This has been broken for a long time: it broke first in 2.6.35, then was
almost fixed in 2.6.36 but this one-liner slipped through the cracks.
The bug shows up as an infinite loop in Windows 7 (and newer) boot on
32-bit hosts without EPT.
Windows uses CMPXCHG8B to write to page tables, which causes a
page fault if running without EPT; the emulator is then called from
kvm_mmu_page_fault. The loop then happens if the higher 4 bytes are
not 0; the common case for this is that the NX bit (bit 63) is 1.
Fixes: 6550e1f165
Fixes: 16518d5ada
Cc: stable@vger.kernel.org # 2.6.35+
Reported-by: Erik Rull <erik.rull@rdsoftware.de>
Tested-by: Erik Rull <erik.rull@rdsoftware.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Common: Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other architectures).
This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes
or TCP_RR netperf tests). This also has to be enabled manually for now,
but the plan is to auto-tune this in the future.
ARM/ARM64: the highlights are support for GICv3 emulation and dirty page
tracking
s390: several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS: Bugfixes.
x86: Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested virtualization
improvements (nested APICv---a nice optimization), usual round of emulation
fixes. There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
ARM has other conflicts where functions are added in the same place
by 3.19-rc and 3.20 patches. These are not large though, and entirely
within KVM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJU28rkAAoJEL/70l94x66DXqQH/1TDOfJIjW7P2kb0Sw7Fy1wi
cEX1KO/VFxAqc8R0E/0Wb55CXyPjQJM6xBXuFr5cUDaIjQ8ULSktL4pEwXyyv/s5
DBDkN65mriry2w5VuEaRLVcuX9Wy+tqLQXWNkEySfyb4uhZChWWHvKEcgw5SqCyg
NlpeHurYESIoNyov3jWqvBjr4OmaQENyv7t2c6q5ErIgG02V+iCux5QGbphM2IC9
LFtPKxoqhfeB2xFxTOIt8HJiXrZNwflsTejIlCl/NSEiDVLLxxHCxK2tWK/tUXMn
JfLD9ytXBWtNMwInvtFm4fPmDouv2VDyR0xnK2db+/axsJZnbxqjGu1um4Dqbak=
=7gdx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"Fairly small update, but there are some interesting new features.
Common:
Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other
architectures). This can improve latency up to 50% on some
scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This
also has to be enabled manually for now, but the plan is to
auto-tune this in the future.
ARM/ARM64:
The highlights are support for GICv3 emulation and dirty page
tracking
s390:
Several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS:
Bugfixes.
x86:
Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested
virtualization improvements (nested APICv---a nice optimization),
usual round of emulation fixes.
There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
Powerpc:
Nothing yet.
The KVM/PPC changes will come in through the PPC maintainers,
because I haven't received them yet and I might end up being
offline for some part of next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: ia64: drop kvm.h from installed user headers
KVM: x86: fix build with !CONFIG_SMP
KVM: x86: emulate: correct page fault error code for NoWrite instructions
KVM: Disable compat ioctl for s390
KVM: s390: add cpu model support
KVM: s390: use facilities and cpu_id per KVM
KVM: s390/CPACF: Choose crypto control block format
s390/kernel: Update /proc/sysinfo file with Extended Name and UUID
KVM: s390: reenable LPP facility
KVM: s390: floating irqs: fix user triggerable endless loop
kvm: add halt_poll_ns module parameter
kvm: remove KVM_MMIO_SIZE
KVM: MIPS: Don't leak FPU/DSP to guest
KVM: MIPS: Disable HTW while in guest
KVM: nVMX: Enable nested posted interrupt processing
KVM: nVMX: Enable nested virtual interrupt delivery
KVM: nVMX: Enable nested apic register virtualization
KVM: nVMX: Make nested control MSRs per-cpu
KVM: nVMX: Enable nested virtualize x2apic mode
KVM: nVMX: Prepare for using hardware MSR bitmap
...
NoWrite instructions (e.g. cmp or test) never set the "write access"
bit in the error code, even if one of the operands is treated as a
destination.
