linux_dsm_epyc7002/arch/x86/kernel/tlb_uv.c

737 lines
19 KiB
C
Raw Normal View History

/*
* SGI UltraViolet TLB flush routines.
*
* (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
*
* This code is released under the GNU General Public License version 2 or
* later.
*/
#include <linux/mc146818rtc.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <asm/mach-bigsmp/mach_apic.h>
#include <asm/mmu_context.h>
#include <asm/idle.h>
#include <asm/genapic.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_bau.h>
struct bau_control **uv_bau_table_bases;
static int uv_bau_retry_limit;
static int uv_nshift; /* position of pnode (which is nasid>>1) */
static unsigned long uv_mmask;
char *status_table[] = {
"IDLE",
"ACTIVE",
"DESTINATION TIMEOUT",
"SOURCE TIMEOUT"
};
DEFINE_PER_CPU(struct ptc_stats, ptcstats);
DEFINE_PER_CPU(struct bau_control, bau_control);
/*
* Free a software acknowledge hardware resource by clearing its Pending
* bit. This will return a reply to the sender.
* If the message has timed out, a reply has already been sent by the
* hardware but the resource has not been released. In that case our
* clear of the Timeout bit (as well) will free the resource. No reply will
* be sent (the hardware will only do one reply per message).
*/
static void
uv_reply_to_message(int resource,
struct bau_payload_queue_entry *msg,
struct bau_msg_status *msp)
{
int fw;
fw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
msg->replied_to = 1;
msg->sw_ack_vector = 0;
if (msp)
msp->seen_by.bits = 0;
uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, fw);
return;
}
/*
* Do all the things a cpu should do for a TLB shootdown message.
* Other cpu's may come here at the same time for this message.
*/
static void
uv_bau_process_message(struct bau_payload_queue_entry *msg,
int msg_slot, int sw_ack_slot)
{
int cpu;
unsigned long this_cpu_mask;
struct bau_msg_status *msp;
msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
cpu = uv_blade_processor_id();
msg->number_of_cpus =
uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
this_cpu_mask = (unsigned long)1 << cpu;
if (msp->seen_by.bits & this_cpu_mask)
return;
atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
if (msg->replied_to == 1)
return;
if (msg->address == TLB_FLUSH_ALL) {
local_flush_tlb();
__get_cpu_var(ptcstats).alltlb++;
} else {
__flush_tlb_one(msg->address);
__get_cpu_var(ptcstats).onetlb++;
}
__get_cpu_var(ptcstats).requestee++;
atomic_inc_short(&msg->acknowledge_count);
if (msg->number_of_cpus == msg->acknowledge_count)
uv_reply_to_message(sw_ack_slot, msg, msp);
return;
}
/*
* Examine the payload queue on all the distribution nodes to see
* which messages have not been seen, and which cpu(s) have not seen them.
*
* Returns the number of cpu's that have not responded.
*/
static int
uv_examine_destinations(struct bau_target_nodemask *distribution)
{
int sender;
int i;
int j;
int k;
int count = 0;
struct bau_control *bau_tablesp;
struct bau_payload_queue_entry *msg;
struct bau_msg_status *msp;
sender = smp_processor_id();
for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
i++) {
if (bau_node_isset(i, distribution)) {
bau_tablesp = uv_bau_table_bases[i];
for (msg = bau_tablesp->va_queue_first, j = 0;
j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
if ((msg->sending_cpu == sender) &&
(!msg->replied_to)) {
msp = bau_tablesp->msg_statuses + j;
printk(KERN_DEBUG
"blade %d: address:%#lx %d of %d, not cpu(s): ",
i, msg->address,
msg->acknowledge_count,
msg->number_of_cpus);
for (k = 0; k < msg->number_of_cpus;
k++) {
if (!((long)1 << k & msp->
seen_by.bits)) {
count++;
printk("%d ", k);
}
}
printk("\n");
}
}
}
}
return count;
}
/**
* uv_flush_tlb_others - globally purge translation cache of a virtual
* address or all TLB's
* @cpumaskp: mask of all cpu's in which the address is to be removed
* @mm: mm_struct containing virtual address range
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
*
* This is the entry point for initiating any UV global TLB shootdown.
