On AMD, the presence of the MSR_SPEC_CTRL feature does not imply that the
SSBD mitigation support should use the SPEC_CTRL MSR. Other features could
have caused the MSR_SPEC_CTRL feature to be set, while a different SSBD
mitigation option is in place.
Update the SSBD support to check for the actual SSBD features that will
use the SPEC_CTRL MSR.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6ac2f49edb ("x86/bugs: Add AMD's SPEC_CTRL MSR usage")
Link: http://lkml.kernel.org/r/20180702213602.29202.33151.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Xen PV domain kernel is not by design affected by meltdown as it's
enforcing split CR3 itself. Let's not report such systems as "Vulnerable"
in sysfs (we're also already forcing PTI to off in X86_HYPER_XEN_PV cases);
the security of the system ultimately depends on presence of mitigation in
the Hypervisor, which can't be easily detected from DomU; let's report
that.
Reported-and-tested-by: Mike Latimer <mlatimer@suse.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1806180959080.6203@cbobk.fhfr.pm
[ Merge the user-visible string into a single line. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both AMD and Intel can have SPEC_CTRL_MSR for SSBD.
However AMD also has two more other ways of doing it - which
are !SPEC_CTRL MSR ways.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: kvm@vger.kernel.org
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: andrew.cooper3@citrix.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180601145921.9500-4-konrad.wilk@oracle.com
The AMD document outlining the SSBD handling
124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
mentions that if CPUID 8000_0008.EBX[24] is set we should be using
the SPEC_CTRL MSR (0x48) over the VIRT SPEC_CTRL MSR (0xC001_011f)
for speculative store bypass disable.
This in effect means we should clear the X86_FEATURE_VIRT_SSBD
flag so that we would prefer the SPEC_CTRL MSR.
See the document titled:
124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199889
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: kvm@vger.kernel.org
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: andrew.cooper3@citrix.com
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20180601145921.9500-3-konrad.wilk@oracle.com
Add the necessary logic for supporting the emulated VIRT_SPEC_CTRL MSR to
x86_virt_spec_ctrl(). If either X86_FEATURE_LS_CFG_SSBD or
X86_FEATURE_VIRT_SPEC_CTRL is set then use the new guest_virt_spec_ctrl
argument to check whether the state must be modified on the host. The
update reuses speculative_store_bypass_update() so the ZEN-specific sibling
coordination can be reused.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
x86_spec_ctrL_mask is intended to mask out bits from a MSR_SPEC_CTRL value
which are not to be modified. However the implementation is not really used
and the bitmask was inverted to make a check easier, which was removed in
"x86/bugs: Remove x86_spec_ctrl_set()"
Aside of that it is missing the STIBP bit if it is supported by the
platform, so if the mask would be used in x86_virt_spec_ctrl() then it
would prevent a guest from setting STIBP.
Add the STIBP bit if supported and use the mask in x86_virt_spec_ctrl() to
sanitize the value which is supplied by the guest.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
x86_spec_ctrl_set() is only used in bugs.c and the extra mask checks there
provide no real value as both call sites can just write x86_spec_ctrl_base
to MSR_SPEC_CTRL. x86_spec_ctrl_base is valid and does not need any extra
masking or checking.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
x86_spec_ctrl_base is the system wide default value for the SPEC_CTRL MSR.
x86_spec_ctrl_get_default() returns x86_spec_ctrl_base and was intended to
prevent modification to that variable. Though the variable is read only
after init and globaly visible already.
Remove the function and export the variable instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Function bodies are very similar and are going to grow more almost
identical code. Add a bool arg to determine whether SPEC_CTRL is being set
for the guest or restored to the host.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The upcoming support for the virtual SPEC_CTRL MSR on AMD needs to reuse
speculative_store_bypass_update() to avoid code duplication. Add an
argument for supplying a thread info (TIF) value and create a wrapper
speculative_store_bypass_update_current() which is used at the existing
call site.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Some AMD processors only support a non-architectural means of enabling
speculative store bypass disable (SSBD). To allow a simplified view of
this to a guest, an architectural definition has been created through a new
CPUID bit, 0x80000008_EBX[25], and a new MSR, 0xc001011f. With this, a
hypervisor can virtualize the existence of this definition and provide an
architectural method for using SSBD to a guest.
Add the new CPUID feature, the new MSR and update the existing SSBD
support to use this MSR when present.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
AMD is proposing a VIRT_SPEC_CTRL MSR to handle the Speculative Store
Bypass Disable via MSR_AMD64_LS_CFG so that guests do not have to care
about the bit position of the SSBD bit and thus facilitate migration.
Also, the sibling coordination on Family 17H CPUs can only be done on
the host.
Extend x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() with an
extra argument for the VIRT_SPEC_CTRL MSR.
