linux_dsm_epyc7002/fs/nfs/nfs4session.c
Trond Myklebust 3453d5708b NFSv4.1: Avoid false retries when RPC calls are interrupted
A 'false retry' in NFSv4.1 occurs when the client attempts to transmit a
new RPC call using a slot+sequence number combination that references an
already cached one. Currently, the Linux NFS client will do this if a
user process interrupts an RPC call that is in progress.
The problem with doing so is that we defeat the main mechanism used by
the server to differentiate between a new call and a replayed one. Even
if the server is able to perfectly cache the arguments of the old call,
it cannot know if the client intended to replay or send a new call.

The obvious fix is to bump the sequence number pre-emptively if an
RPC call is interrupted, but in order to deal with the corner cases
where the interrupted call is not actually received and processed by
the server, we need to interpret the error NFS4ERR_SEQ_MISORDERED
as a sign that we need to either wait or locate a correct sequence
number that lies between the value we sent, and the last value that
was acked by a SEQUENCE call on that slot.

Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Tested-by: Jason Tibbitts <tibbs@math.uh.edu>
2019-02-21 13:22:43 -05:00

653 lines
17 KiB
C

/*
* fs/nfs/nfs4session.c
*
* Copyright (c) 2012 Trond Myklebust <Trond.Myklebust@netapp.com>
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/sunrpc/sched.h>
#include <linux/sunrpc/bc_xprt.h>
#include <linux/nfs.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/module.h>
#include "nfs4_fs.h"
#include "internal.h"
#include "nfs4session.h"
#include "callback.h"
#define NFSDBG_FACILITY NFSDBG_STATE
static void nfs4_init_slot_table(struct nfs4_slot_table *tbl, const char *queue)
{
tbl->highest_used_slotid = NFS4_NO_SLOT;
spin_lock_init(&tbl->slot_tbl_lock);
rpc_init_priority_wait_queue(&tbl->slot_tbl_waitq, queue);
init_waitqueue_head(&tbl->slot_waitq);
init_completion(&tbl->complete);
}
/*
* nfs4_shrink_slot_table - free retired slots from the slot table
*/
static void nfs4_shrink_slot_table(struct nfs4_slot_table *tbl, u32 newsize)
{
struct nfs4_slot **p;
if (newsize >= tbl->max_slots)
return;
p = &tbl->slots;
while (newsize--)
p = &(*p)->next;
while (*p) {
struct nfs4_slot *slot = *p;
*p = slot->next;
kfree(slot);
tbl->max_slots--;
}
}
/**
* nfs4_slot_tbl_drain_complete - wake waiters when drain is complete
* @tbl: controlling slot table
*
*/
void nfs4_slot_tbl_drain_complete(struct nfs4_slot_table *tbl)
{
if (nfs4_slot_tbl_draining(tbl))
complete(&tbl->complete);
}
/*
* nfs4_free_slot - free a slot and efficiently update slot table.
*
* freeing a slot is trivially done by clearing its respective bit
* in the bitmap.
* If the freed slotid equals highest_used_slotid we want to update it
* so that the server would be able to size down the slot table if needed,
* otherwise we know that the highest_used_slotid is still in use.
* When updating highest_used_slotid there may be "holes" in the bitmap
* so we need to scan down from highest_used_slotid to 0 looking for the now
* highest slotid in use.
* If none found, highest_used_slotid is set to NFS4_NO_SLOT.
