value: 8/16/32bit SD spec register value that would be written
* @old_value: 32bit eSDHC register value on spec_reg address
*
* In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
* registers are 32 bits. There are differences in register size, register
* address, register function, bit position and function between eSDHC spec
* and SD spec.
*
* Return a fixed up register value
*/
static u32 esdhc_writel_fixup(struct sdhci_host *host,
int spec_reg, u32 value, u32 old_value)
{
u32 ret;
/*
* Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
* when SYSCTL[RSTD] is set for some special operations.
* No any impact on other operation.
*/
if (spec_reg == SDHCI_INT_ENABLE)
ret = value | SDHCI_INT_BLK_GAP;
else
ret = value;
return ret;
}
static u32 esdhc_writew_fixup(struct sdhci_host *host,
int spec_reg, u16 value, u32 old_value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
int shift = (spec_reg & 0x2) * 8;
u32 ret;
switch (spec_reg) {
case SDHCI_TRANSFER_MODE:
/*
* Postpone this write, we must do it together with a
* command write that is down below. Return old value.
*/
pltfm_host->xfer_mode_shadow = value;
return old_value;
case SDHCI_COMMAND:
ret = (value << 16) | pltfm_host->xfer_mode_shadow;
return ret;
}
ret = old_value & (~(0xffff << shift));
ret |= (value << shift);
if (spec_reg == SDHCI_BLOCK_SIZE) {
/*
* Two last DMA bits are reserved, and first one is used for
* non-standard blksz of 4096 bytes that we don't support
* yet. So clear the DMA boundary bits.
*/
ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
}
return ret;
}
static u32 esdhc_writeb_fixup(struct sdhci_host *host,
int spec_reg, u8 value, u32 old_value)
{
u32 ret;
u32 dma_bits;
u8 tmp;
int shift = (spec_reg & 0x3) * 8;
/*
* eSDHC doesn't have a standard power control register, so we do
* nothing here to avoid incorrect operation.
*/
if (spec_reg == SDHCI_POWER_CONTROL)
return old_value;
/*
* "DMA select" location is offset 0x28 in SD specification, but on
* P5020 or P3041, it's located at 0x29.
*/
if (spec_reg == SDHCI_HOST_CONTROL) {
/*
* If host control register is not standard, exit
* this function
*/
if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
return old_value;
/* DMA select is 22,23 bits in Protocol Control Register */
dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
(old_value & SDHCI_CTRL_DMA_MASK);
ret = (ret & (~0xff)) | tmp;
/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
ret &= ~ESDHC_HOST_CONTROL_RES;
return ret;
}
ret = (old_value & (~(0xff << shift))) | (value << shift);
return ret;
}
static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
{
u32 ret;
u32 value;
if (reg == SDHCI_CAPABILITIES_1)
value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
else
value = ioread32be(host->ioaddr + reg);
ret = esdhc_readl_fixup(host, reg, value);
return ret;
}
static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
{
u32 ret;
u32 value;
if (reg == SDHCI_CAPABILITIES_1)
value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
else
value = ioread32(host->ioaddr + reg);
ret = esdhc_readl_fixup(host, reg, value);
return ret;
}
static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
{
u16 ret;
u32 value;
int base = reg & ~0x3;
value = ioread32be(host->ioaddr + base);
ret = esdhc_readw_fixup(host, reg, value);
return ret;
}
static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
{
u16 ret;
u32 value;
int base = reg & ~0x3;
value = ioread32(host->ioaddr + base);
ret = esdhc_readw_fixup(host, reg, value);
return ret;
}
static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
{
u8 ret;
u32 value;
int base = reg & ~0x3;
value = ioread32be(host->ioaddr + base);
ret = esdhc_readb_fixup(host, reg, value);
return ret;
}
static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
{
u8 ret;
u32 value;
int base = reg & ~0x3;
value = ioread32(host->ioaddr + base);
ret = esdhc_readb_fixup(host, reg, value);
return ret;
}
static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
{
u32 value;
value = esdhc_writel_fixup(host, reg, val, 0);
iowrite32be(value, host->ioaddr + reg);
}
static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
{
u32 value;
value = esdhc_writel_fixup(host, reg, val, 0);
iowrite32(value, host->ioaddr + reg);
}
static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
{
int base = reg & ~0x3;
u32 value;
u32 ret;
value = ioread32be(host->ioaddr + base);
ret = esdhc_writew_fixup(host, reg, val, value);
if (reg != SDHCI_TRANSFER_MODE)
iowrite32be(ret, host->ioaddr + base);
}
static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
{
int base = reg & ~0x3;
u32 value;
u32 ret;
value = ioread32(host->ioaddr + base);
ret = esdhc_writew_fixup(host, reg, val, value);
if (reg != SDHCI_TRANSFER_MODE)
iowrite32(ret, host->ioaddr + base);
}
static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
{
int base = reg & ~0x3;
u32 value;
u32 ret;
value = ioread32be(host->ioaddr + base);
ret = esdhc_writeb_fixup(host, reg, val, value);
iowrite32be(ret, host->ioaddr + base);
}
static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
{
int base = reg & ~0x3;
u32 value;
u32 ret;
value = ioread32(host->ioaddr + base);
ret = esdhc_writeb_fixup(host, reg, val, value);
iowrite32(ret, host->ioaddr + base);
}
/*
* For Abort or Suspend after Stop at Block Gap, ignore the ADMA
* error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
* and Block Gap Event(IRQSTAT[BGE]) are also set.
