mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 01:53:15 +07:00
6429ccdd4f
Remove left over ancient and now misleading TODO remarks. Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2316 lines
66 KiB
C
2316 lines
66 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/md5.h>
|
|
#include <crypto/sm3.h>
|
|
#include <crypto/internal/hash.h>
|
|
|
|
#include "cc_driver.h"
|
|
#include "cc_request_mgr.h"
|
|
#include "cc_buffer_mgr.h"
|
|
#include "cc_hash.h"
|
|
#include "cc_sram_mgr.h"
|
|
|
|
#define CC_MAX_HASH_SEQ_LEN 12
|
|
#define CC_MAX_OPAD_KEYS_SIZE CC_MAX_HASH_BLCK_SIZE
|
|
#define CC_SM3_HASH_LEN_SIZE 8
|
|
|
|
struct cc_hash_handle {
|
|
u32 digest_len_sram_addr; /* const value in SRAM*/
|
|
u32 larval_digest_sram_addr; /* const value in SRAM */
|
|
struct list_head hash_list;
|
|
};
|
|
|
|
static const u32 cc_digest_len_init[] = {
|
|
0x00000040, 0x00000000, 0x00000000, 0x00000000 };
|
|
static const u32 cc_md5_init[] = {
|
|
SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
|
|
static const u32 cc_sha1_init[] = {
|
|
SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
|
|
static const u32 cc_sha224_init[] = {
|
|
SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4,
|
|
SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 };
|
|
static const u32 cc_sha256_init[] = {
|
|
SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
|
|
SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
|
|
static const u32 cc_digest_len_sha512_init[] = {
|
|
0x00000080, 0x00000000, 0x00000000, 0x00000000 };
|
|
|
|
/*
|
|
* Due to the way the HW works, every double word in the SHA384 and SHA512
|
|
* larval hashes must be stored in hi/lo order
|
|
*/
|
|
#define hilo(x) upper_32_bits(x), lower_32_bits(x)
|
|
static const u32 cc_sha384_init[] = {
|
|
hilo(SHA384_H7), hilo(SHA384_H6), hilo(SHA384_H5), hilo(SHA384_H4),
|
|
hilo(SHA384_H3), hilo(SHA384_H2), hilo(SHA384_H1), hilo(SHA384_H0) };
|
|
static const u32 cc_sha512_init[] = {
|
|
hilo(SHA512_H7), hilo(SHA512_H6), hilo(SHA512_H5), hilo(SHA512_H4),
|
|
hilo(SHA512_H3), hilo(SHA512_H2), hilo(SHA512_H1), hilo(SHA512_H0) };
|
|
|
|
static const u32 cc_sm3_init[] = {
|
|
SM3_IVH, SM3_IVG, SM3_IVF, SM3_IVE,
|
|
SM3_IVD, SM3_IVC, SM3_IVB, SM3_IVA };
|
|
|
|
static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
|
|
unsigned int *seq_size);
|
|
|
|
static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
|
|
unsigned int *seq_size);
|
|
|
|
static const void *cc_larval_digest(struct device *dev, u32 mode);
|
|
|
|
struct cc_hash_alg {
|
|
struct list_head entry;
|
|
int hash_mode;
|
|
int hw_mode;
|
|
int inter_digestsize;
|
|
struct cc_drvdata *drvdata;
|
|
struct ahash_alg ahash_alg;
|
|
};
|
|
|
|
struct hash_key_req_ctx {
|
|
u32 keylen;
|
|
dma_addr_t key_dma_addr;
|
|
u8 *key;
|
|
};
|
|
|
|
/* hash per-session context */
|
|
struct cc_hash_ctx {
|
|
struct cc_drvdata *drvdata;
|
|
/* holds the origin digest; the digest after "setkey" if HMAC,*
|
|
* the initial digest if HASH.
|
|
*/
|
|
u8 digest_buff[CC_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned;
|
|
u8 opad_tmp_keys_buff[CC_MAX_OPAD_KEYS_SIZE] ____cacheline_aligned;
|
|
|
|
dma_addr_t opad_tmp_keys_dma_addr ____cacheline_aligned;
|
|
dma_addr_t digest_buff_dma_addr;
|
|
/* use for hmac with key large then mode block size */
|
|
struct hash_key_req_ctx key_params;
|
|
int hash_mode;
|
|
int hw_mode;
|
|
int inter_digestsize;
|
|
unsigned int hash_len;
|
|
struct completion setkey_comp;
|
|
bool is_hmac;
|
|
};
|
|
|
|
static void cc_set_desc(struct ahash_req_ctx *areq_ctx, struct cc_hash_ctx *ctx,
|
|
unsigned int flow_mode, struct cc_hw_desc desc[],
|
|
bool is_not_last_data, unsigned int *seq_size);
|
|
|
|
static void cc_set_endianity(u32 mode, struct cc_hw_desc *desc)
|
|
{
|
|
if (mode == DRV_HASH_MD5 || mode == DRV_HASH_SHA384 ||
|
|
mode == DRV_HASH_SHA512) {
|
|
set_bytes_swap(desc, 1);
|
|
} else {
|
|
set_cipher_config0(desc, HASH_DIGEST_RESULT_LITTLE_ENDIAN);
|
|
}
|
|
}
|
|
|
|
static int cc_map_result(struct device *dev, struct ahash_req_ctx *state,
|
|
unsigned int digestsize)
|
|
{
|
|
state->digest_result_dma_addr =
|
|
dma_map_single(dev, state->digest_result_buff,
|
|
digestsize, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, state->digest_result_dma_addr)) {
|
|
dev_err(dev, "Mapping digest result buffer %u B for DMA failed\n",
|
|
digestsize);
|
|
return -ENOMEM;
|
|
}
|
|
dev_dbg(dev, "Mapped digest result buffer %u B at va=%pK to dma=%pad\n",
|
|
digestsize, state->digest_result_buff,
|
|
&state->digest_result_dma_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cc_init_req(struct device *dev, struct ahash_req_ctx *state,
|
|
struct cc_hash_ctx *ctx)
|
|
{
|
|
bool is_hmac = ctx->is_hmac;
|
|
|
|
memset(state, 0, sizeof(*state));
|
|
|
|
if (is_hmac) {
|
|
if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC &&
|
|
ctx->hw_mode != DRV_CIPHER_CMAC) {
|
|
dma_sync_single_for_cpu(dev, ctx->digest_buff_dma_addr,
|
|
ctx->inter_digestsize,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
memcpy(state->digest_buff, ctx->digest_buff,
|
|
ctx->inter_digestsize);
|
|
if (ctx->hash_mode == DRV_HASH_SHA512 ||
|
|
ctx->hash_mode == DRV_HASH_SHA384)
|
|
memcpy(state->digest_bytes_len,
|
|
cc_digest_len_sha512_init,
|
|
ctx->hash_len);
|
|
else
|
|
memcpy(state->digest_bytes_len,
|
|
cc_digest_len_init,
|
|
ctx->hash_len);
|
|
}
|
|
|
|
if (ctx->hash_mode != DRV_HASH_NULL) {
|
|
dma_sync_single_for_cpu(dev,
|
|
ctx->opad_tmp_keys_dma_addr,
|
|
ctx->inter_digestsize,
|
|
DMA_BIDIRECTIONAL);
|
|
memcpy(state->opad_digest_buff,
|
|
ctx->opad_tmp_keys_buff, ctx->inter_digestsize);
|
|
}
|
|
} else { /*hash*/
|
|
/* Copy the initial digests if hash flow. */
|
|
const void *larval = cc_larval_digest(dev, ctx->hash_mode);
|
|
|
|
memcpy(state->digest_buff, larval, ctx->inter_digestsize);
|
|
}
|
|
}
|
|
|
|
static int cc_map_req(struct device *dev, struct ahash_req_ctx *state,
|
|
struct cc_hash_ctx *ctx)
|
|
{
|
|
bool is_hmac = ctx->is_hmac;
|
|
|
|
state->digest_buff_dma_addr =
|
|
dma_map_single(dev, state->digest_buff,
|
|
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, state->digest_buff_dma_addr)) {
|
|
dev_err(dev, "Mapping digest len %d B at va=%pK for DMA failed\n",
|
|
ctx->inter_digestsize, state->digest_buff);
|
|
return -EINVAL;
|
|
}
|
|
dev_dbg(dev, "Mapped digest %d B at va=%pK to dma=%pad\n",
|
|
ctx->inter_digestsize, state->digest_buff,
|
|
&state->digest_buff_dma_addr);
|
|
|
|
if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) {
|
|
state->digest_bytes_len_dma_addr =
|
|
dma_map_single(dev, state->digest_bytes_len,
|
|
HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, state->digest_bytes_len_dma_addr)) {
|
|
dev_err(dev, "Mapping digest len %u B at va=%pK for DMA failed\n",
|
|
HASH_MAX_LEN_SIZE, state->digest_bytes_len);
|
|
goto unmap_digest_buf;
|
|
}
|
|
dev_dbg(dev, "Mapped digest len %u B at va=%pK to dma=%pad\n",
|
|
HASH_MAX_LEN_SIZE, state->digest_bytes_len,
|
|
&state->digest_bytes_len_dma_addr);
|
|
}
|
|
|
|
if (is_hmac && ctx->hash_mode != DRV_HASH_NULL) {
|
|
state->opad_digest_dma_addr =
|
|
dma_map_single(dev, state->opad_digest_buff,
|
|
ctx->inter_digestsize,
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, state->opad_digest_dma_addr)) {
|
|
dev_err(dev, "Mapping opad digest %d B at va=%pK for DMA failed\n",
|
|
ctx->inter_digestsize,
|
|
state->opad_digest_buff);
|
|
goto unmap_digest_len;
|
|
}
|
|
dev_dbg(dev, "Mapped opad digest %d B at va=%pK to dma=%pad\n",
|
|
ctx->inter_digestsize, state->opad_digest_buff,
|
|
&state->opad_digest_dma_addr);
|
|
}
|
|
|
|
return 0;
|
|
|
|
unmap_digest_len:
|
|
if (state->digest_bytes_len_dma_addr) {
|
|
dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
|
|
HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
|
|
state->digest_bytes_len_dma_addr = 0;
|
|
}
|
|
unmap_digest_buf:
|
|
if (state->digest_buff_dma_addr) {
|
|
dma_unmap_single(dev, state->digest_buff_dma_addr,
|
|
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
|
|
state->digest_buff_dma_addr = 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void cc_unmap_req(struct device *dev, struct ahash_req_ctx *state,
|
|
struct cc_hash_ctx *ctx)
|
|
{
|
|
if (state->digest_buff_dma_addr) {
|
|
dma_unmap_single(dev, state->digest_buff_dma_addr,
|
|
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
|
|
dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
|
|
&state->digest_buff_dma_addr);
|
|
state->digest_buff_dma_addr = 0;
|
|
}
|
|