*
* Purges the translation caches of all specified processors of the given
* virtual address, or purges all TLB's on specified processors.
*
* The caller has derived the cpumaskp from the mm_struct and has subtracted
* the local cpu from the mask. This function is called only if there
* are bits set in the mask. (e.g. flush_tlb_page())
*
* The cpumaskp is converted into a nodemask of the nodes containing
* the cpus.
*/
int
uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va)
{
int i;
int blade;
int cpu;
int bit;
int right_shift;
int this_blade;
int exams = 0;
int tries = 0;
long source_timeouts = 0;
long destination_timeouts = 0;
unsigned long index;
unsigned long mmr_offset;
unsigned long descriptor_status;
struct bau_activation_descriptor *bau_desc;
ktime_t time1, time2;
cpu = uv_blade_processor_id();
this_blade = uv_numa_blade_id();
bau_desc = __get_cpu_var(bau_control).descriptor_base;
bau_desc += (UV_ITEMS_PER_DESCRIPTOR * cpu);
bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
i = 0;
for_each_cpu_mask(bit, *cpumaskp) {
blade = uv_cpu_to_blade_id(bit);
if (blade > (UV_DISTRIBUTION_SIZE - 1))
BUG();
if (blade == this_blade)
continue;
bau_node_set(blade, &bau_desc->distribution);
/* leave the bits for the remote cpu's in the mask until
success; on failure we fall back to the IPI method */
i++;
}
if (i == 0)
goto none_to_flush;
__get_cpu_var(ptcstats).requestor++;
__get_cpu_var(ptcstats).ntargeted += i;
bau_desc->payload.address = va;
bau_desc->payload.sending_cpu = smp_processor_id();
if (cpu < UV_CPUS_PER_ACT_STATUS) {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = cpu * UV_ACT_STATUS_SIZE;
} else {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
right_shift =
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
}
time1 = ktime_get();
retry:
tries++;
index = ((unsigned long)
1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
while ((descriptor_status = (((unsigned long)
uv_read_local_mmr(mmr_offset) >>
right_shift) & UV_ACT_STATUS_MASK)) !=
DESC_STATUS_IDLE) {
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
source_timeouts++;
if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
source_timeouts = 0;
__get_cpu_var(ptcstats).s_retry++;
goto retry;
}
/* spin here looking for progress at the destinations */
if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
destination_timeouts++;
if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
/* returns # of cpus not responding */
if (uv_examine_destinations
(&bau_desc->distribution) == 0) {
__get_cpu_var(ptcstats).d_retry++;
goto retry;
}
exams++;
if (exams >= uv_bau_retry_limit) {
printk(KERN_DEBUG
"uv_flush_tlb_others");
printk("giving up on cpu %d\n",
smp_processor_id());
goto unsuccessful;
}
/* delays can hang up the simulator
udelay(1000);
*/
destination_timeouts = 0;
}
}
}
if (tries > 1)
__get_cpu_var(ptcstats).retriesok++;
/* on success, clear the remote cpu's from the mask so we don't
use the IPI method of shootdown on them */
for_each_cpu_mask(bit, *cpumaskp) {
blade = uv_cpu_to_blade_id(bit);
if (blade == this_blade)
continue;
cpu_clear(bit, *cpumaskp);
}
unsuccessful:
time2 = ktime_get();
__get_cpu_var(ptcstats).sflush_ns += (time2.tv64 - time1.tv64);
none_to_flush:
if (cpus_empty(*cpumaskp))
return 1;
/* Cause the caller to do an IPI-style TLB shootdown on
the cpu's still in the mask */
__get_cpu_var(ptcstats).ptc_i++;
return 0;
}
/*
* The BAU message interrupt comes here. (registered by set_intr_gate)
* See entry_64.S
*
* We received a broadcast assist message.