*
* Must be called while holding tbl->slot_tbl_lock
*/
void nfs4_free_slot(struct nfs4_slot_table *tbl, struct nfs4_slot *slot)
{
u32 slotid = slot->slot_nr;
/* clear used bit in bitmap */
__clear_bit(slotid, tbl->used_slots);
/* update highest_used_slotid when it is freed */
if (slotid == tbl->highest_used_slotid) {
u32 new_max = find_last_bit(tbl->used_slots, slotid);
if (new_max < slotid)
tbl->highest_used_slotid = new_max;
else {
tbl->highest_used_slotid = NFS4_NO_SLOT;
nfs4_slot_tbl_drain_complete(tbl);
}
}
dprintk("%s: slotid %u highest_used_slotid %u\n", __func__,
slotid, tbl->highest_used_slotid);
}
static struct nfs4_slot *nfs4_new_slot(struct nfs4_slot_table *tbl,
u32 slotid, u32 seq_init, gfp_t gfp_mask)
{
struct nfs4_slot *slot;
slot = kzalloc(sizeof(*slot), gfp_mask);
if (slot) {
slot->table = tbl;
slot->slot_nr = slotid;
slot->seq_nr = seq_init;
slot->seq_nr_highest_sent = seq_init;
slot->seq_nr_last_acked = seq_init - 1;
}
return slot;
}
static struct nfs4_slot *nfs4_find_or_create_slot(struct nfs4_slot_table *tbl,
u32 slotid, u32 seq_init, gfp_t gfp_mask)
{
struct nfs4_slot **p, *slot;
p = &tbl->slots;
for (;;) {
if (*p == NULL) {
*p = nfs4_new_slot(tbl, tbl->max_slots,
seq_init, gfp_mask);
if (*p == NULL)
break;
tbl->max_slots++;
}
slot = *p;
if (slot->slot_nr == slotid)
return slot;
p = &slot->next;
}
return ERR_PTR(-ENOMEM);
}
static void nfs4_lock_slot(struct nfs4_slot_table *tbl,
struct nfs4_slot *slot)
{
u32 slotid = slot->slot_nr;
__set_bit(slotid, tbl->used_slots);
if (slotid > tbl->highest_used_slotid ||
tbl->highest_used_slotid == NFS4_NO_SLOT)
tbl->highest_used_slotid = slotid;
slot->generation = tbl->generation;
}
/*
* nfs4_try_to_lock_slot - Given a slot try to allocate it
*
* Note: must be called with the slot_tbl_lock held.
*/
bool nfs4_try_to_lock_slot(struct nfs4_slot_table *tbl, struct nfs4_slot *slot)
{
if (nfs4_test_locked_slot(tbl, slot->slot_nr))
return false;
nfs4_lock_slot(tbl, slot);
return true;
}
/*
* nfs4_lookup_slot - Find a slot but don't allocate it
*
* Note: must be called with the slot_tbl_lock held.
*/
struct nfs4_slot *nfs4_lookup_slot(struct nfs4_slot_table *tbl, u32 slotid)
{
if (slotid <= tbl->max_slotid)
return nfs4_find_or_create_slot(tbl, slotid, 0, GFP_NOWAIT);
return ERR_PTR(-E2BIG);
}
static int nfs4_slot_get_seqid(struct nfs4_slot_table *tbl, u32 slotid,
u32 *seq_nr)
__must_hold(&tbl->slot_tbl_lock)
{
struct nfs4_slot *slot;
int ret;
slot = nfs4_lookup_slot(tbl, slotid);
ret = PTR_ERR_OR_ZERO(slot);
if (!ret)
*seq_nr = slot->seq_nr;
return ret;
}
/*
* nfs4_slot_seqid_in_use - test if a slot sequence id is still in use
*
* Given a slot table, slot id and sequence number, determine if the
* RPC call in question is still in flight. This function is mainly
* intended for use by the callback channel.
*/
static bool nfs4_slot_seqid_in_use(struct nfs4_slot_table *tbl,
u32 slotid, u32 seq_nr)
{
u32 cur_seq = 0;
bool ret = false;
spin_lock(&tbl->slot_tbl_lock);
if (nfs4_slot_get_seqid(tbl, slotid, &cur_seq) == 0 &&
cur_seq == seq_nr && test_bit(slotid, tbl->used_slots))
ret = true;
spin_unlock(&tbl->slot_tbl_lock);
return ret;
}
/*
* nfs4_slot_wait_on_seqid - wait until a slot sequence id is complete
*
* Given a slot table, slot id and sequence number, wait until the
* corresponding RPC call completes. This function is mainly
* intended for use by the callback channel.
*/
int nfs4_slot_wait_on_seqid(struct nfs4_slot_table *tbl,
u32 slotid, u32 seq_nr,
unsigned long timeout)
{
if (wait_event_timeout(tbl->slot_waitq,
!nfs4_slot_seqid_in_use(tbl, slotid, seq_nr),
timeout) == 0)
return -ETIMEDOUT;
return 0;
}
/*
* nfs4_alloc_slot - efficiently look for a free slot
*
* nfs4_alloc_slot looks for an unset bit in the used_slots bitmap.
* If found, we mark the slot as used, update the highest_used_slotid,
* and respectively set up the sequence operation args.
*
* Note: must be called with under the slot_tbl_lock.