Fixes: c205fb7d7d
Cc: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On long-mode, when far call that changes cs.l takes place, the stack size is
determined by the new mode. For instance, if we go from 32-bit mode to 64-bit
mode, the stack-size if 64. KVM uses the old stack size.
Fix it.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If we got a wraparound of 32-bit operand, and the limit is 0xffffffff, read and
writes should be successful. It just needs to be done in two segments.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unnecassary define was left after commit 7d882ffa81 ("KVM: x86: Revert
NoBigReal patch in the emulator").
Commit 39f062ff51 ("KVM: x86: Generate #UD when memory operand is required")
was missing undef.
Fix it.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ARPL and MOVSXD are encoded the same and their execution depends on the
execution mode. The operand sizes of each instruction are different.
Currently, ARPL is detected too late, after the decoding was already done, and
therefore may result in spurious exception (instead of failed emulation).
Introduce a group to the emulator to handle instructions according to execution
mode (32/64 bits). Note: in order not to make changes that may affect
performance, the new ModeDual can only be applied to instructions with ModRM.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The IRET instruction should clear NMI masking, but the current implementation
does not do so.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Indeed, Intel SDM specifically states that for the RET instruction "In 64-bit
mode, the default operation size of this instruction is the stack-address size,
i.e. 64 bits."
However, experiments show this is not the case. Here is for example objdump of
small 64-bit asm:
4004f1: ca 14 00 lret $0x14
4004f4: 48 cb lretq
4004f6: 48 ca 14 00 lretq $0x14
Therefore, remove the Stack flag from far-ret instructions.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel SDM says for CMPXCHG: "To simplify the interface to the processor’s bus,
the destination operand receives a write cycle without regard to the result of
the comparison.". This means the destination page should be dirtied.
Fix it to by writing back the original value if cmpxchg failed.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SYSENTER emulation is broken in several ways:
1. It misses the case of 16-bit code segments completely (CVE-2015-0239).
2. MSR_IA32_SYSENTER_CS is checked in 64-bit mode incorrectly (bits 0 and 1 can
still be set without causing #GP).
3. MSR_IA32_SYSENTER_EIP and MSR_IA32_SYSENTER_ESP are not masked in
legacy-mode.
4. There is some unneeded code.
Fix it.
Cc: stable@vger.linux.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
STR and SLDT with rip-relative operand can cause a host kernel oops.
Mark them as DstMem as well.
Cc: stable@vger.linux.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating an instruction that reads the destination memory operand (i.e.,
instructions without the Mov flag in the emulator), the operand is first read.
If a page-fault is detected in this phase, the error-code which would be
delivered to the VM does not indicate that the access that caused the exception
is a write one. This does not conform with real hardware, and may cause the VM
to enter the page-fault handler twice for no reason (once for read, once for
write).
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When access to descriptor in LDT/GDT wraparound outside long-mode, the address
of the descriptor should be truncated to 32-bit. Citing Intel SDM 2.1.1.1
"Global and Local Descriptor Tables in IA-32e Mode": "GDTR and LDTR registers
are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and
compatibility mode)."
So in other cases, we need to truncate. Creating new function to return a
pointer to descriptor table to avoid too much code duplication.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
[Wrap 64-bit check with #ifdef CONFIG_X86_64, to avoid a "right shift count
>= width of type" warning and consequent undefined behavior. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When segment is loaded, the segment access bit is set unconditionally. In
fact, it should be set conditionally, based on whether the segment had the
accessed bit set before. In addition, it can improve performance.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to Intel SDM: "If the ESP register is used as a base register for
addressing a destination operand in memory, the POP instruction computes the
effective address of the operand after it increments the ESP register."
The current emulation does not behave so. The fix required to waste another
of the precious instruction flags and to check the flag in decode_modrm.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, if em_call_far fails it returns success instead of the resulting
error-code. Fix it.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM emulator does not emulate JMP and CALL that target a call gate or a
task gate. This patch does not try to implement these scenario as they are
presumably rare; yet it returns X86EMUL_UNHANDLEABLE error in such cases
instead of generating an exception.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the operand size of fnstcw and fnstsw is updated during the execution,
the emulation may cause spurious exceptions as it reads the memory beforehand.
