Go to file
Peter Williams 2dd73a4f09 [PATCH] sched: implement smpnice
Problem:

The introduction of separate run queues per CPU has brought with it "nice"
enforcement problems that are best described by a simple example.

For the sake of argument suppose that on a single CPU machine with a
nice==19 hard spinner and a nice==0 hard spinner running that the nice==0
task gets 95% of the CPU and the nice==19 task gets 5% of the CPU.  Now
suppose that there is a system with 2 CPUs and 2 nice==19 hard spinners and
2 nice==0 hard spinners running.  The user of this system would be entitled
to expect that the nice==0 tasks each get 95% of a CPU and the nice==19
tasks only get 5% each.  However, whether this expectation is met is pretty
much down to luck as there are four equally likely distributions of the
tasks to the CPUs that the load balancing code will consider to be balanced
with loads of 2.0 for each CPU.  Two of these distributions involve one
nice==0 and one nice==19 task per CPU and in these circumstances the users
expectations will be met.  The other two distributions both involve both
nice==0 tasks being on one CPU and both nice==19 being on the other CPU and
each task will get 50% of a CPU and the user's expectations will not be
met.

Solution:

The solution to this problem that is implemented in the attached patch is
to use weighted loads when determining if the system is balanced and, when
an imbalance is detected, to move an amount of weighted load between run
queues (as opposed to a number of tasks) to restore the balance.  Once
again, the easiest way to explain why both of these measures are necessary
is to use a simple example.  Suppose that (in a slight variation of the
above example) that we have a two CPU system with 4 nice==0 and 4 nice=19
hard spinning tasks running and that the 4 nice==0 tasks are on one CPU and
the 4 nice==19 tasks are on the other CPU.  The weighted loads for the two
CPUs would be 4.0 and 0.2 respectively and the load balancing code would
move 2 tasks resulting in one CPU with a load of 2.0 and the other with
load of 2.2.  If this was considered to be a big enough imbalance to
justify moving a task and that task was moved using the current
move_tasks() then it would move the highest priority task that it found and
this would result in one CPU with a load of 3.0 and the other with a load
of 1.2 which would result in the movement of a task in the opposite
direction and so on -- infinite loop.  If, on the other hand, an amount of
load to be moved is calculated from the imbalance (in this case 0.1) and
move_tasks() skips tasks until it find ones whose contributions to the
weighted load are less than this amount it would move two of the nice==19
tasks resulting in a system with 2 nice==0 and 2 nice=19 on each CPU with
loads of 2.1 for each CPU.

One of the advantages of this mechanism is that on a system where all tasks
have nice==0 the load balancing calculations would be mathematically
identical to the current load balancing code.

Notes:

struct task_struct:

has a new field load_weight which (in a trade off of space for speed)
stores the contribution that this task makes to a CPU's weighted load when
it is runnable.

struct runqueue:

has a new field raw_weighted_load which is the sum of the load_weight
values for the currently runnable tasks on this run queue.  This field
always needs to be updated when nr_running is updated so two new inline
functions inc_nr_running() and dec_nr_running() have been created to make
sure that this happens.  This also offers a convenient way to optimize away
this part of the smpnice mechanism when CONFIG_SMP is not defined.

int try_to_wake_up():

in this function the value SCHED_LOAD_BALANCE is used to represent the load
contribution of a single task in various calculations in the code that
decides which CPU to put the waking task on.  While this would be a valid
on a system where the nice values for the runnable tasks were distributed
evenly around zero it will lead to anomalous load balancing if the
distribution is skewed in either direction.  To overcome this problem
SCHED_LOAD_SCALE has been replaced by the load_weight for the relevant task
or by the average load_weight per task for the queue in question (as
appropriate).

int move_tasks():

The modifications to this function were complicated by the fact that
active_load_balance() uses it to move exactly one task without checking
whether an imbalance actually exists.  This precluded the simple
overloading of max_nr_move with max_load_move and necessitated the addition
of the latter as an extra argument to the function.  The internal
implementation is then modified to move up to max_nr_move tasks and
max_load_move of weighted load.  This slightly complicates the code where
move_tasks() is called and if ever active_load_balance() is changed to not
use move_tasks() the implementation of move_tasks() should be simplified
accordingly.

struct sched_group *find_busiest_group():

Similar to try_to_wake_up(), there are places in this function where
SCHED_LOAD_SCALE is used to represent the load contribution of a single
task and the same issues are created.  A similar solution is adopted except
that it is now the average per task contribution to a group's load (as
opposed to a run queue) that is required.  As this value is not directly
available from the group it is calculated on the fly as the queues in the
groups are visited when determining the busiest group.

A key change to this function is that it is no longer to scale down
*imbalance on exit as move_tasks() uses the load in its scaled form.

void set_user_nice():

has been modified to update the task's load_weight field when it's nice
value and also to ensure that its run queue's raw_weighted_load field is
updated if it was runnable.