* For Continue, apply soft reset for data(SYSCTL[RSTD]);
* and re-issue the entire read transaction from beginning.
*/
static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
bool applicable;
dma_addr_t dmastart;
dma_addr_t dmanow;
applicable = (intmask & SDHCI_INT_DATA_END) &&
(intmask & SDHCI_INT_BLK_GAP) &&
(esdhc->vendor_ver == VENDOR_V_23);
if (!applicable)
return;
host->data->error = 0;
dmastart = sg_dma_address(host->data->sg);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
}
static int esdhc_of_enable_dma(struct sdhci_host *host)
{
u32 value;
struct device *dev = mmc_dev(host->mmc);
if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc"))
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
value |= ESDHC_DMA_SNOOP;
sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
return 0;
}
static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
if (esdhc->peripheral_clock)
return esdhc->peripheral_clock;
else
return pltfm_host->clock;
}
static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
unsigned int clock;
if (esdhc->peripheral_clock)
clock = esdhc->peripheral_clock;
else
clock = pltfm_host->clock;
return clock / 256 / 16;
}
static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
{
u32 val;
ktime_t timeout;
val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
if (enable)
val |= ESDHC_CLOCK_SDCLKEN;
else
val &= ~ESDHC_CLOCK_SDCLKEN;
sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
/* Wait max 20 ms */
timeout = ktime_add_ms(ktime_get(), 20);
val = ESDHC_CLOCK_STABLE;
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (sdhci_readl(host, ESDHC_PRSSTAT) & val)
break;
if (timedout) {
pr_err("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
break;
}
udelay(10);
}
}
static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
int pre_div = 1;
int div = 1;
int division;
ktime_t timeout;
long fixup = 0;
u32 temp;
host->mmc->actual_clock = 0;
if (clock == 0) {
esdhc_clock_enable(host, false);
return;
}
/* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */
if (esdhc->vendor_ver < VENDOR_V_23)
pre_div = 2;
if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
fixup = esdhc->clk_fixup->sd_dflt_max_clk;
else if (esdhc->clk_fixup)
fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
if (fixup && clock > fixup)
clock = fixup;
temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK);
sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
while (host->max_clk / pre_div / 16 > clock && pre_div < 256)
pre_div *= 2;
while (host->max_clk / pre_div / div > clock && div < 16)
div++;
if (esdhc->quirk_limited_clk_division &&
clock == MMC_HS200_MAX_DTR &&
(host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)) {
division = pre_div * div;
if (division <= 4) {
pre_div = 4;
div = 1;
} else if (division <= 8) {
pre_div = 4;
div = 2;
} else if (division <= 12) {
pre_div = 4;
div = 3;
} else {
pr_warn("%s: using unsupported clock division.\n",
mmc_hostname(host->mmc));
}
}
dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
clock, host->max_clk / pre_div / div);
host->mmc->actual_clock = host->max_clk / pre_div / div;
esdhc->div_ratio = pre_div * div;
pre_div >>= 1;
div--;
temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN
| (div << ESDHC_DIVIDER_SHIFT)
| (pre_div << ESDHC_PREDIV_SHIFT));
sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
clock == MMC_HS200_MAX_DTR) {
temp = sdhci_readl(host, ESDHC_TBCTL);
sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
temp = sdhci_readl(host, ESDHC_SDCLKCTL);
sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
esdhc_clock_enable(host, true);
temp = sdhci_readl(host, ESDHC_DLLCFG0);
temp |= ESDHC_DLL_ENABLE;
if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
temp |= ESDHC_DLL_FREQ_SEL;
sdhci_writel(host, temp, ESDHC_DLLCFG0);
temp = sdhci_readl(host, ESDHC_TBCTL);
sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
esdhc_clock_enable(host, false);