Marking these instructions as Mov (since the previous value is ignored) and
DstMem16 to simplify the setting of operand size.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Although pop sreg updates RSP according to the operand size, only 2 bytes are
read. The current behavior may result in incorrect #GP or #PF exceptions.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove FIXME comments about needing fault addresses to be returned. These
are propaagated from walk_addr_generic to gva_to_gpa and from there to
ops->read_std and ops->write_std.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- spring cleaning: removed support for IA64, and for hardware-assisted
virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken because
the (non-KVM) XSAVES patches inadvertently changed the KVM userspace
ABI whenever XSAVES was enabled; hence, this part is going to stable.
Guest support is just a matter of exposing the feature and CPUID leaves
support.
Right now KVM is broken for PPC BookE in your tree (doesn't compile).
I'll reply to the pull request with a patch, please apply it either
before the pull request or in the merge commit, in order to preserve
bisectability somewhat.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJUkpg+AAoJEL/70l94x66DUmoH/jzXYkptSW9NGgm79KqxGJlD
lzLnLBkitVvx++Mz5YBhdJEhKKLUlCtifFT1zPJQ/pthQhIRSaaAwZyNGgUs5w5x
yMGKHiPQFyZRbmQtZhCInW0BftJoYHHciO3nUfHCZnp34My9MP2D55W7/z+fYFfQ
DuqBSE9ThyZJtZ4zh8NRA9fCOeuqwVYRyoBs820Wbsh4cpIBoIK63Dg7k+CLE+ZV
MZa/mRL6bAfsn9W5bnOUAgHJ3SPznnWbO3/g0aV+roL/5pffblprJx9lKNR08xUM
6hDFLop2gDehDJesDkY/o8Ckp1hEouvfsVpSShry4vcgtn0hgh2O5/6Orbmj6vE=
=Zwq1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"3.19 changes for KVM:
- spring cleaning: removed support for IA64, and for hardware-
assisted virtualization on the PPC970
- ARM, PPC, s390 all had only small fixes
For x86:
- small performance improvements (though only on weird guests)
- usual round of hardware-compliancy fixes from Nadav
- APICv fixes
- XSAVES support for hosts and guests. XSAVES hosts were broken
because the (non-KVM) XSAVES patches inadvertently changed the KVM
userspace ABI whenever XSAVES was enabled; hence, this part is
going to stable. Guest support is just a matter of exposing the
feature and CPUID leaves support"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (179 commits)
KVM: move APIC types to arch/x86/
KVM: PPC: Book3S: Enable in-kernel XICS emulation by default
KVM: PPC: Book3S HV: Improve H_CONFER implementation
KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register
KVM: PPC: Book3S HV: Remove code for PPC970 processors
KVM: PPC: Book3S HV: Tracepoints for KVM HV guest interactions
KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
arch: powerpc: kvm: book3s_paired_singles.c: Remove unused function
arch: powerpc: kvm: book3s_pr.c: Remove unused function
arch: powerpc: kvm: book3s.c: Remove some unused functions
arch: powerpc: kvm: book3s_32_mmu.c: Remove unused function
KVM: PPC: Book3S HV: Check wait conditions before sleeping in kvmppc_vcore_blocked
KVM: PPC: Book3S HV: ptes are big endian
KVM: PPC: Book3S HV: Fix inaccuracies in ICP emulation for H_IPI
KVM: PPC: Book3S HV: Fix KSM memory corruption
KVM: PPC: Book3S HV: Fix an issue where guest is paused on receiving HMI
KVM: PPC: Book3S HV: Fix computation of tlbie operand
KVM: PPC: Book3S HV: Add missing HPTE unlock
KVM: PPC: BookE: Improve irq inject tracepoint
arm/arm64: KVM: Require in-kernel vgic for the arch timers
...
commit d50eaa1803 ("KVM: x86: Perform limit checks when assigning EIP")
mistakenly used zero as cpl on em_ret_far. Use the actual one.