*
* Interrupts may have been disabled; this interrupt could represent
* the receipt of several messages.
*
* All cores/threads on this node get this interrupt.
* The last one to see it does the s/w ack.
* (the resource will not be freed until noninterruptable cpus see this
* interrupt; hardware will timeout the s/w ack and reply ERROR)
*/
void
uv_bau_message_interrupt(struct pt_regs *regs)
{
struct bau_payload_queue_entry *pqp;
struct bau_payload_queue_entry *msg;
struct pt_regs *old_regs = set_irq_regs(regs);
ktime_t time1, time2;
int msg_slot;
int sw_ack_slot;
int fw;
int count = 0;
unsigned long local_pnode;
ack_APIC_irq();
exit_idle();
irq_enter();
time1 = ktime_get();
local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
pqp = __get_cpu_var(bau_control).va_queue_first;
msg = __get_cpu_var(bau_control).bau_msg_head;
while (msg->sw_ack_vector) {
count++;
fw = msg->sw_ack_vector;
msg_slot = msg - pqp;
sw_ack_slot = ffs(fw) - 1;
uv_bau_process_message(msg, msg_slot, sw_ack_slot);
msg++;
if (msg > __get_cpu_var(bau_control).va_queue_last)
msg = __get_cpu_var(bau_control).va_queue_first;
__get_cpu_var(bau_control).bau_msg_head = msg;
}
if (!count)
__get_cpu_var(ptcstats).nomsg++;
else if (count > 1)
__get_cpu_var(ptcstats).multmsg++;
time2 = ktime_get();
__get_cpu_var(ptcstats).dflush_ns += (time2.tv64 - time1.tv64);
irq_exit();
set_irq_regs(old_regs);
return;
}
static void
uv_enable_timeouts(void)
{
int i;
int blade;
int last_blade;
int pnode;
int cur_cpu = 0;
unsigned long apicid;
/* better if we had each_online_blade */
last_blade = -1;
for_each_online_node(i) {
blade = uv_node_to_blade_id(i);
if (blade == last_blade)
continue;
last_blade = blade;
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
pnode = uv_blade_to_pnode(blade);
cur_cpu += uv_blade_nr_possible_cpus(i);
}
return;
}
static void *
uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
{
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void *
uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void
uv_ptc_seq_stop(struct seq_file *file, void *data)
{
}
/*
* Display the statistics thru /proc
* data points to the cpu number
*/
static int
uv_ptc_seq_show(struct seq_file *file, void *data)
{
struct ptc_stats *stat;
int cpu;
cpu = *(loff_t *)data;
if (!cpu) {
seq_printf(file,
"# cpu requestor requestee one all sretry dretry ptc_i ");
seq_printf(file,
"sw_ack sflush_us dflush_us sok dnomsg dmult starget\n");
}
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
stat = &per_cpu(ptcstats, cpu);
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
cpu, stat->requestor,
stat->requestee, stat->onetlb, stat->alltlb,
stat->s_retry, stat->d_retry, stat->ptc_i);
seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
uv_read_global_mmr64(uv_blade_to_pnode
(uv_cpu_to_blade_id(cpu)),
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
stat->sflush_ns / 1000, stat->dflush_ns / 1000,
stat->retriesok, stat->nomsg,
stat->multmsg, stat->ntargeted);
}
return 0;
}
/*
* 0: display meaning of the statistics
* >0: retry limit
*/
static ssize_t
uv_ptc_proc_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
long newmode;
char optstr[64];
if (copy_from_user(optstr, user, count))
return -EFAULT;
optstr[count - 1] = '\0';
if (strict_strtoul(optstr, 10, &newmode) < 0) {
printk(KERN_DEBUG "%s is invalid\n", optstr);
return -EINVAL;
}
if (newmode == 0) {