temp = sdhci_readl(host, ESDHC_DMA_SYSCTL);
temp |= ESDHC_FLUSH_ASYNC_FIFO;
sdhci_writel(host, temp, ESDHC_DMA_SYSCTL);
}
/* Wait max 20 ms */
timeout = ktime_add_ms(ktime_get(), 20);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
break;
if (timedout) {
pr_err("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
return;
}
udelay(10);
}
temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
temp |= ESDHC_CLOCK_SDCLKEN;
sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
}
static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
{
u32 ctrl;
ctrl = sdhci_readl(host, ESDHC_PROCTL);
ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
switch (width) {
case MMC_BUS_WIDTH_8:
ctrl |= ESDHC_CTRL_8BITBUS;
break;
case MMC_BUS_WIDTH_4:
ctrl |= ESDHC_CTRL_4BITBUS;
break;
default:
break;
}
sdhci_writel(host, ctrl, ESDHC_PROCTL);
}
static void esdhc_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
u32 val;
sdhci_reset(host, mask);
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc"))
mdelay(5);
if (mask & SDHCI_RESET_ALL) {
val = sdhci_readl(host, ESDHC_TBCTL);
val &= ~ESDHC_TB_EN;
sdhci_writel(host, val, ESDHC_TBCTL);
if (esdhc->quirk_unreliable_pulse_detection) {
val = sdhci_readl(host, ESDHC_DLLCFG1);
val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
sdhci_writel(host, val, ESDHC_DLLCFG1);
}
}
}
/* The SCFG, Supplemental Configuration Unit, provides SoC specific
* configuration and status registers for the device. There is a
* SDHC IO VSEL control register on SCFG for some platforms. It's
* used to support SDHC IO voltage switching.
*/
static const struct of_device_id scfg_device_ids[] = {
{ .compatible = "fsl,t1040-scfg", },
{ .compatible = "fsl,ls1012a-scfg", },
{ .compatible = "fsl,ls1046a-scfg", },
{}
};
/* SDHC IO VSEL control register definition */
#define SCFG_SDHCIOVSELCR 0x408
#define SDHCIOVSELCR_TGLEN 0x80000000
#define SDHCIOVSELCR_VSELVAL 0x60000000
#define SDHCIOVSELCR_SDHC_VS 0x00000001
static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
struct device_node *scfg_node;
void __iomem *scfg_base = NULL;
u32 sdhciovselcr;
u32 val;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
val = sdhci_readl(host, ESDHC_PROCTL);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
val &= ~ESDHC_VOLT_SEL;
sdhci_writel(host, val, ESDHC_PROCTL);
return 0;
case MMC_SIGNAL_VOLTAGE_180:
scfg_node = of_find_matching_node(NULL, scfg_device_ids);
if (scfg_node)
scfg_base = of_iomap(scfg_node, 0);
if (scfg_base) {
sdhciovselcr = SDHCIOVSELCR_TGLEN |
SDHCIOVSELCR_VSELVAL;
iowrite32be(sdhciovselcr,
scfg_base + SCFG_SDHCIOVSELCR);
val |= ESDHC_VOLT_SEL;
sdhci_writel(host, val, ESDHC_PROCTL);
mdelay(5);
sdhciovselcr = SDHCIOVSELCR_TGLEN |
SDHCIOVSELCR_SDHC_VS;
iowrite32be(sdhciovselcr,
scfg_base + SCFG_SDHCIOVSELCR);
iounmap(scfg_base);
} else {
val |= ESDHC_VOLT_SEL;
sdhci_writel(host, val, ESDHC_PROCTL);
}
return 0;
default:
return 0;
}
}
static struct soc_device_attribute soc_fixup_tuning[] = {
{ .family = "QorIQ T1040", .revision = "1.0", },
{ .family = "QorIQ T2080", .revision = "1.0", },
{ .family = "QorIQ T1023", .revision = "1.0", },
{ .family = "QorIQ LS1021A", .revision = "1.0", },
{ .family = "QorIQ LS1080A", .revision = "1.0", },
{ .family = "QorIQ LS2080A", .revision = "1.0", },
{ .family = "QorIQ LS1012A", .revision = "1.0", },
{ .family = "QorIQ LS1043A", .revision = "1.*", },
{ .family = "QorIQ LS1046A", .revision = "1.0", },
{ },
};
static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
{
u32 val;
esdhc_clock_enable(host, false);
val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
val |= ESDHC_FLUSH_ASYNC_FIFO;
sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
val = sdhci_readl(host, ESDHC_TBCTL);
if (enable)
val |= ESDHC_TB_EN;
else
val &= ~ESDHC_TB_EN;
sdhci_writel(host, val, ESDHC_TBCTL);
esdhc_clock_enable(host, true);
}
static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
bool hs400_tuning;
u32 val;
int ret;