*/
struct nfs4_slot *nfs4_alloc_slot(struct nfs4_slot_table *tbl)
{
struct nfs4_slot *ret = ERR_PTR(-EBUSY);
u32 slotid;
dprintk("--> %s used_slots=%04lx highest_used=%u max_slots=%u\n",
__func__, tbl->used_slots[0], tbl->highest_used_slotid,
tbl->max_slotid + 1);
slotid = find_first_zero_bit(tbl->used_slots, tbl->max_slotid + 1);
if (slotid <= tbl->max_slotid) {
ret = nfs4_find_or_create_slot(tbl, slotid, 1, GFP_NOWAIT);
if (!IS_ERR(ret))
nfs4_lock_slot(tbl, ret);
}
dprintk("<-- %s used_slots=%04lx highest_used=%u slotid=%u\n",
__func__, tbl->used_slots[0], tbl->highest_used_slotid,
!IS_ERR(ret) ? ret->slot_nr : NFS4_NO_SLOT);
return ret;
}
static int nfs4_grow_slot_table(struct nfs4_slot_table *tbl,
u32 max_reqs, u32 ivalue)
{
if (max_reqs <= tbl->max_slots)
return 0;
if (!IS_ERR(nfs4_find_or_create_slot(tbl, max_reqs - 1, ivalue, GFP_NOFS)))
return 0;
return -ENOMEM;
}
static void nfs4_reset_slot_table(struct nfs4_slot_table *tbl,
u32 server_highest_slotid,
u32 ivalue)
{
struct nfs4_slot **p;
nfs4_shrink_slot_table(tbl, server_highest_slotid + 1);
p = &tbl->slots;
while (*p) {
(*p)->seq_nr = ivalue;
(*p)->seq_nr_highest_sent = ivalue;
(*p)->seq_nr_last_acked = ivalue - 1;
p = &(*p)->next;
}
tbl->highest_used_slotid = NFS4_NO_SLOT;
tbl->target_highest_slotid = server_highest_slotid;
tbl->server_highest_slotid = server_highest_slotid;
tbl->d_target_highest_slotid = 0;
tbl->d2_target_highest_slotid = 0;
tbl->max_slotid = server_highest_slotid;
}
/*
* (re)Initialise a slot table
*/
static int nfs4_realloc_slot_table(struct nfs4_slot_table *tbl,
u32 max_reqs, u32 ivalue)
{
int ret;
dprintk("--> %s: max_reqs=%u, tbl->max_slots %u\n", __func__,
max_reqs, tbl->max_slots);
if (max_reqs > NFS4_MAX_SLOT_TABLE)
max_reqs = NFS4_MAX_SLOT_TABLE;
ret = nfs4_grow_slot_table(tbl, max_reqs, ivalue);
if (ret)
goto out;
spin_lock(&tbl->slot_tbl_lock);
nfs4_reset_slot_table(tbl, max_reqs - 1, ivalue);
spin_unlock(&tbl->slot_tbl_lock);
dprintk("%s: tbl=%p slots=%p max_slots=%u\n", __func__,
tbl, tbl->slots, tbl->max_slots);
out:
dprintk("<-- %s: return %d\n", __func__, ret);
return ret;
}
/*
* nfs4_release_slot_table - release all slot table entries
*/
static void nfs4_release_slot_table(struct nfs4_slot_table *tbl)
{
nfs4_shrink_slot_table(tbl, 0);
}
/**
* nfs4_shutdown_slot_table - release resources attached to a slot table
* @tbl: slot table to shut down
*
*/
void nfs4_shutdown_slot_table(struct nfs4_slot_table *tbl)
{
nfs4_release_slot_table(tbl);
rpc_destroy_wait_queue(&tbl->slot_tbl_waitq);
}
/**
* nfs4_setup_slot_table - prepare a stand-alone slot table for use
* @tbl: slot table to set up
* @max_reqs: maximum number of requests allowed
* @queue: name to give RPC wait queue
*
* Returns zero on success, or a negative errno.