printk(KERN_DEBUG "# cpu: cpu number\n");
printk(KERN_DEBUG
"requestor: times this cpu was the flush requestor\n");
printk(KERN_DEBUG
"requestee: times this cpu was requested to flush its TLBs\n");
printk(KERN_DEBUG
"one: times requested to flush a single address\n");
printk(KERN_DEBUG
"all: times requested to flush all TLB's\n");
printk(KERN_DEBUG
"sretry: number of retries of source-side timeouts\n");
printk(KERN_DEBUG
"dretry: number of retries of destination-side timeouts\n");
printk(KERN_DEBUG
"ptc_i: times UV fell through to IPI-style flushes\n");
printk(KERN_DEBUG
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
printk(KERN_DEBUG
"sflush_us: microseconds spent in uv_flush_tlb_others()\n");
printk(KERN_DEBUG
"dflush_us: microseconds spent in handling flush requests\n");
printk(KERN_DEBUG "sok: successes on retry\n");
printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
printk(KERN_DEBUG
"dmult: interrupts with multiple messages\n");
printk(KERN_DEBUG "starget: nodes targeted\n");
} else {
uv_bau_retry_limit = newmode;
printk(KERN_DEBUG "timeout retry limit:%d\n",
uv_bau_retry_limit);
}
return count;
}
static const struct seq_operations uv_ptc_seq_ops = {
.start = uv_ptc_seq_start,
.next = uv_ptc_seq_next,
.stop = uv_ptc_seq_stop,
.show = uv_ptc_seq_show
};
static int
uv_ptc_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &uv_ptc_seq_ops);
}
static const struct file_operations proc_uv_ptc_operations = {
.open = uv_ptc_proc_open,
.read = seq_read,
.write = uv_ptc_proc_write,
.llseek = seq_lseek,
.release = seq_release,
};
static struct proc_dir_entry *proc_uv_ptc;
static int __init
uv_ptc_init(void)
{
static struct proc_dir_entry *sgi_proc_dir;
sgi_proc_dir = NULL;
if (!is_uv_system())
return 0;
sgi_proc_dir = proc_mkdir("sgi_uv", NULL);
if (!sgi_proc_dir)
return -EINVAL;
proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
if (!proc_uv_ptc) {
printk(KERN_ERR "unable to create %s proc entry\n",
UV_PTC_BASENAME);
return -EINVAL;
}
proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
return 0;
}
static void __exit
uv_ptc_exit(void)
{
remove_proc_entry(UV_PTC_BASENAME, NULL);
}
module_init(uv_ptc_init);
module_exit(uv_ptc_exit);
/*
* Initialization of BAU-related structures
*/
int __init
uv_bau_init(void)
{
int i;
int j;
int blade;
int nblades;
int *ip;
int pnode;
int last_blade;
int cur_cpu = 0;
unsigned long pa;
unsigned long n;
unsigned long m;
unsigned long mmr_image;
unsigned long apicid;
char *cp;
struct bau_control *bau_tablesp;
struct bau_activation_descriptor *adp, *ad2;
struct bau_payload_queue_entry *pqp;
struct bau_msg_status *msp;
struct bau_control *bcp;
if (!is_uv_system())
return 0;
uv_bau_retry_limit = 1;
if ((sizeof(struct bau_local_cpumask) * BITSPERBYTE) <
MAX_CPUS_PER_NODE) {
printk(KERN_ERR
"uv_bau_init: bau_local_cpumask.bits too small\n");
BUG();
}
uv_nshift = uv_hub_info->n_val;
uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
nblades = 0;
last_blade = -1;
for_each_online_node(i) {
blade = uv_node_to_blade_id(i);
if (blade == last_blade)
continue;
last_blade = blade;
nblades++;
}
uv_bau_table_bases = (struct bau_control **)
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
if (!uv_bau_table_bases)
BUG();
/* better if we had each_online_blade */
last_blade = -1;
for_each_online_node(i) {
blade = uv_node_to_blade_id(i);
if (blade == last_blade)
continue;
last_blade = blade;