if (state->digest_bytes_len_dma_addr) {
|
|
dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
|
|
HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
|
|
dev_dbg(dev, "Unmapped digest-bytes-len buffer: digest_bytes_len_dma_addr=%pad\n",
|
|
&state->digest_bytes_len_dma_addr);
|
|
state->digest_bytes_len_dma_addr = 0;
|
|
}
|
|
if (state->opad_digest_dma_addr) {
|
|
dma_unmap_single(dev, state->opad_digest_dma_addr,
|
|
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
|
|
dev_dbg(dev, "Unmapped opad-digest: opad_digest_dma_addr=%pad\n",
|
|
&state->opad_digest_dma_addr);
|
|
state->opad_digest_dma_addr = 0;
|
|
}
|
|
}
|
|
|
|
static void cc_unmap_result(struct device *dev, struct ahash_req_ctx *state,
|
|
unsigned int digestsize, u8 *result)
|
|
{
|
|
if (state->digest_result_dma_addr) {
|
|
dma_unmap_single(dev, state->digest_result_dma_addr, digestsize,
|
|
DMA_BIDIRECTIONAL);
|
|
dev_dbg(dev, "unmpa digest result buffer va (%pK) pa (%pad) len %u\n",
|
|
state->digest_result_buff,
|
|
&state->digest_result_dma_addr, digestsize);
|
|
memcpy(result, state->digest_result_buff, digestsize);
|
|
}
|
|
state->digest_result_dma_addr = 0;
|
|
}
|
|
|
|
static void cc_update_complete(struct device *dev, void *cc_req, int err)
|
|
{
|
|
struct ahash_request *req = (struct ahash_request *)cc_req;
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
dev_dbg(dev, "req=%pK\n", req);
|
|
|
|
if (err != -EINPROGRESS) {
|
|
/* Not a BACKLOG notification */
|
|
cc_unmap_hash_request(dev, state, req->src, false);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
|
|
ahash_request_complete(req, err);
|
|
}
|
|
|
|
static void cc_digest_complete(struct device *dev, void *cc_req, int err)
|
|
{
|
|
struct ahash_request *req = (struct ahash_request *)cc_req;
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
|
|
dev_dbg(dev, "req=%pK\n", req);
|
|
|
|
if (err != -EINPROGRESS) {
|
|
/* Not a BACKLOG notification */
|
|
cc_unmap_hash_request(dev, state, req->src, false);
|
|
cc_unmap_result(dev, state, digestsize, req->result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
|
|
ahash_request_complete(req, err);
|
|
}
|
|
|
|
static void cc_hash_complete(struct device *dev, void *cc_req, int err)
|
|
{
|
|
struct ahash_request *req = (struct ahash_request *)cc_req;
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
|
|
dev_dbg(dev, "req=%pK\n", req);
|
|
|
|
if (err != -EINPROGRESS) {
|
|
/* Not a BACKLOG notification */
|
|
cc_unmap_hash_request(dev, state, req->src, false);
|
|
cc_unmap_result(dev, state, digestsize, req->result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
|
|
ahash_request_complete(req, err);
|
|
}
|
|
|
|
static int cc_fin_result(struct cc_hw_desc *desc, struct ahash_request *req,
|
|
int idx)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
|
|
/* Get final MAC result */
|
|
hw_desc_init(&desc[idx]);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize,
|
|
NS_BIT, 1);
|
|
set_queue_last_ind(ctx->drvdata, &desc[idx]);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
|
|
cc_set_endianity(ctx->hash_mode, &desc[idx]);
|
|
idx++;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static int cc_fin_hmac(struct cc_hw_desc *desc, struct ahash_request *req,
|
|
int idx)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
|
|
/* store the hash digest result in the context */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, digestsize,
|
|
NS_BIT, 0);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
cc_set_endianity(ctx->hash_mode, &desc[idx]);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
idx++;
|
|
|
|
/* Loading hash opad xor key state */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_din_type(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr,
|
|
ctx->inter_digestsize, NS_BIT);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
|
|
idx++;
|
|
|
|
/* Load the hash current length */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_din_sram(&desc[idx],
|
|
cc_digest_len_addr(ctx->drvdata, ctx->hash_mode),
|
|
ctx->hash_len);
|
|
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
idx++;
|
|
|
|
/* Memory Barrier: wait for IPAD/OPAD axi write to complete */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_no_dma(&desc[idx], 0, 0xfffff0);
|
|
set_dout_no_dma(&desc[idx], 0, 0, 1);
|
|
idx++;
|
|
|
|
/* Perform HASH update */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
|
|
digestsize, NS_BIT);
|
|
set_flow_mode(&desc[idx], DIN_HASH);
|
|
idx++;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static int cc_hash_digest(struct ahash_request *req)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
struct scatterlist *src = req->src;
|
|
unsigned int nbytes = req->nbytes;
|
|
u8 *result = req->result;
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
bool is_hmac = ctx->is_hmac;
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
u32 larval_digest_addr;
|
|
int idx = 0;
|
|
int rc = 0;
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
|
|
dev_dbg(dev, "===== %s-digest (%d) ====\n", is_hmac ? "hmac" : "hash",
|
|
nbytes);
|
|
|
|
cc_init_req(dev, state, ctx);
|
|
|
|
if (cc_map_req(dev, state, ctx)) {
|
|
dev_err(dev, "map_ahash_source() failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (cc_map_result(dev, state, digestsize)) {
|
|
dev_err(dev, "map_ahash_digest() failed\n");
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1,
|
|
flags)) {
|
|
dev_err(dev, "map_ahash_request_final() failed\n");
|
|
cc_unmap_result(dev, state, digestsize, result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup request structure */
|
|
cc_req.user_cb = cc_digest_complete;
|
|
cc_req.user_arg = req;
|
|
|
|
/* If HMAC then load hash IPAD xor key, if HASH then load initial
|
|
* digest
|
|
*/
|
|
hw_desc_init(&desc[idx]);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
if (is_hmac) {
|
|
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
|
|
ctx->inter_digestsize, NS_BIT);
|
|
} else {
|
|
larval_digest_addr = cc_larval_digest_addr(ctx->drvdata,
|
|
ctx->hash_mode);
|
|
set_din_sram(&desc[idx], larval_digest_addr,
|
|
ctx->inter_digestsize);
|
|
}
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
|
|
idx++;
|
|
|
|
/* Load the hash current length */
|
|
hw_desc_init(&desc[idx]);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
|
|
if (is_hmac) {
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
state->digest_bytes_len_dma_addr,
|
|
ctx->hash_len, NS_BIT);
|
|
} else {
|
|
set_din_const(&desc[idx], 0, ctx->hash_len);
|
|
if (nbytes)
|
|
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
|
|
else
|
|
set_cipher_do(&desc[idx], DO_PAD);
|
|
}
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
idx++;
|
|
|
|
cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
|
|
|
|
if (is_hmac) {
|
|
/* HW last hash block padding (aka. "DO_PAD") */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
|
|
ctx->hash_len, NS_BIT, 0);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
|
|
set_cipher_do(&desc[idx], DO_PAD);
|
|
idx++;
|
|
|
|
idx = cc_fin_hmac(desc, req, idx);
|
|
}
|
|
|
|
idx = cc_fin_result(desc, req, idx);
|
|
|
|
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
|
|
if (rc != -EINPROGRESS && rc != -EBUSY) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
cc_unmap_hash_request(dev, state, src, true);
|
|
cc_unmap_result(dev, state, digestsize, result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int cc_restore_hash(struct cc_hw_desc *desc, struct cc_hash_ctx *ctx,
|
|
struct ahash_req_ctx *state, unsigned int idx)
|
|
{
|
|
/* Restore hash digest */
|
|
hw_desc_init(&desc[idx]);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
|
|
ctx->inter_digestsize, NS_BIT);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
|
|
idx++;
|
|
|
|
/* Restore hash current length */
|
|
hw_desc_init(&desc[idx]);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
|
|
set_din_type(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr,
|
|
ctx->hash_len, NS_BIT);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
idx++;
|
|
|
|
cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
|
|
|
|
return idx;
|
|
}
|
|
|
|
static int cc_hash_update(struct ahash_request *req)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
|
|
struct scatterlist *src = req->src;
|
|
unsigned int nbytes = req->nbytes;
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
u32 idx = 0;
|
|
int rc;
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
|
|
dev_dbg(dev, "===== %s-update (%d) ====\n", ctx->is_hmac ?
