mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-01 09:26:44 +07:00
1812924bb1
TLB shootdown for SGI UV. Depends on patch (in tip/x86/irq): x86-update-macros-used-by-uv-platform.patch Jack Steiner May 29 This patch provides the ability to flush TLB's in cpu's that are not on the local node. The hardware mechanism for distributing the flush messages is the UV's "broadcast assist unit". The hook to intercept TLB shootdown requests is a 2-line change to native_flush_tlb_others() (arch/x86/kernel/tlb_64.c). This code has been tested on a hardware simulator. The real hardware is not yet available. The shootdown statistics are provided through /proc/sgi_uv/ptc_statistics. The use of /sys was considered, but would have required the use of many /sys files. The debugfs was also considered, but these statistics should be available on an ongoing basis, not just for debugging. Issues to be fixed later: - The IRQ for the messaging interrupt is currently hardcoded as 200 (see UV_BAU_MESSAGE). It should be dynamically assigned in the future. - The use of appropriate udelay()'s is untested, as they are a problem in the simulator. Signed-off-by: Cliff Wickman <cpw@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
737 lines
19 KiB
C
737 lines
19 KiB
C
/*
|
|
* SGI UltraViolet TLB flush routines.
|
|
*
|
|
* (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include <asm/mach-bigsmp/mach_apic.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/genapic.h>
|
|
#include <asm/uv/uv_hub.h>
|
|
#include <asm/uv/uv_mmrs.h>
|
|
#include <asm/uv/uv_bau.h>
|
|
|
|
struct bau_control **uv_bau_table_bases;
|
|
static int uv_bau_retry_limit;
|
|
static int uv_nshift; /* position of pnode (which is nasid>>1) */
|
|
static unsigned long uv_mmask;
|
|
|
|
char *status_table[] = {
|
|
"IDLE",
|
|
"ACTIVE",
|
|
"DESTINATION TIMEOUT",
|
|
"SOURCE TIMEOUT"
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct ptc_stats, ptcstats);
|
|
DEFINE_PER_CPU(struct bau_control, bau_control);
|
|
|
|
/*
|
|
* Free a software acknowledge hardware resource by clearing its Pending
|
|
* bit. This will return a reply to the sender.
|
|
* If the message has timed out, a reply has already been sent by the
|
|
* hardware but the resource has not been released. In that case our
|
|
* clear of the Timeout bit (as well) will free the resource. No reply will
|
|
* be sent (the hardware will only do one reply per message).
|
|
*/
|
|
static void
|
|
uv_reply_to_message(int resource,
|
|
struct bau_payload_queue_entry *msg,
|
|
struct bau_msg_status *msp)
|
|
{
|
|
int fw;
|
|
|
|
fw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
|
|
msg->replied_to = 1;
|
|
msg->sw_ack_vector = 0;
|
|
if (msp)
|
|
msp->seen_by.bits = 0;
|
|
uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, fw);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Do all the things a cpu should do for a TLB shootdown message.
|
|
* Other cpu's may come here at the same time for this message.
|
|
*/
|
|
static void
|
|
uv_bau_process_message(struct bau_payload_queue_entry *msg,
|
|
int msg_slot, int sw_ack_slot)
|
|
{
|
|
int cpu;
|
|
unsigned long this_cpu_mask;
|
|
struct bau_msg_status *msp;
|
|
|
|
msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
|
|
cpu = uv_blade_processor_id();
|
|
msg->number_of_cpus =
|
|
uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
|
|
this_cpu_mask = (unsigned long)1 << cpu;
|
|
if (msp->seen_by.bits & this_cpu_mask)
|
|
return;
|
|
atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
|
|
|
|
if (msg->replied_to == 1)
|
|
return;
|
|
|
|
if (msg->address == TLB_FLUSH_ALL) {
|
|
local_flush_tlb();
|
|
__get_cpu_var(ptcstats).alltlb++;
|
|
} else {
|
|
__flush_tlb_one(msg->address);
|
|
__get_cpu_var(ptcstats).onetlb++;
|
|
}
|
|
|
|
__get_cpu_var(ptcstats).requestee++;
|
|
|
|
atomic_inc_short(&msg->acknowledge_count);
|
|
if (msg->number_of_cpus == msg->acknowledge_count)
|
|
uv_reply_to_message(sw_ack_slot, msg, msp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Examine the payload queue on all the distribution nodes to see
|
|
* which messages have not been seen, and which cpu(s) have not seen them.