Hand in 0 from VMX and in SVM add a new virt_spec_ctrl member to the CPU
data structure which is going to be used in later patches for the actual
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The SSBD enumeration is similarly to the other bits magically shared
between Intel and AMD though the mechanisms are different.
Make X86_FEATURE_SSBD synthetic and set it depending on the vendor specific
features or family dependent setup.
Change the Intel bit to X86_FEATURE_SPEC_CTRL_SSBD to denote that SSBD is
controlled via MSR_SPEC_CTRL and fix up the usage sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The availability of the SPEC_CTRL MSR is enumerated by a CPUID bit on
Intel and implied by IBRS or STIBP support on AMD. That's just confusing
and in case an AMD CPU has IBRS not supported because the underlying
problem has been fixed but has another bit valid in the SPEC_CTRL MSR,
the thing falls apart.
Add a synthetic feature bit X86_FEATURE_MSR_SPEC_CTRL to denote the
availability on both Intel and AMD.
While at it replace the boot_cpu_has() checks with static_cpu_has() where
possible. This prevents late microcode loading from exposing SPEC_CTRL, but
late loading is already very limited as it does not reevaluate the
mitigation options and other bits and pieces. Having static_cpu_has() is
the simplest and least fragile solution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Fixes: 7bb4d366c ("x86/bugs: Make cpu_show_common() static")
Fixes: 24f7fc83b ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpu_show_common() is not used outside of arch/x86/kernel/cpu/bugs.c, so
make it static.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__ssb_select_mitigation() returns one of the members of enum ssb_mitigation,
not ssb_mitigation_cmd; fix the prototype to reflect that.
Fixes: 24f7fc83b9 ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2]
as SSBD (Speculative Store Bypass Disable).
Hence changing it.
It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name
is going to be. Following the rename it would be SSBD_NO but that rolls out
to Speculative Store Bypass Disable No.
Also fixed the missing space in X86_FEATURE_AMD_SSBD.
[ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Unless explicitly opted out of, anything running under seccomp will have
SSB mitigations enabled. Choosing the "prctl" mode will disable this.
[ tglx: Adjusted it to the new arch_seccomp_spec_mitigate() mechanism ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The migitation control is simpler to implement in architecture code as it
avoids the extra function call to check the mode. Aside of that having an
explicit seccomp enabled mode in the architecture mitigations would require
even more workarounds.
Move it into architecture code and provide a weak function in the seccomp
code. Remove the 'which' argument as this allows the architecture to decide
which mitigations are relevant for seccomp.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For certain use cases it is desired to enforce mitigations so they cannot
be undone afterwards. That's important for loader stubs which want to
prevent a child from disabling the mitigation again. Will also be used for
seccomp(). The extra state preserving of the prctl state for SSB is a
preparatory step for EBPF dymanic speculation control.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There's no reason for these to be changed after boot.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Adjust arch_prctl_get/set_spec_ctrl() to operate on tasks other than
current.
This is needed both for /proc/$pid/status queries and for seccomp (since
thread-syncing can trigger seccomp in non-current threads).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add prctl based control for Speculative Store Bypass mitigation and make it
the default mitigation for Intel and AMD.
Andi Kleen provided the following rationale (slightly redacted):
There are multiple levels of impact of Speculative Store Bypass:
1) JITed sandbox.
It cannot invoke system calls, but can do PRIME+PROBE and may have call
interfaces to other code
2) Native code process.
No protection inside the process at this level.
3) Kernel.
4) Between processes.
The prctl tries to protect against case (1) doing attacks.
If the untrusted code can do random system calls then control is already
lost in a much worse way. So there needs to be system call protection in
some way (using a JIT not allowing them or seccomp). Or rather if the
process can subvert its environment somehow to do the prctl it can already
execute arbitrary code, which is much worse than SSB.
To put it differently, the point of the prctl is to not allow JITed code
to read data it shouldn't read from its JITed sandbox. If it already has
escaped its sandbox then it can already read everything it wants in its
address space, and do much worse.
The ability to control Speculative Store Bypass allows to enable the
protection selectively without affecting overall system performance.
Based on an initial patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The Speculative Store Bypass vulnerability can be mitigated with the
Reduced Data Speculation (RDS) feature. To allow finer grained control of
this eventually expensive mitigation a per task mitigation control is
required.
Add a new TIF_RDS flag and put it into the group of TIF flags which are
evaluated for mismatch in switch_to(). If these bits differ in the previous
and the next task, then the slow path function __switch_to_xtra() is
invoked. Implement the TIF_RDS dependent mitigation control in the slow
path.
If the prctl for controlling Speculative Store Bypass is disabled or no
task uses the prctl then there is no overhead in the switch_to() fast
path.