|
|
"hmac" : "hash", nbytes);
|
|
|
|
if (nbytes == 0) {
|
|
/* no real updates required */
|
|
return 0;
|
|
}
|
|
|
|
rc = cc_map_hash_request_update(ctx->drvdata, state, src, nbytes,
|
|
block_size, flags);
|
|
if (rc) {
|
|
if (rc == 1) {
|
|
dev_dbg(dev, " data size not require HW update %x\n",
|
|
nbytes);
|
|
/* No hardware updates are required */
|
|
return 0;
|
|
}
|
|
dev_err(dev, "map_ahash_request_update() failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (cc_map_req(dev, state, ctx)) {
|
|
dev_err(dev, "map_ahash_source() failed\n");
|
|
cc_unmap_hash_request(dev, state, src, true);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Setup request structure */
|
|
cc_req.user_cb = cc_update_complete;
|
|
cc_req.user_arg = req;
|
|
|
|
idx = cc_restore_hash(desc, ctx, state, idx);
|
|
|
|
/* store the hash digest result in context */
|
|
hw_desc_init(&desc[idx]);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
|
|
ctx->inter_digestsize, NS_BIT, 0);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
idx++;
|
|
|
|
/* store current hash length in context */
|
|
hw_desc_init(&desc[idx]);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
|
|
ctx->hash_len, NS_BIT, 1);
|
|
set_queue_last_ind(ctx->drvdata, &desc[idx]);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
|
|
idx++;
|
|
|
|
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
|
|
if (rc != -EINPROGRESS && rc != -EBUSY) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
cc_unmap_hash_request(dev, state, src, true);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int cc_do_finup(struct ahash_request *req, bool update)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
struct scatterlist *src = req->src;
|
|
unsigned int nbytes = req->nbytes;
|
|
u8 *result = req->result;
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
bool is_hmac = ctx->is_hmac;
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
unsigned int idx = 0;
|
|
int rc;
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
|
|
dev_dbg(dev, "===== %s-%s (%d) ====\n", is_hmac ? "hmac" : "hash",
|
|
update ? "finup" : "final", nbytes);
|
|
|
|
if (cc_map_req(dev, state, ctx)) {
|
|
dev_err(dev, "map_ahash_source() failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, update,
|
|
flags)) {
|
|
dev_err(dev, "map_ahash_request_final() failed\n");
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
if (cc_map_result(dev, state, digestsize)) {
|
|
dev_err(dev, "map_ahash_digest() failed\n");
|
|
cc_unmap_hash_request(dev, state, src, true);
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup request structure */
|
|
cc_req.user_cb = cc_hash_complete;
|
|
cc_req.user_arg = req;
|
|
|
|
idx = cc_restore_hash(desc, ctx, state, idx);
|
|
|
|
/* Pad the hash */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_do(&desc[idx], DO_PAD);
|
|
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
|
|
set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
|
|
ctx->hash_len, NS_BIT, 0);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
idx++;
|
|
|
|
if (is_hmac)
|
|
idx = cc_fin_hmac(desc, req, idx);
|
|
|
|
idx = cc_fin_result(desc, req, idx);
|
|
|
|
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
|
|
if (rc != -EINPROGRESS && rc != -EBUSY) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
cc_unmap_hash_request(dev, state, src, true);
|
|
cc_unmap_result(dev, state, digestsize, result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int cc_hash_finup(struct ahash_request *req)
|
|
{
|
|
return cc_do_finup(req, true);
|
|
}
|
|
|
|
|
|
static int cc_hash_final(struct ahash_request *req)
|
|
{
|
|
return cc_do_finup(req, false);
|
|
}
|
|
|
|
static int cc_hash_init(struct ahash_request *req)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
|
|
dev_dbg(dev, "===== init (%d) ====\n", req->nbytes);
|
|
|
|
cc_init_req(dev, state, ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cc_hash_setkey(struct crypto_ahash *ahash, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hash_ctx *ctx = NULL;
|
|
int blocksize = 0;
|
|
int digestsize = 0;
|
|
int i, idx = 0, rc = 0;
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
u32 larval_addr;
|
|
struct device *dev;
|
|
|
|
ctx = crypto_ahash_ctx(ahash);
|
|
dev = drvdata_to_dev(ctx->drvdata);
|
|
dev_dbg(dev, "start keylen: %d", keylen);
|
|
|
|
blocksize = crypto_tfm_alg_blocksize(&ahash->base);
|
|
digestsize = crypto_ahash_digestsize(ahash);
|
|
|
|
larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
|
|
|
|
/* The keylen value distinguishes HASH in case keylen is ZERO bytes,
|
|
* any NON-ZERO value utilizes HMAC flow
|
|
*/
|
|
ctx->key_params.keylen = keylen;
|
|
ctx->key_params.key_dma_addr = 0;
|
|
ctx->is_hmac = true;
|
|
ctx->key_params.key = NULL;
|
|
|
|
if (keylen) {
|
|
ctx->key_params.key = kmemdup(key, keylen, GFP_KERNEL);
|
|
if (!ctx->key_params.key)
|
|
return -ENOMEM;
|
|
|
|
ctx->key_params.key_dma_addr =
|
|
dma_map_single(dev, ctx->key_params.key, keylen,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
|
|
dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
|
|
ctx->key_params.key, keylen);
|
|
kzfree(ctx->key_params.key);
|
|
return -ENOMEM;
|
|
}
|
|
dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
|
|
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
|
|
|
|
if (keylen > blocksize) {
|
|
/* Load hash initial state */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_din_sram(&desc[idx], larval_addr,
|
|
ctx->inter_digestsize);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
|
|
idx++;
|
|
|
|
/* Load the hash current length*/
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_din_const(&desc[idx], 0, ctx->hash_len);
|
|
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
idx++;
|
|
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
ctx->key_params.key_dma_addr, keylen,
|
|
NS_BIT);
|
|
set_flow_mode(&desc[idx], DIN_HASH);
|
|
idx++;
|
|
|
|
/* Get hashed key */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
|
|
digestsize, NS_BIT, 0);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
|
|
cc_set_endianity(ctx->hash_mode, &desc[idx]);
|
|
idx++;
|
|
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_const(&desc[idx], 0, (blocksize - digestsize));
|
|
set_flow_mode(&desc[idx], BYPASS);
|
|
set_dout_dlli(&desc[idx],
|
|
(ctx->opad_tmp_keys_dma_addr +
|
|
digestsize),
|
|
(blocksize - digestsize), NS_BIT, 0);
|
|
idx++;
|
|
} else {
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
ctx->key_params.key_dma_addr, keylen,
|
|
NS_BIT);
|
|
set_flow_mode(&desc[idx], BYPASS);
|
|
set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
|
|
keylen, NS_BIT, 0);
|
|
idx++;
|
|
|
|
if ((blocksize - keylen)) {
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_const(&desc[idx], 0,
|
|
(blocksize - keylen));
|
|
set_flow_mode(&desc[idx], BYPASS);
|
|
set_dout_dlli(&desc[idx],
|
|
(ctx->opad_tmp_keys_dma_addr +
|
|
keylen), (blocksize - keylen),
|
|
NS_BIT, 0);
|
|
idx++;
|
|
}
|
|
}
|
|
} else {
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_const(&desc[idx], 0, blocksize);
|
|
set_flow_mode(&desc[idx], BYPASS);
|
|
set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr),
|
|
blocksize, NS_BIT, 0);
|
|
idx++;
|
|
}
|
|
|
|
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
|
|
if (rc) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
goto out;
|
|
}
|
|
|
|
/* calc derived HMAC key */
|
|
for (idx = 0, i = 0; i < 2; i++) {
|
|
/* Load hash initial state */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_din_sram(&desc[idx], larval_addr, ctx->inter_digestsize);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
|
|
idx++;
|
|
|
|
/* Load the hash current length*/
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_din_const(&desc[idx], 0, ctx->hash_len);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
idx++;
|
|
|
|
/* Prepare ipad key */
|
|
hw_desc_init(&desc[idx]);
|
|