|
|
*
|
|
* Returns the number of cpu's that have not responded.
|
|
*/
|
|
static int
|
|
uv_examine_destinations(struct bau_target_nodemask *distribution)
|
|
{
|
|
int sender;
|
|
int i;
|
|
int j;
|
|
int k;
|
|
int count = 0;
|
|
struct bau_control *bau_tablesp;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct bau_msg_status *msp;
|
|
|
|
sender = smp_processor_id();
|
|
for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
|
|
i++) {
|
|
if (bau_node_isset(i, distribution)) {
|
|
bau_tablesp = uv_bau_table_bases[i];
|
|
for (msg = bau_tablesp->va_queue_first, j = 0;
|
|
j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
|
|
if ((msg->sending_cpu == sender) &&
|
|
(!msg->replied_to)) {
|
|
msp = bau_tablesp->msg_statuses + j;
|
|
printk(KERN_DEBUG
|
|
"blade %d: address:%#lx %d of %d, not cpu(s): ",
|
|
i, msg->address,
|
|
msg->acknowledge_count,
|
|
msg->number_of_cpus);
|
|
for (k = 0; k < msg->number_of_cpus;
|
|
k++) {
|
|
if (!((long)1 << k & msp->
|
|
seen_by.bits)) {
|
|
count++;
|
|
printk("%d ", k);
|
|
}
|
|
}
|
|
printk("\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* uv_flush_tlb_others - globally purge translation cache of a virtual
|
|
* address or all TLB's
|
|
* @cpumaskp: mask of all cpu's in which the address is to be removed
|
|
* @mm: mm_struct containing virtual address range
|
|
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
|
|
*
|
|
* This is the entry point for initiating any UV global TLB shootdown.
|
|
*
|
|
* Purges the translation caches of all specified processors of the given
|
|
* virtual address, or purges all TLB's on specified processors.
|
|
*
|
|
* The caller has derived the cpumaskp from the mm_struct and has subtracted
|
|
* the local cpu from the mask. This function is called only if there
|
|
* are bits set in the mask. (e.g. flush_tlb_page())
|
|
*
|
|
* The cpumaskp is converted into a nodemask of the nodes containing
|
|
* the cpus.
|
|
*/
|
|
int
|
|
uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va)
|
|
{
|
|
int i;
|
|
int blade;
|
|
int cpu;
|
|
int bit;
|
|
int right_shift;
|
|
int this_blade;
|
|
int exams = 0;
|
|
int tries = 0;
|
|
long source_timeouts = 0;
|
|
long destination_timeouts = 0;
|
|
unsigned long index;
|
|
unsigned long mmr_offset;
|
|
unsigned long descriptor_status;
|
|
struct bau_activation_descriptor *bau_desc;
|
|
ktime_t time1, time2;
|
|
|
|
cpu = uv_blade_processor_id();
|
|
this_blade = uv_numa_blade_id();
|
|
bau_desc = __get_cpu_var(bau_control).descriptor_base;
|
|
bau_desc += (UV_ITEMS_PER_DESCRIPTOR * cpu);
|
|
|
|
bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
|
|
|
|
i = 0;
|
|
for_each_cpu_mask(bit, *cpumaskp) {
|
|
blade = uv_cpu_to_blade_id(bit);
|
|
if (blade > (UV_DISTRIBUTION_SIZE - 1))
|
|
BUG();
|
|
if (blade == this_blade)
|
|
continue;
|
|
bau_node_set(blade, &bau_desc->distribution);
|
|
/* leave the bits for the remote cpu's in the mask until
|
|
success; on failure we fall back to the IPI method */
|
|
i++;
|
|
}
|
|
if (i == 0)
|
|
goto none_to_flush;
|
|
__get_cpu_var(ptcstats).requestor++;
|
|
__get_cpu_var(ptcstats).ntargeted += i;
|
|
|
|
bau_desc->payload.address = va;
|
|
bau_desc->payload.sending_cpu = smp_processor_id();
|
|
|
|
if (cpu < UV_CPUS_PER_ACT_STATUS) {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
|
|
right_shift = cpu * UV_ACT_STATUS_SIZE;
|
|
} else {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
|
|
right_shift =
|
|
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
|
|
}
|
