A 'false retry' in NFSv4.1 occurs when the client attempts to transmit a
new RPC call using a slot+sequence number combination that references an
already cached one. Currently, the Linux NFS client will do this if a
user process interrupts an RPC call that is in progress.
The problem with doing so is that we defeat the main mechanism used by
the server to differentiate between a new call and a replayed one. Even
if the server is able to perfectly cache the arguments of the old call,
it cannot know if the client intended to replay or send a new call.
The obvious fix is to bump the sequence number pre-emptively if an
RPC call is interrupted, but in order to deal with the corner cases
where the interrupted call is not actually received and processed by
the server, we need to interpret the error NFS4ERR_SEQ_MISORDERED
as a sign that we need to either wait or locate a correct sequence
number that lies between the value we sent, and the last value that
was acked by a SEQUENCE call on that slot.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Tested-by: Jason Tibbitts <tibbs@math.uh.edu>
Fix up some compiler warnings about function parameters, etc not being
correctly described or formatted.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
SUNRPC has two sorts of credentials, both of which appear as
"struct rpc_cred".
There are "generic credentials" which are supplied by clients
such as NFS and passed in 'struct rpc_message' to indicate
which user should be used to authorize the request, and there
are low-level credentials such as AUTH_NULL, AUTH_UNIX, AUTH_GSS
which describe the credential to be sent over the wires.
This patch replaces all the generic credentials by 'struct cred'
pointers - the credential structure used throughout Linux.
For machine credentials, there is a special 'struct cred *' pointer
which is statically allocated and recognized where needed as
having a special meaning. A look-up of a low-level cred will
map this to a machine credential.
Signed-off-by: NeilBrown <neilb@suse.com>
Acked-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When initializing a freshly created slot for the calllback channel,
the seq_nr needs to be 0, not 1. Otherwise validate_seqid
and nfs4_slot_wait_on_seqid get confused and believe that the
mpty slot corresponds to a previously sent reply.
Signed-off-by: Fred Isaman <fred.isaman@gmail.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Fix the following warn:
fs/nfs/nfs4session.c: In function ‘nfs4_slot_seqid_in_use’:
fs/nfs/nfs4session.c:203:54: warning: ‘cur_seq’ may be used uninitialized in this function [-Wmaybe-uninitialized]
if (nfs4_slot_get_seqid(tbl, slotid, &cur_seq) == 0 &&
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~
cur_seq == seq_nr && test_bit(slotid, tbl->used_slots))
~~~~~~~~~~~~~~~~~
Signed-off-by: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
A bugfix introduced a harmless gcc warning in nfs4_slot_seqid_in_use
if we enable -Wmaybe-uninitialized again:
fs/nfs/nfs4session.c:203:54: error: 'cur_seq' may be used uninitialized in this function [-Werror=maybe-uninitialized]
gcc is not smart enough to conclude that the IS_ERR/PTR_ERR pair
results in a nonzero return value here. Using PTR_ERR_OR_ZERO()
instead makes this clear to the compiler.
The warning originally did not appear in v4.8 as it was globally
disabled, but the bugfix that introduced the warning got backported
to stable kernels which again enable it, and this is now the only
warning in the v4.7 builds.
Fixes: e09c978aae ("NFSv4.1: Fix Oopsable condition in server callback races")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If CB_SEQUENCE tells us that the processing of this request depends on
the completion of one or more referring triples (see RFC 5661 Section
2.10.6.3), delay the callback processing until after the RPC requests
being referred to have completed.
If we end up delaying for more than 1/2 second, then fall back to
returning NFS4ERR_DELAY in reply to the callback.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The slot table hasn't been an array since v3.7. Ensure that we
use nfs4_lookup_slot() to access the slot correctly.
Fixes: 87dda67e73 ("NFSv4.1: Allow SEQUENCE to resize the slot table...")
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: stable@vger.kernel.org # v3.8+
Hook the callback channel into the same session management machinery
as we use for the forward channel.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
There may still be timers active on the session waitqueues. Make sure
that we kill them before freeing the memory.