*/
int nfs4_setup_slot_table(struct nfs4_slot_table *tbl, unsigned int max_reqs,
const char *queue)
{
nfs4_init_slot_table(tbl, queue);
return nfs4_realloc_slot_table(tbl, max_reqs, 0);
}
static bool nfs41_assign_slot(struct rpc_task *task, void *pslot)
{
struct nfs4_sequence_args *args = task->tk_msg.rpc_argp;
struct nfs4_sequence_res *res = task->tk_msg.rpc_resp;
struct nfs4_slot *slot = pslot;
struct nfs4_slot_table *tbl = slot->table;
if (nfs4_slot_tbl_draining(tbl) && !args->sa_privileged)
return false;
slot->generation = tbl->generation;
args->sa_slot = slot;
res->sr_timestamp = jiffies;
res->sr_slot = slot;
res->sr_status_flags = 0;
res->sr_status = 1;
return true;
}
static bool __nfs41_wake_and_assign_slot(struct nfs4_slot_table *tbl,
struct nfs4_slot *slot)
{
if (rpc_wake_up_first(&tbl->slot_tbl_waitq, nfs41_assign_slot, slot))
return true;
return false;
}
bool nfs41_wake_and_assign_slot(struct nfs4_slot_table *tbl,
struct nfs4_slot *slot)
{
if (slot->slot_nr > tbl->max_slotid)
return false;
return __nfs41_wake_and_assign_slot(tbl, slot);
}
static bool nfs41_try_wake_next_slot_table_entry(struct nfs4_slot_table *tbl)
{
struct nfs4_slot *slot = nfs4_alloc_slot(tbl);
if (!IS_ERR(slot)) {
bool ret = __nfs41_wake_and_assign_slot(tbl, slot);
if (ret)
return ret;
nfs4_free_slot(tbl, slot);
}
return false;
}
void nfs41_wake_slot_table(struct nfs4_slot_table *tbl)
{
for (;;) {
if (!nfs41_try_wake_next_slot_table_entry(tbl))
break;
}
}
#if defined(CONFIG_NFS_V4_1)
static void nfs41_set_max_slotid_locked(struct nfs4_slot_table *tbl,
u32 target_highest_slotid)
{
u32 max_slotid;
max_slotid = min(NFS4_MAX_SLOT_TABLE - 1, target_highest_slotid);
if (max_slotid > tbl->server_highest_slotid)
max_slotid = tbl->server_highest_slotid;
if (max_slotid > tbl->target_highest_slotid)
max_slotid = tbl->target_highest_slotid;
tbl->max_slotid = max_slotid;
nfs41_wake_slot_table(tbl);
}
/* Update the client's idea of target_highest_slotid */
static void nfs41_set_target_slotid_locked(struct nfs4_slot_table *tbl,
u32 target_highest_slotid)
{
if (tbl->target_highest_slotid == target_highest_slotid)
return;
tbl->target_highest_slotid = target_highest_slotid;
tbl->generation++;
}
void nfs41_set_target_slotid(struct nfs4_slot_table *tbl,
u32 target_highest_slotid)
{
spin_lock(&tbl->slot_tbl_lock);
nfs41_set_target_slotid_locked(tbl, target_highest_slotid);
tbl->d_target_highest_slotid = 0;
tbl->d2_target_highest_slotid = 0;
nfs41_set_max_slotid_locked(tbl, target_highest_slotid);
spin_unlock(&tbl->slot_tbl_lock);
}
static void nfs41_set_server_slotid_locked(struct nfs4_slot_table *tbl,
u32 highest_slotid)
{
if (tbl->server_highest_slotid == highest_slotid)
return;
if (tbl->highest_used_slotid > highest_slotid)
return;
/* Deallocate slots */
nfs4_shrink_slot_table(tbl, highest_slotid + 1);
tbl->server_highest_slotid = highest_slotid;
}
static s32 nfs41_derivative_target_slotid(s32 s1, s32 s2)
{
s1 -= s2;
if (s1 == 0)
return 0;
if (s1 < 0)
return (s1 - 1) >> 1;
return (s1 + 1) >> 1;
}
static int nfs41_sign_s32(s32 s1)
{
if (s1 > 0)
return 1;
if (s1 < 0)
return -1;
return 0;
}
static bool nfs41_same_sign_or_zero_s32(s32 s1, s32 s2)
{
if (!s1 || !s2)
return true;
return nfs41_sign_s32(s1) == nfs41_sign_s32(s2);
}
/* Try to eliminate outliers by checking for sharp changes in the
* derivatives and second derivatives
*/
static bool nfs41_is_outlier_target_slotid(struct nfs4_slot_table *tbl,
u32 new_target)
{
s32 d_target, d2_target;
bool ret = true;
d_target = nfs41_derivative_target_slotid(new_target,
tbl->target_highest_slotid);
d2_target = nfs41_derivative_target_slotid(d_target,
tbl->d_target_highest_slotid);
/* Is first derivative same sign? */
if (nfs41_same_sign_or_zero_s32(d_target, tbl->d_target_highest_slotid))
ret = false;
/* Is second derivative same sign? */
if (nfs41_same_sign_or_zero_s32(d2_target, tbl->d2_target_highest_slotid))
ret = false;