set_xor_val(&desc[idx], hmac_pad_const[i]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_flow_mode(&desc[idx], S_DIN_to_HASH);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
|
|
idx++;
|
|
|
|
/* Perform HASH update */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
|
|
blocksize, NS_BIT);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_xor_active(&desc[idx]);
|
|
set_flow_mode(&desc[idx], DIN_HASH);
|
|
idx++;
|
|
|
|
/* Get the IPAD/OPAD xor key (Note, IPAD is the initial digest
|
|
* of the first HASH "update" state)
|
|
*/
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
if (i > 0) /* Not first iteration */
|
|
set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
|
|
ctx->inter_digestsize, NS_BIT, 0);
|
|
else /* First iteration */
|
|
set_dout_dlli(&desc[idx], ctx->digest_buff_dma_addr,
|
|
ctx->inter_digestsize, NS_BIT, 0);
|
|
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
idx++;
|
|
}
|
|
|
|
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
|
|
|
|
out:
|
|
if (ctx->key_params.key_dma_addr) {
|
|
dma_unmap_single(dev, ctx->key_params.key_dma_addr,
|
|
ctx->key_params.keylen, DMA_TO_DEVICE);
|
|
dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
|
|
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
|
|
}
|
|
|
|
kzfree(ctx->key_params.key);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int cc_xcbc_setkey(struct crypto_ahash *ahash,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
int rc = 0;
|
|
unsigned int idx = 0;
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
|
|
dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
case AES_KEYSIZE_192:
|
|
case AES_KEYSIZE_256:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->key_params.keylen = keylen;
|
|
|
|
ctx->key_params.key = kmemdup(key, keylen, GFP_KERNEL);
|
|
if (!ctx->key_params.key)
|
|
return -ENOMEM;
|
|
|
|
ctx->key_params.key_dma_addr =
|
|
dma_map_single(dev, ctx->key_params.key, keylen, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
|
|
dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
|
|
key, keylen);
|
|
kzfree(ctx->key_params.key);
|
|
return -ENOMEM;
|
|
}
|
|
dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
|
|
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
|
|
|
|
ctx->is_hmac = true;
|
|
/* 1. Load the AES key */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr,
|
|
keylen, NS_BIT);
|
|
set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
|
|
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
|
|
set_key_size_aes(&desc[idx], keylen);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
idx++;
|
|
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_const(&desc[idx], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
|
|
set_flow_mode(&desc[idx], DIN_AES_DOUT);
|
|
set_dout_dlli(&desc[idx],
|
|
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
|
|
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
|
|
idx++;
|
|
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_const(&desc[idx], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
|
|
set_flow_mode(&desc[idx], DIN_AES_DOUT);
|
|
set_dout_dlli(&desc[idx],
|
|
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
|
|
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
|
|
idx++;
|
|
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_const(&desc[idx], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
|
|
set_flow_mode(&desc[idx], DIN_AES_DOUT);
|
|
set_dout_dlli(&desc[idx],
|
|
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
|
|
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
|
|
idx++;
|
|
|
|
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
|
|
|
|
dma_unmap_single(dev, ctx->key_params.key_dma_addr,
|
|
ctx->key_params.keylen, DMA_TO_DEVICE);
|
|
dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
|
|
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
|
|
|
|
kzfree(ctx->key_params.key);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int cc_cmac_setkey(struct crypto_ahash *ahash,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
|
|
dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
|
|
|
|
ctx->is_hmac = true;
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
case AES_KEYSIZE_192:
|
|
case AES_KEYSIZE_256:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->key_params.keylen = keylen;
|
|
|
|
/* STAT_PHASE_1: Copy key to ctx */
|
|
|
|
dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr,
|
|
keylen, DMA_TO_DEVICE);
|
|
|
|
memcpy(ctx->opad_tmp_keys_buff, key, keylen);
|
|
if (keylen == 24) {
|
|
memset(ctx->opad_tmp_keys_buff + 24, 0,
|
|
CC_AES_KEY_SIZE_MAX - 24);
|
|
}
|
|
|
|
dma_sync_single_for_device(dev, ctx->opad_tmp_keys_dma_addr,
|
|
keylen, DMA_TO_DEVICE);
|
|
|
|
ctx->key_params.keylen = keylen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cc_free_ctx(struct cc_hash_ctx *ctx)
|
|
{
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
|
|
if (ctx->digest_buff_dma_addr) {
|
|
dma_unmap_single(dev, ctx->digest_buff_dma_addr,
|
|
sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
|
|
dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
|
|
&ctx->digest_buff_dma_addr);
|
|
ctx->digest_buff_dma_addr = 0;
|
|
}
|
|
if (ctx->opad_tmp_keys_dma_addr) {
|
|
dma_unmap_single(dev, ctx->opad_tmp_keys_dma_addr,
|
|
sizeof(ctx->opad_tmp_keys_buff),
|
|
DMA_BIDIRECTIONAL);
|
|
dev_dbg(dev, "Unmapped opad-digest: opad_tmp_keys_dma_addr=%pad\n",
|
|
&ctx->opad_tmp_keys_dma_addr);
|
|
ctx->opad_tmp_keys_dma_addr = 0;
|
|
}
|
|
|
|
ctx->key_params.keylen = 0;
|
|
}
|
|
|
|
static int cc_alloc_ctx(struct cc_hash_ctx *ctx)
|
|
{
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
|
|
ctx->key_params.keylen = 0;
|
|
|
|
ctx->digest_buff_dma_addr =
|
|
dma_map_single(dev, ctx->digest_buff, sizeof(ctx->digest_buff),
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, ctx->digest_buff_dma_addr)) {
|
|
dev_err(dev, "Mapping digest len %zu B at va=%pK for DMA failed\n",
|
|
sizeof(ctx->digest_buff), ctx->digest_buff);
|
|
goto fail;
|
|
}
|
|
dev_dbg(dev, "Mapped digest %zu B at va=%pK to dma=%pad\n",
|
|
sizeof(ctx->digest_buff), ctx->digest_buff,
|
|
&ctx->digest_buff_dma_addr);
|
|
|
|
ctx->opad_tmp_keys_dma_addr =
|
|
dma_map_single(dev, ctx->opad_tmp_keys_buff,
|
|
sizeof(ctx->opad_tmp_keys_buff),
|
|
DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, ctx->opad_tmp_keys_dma_addr)) {
|
|
dev_err(dev, "Mapping opad digest %zu B at va=%pK for DMA failed\n",
|
|
sizeof(ctx->opad_tmp_keys_buff),
|
|
ctx->opad_tmp_keys_buff);
|
|
goto fail;
|
|
}
|
|
dev_dbg(dev, "Mapped opad_tmp_keys %zu B at va=%pK to dma=%pad\n",
|
|
sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff,
|
|
&ctx->opad_tmp_keys_dma_addr);
|
|
|
|
ctx->is_hmac = false;
|
|
return 0;
|
|
|
|
fail:
|
|
cc_free_ctx(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int cc_get_hash_len(struct crypto_tfm *tfm)
|
|
{
|
|
struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
if (ctx->hash_mode == DRV_HASH_SM3)
|
|
return CC_SM3_HASH_LEN_SIZE;
|
|
else
|
|
return cc_get_default_hash_len(ctx->drvdata);
|
|
}
|
|
|
|
static int cc_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct hash_alg_common *hash_alg_common =
|
|
container_of(tfm->__crt_alg, struct hash_alg_common, base);
|
|
struct ahash_alg *ahash_alg =
|
|
container_of(hash_alg_common, struct ahash_alg, halg);
|
|
struct cc_hash_alg *cc_alg =
|
|
container_of(ahash_alg, struct cc_hash_alg, ahash_alg);
|
|
|
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
|
sizeof(struct ahash_req_ctx));
|
|
|
|
ctx->hash_mode = cc_alg->hash_mode;
|
|
ctx->hw_mode = cc_alg->hw_mode;
|
|
ctx->inter_digestsize = cc_alg->inter_digestsize;
|
|
ctx->drvdata = cc_alg->drvdata;
|
|
ctx->hash_len = cc_get_hash_len(tfm);
|
|
return cc_alloc_ctx(ctx);
|
|
}
|
|
|
|
static void cc_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
|
|
dev_dbg(dev, "cc_cra_exit");
|
|
cc_free_ctx(ctx);
|
|
}
|
|
|
|
static int cc_mac_update(struct ahash_request *req)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
int rc;
|
|