if (esdhc->quirk_limited_clk_division &&
host->flags & SDHCI_HS400_TUNING)
esdhc_of_set_clock(host, host->clock);
esdhc_tuning_block_enable(host, true);
hs400_tuning = host->flags & SDHCI_HS400_TUNING;
ret = sdhci_execute_tuning(mmc, opcode);
if (hs400_tuning) {
val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
val |= ESDHC_FLW_CTL_BG;
sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
}
if (host->tuning_err == -EAGAIN && esdhc->quirk_fixup_tuning) {
/* program TBPTR[TB_WNDW_END_PTR] = 3*DIV_RATIO and
* program TBPTR[TB_WNDW_START_PTR] = 5*DIV_RATIO
*/
val = sdhci_readl(host, ESDHC_TBPTR);
val = (val & ~((0x7f << 8) | 0x7f)) |
(3 * esdhc->div_ratio) | ((5 * esdhc->div_ratio) << 8);
sdhci_writel(host, val, ESDHC_TBPTR);
/* program the software tuning mode by setting
* TBCTL[TB_MODE]=2'h3
*/
val = sdhci_readl(host, ESDHC_TBCTL);
val |= 0x3;
sdhci_writel(host, val, ESDHC_TBCTL);
sdhci_execute_tuning(mmc, opcode);
}
return ret;
}
static void esdhc_set_uhs_signaling(struct sdhci_host *host,
unsigned int timing)
{
if (timing == MMC_TIMING_MMC_HS400)
esdhc_tuning_block_enable(host, true);
else
sdhci_set_uhs_signaling(host, timing);
}
#ifdef CONFIG_PM_SLEEP
static u32 esdhc_proctl;
static int esdhc_of_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
if (host->tuning_mode != SDHCI_TUNING_MODE_3)
mmc_retune_needed(host->mmc);
return sdhci_suspend_host(host);
}
static int esdhc_of_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
int ret = sdhci_resume_host(host);
if (ret == 0) {
/* Isn't this already done by sdhci_resume_host() ? --rmk */
esdhc_of_enable_dma(host);
sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
}
return ret;
}
#endif
static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
esdhc_of_suspend,
esdhc_of_resume);
static const struct sdhci_ops sdhci_esdhc_be_ops = {
.read_l = esdhc_be_readl,
.read_w = esdhc_be_readw,
.read_b = esdhc_be_readb,
.write_l = esdhc_be_writel,
.write_w = esdhc_be_writew,
.write_b = esdhc_be_writeb,
.set_clock = esdhc_of_set_clock,
.enable_dma = esdhc_of_enable_dma,
.get_max_clock = esdhc_of_get_max_clock,
.get_min_clock = esdhc_of_get_min_clock,
.adma_workaround = esdhc_of_adma_workaround,
.set_bus_width = esdhc_pltfm_set_bus_width,
.reset = esdhc_reset,
.set_uhs_signaling = esdhc_set_uhs_signaling,
};
static const struct sdhci_ops sdhci_esdhc_le_ops = {
.read_l = esdhc_le_readl,
.read_w = esdhc_le_readw,
.read_b = esdhc_le_readb,
.write_l = esdhc_le_writel,
.write_w = esdhc_le_writew,
.write_b = esdhc_le_writeb,
.set_clock = esdhc_of_set_clock,
.enable_dma = esdhc_of_enable_dma,
.get_max_clock = esdhc_of_get_max_clock,
.get_min_clock = esdhc_of_get_min_clock,
.adma_workaround = esdhc_of_adma_workaround,
.set_bus_width = esdhc_pltfm_set_bus_width,
.reset = esdhc_reset,
.set_uhs_signaling = esdhc_set_uhs_signaling,
};
static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
.quirks = ESDHC_DEFAULT_QUIRKS |
#ifdef CONFIG_PPC
SDHCI_QUIRK_BROKEN_CARD_DETECTION |
#endif
SDHCI_QUIRK_NO_CARD_NO_RESET |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
.ops = &sdhci_esdhc_be_ops,
};
static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
.quirks = ESDHC_DEFAULT_QUIRKS |
SDHCI_QUIRK_NO_CARD_NO_RESET |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
.ops = &sdhci_esdhc_le_ops,
};
static struct soc_device_attribute soc_incorrect_hostver[] = {
{ .family = "QorIQ T4240", .revision = "1.0", },
{ .family = "QorIQ T4240", .revision = "2.0", },
{ },
};
static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
{ .family = "QorIQ LX2160A", .revision = "1.0", },
{ .family = "QorIQ LX2160A", .revision = "2.0", },
{ },
};
static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
{ .family = "QorIQ LX2160A", .revision = "1.0", },
{ },
};
static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
{
const struct of_device_id *match;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_esdhc *esdhc;
struct device_node *np;