Update the KVM related speculation control functions to take TID_RDS into
account as well.
Based on a patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Having everything in nospec-branch.h creates a hell of dependencies when
adding the prctl based switching mechanism. Move everything which is not
required in nospec-branch.h to spec-ctrl.h and fix up the includes in the
relevant files.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
AMD does not need the Speculative Store Bypass mitigation to be enabled.
The parameters for this are already available and can be done via MSR
C001_1020. Each family uses a different bit in that MSR for this.
[ tglx: Expose the bit mask via a variable and move the actual MSR fiddling
into the bugs code as that's the right thing to do and also required
to prepare for dynamic enable/disable ]
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Intel and AMD SPEC_CTRL (0x48) MSR semantics may differ in the
future (or in fact use different MSRs for the same functionality).
As such a run-time mechanism is required to whitelist the appropriate MSR
values.
[ tglx: Made the variable __ro_after_init ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Intel CPUs expose methods to:
- Detect whether RDS capability is available via CPUID.7.0.EDX[31],
- The SPEC_CTRL MSR(0x48), bit 2 set to enable RDS.
- MSR_IA32_ARCH_CAPABILITIES, Bit(4) no need to enable RRS.
With that in mind if spec_store_bypass_disable=[auto,on] is selected set at
boot-time the SPEC_CTRL MSR to enable RDS if the platform requires it.
Note that this does not fix the KVM case where the SPEC_CTRL is exposed to
guests which can muck with it, see patch titled :
KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS.
And for the firmware (IBRS to be set), see patch titled:
x86/spectre_v2: Read SPEC_CTRL MSR during boot and re-use reserved bits
[ tglx: Distangled it from the intel implementation and kept the call order ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Contemporary high performance processors use a common industry-wide
optimization known as "Speculative Store Bypass" in which loads from
addresses to which a recent store has occurred may (speculatively) see an
older value. Intel refers to this feature as "Memory Disambiguation" which
is part of their "Smart Memory Access" capability.
Memory Disambiguation can expose a cache side-channel attack against such
speculatively read values. An attacker can create exploit code that allows
them to read memory outside of a sandbox environment (for example,
malicious JavaScript in a web page), or to perform more complex attacks
against code running within the same privilege level, e.g. via the stack.
As a first step to mitigate against such attacks, provide two boot command
line control knobs:
nospec_store_bypass_disable
spec_store_bypass_disable=[off,auto,on]
By default affected x86 processors will power on with Speculative
Store Bypass enabled. Hence the provided kernel parameters are written
from the point of view of whether to enable a mitigation or not.
The parameters are as follows:
- auto - Kernel detects whether your CPU model contains an implementation
of Speculative Store Bypass and picks the most appropriate
mitigation.
- on - disable Speculative Store Bypass
- off - enable Speculative Store Bypass
[ tglx: Reordered the checks so that the whole evaluation is not done
when the CPU does not support RDS ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Add the sysfs file for the new vulerability. It does not do much except
show the words 'Vulnerable' for recent x86 cores.
Intel cores prior to family 6 are known not to be vulnerable, and so are
some Atoms and some Xeon Phi.
It assumes that older Cyrix, Centaur, etc. cores are immune.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
A guest may modify the SPEC_CTRL MSR from the value used by the
kernel. Since the kernel doesn't use IBRS, this means a value of zero is
what is needed in the host.
But the 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to
the other bits as reserved so the kernel should respect the boot time
SPEC_CTRL value and use that.
This allows to deal with future extensions to the SPEC_CTRL interface if
any at all.
Note: This uses wrmsrl() instead of native_wrmsl(). I does not make any
difference as paravirt will over-write the callq *0xfff.. with the wrmsrl
assembler code.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
The 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to all
the other bits as reserved. The Intel SDM glossary defines reserved as
implementation specific - aka unknown.
As such at bootup this must be taken it into account and proper masking for
the bits in use applied.
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
[ tglx: Made x86_spec_ctrl_base __ro_after_init ]
Suggested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Those SysFS functions have a similar preamble, as such make common
code to handle them.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
If i == ARRAY_SIZE(mitigation_options) then we accidentally print
garbage from one space beyond the end of the mitigation_options[] array.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Fixes: 9005c6834c ("x86/spectre: Simplify spectre_v2 command line parsing")
Link: http://lkml.kernel.org/r/20180214071416.GA26677@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Harmonize all the Spectre messages so that a:
dmesg | grep -i spectre
... gives us most Spectre related kernel boot messages.
Also fix a few other details:
- clarify a comment about firmware speculation control
- s/KPTI/PTI
- remove various line-breaks that made the code uglier
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 64e16720ea.