u32 idx = 0;
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
|
|
if (req->nbytes == 0) {
|
|
/* no real updates required */
|
|
return 0;
|
|
}
|
|
|
|
state->xcbc_count++;
|
|
|
|
rc = cc_map_hash_request_update(ctx->drvdata, state, req->src,
|
|
req->nbytes, block_size, flags);
|
|
if (rc) {
|
|
if (rc == 1) {
|
|
dev_dbg(dev, " data size not require HW update %x\n",
|
|
req->nbytes);
|
|
/* No hardware updates are required */
|
|
return 0;
|
|
}
|
|
dev_err(dev, "map_ahash_request_update() failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (cc_map_req(dev, state, ctx)) {
|
|
dev_err(dev, "map_ahash_source() failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
|
|
cc_setup_xcbc(req, desc, &idx);
|
|
else
|
|
cc_setup_cmac(req, desc, &idx);
|
|
|
|
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, true, &idx);
|
|
|
|
/* store the hash digest result in context */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
|
|
ctx->inter_digestsize, NS_BIT, 1);
|
|
set_queue_last_ind(ctx->drvdata, &desc[idx]);
|
|
set_flow_mode(&desc[idx], S_AES_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
idx++;
|
|
|
|
/* Setup request structure */
|
|
cc_req.user_cb = cc_update_complete;
|
|
cc_req.user_arg = req;
|
|
|
|
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
|
|
if (rc != -EINPROGRESS && rc != -EBUSY) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
cc_unmap_hash_request(dev, state, req->src, true);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int cc_mac_final(struct ahash_request *req)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
int idx = 0;
|
|
int rc = 0;
|
|
u32 key_size, key_len;
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
u32 rem_cnt = *cc_hash_buf_cnt(state);
|
|
|
|
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
|
|
key_size = CC_AES_128_BIT_KEY_SIZE;
|
|
key_len = CC_AES_128_BIT_KEY_SIZE;
|
|
} else {
|
|
key_size = (ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
|
|
ctx->key_params.keylen;
|
|
key_len = ctx->key_params.keylen;
|
|
}
|
|
|
|
dev_dbg(dev, "===== final xcbc reminder (%d) ====\n", rem_cnt);
|
|
|
|
if (cc_map_req(dev, state, ctx)) {
|
|
dev_err(dev, "map_ahash_source() failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
|
|
req->nbytes, 0, flags)) {
|
|
dev_err(dev, "map_ahash_request_final() failed\n");
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (cc_map_result(dev, state, digestsize)) {
|
|
dev_err(dev, "map_ahash_digest() failed\n");
|
|
cc_unmap_hash_request(dev, state, req->src, true);
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup request structure */
|
|
cc_req.user_cb = cc_hash_complete;
|
|
cc_req.user_arg = req;
|
|
|
|
if (state->xcbc_count && rem_cnt == 0) {
|
|
/* Load key for ECB decryption */
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
|
|
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_DECRYPT);
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
|
|
key_size, NS_BIT);
|
|
set_key_size_aes(&desc[idx], key_len);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
idx++;
|
|
|
|
/* Initiate decryption of block state to previous
|
|
* block_state-XOR-M[n]
|
|
*/
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
|
|
CC_AES_BLOCK_SIZE, NS_BIT);
|
|
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
|
|
CC_AES_BLOCK_SIZE, NS_BIT, 0);
|
|
set_flow_mode(&desc[idx], DIN_AES_DOUT);
|
|
idx++;
|
|
|
|
/* Memory Barrier: wait for axi write to complete */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_no_dma(&desc[idx], 0, 0xfffff0);
|
|
set_dout_no_dma(&desc[idx], 0, 0, 1);
|
|
idx++;
|
|
}
|
|
|
|
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
|
|
cc_setup_xcbc(req, desc, &idx);
|
|
else
|
|
cc_setup_cmac(req, desc, &idx);
|
|
|
|
if (state->xcbc_count == 0) {
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_key_size_aes(&desc[idx], key_len);
|
|
set_cmac_size0_mode(&desc[idx]);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
} else if (rem_cnt > 0) {
|
|
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
|
|
} else {
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_const(&desc[idx], 0x00, CC_AES_BLOCK_SIZE);
|
|
set_flow_mode(&desc[idx], DIN_AES_DOUT);
|
|
idx++;
|
|
}
|
|
|
|
/* Get final MAC result */
|
|
hw_desc_init(&desc[idx]);
|
|
set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
|
|
digestsize, NS_BIT, 1);
|
|
set_queue_last_ind(ctx->drvdata, &desc[idx]);
|
|
set_flow_mode(&desc[idx], S_AES_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
idx++;
|
|
|
|
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
|
|
if (rc != -EINPROGRESS && rc != -EBUSY) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
cc_unmap_hash_request(dev, state, req->src, true);
|
|
cc_unmap_result(dev, state, digestsize, req->result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int cc_mac_finup(struct ahash_request *req)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
int idx = 0;
|
|
int rc = 0;
|
|
u32 key_len = 0;
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
|
|
dev_dbg(dev, "===== finup xcbc(%d) ====\n", req->nbytes);
|
|
if (state->xcbc_count > 0 && req->nbytes == 0) {
|
|
dev_dbg(dev, "No data to update. Call to fdx_mac_final\n");
|
|
return cc_mac_final(req);
|
|
}
|
|
|
|
if (cc_map_req(dev, state, ctx)) {
|
|
dev_err(dev, "map_ahash_source() failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
|
|
req->nbytes, 1, flags)) {
|
|
dev_err(dev, "map_ahash_request_final() failed\n");
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
if (cc_map_result(dev, state, digestsize)) {
|
|
dev_err(dev, "map_ahash_digest() failed\n");
|
|
cc_unmap_hash_request(dev, state, req->src, true);
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup request structure */
|
|
cc_req.user_cb = cc_hash_complete;
|
|
cc_req.user_arg = req;
|
|
|
|
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
|
|
key_len = CC_AES_128_BIT_KEY_SIZE;
|
|
cc_setup_xcbc(req, desc, &idx);
|
|
} else {
|
|
key_len = ctx->key_params.keylen;
|
|
cc_setup_cmac(req, desc, &idx);
|
|
}
|
|
|
|
if (req->nbytes == 0) {
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_key_size_aes(&desc[idx], key_len);
|
|
set_cmac_size0_mode(&desc[idx]);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
} else {
|
|
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
|
|
}
|
|
|
|
/* Get final MAC result */
|
|
hw_desc_init(&desc[idx]);
|
|
set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
|
|
digestsize, NS_BIT, 1);
|
|
set_queue_last_ind(ctx->drvdata, &desc[idx]);
|
|
set_flow_mode(&desc[idx], S_AES_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
idx++;
|
|
|
|
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
|
|
if (rc != -EINPROGRESS && rc != -EBUSY) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
cc_unmap_hash_request(dev, state, req->src, true);
|
|
cc_unmap_result(dev, state, digestsize, req->result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int cc_mac_digest(struct ahash_request *req)
|
|
{
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
u32 digestsize = crypto_ahash_digestsize(tfm);
|
|
struct cc_crypto_req cc_req = {};
|
|
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
|
|
u32 key_len;
|
|
unsigned int idx = 0;
|
|
int rc;
|
|
gfp_t flags = cc_gfp_flags(&req->base);
|
|
|
|
dev_dbg(dev, "===== -digest mac (%d) ====\n", req->nbytes);
|
|
|
|
cc_init_req(dev, state, ctx);
|
|
|
|
if (cc_map_req(dev, state, ctx)) {
|
|
dev_err(dev, "map_ahash_source() failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (cc_map_result(dev, state, digestsize)) {
|
|
dev_err(dev, "map_ahash_digest() failed\n");
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
|
|
req->nbytes, 1, flags)) {
|
|
dev_err(dev, "map_ahash_request_final() failed\n");
|
|
cc_unmap_req(dev, state, ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Setup request structure */
|
|
cc_req.user_cb = cc_digest_complete;
|
|
cc_req.user_arg = req;
|
|
|
|
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