|
time1 = ktime_get();
|
|
|
|
retry:
|
|
tries++;
|
|
index = ((unsigned long)
|
|
1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
|
|
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
|
|
|
|
while ((descriptor_status = (((unsigned long)
|
|
uv_read_local_mmr(mmr_offset) >>
|
|
right_shift) & UV_ACT_STATUS_MASK)) !=
|
|
DESC_STATUS_IDLE) {
|
|
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
|
|
source_timeouts++;
|
|
if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
|
|
source_timeouts = 0;
|
|
__get_cpu_var(ptcstats).s_retry++;
|
|
goto retry;
|
|
}
|
|
/* spin here looking for progress at the destinations */
|
|
if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
|
|
destination_timeouts++;
|
|
if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
|
|
/* returns # of cpus not responding */
|
|
if (uv_examine_destinations
|
|
(&bau_desc->distribution) == 0) {
|
|
__get_cpu_var(ptcstats).d_retry++;
|
|
goto retry;
|
|
}
|
|
exams++;
|
|
if (exams >= uv_bau_retry_limit) {
|
|
printk(KERN_DEBUG
|
|
"uv_flush_tlb_others");
|
|
printk("giving up on cpu %d\n",
|
|
smp_processor_id());
|
|
goto unsuccessful;
|
|
}
|
|
/* delays can hang up the simulator
|
|
udelay(1000);
|
|
*/
|
|
destination_timeouts = 0;
|
|
}
|
|
}
|
|
}
|
|
if (tries > 1)
|
|
__get_cpu_var(ptcstats).retriesok++;
|
|
/* on success, clear the remote cpu's from the mask so we don't
|
|
use the IPI method of shootdown on them */
|
|
for_each_cpu_mask(bit, *cpumaskp) {
|
|
blade = uv_cpu_to_blade_id(bit);
|
|
if (blade == this_blade)
|
|
continue;
|
|
cpu_clear(bit, *cpumaskp);
|
|
}
|
|
|
|
unsuccessful:
|
|
time2 = ktime_get();
|
|
__get_cpu_var(ptcstats).sflush_ns += (time2.tv64 - time1.tv64);
|
|
|
|
none_to_flush:
|
|
if (cpus_empty(*cpumaskp))
|
|
return 1;
|
|
|
|
/* Cause the caller to do an IPI-style TLB shootdown on
|
|
the cpu's still in the mask */
|
|
__get_cpu_var(ptcstats).ptc_i++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The BAU message interrupt comes here. (registered by set_intr_gate)
|
|
* See entry_64.S
|
|
*
|
|
* We received a broadcast assist message.
|
|
*
|
|
* Interrupts may have been disabled; this interrupt could represent
|
|
* the receipt of several messages.
|
|
*
|
|
* All cores/threads on this node get this interrupt.
|
|
* The last one to see it does the s/w ack.
|
|
* (the resource will not be freed until noninterruptable cpus see this
|
|
* interrupt; hardware will timeout the s/w ack and reply ERROR)
|
|
*/
|
|
void
|
|
uv_bau_message_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct bau_payload_queue_entry *pqp;
|
|
struct bau_payload_queue_entry *msg;
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
ktime_t time1, time2;
|
|
int msg_slot;
|
|
int sw_ack_slot;
|
|
int fw;
|
|
int count = 0;
|
|
unsigned long local_pnode;
|
|
|
|
ack_APIC_irq();
|
|
exit_idle();
|
|
irq_enter();
|
|
|
|
time1 = ktime_get();
|
|
|
|
local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
|
|
|
|
pqp = __get_cpu_var(bau_control).va_queue_first;
|
|
msg = __get_cpu_var(bau_control).bau_msg_head;
|
|
while (msg->sw_ack_vector) {
|
|
count++;
|
|
fw = msg->sw_ack_vector;
|
|
msg_slot = msg - pqp;
|
|
sw_ack_slot = ffs(fw) - 1;
|
|
|
|
uv_bau_process_message(msg, msg_slot, sw_ack_slot);
|
|
|
|
msg++;
|
|
if (msg > __get_cpu_var(bau_control).va_queue_last)
|
|
msg = __get_cpu_var(bau_control).va_queue_first;
|
|
__get_cpu_var(bau_control).bau_msg_head = msg;
|
|
}
|
|
if (!count)
|
|
__get_cpu_var(ptcstats).nomsg++;
|
|