From: "Siddha, Suresh B" <suresh.b.siddha@intel.com>

With smpnice, sched groups with highest priority tasks can mask the imbalance
between the other sched groups with in the same domain.  This patch fixes some
of the listed down scenarios by not considering the sched groups which are
lightly loaded.

a) on a simple 4-way MP system, if we have one high priority and 4 normal
   priority tasks, with smpnice we would like to see the high priority task
   scheduled on one cpu, two other cpus getting one normal task each and the
   fourth cpu getting the remaining two normal tasks.  but with current
   smpnice extra normal priority task keeps jumping from one cpu to another
   cpu having the normal priority task.  This is because of the
   busiest_has_loaded_cpus, nr_loaded_cpus logic..  We are not including the
   cpu with high priority task in max_load calculations but including that in
   total and avg_load calcuations..  leading to max_load < avg_load and load
   balance between cpus running normal priority tasks(2 Vs 1) will always show
   imbalanace as one normal priority and the extra normal priority task will
   keep moving from one cpu to another cpu having normal priority task..

b) 4-way system with HT (8 logical processors).  Package-P0 T0 has a
   highest priority task, T1 is idle.  Package-P1 Both T0 and T1 have 1 normal
   priority task each..  P2 and P3 are idle.  With this patch, one of the
   normal priority tasks on P1 will be moved to P2 or P3..

c) With the current weighted smp nice calculations, it doesn't always make
   sense to look at the highest weighted runqueue in the busy group..
   Consider a load balance scenario on a DP with HT system, with Package-0
   containing one high priority and one low priority, Package-1 containing one
   low priority(with other thread being idle)..  Package-1 thinks that it need
   to take the low priority thread from Package-0.  And find_busiest_queue()
   returns the cpu thread with highest priority task..  And ultimately(with
   help of active load balance) we move high priority task to Package-1.  And
   same continues with Package-0 now, moving high priority task from package-1
   to package-0..  Even without the presence of active load balance, load
   balance will fail to balance the above scenario..  Fix find_busiest_queue
   to use "imbalance" when it is lightly loaded.

[kernel@kolivas.org: sched: store weighted load on up]
[kernel@kolivas.org: sched: add discrete weighted cpu load function]
[suresh.b.siddha@intel.com: sched: remove dead code]
Signed-off-by: Peter Williams <pwil3058@bigpond.com.au>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Con Kolivas <kernel@kolivas.org>
Cc: John Hawkes <hawkes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 17:32:44 -07:00
arch [PATCH] chardev: GPIO for SCx200 & PC-8736x: replace spinlocks w mutexes 2006-06-27 17:32:43 -07:00
block [PATCH] cpu hotplug: use hotplug version of cpu notifier in appropriate places 2006-06-27 17:32:41 -07:00
crypto [CRYPTO] tcrypt: Forbid tcrypt from being built-in 2006-06-26 17:34:42 +10:00
Documentation [PATCH] rcutorture: add ops vector and Classic RCU ops 2006-06-27 17:32:40 -07:00
drivers [PATCH] chardev: GPIO for SCx200 & PC-8736x: add proper Kconfig, Makefile entries 2006-06-27 17:32:43 -07:00
fs [PATCH] cpu hotplug: use hotplug version of cpu notifier in appropriate places 2006-06-27 17:32:41 -07:00
include [PATCH] sched: implement smpnice 2006-06-27 17:32:44 -07:00
init [PATCH] fs/buffer.c: cleanups 2006-06-27 17:32:38 -07:00
ipc [PATCH] vfs: add lock owner argument to flush operation 2006-06-23 07:43:02 -07:00
kernel [PATCH] sched: implement smpnice 2006-06-27 17:32:44 -07:00
lib [PATCH] zlib inflate: fix function definitions 2006-06-27 17:32:35 -07:00
mm [PATCH] cpu hotplug: make cpu_notifier related notifier calls __cpuinit only 2006-06-27 17:32:41 -07:00
net [PATCH] spin/rwlock init cleanups 2006-06-27 17:32:39 -07:00
scripts Revert "kbuild: fix make -rR breakage" 2006-06-26 16:59:26 -07:00
security [PATCH] poison: add & use more constants 2006-06-27 17:32:38 -07:00
sound [PATCH] update two drivers for poison.h 2006-06-27 17:32:38 -07:00
usr kbuild: bugfix with initramfs 2006-06-10 09:07:04 +02:00
.gitignore add "tags" to .gitignore 2006-03-22 00:25:52 +01:00
COPYING [PATCH] update FSF address in COPYING 2005-09-10 10:06:29 -07:00
CREDITS move acknowledgment for Mark Adler to CREDITS 2006-06-26 18:21:37 +02:00
Kbuild kbuild: mips: fix sed regexp to generate asm-offset.h 2006-04-05 12:59:36 +02:00
MAINTAINERS Merge master.kernel.org:/pub/scm/linux/kernel/git/dtor/input 2006-06-26 11:01:58 -07:00
Makefile Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild 2006-06-26 11:05:15 -07:00
README [PATCH] config: update usage/help info 2006-04-19 09:13:52 -07:00
REPORTING-BUGS [PATCH] Spelling and whitespace fixes for REPORTING-BUGS 2005-09-10 10:06:31 -07:00

	Linux kernel release 2.6.xx <http://kernel.org>

These are the release notes for Linux version 2.6.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, and HTML, among others.
   After installation, "make psdocs", "make pdfdocs", or "make htmldocs"
   will render the documentation in the requested format.