Fixes: d50eaa1803
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel SDM table 6-2 ("Priority Among Simultaneous Exceptions and Interrupts")
shows that faults from decoding the next instruction got higher priority than
general protection. Moving the protected-mode check before the CPL check to
avoid wrong exception on vm86 mode.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pushf instruction does not push eflags.VM, so emulation should not do so as
well. Although eflags.RF should not be pushed as well, it is already cleared
by the time pushf is executed.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The macro GP already sets the flag Prefix. Remove the redundant flag for
0f_38_f0 and 0f_38_f1 opcodes.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Certain x86 instructions that use modrm operands only allow memory operand
(i.e., mod012), and cause a #UD exception otherwise. KVM ignores this fact.
Currently, the instructions that are such and are emulated by KVM are MOVBE,
MOVNTPS, MOVNTPD and MOVNTI. MOVBE is the most blunt example, since it may be
emulated by the host regardless of MMIO.
The fix introduces a new group for handling such instructions, marking mod3 as
illegal instruction.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove FIXME comments about needing fault addresses to be returned. These
are propaagated from walk_addr_generic to gva_to_gpa and from there to
ops->read_std and ops->write_std.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The check on the higher limit of the segment, and the check on the
maximum accessible size, is the same for both expand-up and
expand-down segments. Only the computation of "lim" varies.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
register_address has been a duplicate of address_mask ever since the
ancestor of __linearize was born in 90de84f50b (KVM: x86 emulator:
preserve an operand's segment identity, 2010-11-17).
However, we can put it to a better use by including the call to reg_read
in register_address. Similarly, the call to reg_rmw can be moved to
register_address_increment.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In __linearize there is check of the condition whether to check if masking of
the linear address is needed. It occurs immediately after switch that
evaluates the same condition. Merge them.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When SS is used using a non-canonical address, an #SS exception is generated on
real hardware. KVM emulator causes a #GP instead. Fix it to behave as real x86
CPU.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If branch (e.g., jmp, ret) causes limit violations, since the target IP >
limit, the #GP exception occurs before the branch. In other words, the RIP
pushed on the stack should be that of the branch and not that of the target.
To do so, we can call __linearize, with new EIP, which also saves us the code
which performs the canonical address checks. On the case of assigning an EIP >=
2^32 (when switching cs.l), we also safe, as __linearize will check the new EIP
does not exceed the limit and would trigger #GP(0) otherwise.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When segment is accessed, real hardware does not perform any privilege level
checks. In contrast, KVM emulator does. This causes some discrepencies from
real hardware. For instance, reading from readable code segment may fail due to
incorrect segment checks. In addition, it introduces unnecassary overhead.
To reference Intel SDM 5.5 ("Privilege Levels"): "Privilege levels are checked
when the segment selector of a segment descriptor is loaded into a segment
register." The SDM never mentions privilege level checks during memory access,
except for loading far pointers in section 5.10 ("Pointer Validation"). Those
are actually segment selector loads and are emulated in the similarily (i.e.,
regardless to __linearize checks).
This behavior was also checked using sysexit. A data-segment whose DPL=0 was
loaded, and after sysexit (CPL=3) it is still accessible.
Therefore, all the privilege level checks in __linearize are removed.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When performing segmented-read/write in the emulator for stack operations, it
ignores the stack size, and uses the ad_bytes as indication for the pointer
size. As a result, a wrong address may be accessed.
To fix this behavior, we can remove the masking of address in __linearize and
perform it beforehand. It is already done for the operands (so currently it is
inefficiently done twice). It is missing in two cases:
1. When using rip_relative
2. On fetch_bit_operand that changes the address.
This patch masks the address on these two occassions, and removes the masking
from __linearize.
Note that it does not mask EIP during fetch. In protected/legacy mode code
fetch when RIP >= 2^32 should result in #GP and not wrap-around. Since we make
limit checks within __linearize, this is the expected behavior.
Partial revert of commit 518547b32a (KVM: x86: Emulator does not
calculate address correctly, 2014-09-30).