else if (count > 1)
|
|
__get_cpu_var(ptcstats).multmsg++;
|
|
|
|
time2 = ktime_get();
|
|
__get_cpu_var(ptcstats).dflush_ns += (time2.tv64 - time1.tv64);
|
|
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
uv_enable_timeouts(void)
|
|
{
|
|
int i;
|
|
int blade;
|
|
int last_blade;
|
|
int pnode;
|
|
int cur_cpu = 0;
|
|
unsigned long apicid;
|
|
|
|
/* better if we had each_online_blade */
|
|
last_blade = -1;
|
|
for_each_online_node(i) {
|
|
blade = uv_node_to_blade_id(i);
|
|
if (blade == last_blade)
|
|
continue;
|
|
last_blade = blade;
|
|
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
|
|
pnode = uv_blade_to_pnode(blade);
|
|
cur_cpu += uv_blade_nr_possible_cpus(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void *
|
|
uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
|
|
{
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void *
|
|
uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
|
|
{
|
|
(*offset)++;
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
uv_ptc_seq_stop(struct seq_file *file, void *data)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Display the statistics thru /proc
|
|
* data points to the cpu number
|
|
*/
|
|
static int
|
|
uv_ptc_seq_show(struct seq_file *file, void *data)
|
|
{
|
|
struct ptc_stats *stat;
|
|
int cpu;
|
|
|
|
cpu = *(loff_t *)data;
|
|
|
|
if (!cpu) {
|
|
seq_printf(file,
|
|
"# cpu requestor requestee one all sretry dretry ptc_i ");
|
|
seq_printf(file,
|
|
"sw_ack sflush_us dflush_us sok dnomsg dmult starget\n");
|
|
}
|
|
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
|
|
cpu, stat->requestor,
|
|
stat->requestee, stat->onetlb, stat->alltlb,
|
|
stat->s_retry, stat->d_retry, stat->ptc_i);
|
|
seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
|
|
uv_read_global_mmr64(uv_blade_to_pnode
|
|
(uv_cpu_to_blade_id(cpu)),
|
|
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
|
|
stat->sflush_ns / 1000, stat->dflush_ns / 1000,
|
|
stat->retriesok, stat->nomsg,
|
|
stat->multmsg, stat->ntargeted);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 0: display meaning of the statistics
|
|
* >0: retry limit
|
|
*/
|
|
static ssize_t
|
|
uv_ptc_proc_write(struct file *file, const char __user *user,
|
|
size_t count, loff_t *data)
|
|
{
|
|
long newmode;
|
|
char optstr[64];
|
|
|
|
if (copy_from_user(optstr, user, count))
|
|
return -EFAULT;
|
|
optstr[count - 1] = '\0';
|
|
if (strict_strtoul(optstr, 10, &newmode) < 0) {
|
|
printk(KERN_DEBUG "%s is invalid\n", optstr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (newmode == 0) {
|
|
printk(KERN_DEBUG "# cpu: cpu number\n");
|
|
printk(KERN_DEBUG
|
|
"requestor: times this cpu was the flush requestor\n");
|
|
printk(KERN_DEBUG
|
|
"requestee: times this cpu was requested to flush its TLBs\n");
|
|
printk(KERN_DEBUG
|
|
"one: times requested to flush a single address\n");
|
|
printk(KERN_DEBUG
|
|
"all: times requested to flush all TLB's\n");
|
|
printk(KERN_DEBUG
|
|
"sretry: number of retries of source-side timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"dretry: number of retries of destination-side timeouts\n");
|
|
printk(KERN_DEBUG
|
|
"ptc_i: times UV fell through to IPI-style flushes\n");
|
|
printk(KERN_DEBUG
|
|
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
|
|
printk(KERN_DEBUG
|
|
"sflush_us: microseconds spent in uv_flush_tlb_others()\n");
|
|
printk(KERN_DEBUG
|
|
"dflush_us: microseconds spent in handling flush requests\n");
|
|
printk(KERN_DEBUG "sok: successes on retry\n");
|