Cc: stable@vger.kernel.org # 3.12+
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
linux/fs/nfs/nfs4session.c:337:6: warning:
symbol 'nfs41_set_target_slotid' was not declared. Should it be static?
Move nfs41_set_target_slotid() and nfs41_update_target_slotid() back
behind CONFIG_NFS_V4_1, since, in the final revision of this work,
they are used only in NFSv4.1 and later.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The nfs4_destroy_slot_tables() function is renamed to avoid
confusion with the new helper.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
I'd like to re-use NFSv4.1's slot table machinery for NFSv4.0
transport blocking. Re-organize some of nfs4session.c so the slot
table code is built even when NFS_V4_1 is disabled.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean up, since slot and sequence numbers are all unsigned anyway.
Among other things, squelch compiler warnings:
linux/fs/nfs/nfs4proc.c: In function ‘nfs4_setup_sequence’:
linux/fs/nfs/nfs4proc.c:703:2: warning: signed and unsigned type in
conditional expression [-Wsign-compare]
and
linux/fs/nfs/nfs4session.c: In function ‘nfs4_alloc_slot’:
linux/fs/nfs/nfs4session.c:151:31: warning: signed and unsigned type in
conditional expression [-Wsign-compare]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Never try to use a non-UID 0 user credential for lease management,
as that credential can change out from under us. The server will
block NFSv4 lease recovery with NFS4ERR_CLID_INUSE.
Since the mechanism to acquire a credential for lease management
is now the same for all minor versions, replace the minor version-
specific callout with a single function.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
nfs4_init_session was originally written to be called prior to
nfs4_init_channel_attrs, setting the session target_max response and request
sizes that nfs4_init_channel_attrs would pay attention to.
In the current code flow, nfs4_init_session, just like nfs4_init_ds_session
for the data server case, is called after the session is all negotiated, and
is actually used in a RECLAIM COMPLETE call to the server.
Remove the un-needed fc_target_max response and request fields from
nfs4_session and just set the max_resp_sz and max_rqst_sz in
nfs4_init_channel_attrs.
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
On a CB_RECALL the callback service thread flushes the inode using
filemap_flush prior to scheduling the state manager thread to return the
delegation. When pNFS is used and I/O has not yet gone to the data server
servicing the inode, a LAYOUTGET can preceed the I/O. Unlike the async
filemap_flush call, the LAYOUTGET must proceed to completion.
If the state manager starts to recover data while the inode flush is sending
the LAYOUTGET, a deadlock occurs as the callback service thread holds the
single callback session slot until the flushing is done which blocks the state
manager thread, and the state manager thread has set the session draining bit
which puts the inode flush LAYOUTGET RPC to sleep on the forechannel slot
table waitq.
Separate the draining of the back channel from the draining of the fore channel
by moving the NFS4_SESSION_DRAINING bit from session scope into the fore
and back slot tables. Drain the back channel first allowing the LAYOUTGET
call to proceed (and fail) so the callback service thread frees the callback
slot. Then proceed with draining the forechannel.
Signed-off-by: Andy Adamson <andros@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
If an RPC call is interrupted, assume that the server hasn't processed
the RPC call so that the next time we use the slot, we know that if we
get a NFS4ERR_SEQ_MISORDERED or NFS4ERR_SEQ_FALSE_RETRY, we just have
to bump the sequence number.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Shave a few bytes off the slot table size by moving the RPC timestamp
into the sequence results.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
If the server sends us a target that looks like an outlier, but
is lower than the existing target, then respect it anyway.
However defer actually updating the generation counter until
we get a target that doesn't look like an outlier.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Look for sudden changes in the first and second derivatives in order
to eliminate outlier changes to target_highest_slotid (which are
due to out-of-order RPC replies).
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Currently, we see a lot of bouncing for the value of highest_used_slotid
due to the fact that slots are getting freed, instead of getting instantly
transmitted to the next waiting task.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>