|
|
key_len = CC_AES_128_BIT_KEY_SIZE;
|
|
cc_setup_xcbc(req, desc, &idx);
|
|
} else {
|
|
key_len = ctx->key_params.keylen;
|
|
cc_setup_cmac(req, desc, &idx);
|
|
}
|
|
|
|
if (req->nbytes == 0) {
|
|
hw_desc_init(&desc[idx]);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
set_key_size_aes(&desc[idx], key_len);
|
|
set_cmac_size0_mode(&desc[idx]);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
} else {
|
|
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
|
|
}
|
|
|
|
/* Get final MAC result */
|
|
hw_desc_init(&desc[idx]);
|
|
set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
|
|
CC_AES_BLOCK_SIZE, NS_BIT, 1);
|
|
set_queue_last_ind(ctx->drvdata, &desc[idx]);
|
|
set_flow_mode(&desc[idx], S_AES_to_DOUT);
|
|
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
|
|
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
|
|
set_cipher_mode(&desc[idx], ctx->hw_mode);
|
|
idx++;
|
|
|
|
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
|
|
if (rc != -EINPROGRESS && rc != -EBUSY) {
|
|
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
|
|
cc_unmap_hash_request(dev, state, req->src, true);
|
|
cc_unmap_result(dev, state, digestsize, req->result);
|
|
cc_unmap_req(dev, state, ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int cc_hash_export(struct ahash_request *req, void *out)
|
|
{
|
|
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
u8 *curr_buff = cc_hash_buf(state);
|
|
u32 curr_buff_cnt = *cc_hash_buf_cnt(state);
|
|
const u32 tmp = CC_EXPORT_MAGIC;
|
|
|
|
memcpy(out, &tmp, sizeof(u32));
|
|
out += sizeof(u32);
|
|
|
|
memcpy(out, state->digest_buff, ctx->inter_digestsize);
|
|
out += ctx->inter_digestsize;
|
|
|
|
memcpy(out, state->digest_bytes_len, ctx->hash_len);
|
|
out += ctx->hash_len;
|
|
|
|
memcpy(out, &curr_buff_cnt, sizeof(u32));
|
|
out += sizeof(u32);
|
|
|
|
memcpy(out, curr_buff, curr_buff_cnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cc_hash_import(struct ahash_request *req, const void *in)
|
|
{
|
|
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
struct ahash_req_ctx *state = ahash_request_ctx(req);
|
|
u32 tmp;
|
|
|
|
memcpy(&tmp, in, sizeof(u32));
|
|
if (tmp != CC_EXPORT_MAGIC)
|
|
return -EINVAL;
|
|
in += sizeof(u32);
|
|
|
|
cc_init_req(dev, state, ctx);
|
|
|
|
memcpy(state->digest_buff, in, ctx->inter_digestsize);
|
|
in += ctx->inter_digestsize;
|
|
|
|
memcpy(state->digest_bytes_len, in, ctx->hash_len);
|
|
in += ctx->hash_len;
|
|
|
|
/* Sanity check the data as much as possible */
|
|
memcpy(&tmp, in, sizeof(u32));
|
|
if (tmp > CC_MAX_HASH_BLCK_SIZE)
|
|
return -EINVAL;
|
|
in += sizeof(u32);
|
|
|
|
state->buf_cnt[0] = tmp;
|
|
memcpy(state->buffers[0], in, tmp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct cc_hash_template {
|
|
char name[CRYPTO_MAX_ALG_NAME];
|
|
char driver_name[CRYPTO_MAX_ALG_NAME];
|
|
char mac_name[CRYPTO_MAX_ALG_NAME];
|
|
char mac_driver_name[CRYPTO_MAX_ALG_NAME];
|
|
unsigned int blocksize;
|
|
bool is_mac;
|
|
bool synchronize;
|
|
struct ahash_alg template_ahash;
|
|
int hash_mode;
|
|
int hw_mode;
|
|
int inter_digestsize;
|
|
struct cc_drvdata *drvdata;
|
|
u32 min_hw_rev;
|
|
enum cc_std_body std_body;
|
|
};
|
|
|
|
#define CC_STATE_SIZE(_x) \
|
|
((_x) + HASH_MAX_LEN_SIZE + CC_MAX_HASH_BLCK_SIZE + (2 * sizeof(u32)))
|
|
|
|
/* hash descriptors */
|
|
static struct cc_hash_template driver_hash[] = {
|
|
//Asynchronize hash template
|
|
{
|
|
.name = "sha1",
|
|
.driver_name = "sha1-ccree",
|
|
.mac_name = "hmac(sha1)",
|
|
.mac_driver_name = "hmac-sha1-ccree",
|
|
.blocksize = SHA1_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.synchronize = false,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_hash_update,
|
|
.final = cc_hash_final,
|
|
.finup = cc_hash_finup,
|
|
.digest = cc_hash_digest,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.setkey = cc_hash_setkey,
|
|
.halg = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.statesize = CC_STATE_SIZE(SHA1_DIGEST_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_SHA1,
|
|
.hw_mode = DRV_HASH_HW_SHA1,
|
|
.inter_digestsize = SHA1_DIGEST_SIZE,
|
|
.min_hw_rev = CC_HW_REV_630,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
{
|
|
.name = "sha256",
|
|
.driver_name = "sha256-ccree",
|
|
.mac_name = "hmac(sha256)",
|
|
.mac_driver_name = "hmac-sha256-ccree",
|
|
.blocksize = SHA256_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_hash_update,
|
|
.final = cc_hash_final,
|
|
.finup = cc_hash_finup,
|
|
.digest = cc_hash_digest,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.setkey = cc_hash_setkey,
|
|
.halg = {
|
|
.digestsize = SHA256_DIGEST_SIZE,
|
|
.statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE)
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_SHA256,
|
|
.hw_mode = DRV_HASH_HW_SHA256,
|
|
.inter_digestsize = SHA256_DIGEST_SIZE,
|
|
.min_hw_rev = CC_HW_REV_630,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
{
|
|
.name = "sha224",
|
|
.driver_name = "sha224-ccree",
|
|
.mac_name = "hmac(sha224)",
|
|
.mac_driver_name = "hmac-sha224-ccree",
|
|
.blocksize = SHA224_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_hash_update,
|
|
.final = cc_hash_final,
|
|
.finup = cc_hash_finup,
|
|
.digest = cc_hash_digest,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.setkey = cc_hash_setkey,
|
|
.halg = {
|
|
.digestsize = SHA224_DIGEST_SIZE,
|
|
.statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_SHA224,
|
|
.hw_mode = DRV_HASH_HW_SHA256,
|
|
.inter_digestsize = SHA256_DIGEST_SIZE,
|
|
.min_hw_rev = CC_HW_REV_630,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
{
|
|
.name = "sha384",
|
|
.driver_name = "sha384-ccree",
|
|
.mac_name = "hmac(sha384)",
|
|
.mac_driver_name = "hmac-sha384-ccree",
|
|
.blocksize = SHA384_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_hash_update,
|
|
.final = cc_hash_final,
|
|
.finup = cc_hash_finup,
|
|
.digest = cc_hash_digest,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.setkey = cc_hash_setkey,
|
|
.halg = {
|
|
.digestsize = SHA384_DIGEST_SIZE,
|
|
.statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_SHA384,
|
|
.hw_mode = DRV_HASH_HW_SHA512,
|
|
.inter_digestsize = SHA512_DIGEST_SIZE,
|
|
.min_hw_rev = CC_HW_REV_712,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
{
|
|
.name = "sha512",
|
|
.driver_name = "sha512-ccree",
|
|
.mac_name = "hmac(sha512)",
|
|
.mac_driver_name = "hmac-sha512-ccree",
|
|
.blocksize = SHA512_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_hash_update,
|
|
.final = cc_hash_final,
|
|
.finup = cc_hash_finup,
|
|
.digest = cc_hash_digest,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.setkey = cc_hash_setkey,
|
|
.halg = {
|
|
.digestsize = SHA512_DIGEST_SIZE,
|
|
.statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_SHA512,
|
|
.hw_mode = DRV_HASH_HW_SHA512,
|
|
.inter_digestsize = SHA512_DIGEST_SIZE,
|
|
.min_hw_rev = CC_HW_REV_712,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
{
|
|
.name = "md5",
|
|
.driver_name = "md5-ccree",
|
|
.mac_name = "hmac(md5)",
|
|
.mac_driver_name = "hmac-md5-ccree",
|
|
.blocksize = MD5_HMAC_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_hash_update,
|
|
.final = cc_hash_final,
|
|
.finup = cc_hash_finup,
|
|
.digest = cc_hash_digest,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.setkey = cc_hash_setkey,
|
|
.halg = {
|
|
.digestsize = MD5_DIGEST_SIZE,
|
|
.statesize = CC_STATE_SIZE(MD5_DIGEST_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_MD5,
|
|
.hw_mode = DRV_HASH_HW_MD5,
|
|
.inter_digestsize = MD5_DIGEST_SIZE,
|
|
.min_hw_rev = CC_HW_REV_630,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
{
|
|
.name = "sm3",
|
|
.driver_name = "sm3-ccree",
|
|
.blocksize = SM3_BLOCK_SIZE,
|
|
.is_mac = false,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_hash_update,
|
|
.final = cc_hash_final,
|
|
.finup = cc_hash_finup,
|
|
.digest = cc_hash_digest,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.setkey = cc_hash_setkey,
|
|