|
printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
|
|
printk(KERN_DEBUG
|
|
"dmult: interrupts with multiple messages\n");
|
|
printk(KERN_DEBUG "starget: nodes targeted\n");
|
|
} else {
|
|
uv_bau_retry_limit = newmode;
|
|
printk(KERN_DEBUG "timeout retry limit:%d\n",
|
|
uv_bau_retry_limit);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct seq_operations uv_ptc_seq_ops = {
|
|
.start = uv_ptc_seq_start,
|
|
.next = uv_ptc_seq_next,
|
|
.stop = uv_ptc_seq_stop,
|
|
.show = uv_ptc_seq_show
|
|
};
|
|
|
|
static int
|
|
uv_ptc_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &uv_ptc_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations proc_uv_ptc_operations = {
|
|
.open = uv_ptc_proc_open,
|
|
.read = seq_read,
|
|
.write = uv_ptc_proc_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static struct proc_dir_entry *proc_uv_ptc;
|
|
|
|
static int __init
|
|
uv_ptc_init(void)
|
|
{
|
|
static struct proc_dir_entry *sgi_proc_dir;
|
|
|
|
sgi_proc_dir = NULL;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
sgi_proc_dir = proc_mkdir("sgi_uv", NULL);
|
|
if (!sgi_proc_dir)
|
|
return -EINVAL;
|
|
|
|
proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
|
|
if (!proc_uv_ptc) {
|
|
printk(KERN_ERR "unable to create %s proc entry\n",
|
|
UV_PTC_BASENAME);
|
|
return -EINVAL;
|
|
}
|
|
proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
|
|
return 0;
|
|
}
|
|
|
|
static void __exit
|
|
uv_ptc_exit(void)
|
|
{
|
|
remove_proc_entry(UV_PTC_BASENAME, NULL);
|
|
}
|
|
|
|
module_init(uv_ptc_init);
|
|
module_exit(uv_ptc_exit);
|
|
|
|
/*
|
|
* Initialization of BAU-related structures
|
|
*/
|
|
int __init
|
|
uv_bau_init(void)
|
|
{
|
|
int i;
|
|
int j;
|
|
int blade;
|
|
int nblades;
|
|
int *ip;
|
|
int pnode;
|
|
int last_blade;
|
|
int cur_cpu = 0;
|
|
unsigned long pa;
|
|
unsigned long n;
|
|
unsigned long m;
|
|
unsigned long mmr_image;
|
|
unsigned long apicid;
|
|
char *cp;
|
|
struct bau_control *bau_tablesp;
|
|
struct bau_activation_descriptor *adp, *ad2;
|
|
struct bau_payload_queue_entry *pqp;
|
|
struct bau_msg_status *msp;
|
|
struct bau_control *bcp;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
uv_bau_retry_limit = 1;
|
|
|
|
if ((sizeof(struct bau_local_cpumask) * BITSPERBYTE) <
|
|
MAX_CPUS_PER_NODE) {
|
|
printk(KERN_ERR
|
|
"uv_bau_init: bau_local_cpumask.bits too small\n");
|
|
BUG();
|
|
}
|
|
|
|
uv_nshift = uv_hub_info->n_val;
|
|
uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
|
|
nblades = 0;
|
|
last_blade = -1;
|
|
for_each_online_node(i) {
|
|
blade = uv_node_to_blade_id(i);
|
|
if (blade == last_blade)
|
|
continue;
|
|
last_blade = blade;
|
|
nblades++;
|
|
}
|
|
|
|
uv_bau_table_bases = (struct bau_control **)
|
|
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
|
|
if (!uv_bau_table_bases)
|
|
BUG();
|
|
|
|
/* better if we had each_online_blade */
|
|
last_blade = -1;
|
|
for_each_online_node(i) {
|
|
blade = uv_node_to_blade_id(i);
|
|
if (blade == last_blade)
|
|
continue;
|
|
last_blade = blade;
|
|
|
|
bau_tablesp =
|
|
kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, i);
|
|
if (!bau_tablesp)
|
|
BUG();
|
|
|
|
bau_tablesp->msg_statuses =
|
|
kmalloc_node(sizeof(struct bau_msg_status) *
|
|
DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, i);
|
|
if (!bau_tablesp->msg_statuses)
|
|
BUG();
|
|
for (j = 0, msp = bau_tablesp->msg_statuses;
|
|
j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, msp++) {
|
|
bau_cpubits_clear(&msp->seen_by, (int)
|