bau_tablesp =
kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, i);
if (!bau_tablesp)
BUG();
bau_tablesp->msg_statuses =
kmalloc_node(sizeof(struct bau_msg_status) *
DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, i);
if (!bau_tablesp->msg_statuses)
BUG();
for (j = 0, msp = bau_tablesp->msg_statuses;
j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, msp++) {
bau_cpubits_clear(&msp->seen_by, (int)
uv_blade_nr_possible_cpus(blade));
}
bau_tablesp->watching =
kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
GFP_KERNEL, i);
if (!bau_tablesp->watching)
BUG();
for (j = 0, ip = bau_tablesp->watching;
j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, ip++) {
*ip = 0;
}
uv_bau_table_bases[i] = bau_tablesp;
pnode = uv_blade_to_pnode(blade);
if (sizeof(struct bau_activation_descriptor) != 64)
BUG();
adp = (struct bau_activation_descriptor *)
kmalloc_node(16384, GFP_KERNEL, i);
if (!adp)
BUG();
if ((unsigned long)adp & 0xfff)
BUG();
pa = __pa((unsigned long)adp);
n = pa >> uv_nshift;
m = pa & uv_mmask;
mmr_image = uv_read_global_mmr64(pnode,
UVH_LB_BAU_SB_DESCRIPTOR_BASE);
if (mmr_image)
uv_write_global_mmr64(pnode, (unsigned long)
UVH_LB_BAU_SB_DESCRIPTOR_BASE,
(n << UV_DESC_BASE_PNODE_SHIFT |
m));
for (j = 0, ad2 = adp; j < UV_ACTIVATION_DESCRIPTOR_SIZE;
j++, ad2++) {
memset(ad2, 0,
sizeof(struct bau_activation_descriptor));
ad2->header.sw_ack_flag = 1;
ad2->header.base_dest_nodeid =
uv_blade_to_pnode(uv_cpu_to_blade_id(0));
ad2->header.command = UV_NET_ENDPOINT_INTD;
ad2->header.int_both = 1;
/* all others need to be set to zero:
fairness chaining multilevel count replied_to */
}
pqp = (struct bau_payload_queue_entry *)
kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
sizeof(struct bau_payload_queue_entry),
GFP_KERNEL, i);
if (!pqp)
BUG();
if (sizeof(struct bau_payload_queue_entry) != 32)
BUG();
if ((unsigned long)(&((struct bau_payload_queue_entry *)0)->
sw_ack_vector) != 15)
BUG();
cp = (char *)pqp + 31;
pqp = (struct bau_payload_queue_entry *)
(((unsigned long)cp >> 5) << 5);
bau_tablesp->va_queue_first = pqp;
uv_write_global_mmr64(pnode,
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
((unsigned long)pnode <<
UV_PAYLOADQ_PNODE_SHIFT) |
uv_physnodeaddr(pqp));
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
uv_physnodeaddr(pqp));
bau_tablesp->va_queue_last =
pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
(unsigned long)
uv_physnodeaddr(bau_tablesp->
va_queue_last));
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
DESTINATION_PAYLOAD_QUEUE_SIZE);
/* this initialization can't be in firmware because the
messaging IRQ will be determined by the OS */
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
if ((pa & 0xff) != UV_BAU_MESSAGE) {
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
((apicid << 32) |
UV_BAU_MESSAGE));
}
for (j = cur_cpu; j < (cur_cpu + uv_blade_nr_possible_cpus(i));
j++) {
bcp = (struct bau_control *)&per_cpu(bau_control, j);
bcp->bau_msg_head = bau_tablesp->va_queue_first;
bcp->va_queue_first = bau_tablesp->va_queue_first;
bcp->va_queue_last = bau_tablesp->va_queue_last;
bcp->watching = bau_tablesp->watching;
bcp->msg_statuses = bau_tablesp->msg_statuses;
bcp->descriptor_base = adp;
}
cur_cpu += uv_blade_nr_possible_cpus(i);
}
set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
uv_enable_timeouts();
return 0;
}
__initcall(uv_bau_init);