We cannot call C functions like that, without marking all the
call-clobbered registers as, well, clobbered. We might have got away
with it for now because the __ibp_barrier() function was *fairly*
unlikely to actually use any other registers. But no. Just no.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan.van.de.ven@intel.com
Cc: dave.hansen@intel.com
Cc: jmattson@google.com
Cc: karahmed@amazon.de
Cc: kvm@vger.kernel.org
Cc: pbonzini@redhat.com
Cc: rkrcmar@redhat.com
Cc: sironi@amazon.de
Link: http://lkml.kernel.org/r/1518305967-31356-3-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to expose the hardware features simply in /proc/cpuinfo as "ibrs",
"ibpb" and "stibp". Since AMD has separate CPUID bits for those, use them
as the user-visible bits.
When the Intel SPEC_CTRL bit is set which indicates both IBRS and IBPB
capability, set those (AMD) bits accordingly. Likewise if the Intel STIBP
bit is set, set the AMD STIBP that's used for the generic hardware
capability.
Hide the rest from /proc/cpuinfo by putting "" in the comments. Including
RETPOLINE and RETPOLINE_AMD which shouldn't be visible there. There are
patches to make the sysfs vulnerabilities information non-readable by
non-root, and the same should apply to all information about which
mitigations are actually in use. Those *shouldn't* appear in /proc/cpuinfo.
The feature bit for whether IBPB is actually used, which is needed for
ALTERNATIVEs, is renamed to X86_FEATURE_USE_IBPB.
Originally-by: Borislav Petkov <bp@suse.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: dave.hansen@intel.com
Cc: karahmed@amazon.de
Cc: arjan@linux.intel.com
Cc: torvalds@linux-foundation.org
Cc: peterz@infradead.org
Cc: bp@alien8.de
Cc: pbonzini@redhat.com
Cc: tim.c.chen@linux.intel.com
Cc: gregkh@linux-foundation.org
Link: https://lkml.kernel.org/r/1517070274-12128-2-git-send-email-dwmw@amazon.co.uk
If sysfs is disabled and RETPOLINE not defined:
arch/x86/kernel/cpu/bugs.c:97:13: warning: ‘spectre_v2_bad_module’ defined but not used
[-Wunused-variable]
static bool spectre_v2_bad_module;
Hide it.
Fixes: caf7501a1b ("module/retpoline: Warn about missing retpoline in module")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
There's a risk that a kernel which has full retpoline mitigations becomes
vulnerable when a module gets loaded that hasn't been compiled with the
right compiler or the right option.
To enable detection of that mismatch at module load time, add a module info
string "retpoline" at build time when the module was compiled with
retpoline support. This only covers compiled C source, but assembler source
or prebuilt object files are not checked.
If a retpoline enabled kernel detects a non retpoline protected module at
load time, print a warning and report it in the sysfs vulnerability file.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: gregkh@linuxfoundation.org
Cc: torvalds@linux-foundation.org
Cc: jeyu@kernel.org
Cc: arjan@linux.intel.com
Link: https://lkml.kernel.org/r/20180125235028.31211-1-andi@firstfloor.org
On context switch from a shallow call stack to a deeper one, as the CPU
does 'ret' up the deeper side it may encounter RSB entries (predictions for
where the 'ret' goes to) which were populated in userspace.
This is problematic if neither SMEP nor KPTI (the latter of which marks
userspace pages as NX for the kernel) are active, as malicious code in
userspace may then be executed speculatively.
Overwrite the CPU's return prediction stack with calls which are predicted
to return to an infinite loop, to "capture" speculation if this
happens. This is required both for retpoline, and also in conjunction with
IBRS for !SMEP && !KPTI.
On Skylake+ the problem is slightly different, and an *underflow* of the
RSB may cause errant branch predictions to occur. So there it's not so much
overwrite, as *filling* the RSB to attempt to prevent it getting
empty. This is only a partial solution for Skylake+ since there are many
other conditions which may result in the RSB becoming empty. The full
solution on Skylake+ is to use IBRS, which will prevent the problem even
when the RSB becomes empty. With IBRS, the RSB-stuffing will not be
required on context switch.
[ tglx: Added missing vendor check and slighty massaged comments and
changelog ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk
Add a spectre_v2= option to select the mitigation used for the indirect
branch speculation vulnerability.
Currently, the only option available is retpoline, in its various forms.
This will be expanded to cover the new IBRS/IBPB microcode features.
The RETPOLINE_AMD feature relies on a serializing LFENCE for speculation
control. For AMD hardware, only set RETPOLINE_AMD if LFENCE is a
serializing instruction, which is indicated by the LFENCE_RDTSC feature.
[ tglx: Folded back the LFENCE/AMD fixes and reworked it so IBRS
integration becomes simple ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515707194-20531-5-git-send-email-dwmw@amazon.co.uk