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 10e38fc7cab6 ("KVM: x86: Emulator flag for instruction that only support
16-bit addresses in real mode") introduced NoBigReal for instructions such as
MONITOR. Apparetnly, the Intel SDM description that led to this patch is
misleading. Since no instruction is using NoBigReal, it is safe to remove it,
we fully understand what the SDM means.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 3b32004a66 ("KVM: x86: movnti minimum op size of 32-bit is not kept")
did not fully fix the minimum operand size of MONTI emulation. Still, MOVNTI
may be mistakenly performed using 16-bit opsize.
This patch add No16 flag to mark an instruction does not support 16-bits
operand size.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that KVM injects #UD on "unhandlable" error, it makes better sense to
return such error on sysenter instead of directly injecting #UD to the guest.
This allows to track more easily the unhandlable cases the emulator does not
support.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7fe864dc94 (KVM: x86: Mark VEX-prefix instructions emulation as
unimplemented, 2014-06-02) marked VEX instructions as such in protected
mode. VEX-prefix instructions are not supported relevant on real-mode
and VM86, but should cause #UD instead of being decoded as LES/LDS.
Fix this behaviour to be consistent with real hardware.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
[Check for mod == 3, rather than 2 or 3. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Task-switch emulation checks the privilege level prior to performing the
task-switch. This check is incorrect in the case of task-gates, in which the
tss.dpl is ignored, and can cause superfluous exceptions. Moreover this check
is unnecassary, since the CPU checks the privilege levels prior to exiting.
Intel SDM 25.4.2 says "If CALL or JMP accesses a TSS descriptor directly
outside IA-32e mode, privilege levels are checked on the TSS descriptor" prior
to exiting. AMD 15.14.1 says "The intercept is checked before the task switch
takes place but after the incoming TSS and task gate (if one was involved) have
been checked for correctness."
This patch removes the CPL checks for CALL and JMP.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating LTR/LDTR/LGDT/LIDT, #GP should be injected if the base is
non-canonical. Otherwise, VM-entry will fail.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
LGDT and LIDT emulation logic is almost identical. Merge the logic into a
single point to avoid redundancy. This will be used by the next patch that
will ensure the bases of the loaded GDTR and IDTR are canonical.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Although Intel SDM mentions bit 63 is reserved, MOV to CR3 can have bit 63 set.
As Intel SDM states in section 4.10.4 "Invalidation of TLBs and
Paging-Structure Caches": " MOV to CR3. ... If CR4.PCIDE = 1 and bit 63 of the
instruction’s source operand is 0 ..."
In other words, bit 63 is not reserved. KVM emulator currently consider bit 63
as reserved. Fix it.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to Intel SDM push of segment selectors is done in the following
manner: "if the operand size is 32-bits, either a zero-extended value is pushed
on the stack or the segment selector is written on the stack using a 16-bit
move. For the last case, all recent Core and Atom processors perform a 16-bit
move, leaving the upper portion of the stack location unmodified."
This patch modifies the behavior to match the core behavior.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CMPS and SCAS instructions are evaluated in the wrong order. For reference (of
CMPS), see http://www.fermimn.gov.it/linux/quarta/x86/cmps.htm : "Note that the
direction of subtraction for CMPS is [SI] - [DI] or [ESI] - [EDI]. The left
operand (SI or ESI) is the source and the right operand (DI or EDI) is the
destination. This is the reverse of the usual Intel convention in which the
left operand is the destination and the right operand is the source."
Introducing em_cmp_r for this matter that performs comparison in reverse order
using fastop infrastructure to avoid a wrapper function.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SYSCALL emulation currently clears in 64-bit mode eflags according to
MSR_SYSCALL_MASK. However, on bare-metal eflags[1] which is fixed to one
cannot be cleared, even if MSR_SYSCALL_MASK masks the bit. This wrong behavior
may result in failed VM-entry, as VT disallows entry with eflags[1] cleared.
This patch sets the bit after masking eflags on syscall.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In x86, you can only MOV-sreg to memory with either 16-bits or 64-bits size.
In contrast, KVM may write to 32-bits memory on MOV-sreg. This patch fixes KVM
behavior, and sets the destination operand size to two, if the destination is
memory.