.halg = {
|
|
.digestsize = SM3_DIGEST_SIZE,
|
|
.statesize = CC_STATE_SIZE(SM3_DIGEST_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_SM3,
|
|
.hw_mode = DRV_HASH_HW_SM3,
|
|
.inter_digestsize = SM3_DIGEST_SIZE,
|
|
.min_hw_rev = CC_HW_REV_713,
|
|
.std_body = CC_STD_OSCCA,
|
|
},
|
|
{
|
|
.mac_name = "xcbc(aes)",
|
|
.mac_driver_name = "xcbc-aes-ccree",
|
|
.blocksize = AES_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_mac_update,
|
|
.final = cc_mac_final,
|
|
.finup = cc_mac_finup,
|
|
.digest = cc_mac_digest,
|
|
.setkey = cc_xcbc_setkey,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.halg = {
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_NULL,
|
|
.hw_mode = DRV_CIPHER_XCBC_MAC,
|
|
.inter_digestsize = AES_BLOCK_SIZE,
|
|
.min_hw_rev = CC_HW_REV_630,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
{
|
|
.mac_name = "cmac(aes)",
|
|
.mac_driver_name = "cmac-aes-ccree",
|
|
.blocksize = AES_BLOCK_SIZE,
|
|
.is_mac = true,
|
|
.template_ahash = {
|
|
.init = cc_hash_init,
|
|
.update = cc_mac_update,
|
|
.final = cc_mac_final,
|
|
.finup = cc_mac_finup,
|
|
.digest = cc_mac_digest,
|
|
.setkey = cc_cmac_setkey,
|
|
.export = cc_hash_export,
|
|
.import = cc_hash_import,
|
|
.halg = {
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
|
|
},
|
|
},
|
|
.hash_mode = DRV_HASH_NULL,
|
|
.hw_mode = DRV_CIPHER_CMAC,
|
|
.inter_digestsize = AES_BLOCK_SIZE,
|
|
.min_hw_rev = CC_HW_REV_630,
|
|
.std_body = CC_STD_NIST,
|
|
},
|
|
};
|
|
|
|
static struct cc_hash_alg *cc_alloc_hash_alg(struct cc_hash_template *template,
|
|
struct device *dev, bool keyed)
|
|
{
|
|
struct cc_hash_alg *t_crypto_alg;
|
|
struct crypto_alg *alg;
|
|
struct ahash_alg *halg;
|
|
|
|
t_crypto_alg = devm_kzalloc(dev, sizeof(*t_crypto_alg), GFP_KERNEL);
|
|
if (!t_crypto_alg)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
t_crypto_alg->ahash_alg = template->template_ahash;
|
|
halg = &t_crypto_alg->ahash_alg;
|
|
alg = &halg->halg.base;
|
|
|
|
if (keyed) {
|
|
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
|
|
template->mac_name);
|
|
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
|
template->mac_driver_name);
|
|
} else {
|
|
halg->setkey = NULL;
|
|
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
|
|
template->name);
|
|
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
|
template->driver_name);
|
|
}
|
|
alg->cra_module = THIS_MODULE;
|
|
alg->cra_ctxsize = sizeof(struct cc_hash_ctx);
|
|
alg->cra_priority = CC_CRA_PRIO;
|
|
alg->cra_blocksize = template->blocksize;
|
|
alg->cra_alignmask = 0;
|
|
alg->cra_exit = cc_cra_exit;
|
|
|
|
alg->cra_init = cc_cra_init;
|
|
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
|
|
|
|
t_crypto_alg->hash_mode = template->hash_mode;
|
|
t_crypto_alg->hw_mode = template->hw_mode;
|
|
t_crypto_alg->inter_digestsize = template->inter_digestsize;
|
|
|
|
return t_crypto_alg;
|
|
}
|
|
|
|
static int cc_init_copy_sram(struct cc_drvdata *drvdata, const u32 *data,
|
|
unsigned int size, u32 *sram_buff_ofs)
|
|
{
|
|
struct cc_hw_desc larval_seq[CC_DIGEST_SIZE_MAX / sizeof(u32)];
|
|
unsigned int larval_seq_len = 0;
|
|
int rc;
|
|
|
|
cc_set_sram_desc(data, *sram_buff_ofs, size / sizeof(*data),
|
|
larval_seq, &larval_seq_len);
|
|
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
|
|
if (rc)
|
|
return rc;
|
|
|
|
*sram_buff_ofs += size;
|
|
return 0;
|
|
}
|
|
|
|
int cc_init_hash_sram(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_hash_handle *hash_handle = drvdata->hash_handle;
|
|
u32 sram_buff_ofs = hash_handle->digest_len_sram_addr;
|
|
bool large_sha_supported = (drvdata->hw_rev >= CC_HW_REV_712);
|
|
bool sm3_supported = (drvdata->hw_rev >= CC_HW_REV_713);
|
|
int rc = 0;
|
|
|
|
/* Copy-to-sram digest-len */
|
|
rc = cc_init_copy_sram(drvdata, cc_digest_len_init,
|
|
sizeof(cc_digest_len_init), &sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
|
|
if (large_sha_supported) {
|
|
/* Copy-to-sram digest-len for sha384/512 */
|
|
rc = cc_init_copy_sram(drvdata, cc_digest_len_sha512_init,
|
|
sizeof(cc_digest_len_sha512_init),
|
|
&sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
}
|
|
|
|
/* The initial digests offset */
|
|
hash_handle->larval_digest_sram_addr = sram_buff_ofs;
|
|
|
|
/* Copy-to-sram initial SHA* digests */
|
|
rc = cc_init_copy_sram(drvdata, cc_md5_init, sizeof(cc_md5_init),
|
|
&sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
|
|
rc = cc_init_copy_sram(drvdata, cc_sha1_init, sizeof(cc_sha1_init),
|
|
&sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
|
|
rc = cc_init_copy_sram(drvdata, cc_sha224_init, sizeof(cc_sha224_init),
|
|
&sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
|
|
rc = cc_init_copy_sram(drvdata, cc_sha256_init, sizeof(cc_sha256_init),
|
|
&sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
|
|
if (sm3_supported) {
|
|
rc = cc_init_copy_sram(drvdata, cc_sm3_init,
|
|
sizeof(cc_sm3_init), &sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
}
|
|
|
|
if (large_sha_supported) {
|
|
rc = cc_init_copy_sram(drvdata, cc_sha384_init,
|
|
sizeof(cc_sha384_init), &sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
|
|
rc = cc_init_copy_sram(drvdata, cc_sha512_init,
|
|
sizeof(cc_sha512_init), &sram_buff_ofs);
|
|
if (rc)
|
|
goto init_digest_const_err;
|
|
}
|
|
|
|
init_digest_const_err:
|
|
return rc;
|
|
}
|
|
|
|
int cc_hash_alloc(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_hash_handle *hash_handle;
|
|
u32 sram_buff;
|
|
u32 sram_size_to_alloc;
|
|
struct device *dev = drvdata_to_dev(drvdata);
|
|
int rc = 0;
|
|
int alg;
|
|
|
|
hash_handle = devm_kzalloc(dev, sizeof(*hash_handle), GFP_KERNEL);
|
|
if (!hash_handle)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&hash_handle->hash_list);
|
|
drvdata->hash_handle = hash_handle;
|
|
|
|
sram_size_to_alloc = sizeof(cc_digest_len_init) +
|
|
sizeof(cc_md5_init) +
|
|
sizeof(cc_sha1_init) +
|
|
sizeof(cc_sha224_init) +
|
|
sizeof(cc_sha256_init);
|
|
|
|
if (drvdata->hw_rev >= CC_HW_REV_713)
|
|
sram_size_to_alloc += sizeof(cc_sm3_init);
|
|
|
|
if (drvdata->hw_rev >= CC_HW_REV_712)
|
|
sram_size_to_alloc += sizeof(cc_digest_len_sha512_init) +
|
|
sizeof(cc_sha384_init) + sizeof(cc_sha512_init);
|
|
|
|
sram_buff = cc_sram_alloc(drvdata, sram_size_to_alloc);
|
|
if (sram_buff == NULL_SRAM_ADDR) {
|
|
rc = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* The initial digest-len offset */
|
|
hash_handle->digest_len_sram_addr = sram_buff;
|
|
|
|
/*must be set before the alg registration as it is being used there*/
|
|
rc = cc_init_hash_sram(drvdata);
|
|
if (rc) {
|
|
dev_err(dev, "Init digest CONST failed (rc=%d)\n", rc);
|
|
goto fail;
|
|
}
|
|
|
|
/* ahash registration */
|
|
for (alg = 0; alg < ARRAY_SIZE(driver_hash); alg++) {
|
|
struct cc_hash_alg *t_alg;
|
|
int hw_mode = driver_hash[alg].hw_mode;
|
|
|
|
/* Check that the HW revision and variants are suitable */
|
|
if ((driver_hash[alg].min_hw_rev > drvdata->hw_rev) ||
|
|
!(drvdata->std_bodies & driver_hash[alg].std_body))
|
|
continue;
|
|
|
|
if (driver_hash[alg].is_mac) {
|
|
/* register hmac version */
|
|
t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, true);
|
|
if (IS_ERR(t_alg)) {
|
|
rc = PTR_ERR(t_alg);
|
|
dev_err(dev, "%s alg allocation failed\n",
|
|
driver_hash[alg].driver_name);
|
|
goto fail;
|
|
}
|
|
t_alg->drvdata = drvdata;
|
|
|
|
rc = crypto_register_ahash(&t_alg->ahash_alg);
|
|
if (rc) {
|
|
dev_err(dev, "%s alg registration failed\n",
|
|
driver_hash[alg].driver_name);
|
|
goto fail;
|
|
}
|
|
|
|
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
|
|
}
|
|
if (hw_mode == DRV_CIPHER_XCBC_MAC ||
|
|
hw_mode == DRV_CIPHER_CMAC)
|
|
continue;
|
|
|
|
/* register hash version */
|
|
t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, false);
|
|
if (IS_ERR(t_alg)) {
|
|
rc = PTR_ERR(t_alg);
|
|
dev_err(dev, "%s alg allocation failed\n",
|
|
driver_hash[alg].driver_name);
|
|
goto fail;
|
|
}
|
|
t_alg->drvdata = drvdata;
|
|
|
|