|
uv_blade_nr_possible_cpus(blade));
|
|
}
|
|
|
|
bau_tablesp->watching =
|
|
kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
|
|
GFP_KERNEL, i);
|
|
if (!bau_tablesp->watching)
|
|
BUG();
|
|
for (j = 0, ip = bau_tablesp->watching;
|
|
j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, ip++) {
|
|
*ip = 0;
|
|
}
|
|
|
|
uv_bau_table_bases[i] = bau_tablesp;
|
|
|
|
pnode = uv_blade_to_pnode(blade);
|
|
|
|
if (sizeof(struct bau_activation_descriptor) != 64)
|
|
BUG();
|
|
|
|
adp = (struct bau_activation_descriptor *)
|
|
kmalloc_node(16384, GFP_KERNEL, i);
|
|
if (!adp)
|
|
BUG();
|
|
if ((unsigned long)adp & 0xfff)
|
|
BUG();
|
|
pa = __pa((unsigned long)adp);
|
|
n = pa >> uv_nshift;
|
|
m = pa & uv_mmask;
|
|
|
|
mmr_image = uv_read_global_mmr64(pnode,
|
|
UVH_LB_BAU_SB_DESCRIPTOR_BASE);
|
|
if (mmr_image)
|
|
uv_write_global_mmr64(pnode, (unsigned long)
|
|
UVH_LB_BAU_SB_DESCRIPTOR_BASE,
|
|
(n << UV_DESC_BASE_PNODE_SHIFT |
|
|
m));
|
|
for (j = 0, ad2 = adp; j < UV_ACTIVATION_DESCRIPTOR_SIZE;
|
|
j++, ad2++) {
|
|
memset(ad2, 0,
|
|
sizeof(struct bau_activation_descriptor));
|
|
ad2->header.sw_ack_flag = 1;
|
|
ad2->header.base_dest_nodeid =
|
|
uv_blade_to_pnode(uv_cpu_to_blade_id(0));
|
|
ad2->header.command = UV_NET_ENDPOINT_INTD;
|
|
ad2->header.int_both = 1;
|
|
/* all others need to be set to zero:
|
|
fairness chaining multilevel count replied_to */
|
|
}
|
|
|
|
pqp = (struct bau_payload_queue_entry *)
|
|
kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
|
|
sizeof(struct bau_payload_queue_entry),
|
|
GFP_KERNEL, i);
|
|
if (!pqp)
|
|
BUG();
|
|
if (sizeof(struct bau_payload_queue_entry) != 32)
|
|
BUG();
|
|
if ((unsigned long)(&((struct bau_payload_queue_entry *)0)->
|
|
sw_ack_vector) != 15)
|
|
BUG();
|
|
|
|
cp = (char *)pqp + 31;
|
|
pqp = (struct bau_payload_queue_entry *)
|
|
(((unsigned long)cp >> 5) << 5);
|
|
bau_tablesp->va_queue_first = pqp;
|
|
uv_write_global_mmr64(pnode,
|
|
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
|
|
((unsigned long)pnode <<
|
|
UV_PAYLOADQ_PNODE_SHIFT) |
|
|
uv_physnodeaddr(pqp));
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
|
|
uv_physnodeaddr(pqp));
|
|
bau_tablesp->va_queue_last =
|
|
pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
|
|
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
|
|
(unsigned long)
|
|
uv_physnodeaddr(bau_tablesp->
|
|
va_queue_last));
|
|
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
|
|
DESTINATION_PAYLOAD_QUEUE_SIZE);
|
|
|
|
/* this initialization can't be in firmware because the
|
|
messaging IRQ will be determined by the OS */
|
|
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
|
|
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
|
|
if ((pa & 0xff) != UV_BAU_MESSAGE) {
|
|
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
|
|
((apicid << 32) |
|
|
UV_BAU_MESSAGE));
|
|
}
|
|
|
|
for (j = cur_cpu; j < (cur_cpu + uv_blade_nr_possible_cpus(i));
|
|
j++) {
|
|
bcp = (struct bau_control *)&per_cpu(bau_control, j);
|
|
bcp->bau_msg_head = bau_tablesp->va_queue_first;
|
|
bcp->va_queue_first = bau_tablesp->va_queue_first;
|
|
|
|
bcp->va_queue_last = bau_tablesp->va_queue_last;
|
|
bcp->watching = bau_tablesp->watching;
|
|
bcp->msg_statuses = bau_tablesp->msg_statuses;
|
|
bcp->descriptor_base = adp;
|
|
}
|
|
cur_cpu += uv_blade_nr_possible_cpus(i);
|
|
}
|
|
|
|
set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
|
|
|
|
uv_enable_timeouts();
|
|
|
|
return 0;
|
|
}
|
|
|
|
__initcall(uv_bau_init);
|