INSTALLING the kernel:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

		gzip -cd linux-2.6.XX.tar.gz | tar xvf -

   or
		bzip2 -dc linux-2.6.XX.tar.bz2 | tar xvf -


   Replace "XX" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 2.6.xx releases by patching.  Patches are
   distributed in the traditional gzip and the newer bzip2 format.  To
   install by patching, get all the newer patch files, enter the
   top level directory of the kernel source (linux-2.6.xx) and execute:

		gzip -cd ../patch-2.6.xx.gz | patch -p1

   or
		bzip2 -dc ../patch-2.6.xx.bz2 | patch -p1

   (repeat xx for all versions bigger than the version of your current
   source tree, _in_order_) and you should be ok.  You may want to remove
   the backup files (xxx~ or xxx.orig), and make sure that there are no
   failed patches (xxx# or xxx.rej). If there are, either you or me has
   made a mistake.

   Unlike patches for the 2.6.x kernels, patches for the 2.6.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 2.6.x kernel.  Please read
   Documentation/applying-patches.txt for more information.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

		linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - If you are upgrading between releases using the stable series patches
   (for example, patch-2.6.xx.y), note that these "dot-releases" are
   not incremental and must be applied to the 2.6.xx base tree. For
   example, if your base kernel is 2.6.12 and you want to apply the
   2.6.12.3 patch, you do not and indeed must not first apply the
   2.6.12.1 and 2.6.12.2 patches. Similarly, if you are running kernel
   version 2.6.12.2 and want to jump to 2.6.12.3, you must first
   reverse the 2.6.12.2 patch (that is, patch -R) _before_ applying
   the 2.6.12.3 patch.

 - Make sure you have no stale .o files and dependencies lying around:

		cd linux
		make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 2.6.xx kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:
     kernel source code:	/usr/src/linux-2.6.N
     build directory:		/home/name/build/kernel

   To configure and build the kernel use:
   cd /usr/src/linux-2.6.N
   make O=/home/name/build/kernel menuconfig
   make O=/home/name/build/kernel
   sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternate configuration commands are:
	"make menuconfig"  Text based color menus, radiolists & dialogs.
	"make xconfig"     X windows (Qt) based configuration tool.
	"make gconfig"     X windows (Gtk) based configuration tool.
	"make oldconfig"   Default all questions based on the contents of
			   your existing ./.config file and asking about
			   new config symbols.
	"make silentoldconfig"
			   Like above, but avoids cluttering the screen
			   with questions already answered.
	"make defconfig"   Create a ./.config file by using the default
			   symbol values from arch/$ARCH/defconfig.
	"make allyesconfig"
			   Create a ./.config file by setting symbol
			   values to 'y' as much as possible.
	"make allmodconfig"
			   Create a ./.config file by setting symbol
			   values to 'm' as much as possible.
	"make allnoconfig" Create a ./.config file by setting symbol
			   values to 'n' as much as possible.
	"make randconfig"  Create a ./.config file by setting symbol
			   values to random values.

   The allyesconfig/allmodconfig/allnoconfig/randconfig variants can
   also use the environment variable KCONFIG_ALLCONFIG to specify a
   filename that contains config options that the user requires to be
   set to a specific value.  If KCONFIG_ALLCONFIG=filename is not used,
   "make *config" checks for a file named "all{yes/mod/no/random}.config"
   for symbol values that are to be forced.  If this file is not found,
   it checks for a file named "all.config" to contain forced values.
   
	NOTES on "make config":
	- having unnecessary drivers will make the kernel bigger, and can
	  under some circumstances lead to problems: probing for a
	  nonexistent controller card may confuse your other controllers
	- compiling the kernel with "Processor type" set higher than 386
	  will result in a kernel that does NOT work on a 386.  The
	  kernel will detect this on bootup, and give up.
	- A kernel with math-emulation compiled in will still use the
	  coprocessor if one is present: the math emulation will just
	  never get used in that case.  The kernel will be slightly larger,
	  but will work on different machines regardless of whether they
	  have a math coprocessor or not. 
	- the "kernel hacking" configuration details usually result in a
	  bigger or slower kernel (or both), and can even make the kernel
	  less stable by configuring some routines to actively try to
	  break bad code to find kernel problems (kmalloc()).  Thus you
	  should probably answer 'n' to the questions for
          "development", "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".
   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@osdl.org), and possibly to any other relevant
   mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

	unable to handle kernel paging request at address C0000010
	Oops: 0002
	EIP:   0010:XXXXXXXX
	eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
	esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
	ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
	Pid: xx, process nr: xx
	xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump.  This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops.
   Alternately you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

		nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help. 

 - Alternately, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.