tbl->d_target_highest_slotid = d_target;
tbl->d2_target_highest_slotid = d2_target;
return ret;
}
void nfs41_update_target_slotid(struct nfs4_slot_table *tbl,
struct nfs4_slot *slot,
struct nfs4_sequence_res *res)
{
spin_lock(&tbl->slot_tbl_lock);
if (!nfs41_is_outlier_target_slotid(tbl, res->sr_target_highest_slotid))
nfs41_set_target_slotid_locked(tbl, res->sr_target_highest_slotid);
if (tbl->generation == slot->generation)
nfs41_set_server_slotid_locked(tbl, res->sr_highest_slotid);
nfs41_set_max_slotid_locked(tbl, res->sr_target_highest_slotid);
spin_unlock(&tbl->slot_tbl_lock);
}
static void nfs4_release_session_slot_tables(struct nfs4_session *session)
{
nfs4_release_slot_table(&session->fc_slot_table);
nfs4_release_slot_table(&session->bc_slot_table);
}
/*
* Initialize or reset the forechannel and backchannel tables
*/
int nfs4_setup_session_slot_tables(struct nfs4_session *ses)
{
struct nfs4_slot_table *tbl;
int status;
dprintk("--> %s\n", __func__);
/* Fore channel */
tbl = &ses->fc_slot_table;
tbl->session = ses;
status = nfs4_realloc_slot_table(tbl, ses->fc_attrs.max_reqs, 1);
if (status || !(ses->flags & SESSION4_BACK_CHAN)) /* -ENOMEM */
return status;
/* Back channel */
tbl = &ses->bc_slot_table;
tbl->session = ses;
status = nfs4_realloc_slot_table(tbl, ses->bc_attrs.max_reqs, 0);
if (status && tbl->slots == NULL)
/* Fore and back channel share a connection so get
* both slot tables or neither */
nfs4_release_session_slot_tables(ses);
return status;
}
struct nfs4_session *nfs4_alloc_session(struct nfs_client *clp)
{
struct nfs4_session *session;
session = kzalloc(sizeof(struct nfs4_session), GFP_NOFS);
if (!session)
return NULL;
nfs4_init_slot_table(&session->fc_slot_table, "ForeChannel Slot table");
nfs4_init_slot_table(&session->bc_slot_table, "BackChannel Slot table");
session->session_state = 1<<NFS4_SESSION_INITING;
session->clp = clp;
return session;
}
static void nfs4_destroy_session_slot_tables(struct nfs4_session *session)
{
nfs4_shutdown_slot_table(&session->fc_slot_table);
nfs4_shutdown_slot_table(&session->bc_slot_table);
}
void nfs4_destroy_session(struct nfs4_session *session)
{
struct rpc_xprt *xprt;
const struct cred *cred;
cred = nfs4_get_clid_cred(session->clp);
nfs4_proc_destroy_session(session, cred);
put_cred(cred);
rcu_read_lock();
xprt = rcu_dereference(session->clp->cl_rpcclient->cl_xprt);
rcu_read_unlock();
dprintk("%s Destroy backchannel for xprt %p\n",
__func__, xprt);
xprt_destroy_backchannel(xprt, NFS41_BC_MIN_CALLBACKS);
nfs4_destroy_session_slot_tables(session);
kfree(session);
}
/*
* With sessions, the client is not marked ready until after a
* successful EXCHANGE_ID and CREATE_SESSION.
*
* Map errors cl_cons_state errors to EPROTONOSUPPORT to indicate
* other versions of NFS can be tried.
*/
static int nfs41_check_session_ready(struct nfs_client *clp)
{
int ret;
if (clp->cl_cons_state == NFS_CS_SESSION_INITING) {
ret = nfs4_client_recover_expired_lease(clp);
if (ret)
return ret;
}
if (clp->cl_cons_state < NFS_CS_READY)
return -EPROTONOSUPPORT;
smp_rmb();
return 0;
}
int nfs4_init_session(struct nfs_client *clp)
{
if (!nfs4_has_session(clp))
return 0;
clear_bit(NFS4_SESSION_INITING, &clp->cl_session->session_state);
return nfs41_check_session_ready(clp);
}
int nfs4_init_ds_session(struct nfs_client *clp, unsigned long lease_time)
{
struct nfs4_session *session = clp->cl_session;
int ret;
spin_lock(&clp->cl_lock);
if (test_and_clear_bit(NFS4_SESSION_INITING, &session->session_state)) {
/*
* Do not set NFS_CS_CHECK_LEASE_TIME instead set the
* DS lease to be equal to the MDS lease.
*/
clp->cl_lease_time = lease_time;
clp->cl_last_renewal = jiffies;
}
spin_unlock(&clp->cl_lock);
ret = nfs41_check_session_ready(clp);
if (ret)
return ret;
/* Test for the DS role */
if (!is_ds_client(clp))
return -ENODEV;
return 0;
}
EXPORT_SYMBOL_GPL(nfs4_init_ds_session);
#endif /* defined(CONFIG_NFS_V4_1) */