rc = crypto_register_ahash(&t_alg->ahash_alg);
|
|
if (rc) {
|
|
dev_err(dev, "%s alg registration failed\n",
|
|
driver_hash[alg].driver_name);
|
|
goto fail;
|
|
}
|
|
|
|
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
cc_hash_free(drvdata);
|
|
return rc;
|
|
}
|
|
|
|
int cc_hash_free(struct cc_drvdata *drvdata)
|
|
{
|
|
struct cc_hash_alg *t_hash_alg, *hash_n;
|
|
struct cc_hash_handle *hash_handle = drvdata->hash_handle;
|
|
|
|
list_for_each_entry_safe(t_hash_alg, hash_n, &hash_handle->hash_list,
|
|
entry) {
|
|
crypto_unregister_ahash(&t_hash_alg->ahash_alg);
|
|
list_del(&t_hash_alg->entry);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
|
|
unsigned int *seq_size)
|
|
{
|
|
unsigned int idx = *seq_size;
|
|
struct ahash_req_ctx *state = ahash_request_ctx(areq);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
/* Setup XCBC MAC K1 */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr +
|
|
XCBC_MAC_K1_OFFSET),
|
|
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
set_hash_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC, ctx->hash_mode);
|
|
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
|
|
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
|
|
/* Setup XCBC MAC K2 */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
|
|
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
|
|
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
|
|
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
|
|
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
|
|
/* Setup XCBC MAC K3 */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
|
|
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
|
|
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
|
|
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
|
|
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
|
|
/* Loading MAC state */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
|
|
CC_AES_BLOCK_SIZE, NS_BIT);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
|
|
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
|
|
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
|
|
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
*seq_size = idx;
|
|
}
|
|
|
|
static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
|
|
unsigned int *seq_size)
|
|
{
|
|
unsigned int idx = *seq_size;
|
|
struct ahash_req_ctx *state = ahash_request_ctx(areq);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
|
|
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
/* Setup CMAC Key */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
|
|
((ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
|
|
ctx->key_params.keylen), NS_BIT);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
|
|
set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
|
|
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
|
|
set_key_size_aes(&desc[idx], ctx->key_params.keylen);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
|
|
/* Load MAC state */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
|
|
CC_AES_BLOCK_SIZE, NS_BIT);
|
|
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
|
|
set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
|
|
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
|
|
set_key_size_aes(&desc[idx], ctx->key_params.keylen);
|
|
set_flow_mode(&desc[idx], S_DIN_to_AES);
|
|
idx++;
|
|
*seq_size = idx;
|
|
}
|
|
|
|
static void cc_set_desc(struct ahash_req_ctx *areq_ctx,
|
|
struct cc_hash_ctx *ctx, unsigned int flow_mode,
|
|
struct cc_hw_desc desc[], bool is_not_last_data,
|
|
unsigned int *seq_size)
|
|
{
|
|
unsigned int idx = *seq_size;
|
|
struct device *dev = drvdata_to_dev(ctx->drvdata);
|
|
|
|
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_DLLI) {
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
sg_dma_address(areq_ctx->curr_sg),
|
|
areq_ctx->curr_sg->length, NS_BIT);
|
|
set_flow_mode(&desc[idx], flow_mode);
|
|
idx++;
|
|
} else {
|
|
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
|
|
dev_dbg(dev, " NULL mode\n");
|
|
/* nothing to build */
|
|
return;
|
|
}
|
|
/* bypass */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_DLLI,
|
|
areq_ctx->mlli_params.mlli_dma_addr,
|
|
areq_ctx->mlli_params.mlli_len, NS_BIT);
|
|
set_dout_sram(&desc[idx], ctx->drvdata->mlli_sram_addr,
|
|
areq_ctx->mlli_params.mlli_len);
|
|
set_flow_mode(&desc[idx], BYPASS);
|
|
idx++;
|
|
/* process */
|
|
hw_desc_init(&desc[idx]);
|
|
set_din_type(&desc[idx], DMA_MLLI,
|
|
ctx->drvdata->mlli_sram_addr,
|
|
areq_ctx->mlli_nents, NS_BIT);
|
|
set_flow_mode(&desc[idx], flow_mode);
|
|
idx++;
|
|
}
|
|
if (is_not_last_data)
|
|
set_din_not_last_indication(&desc[(idx - 1)]);
|
|
/* return updated desc sequence size */
|
|
*seq_size = idx;
|
|
}
|
|
|
|
static const void *cc_larval_digest(struct device *dev, u32 mode)
|
|
{
|
|
switch (mode) {
|
|
case DRV_HASH_MD5:
|
|
return cc_md5_init;
|
|
case DRV_HASH_SHA1:
|
|
return cc_sha1_init;
|
|
case DRV_HASH_SHA224:
|
|
return cc_sha224_init;
|
|
case DRV_HASH_SHA256:
|
|
return cc_sha256_init;
|
|
case DRV_HASH_SHA384:
|
|
return cc_sha384_init;
|
|
case DRV_HASH_SHA512:
|
|
return cc_sha512_init;
|
|
case DRV_HASH_SM3:
|
|
return cc_sm3_init;
|
|
default:
|
|
dev_err(dev, "Invalid hash mode (%d)\n", mode);
|
|
return cc_md5_init;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cc_larval_digest_addr() - Get the address of the initial digest in SRAM
|
|
* according to the given hash mode
|
|
*
|
|
* @drvdata: Associated device driver context
|
|
* @mode: The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256
|
|
*
|
|
* Return:
|
|
* The address of the initial digest in SRAM
|
|
*/
|
|
u32 cc_larval_digest_addr(void *drvdata, u32 mode)
|
|
{
|
|
struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
|
|
struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
|
|
struct device *dev = drvdata_to_dev(_drvdata);
|
|
bool sm3_supported = (_drvdata->hw_rev >= CC_HW_REV_713);
|
|
u32 addr;
|
|
|
|
switch (mode) {
|
|
case DRV_HASH_NULL:
|
|
break; /*Ignore*/
|
|
case DRV_HASH_MD5:
|
|
return (hash_handle->larval_digest_sram_addr);
|
|
case DRV_HASH_SHA1:
|
|
return (hash_handle->larval_digest_sram_addr +
|
|
sizeof(cc_md5_init));
|
|
case DRV_HASH_SHA224:
|
|
return (hash_handle->larval_digest_sram_addr +
|
|
sizeof(cc_md5_init) +
|
|
sizeof(cc_sha1_init));
|
|
case DRV_HASH_SHA256:
|
|
return (hash_handle->larval_digest_sram_addr +
|
|
sizeof(cc_md5_init) +
|
|
sizeof(cc_sha1_init) +
|
|
sizeof(cc_sha224_init));
|
|
case DRV_HASH_SM3:
|
|
return (hash_handle->larval_digest_sram_addr +
|
|
sizeof(cc_md5_init) +
|
|
sizeof(cc_sha1_init) +
|
|
sizeof(cc_sha224_init) +
|
|
sizeof(cc_sha256_init));
|
|
case DRV_HASH_SHA384:
|
|
addr = (hash_handle->larval_digest_sram_addr +
|
|
sizeof(cc_md5_init) +
|
|
sizeof(cc_sha1_init) +
|
|
sizeof(cc_sha224_init) +
|
|
sizeof(cc_sha256_init));
|
|
if (sm3_supported)
|
|
addr += sizeof(cc_sm3_init);
|
|
return addr;
|
|
case DRV_HASH_SHA512:
|
|
addr = (hash_handle->larval_digest_sram_addr +
|
|
sizeof(cc_md5_init) +
|
|
sizeof(cc_sha1_init) +
|
|
sizeof(cc_sha224_init) +
|
|
sizeof(cc_sha256_init) +
|
|
sizeof(cc_sha384_init));
|
|
if (sm3_supported)
|
|
addr += sizeof(cc_sm3_init);
|
|
return addr;
|
|
default:
|
|
dev_err(dev, "Invalid hash mode (%d)\n", mode);
|
|
}
|
|
|
|
/*This is valid wrong value to avoid kernel crash*/
|
|
return hash_handle->larval_digest_sram_addr;
|
|
}
|
|
|
|
u32 cc_digest_len_addr(void *drvdata, u32 mode)
|
|
{
|
|
struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
|
|
struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
|
|
u32 digest_len_addr = hash_handle->digest_len_sram_addr;
|
|
|
|
switch (mode) {
|
|
case DRV_HASH_SHA1:
|
|
case DRV_HASH_SHA224:
|
|
case DRV_HASH_SHA256:
|
|
case DRV_HASH_MD5:
|
|
return digest_len_addr;
|
|
case DRV_HASH_SHA384:
|
|
case DRV_HASH_SHA512:
|
|
return digest_len_addr + sizeof(cc_digest_len_init);
|
|
default:
|
|
return digest_len_addr; /*to avoid kernel crash*/
|
|
}
|
|
}
|