struct clk *clk;
u32 val;
u16 host_ver;
pltfm_host = sdhci_priv(host);
esdhc = sdhci_pltfm_priv(pltfm_host);
host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
SDHCI_VENDOR_VER_SHIFT;
esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
if (soc_device_match(soc_incorrect_hostver))
esdhc->quirk_incorrect_hostver = true;
else
esdhc->quirk_incorrect_hostver = false;
if (soc_device_match(soc_fixup_sdhc_clkdivs))
esdhc->quirk_limited_clk_division = true;
else
esdhc->quirk_limited_clk_division = false;
if (soc_device_match(soc_unreliable_pulse_detection))
esdhc->quirk_unreliable_pulse_detection = true;
else
esdhc->quirk_unreliable_pulse_detection = false;
match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
if (match)
esdhc->clk_fixup = match->data;
np = pdev->dev.of_node;
clk = of_clk_get(np, 0);
if (!IS_ERR(clk)) {
/*
* esdhc->peripheral_clock would be assigned with a value
* which is eSDHC base clock when use periperal clock.
* For ls1046a, the clock value got by common clk API is
* peripheral clock while the eSDHC base clock is 1/2
* peripheral clock.
*/
if (of_device_is_compatible(np, "fsl,ls1046a-esdhc"))
esdhc->peripheral_clock = clk_get_rate(clk) / 2;
else
esdhc->peripheral_clock = clk_get_rate(clk);
clk_put(clk);
}
if (esdhc->peripheral_clock) {
esdhc_clock_enable(host, false);
val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
val |= ESDHC_PERIPHERAL_CLK_SEL;
sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
esdhc_clock_enable(host, true);
}
}
static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
{
esdhc_tuning_block_enable(mmc_priv(mmc), false);
return 0;
}
static int sdhci_esdhc_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct device_node *np;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_esdhc *esdhc;
int ret;
np = pdev->dev.of_node;
if (of_property_read_bool(np, "little-endian"))
host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
sizeof(struct sdhci_esdhc));
else
host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
sizeof(struct sdhci_esdhc));
if (IS_ERR(host))
return PTR_ERR(host);
host->mmc_host_ops.start_signal_voltage_switch =
esdhc_signal_voltage_switch;
host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
host->tuning_delay = 1;
esdhc_init(pdev, host);
sdhci_get_of_property(pdev);
pltfm_host = sdhci_priv(host);
esdhc = sdhci_pltfm_priv(pltfm_host);
if (soc_device_match(soc_fixup_tuning))
esdhc->quirk_fixup_tuning = true;
else
esdhc->quirk_fixup_tuning = false;
if (esdhc->vendor_ver == VENDOR_V_22)
host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
if (esdhc->vendor_ver > VENDOR_V_22)
host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) {
host->quirks2 |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
host->quirks2 |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
}
if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
of_device_is_compatible(np, "fsl,p5020-esdhc") ||
of_device_is_compatible(np, "fsl,p4080-esdhc") ||
of_device_is_compatible(np, "fsl,p1020-esdhc") ||
of_device_is_compatible(np, "fsl,t1040-esdhc"))
host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
/*
* Freescale messed up with P2020 as it has a non-standard
* host control register
*/
host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
}
/* call to generic mmc_of_parse to support additional capabilities */
ret = mmc_of_parse(host->mmc);
if (ret)
goto err;
mmc_of_parse_voltage(np, &host->ocr_mask);
ret = sdhci_add_host(host);
if (ret)
goto err;
return 0;
err:
sdhci_pltfm_free(pdev);
return ret;
}
static struct platform_driver sdhci_esdhc_driver = {
.driver = {
.name = "sdhci-esdhc",
.of_match_table = sdhci_esdhc_of_match,
.pm = &esdhc_of_dev_pm_ops,
},
.probe = sdhci_esdhc_probe,
.remove = sdhci_pltfm_unregister,
};
module_platform_driver(sdhci_esdhc_driver);
MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
"Anton Vorontsov <avorontsov@ru.mvista.com>");
MODULE_LICENSE("GPL v2");