When destination is registers, and the operand size is 32-bits, the high
16-bits in modern CPUs is filled with zero. This is handled correctly.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In one occassion, decode_modrm uses the rm field after it is extended with
REX.B to determine the addressing mode. Doing so causes it not to read the
offset for rip-relative addressing with REX.B=1.
This patch moves the fetch where we already mask REX.B away instead.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The emulator could reuse an op->type from a previous instruction for some
immediate values. If it mistakenly considers the operands as memory
operands, it will performs a memory read and overwrite op->val.
Consider for instance the ROR instruction - src2 (the number of times)
would be read from memory instead of being used as immediate.
Mark every immediate operand as such to avoid this problem.
Cc: stable@vger.kernel.org
Fixes: c44b4c6ab8
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When read access is performed using a readable code segment, the "conforming"
and "non-conforming" checks should not be done. As a result, read using
non-conforming readable code segment fails.
This is according to Intel SDM 5.6.1 ("Accessing Data in Code Segments").
The fix is not to perform the "non-conforming" checks if the access is not a
fetch; the relevant checks are already done when loading the segment.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In long-mode, when the address size is 4 bytes, the linear address is not
truncated as the emulator mistakenly does. Instead, the offset within the
segment (the ea field) should be truncated according to the address size.
As Intel SDM says: "In 64-bit mode, the effective address components are added
and the effective address is truncated ... before adding the full 64-bit
segment base."
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the operand size is not 64-bit, then the sysexit instruction should assign
ECX to RSP and EDX to RIP. The current code assigns the full 64-bits.
Fix it by masking.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In 64-bit, stack operations default to 64-bits, but can be overriden (to
16-bit) using opsize override prefix. In contrast, near-branches are always
64-bit. This patch distinguish between the different behaviors.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Breaking grp45 to the relevant functions to speed up the emulation and simplify
the code. In addition, it is necassary the next patch will distinguish between
far and near branches according to the flags.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the current canonical address check with the new function which is
identical.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit d1442d85cc ("KVM: x86: Handle errors when RIP is set during far
jumps") introduced a bug that caused the fix to be incomplete. Due to
incorrect evaluation, far jump to segment with L bit cleared (i.e., 32-bit
segment) and RIP with any of the high bits set (i.e, RIP[63:32] != 0) set may
not trigger #GP. As we know, this imposes a security problem.
In addition, the condition for two warnings was incorrect.
Fixes: d1442d85cc
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
[Add #ifdef CONFIG_X86_64 to avoid complaints of undefined behavior. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit d1442d85cc ("KVM: x86: Handle errors when RIP is set during far
jumps") introduced a bug that caused the fix to be incomplete. Due to
incorrect evaluation, far jump to segment with L bit cleared (i.e., 32-bit
segment) and RIP with any of the high bits set (i.e, RIP[63:32] != 0) set may
not trigger #GP. As we know, this imposes a security problem.
In addition, the condition for two warnings was incorrect.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
[Add #ifdef CONFIG_X86_64 to avoid complaints of undefined behavior. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulation of code that is 14 bytes to the segment limit or closer
(e.g. RIP = 0xFFFFFFF2 after reset) is broken because we try to read as
many as 15 bytes from the beginning of the instruction, and __linearize
fails when the passed (address, size) pair reaches out of the segment.
To fix this, let __linearize return the maximum accessible size (clamped
to 2^32-1) for usage in __do_insn_fetch_bytes, and avoid the limit check
by passing zero for the desired size.
For expand-down segments, __linearize is performing a redundant check.
(u32)(addr.ea + size - 1) <= lim can only happen if addr.ea is close
to 4GB; in this case, addr.ea + size - 1 will also fail the check against
the upper bound of the segment (which is provided by the D/B bit).
After eliminating the redundant check, it is simple to compute
the *max_size for expand-down segments too.
Now that the limit check is done in __do_insn_fetch_bytes, we want
to inject a general protection fault there if size < op_size (like
__linearize would have done), instead of just aborting.
This fixes booting Tiano Core from emulated flash with EPT disabled.
Cc: stable@vger.kernel.org
Fixes: 719d5a9b24
Reported-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The error code for #GP and #SS is zero when the segment is used to
access an operand or an instruction. It is only non-zero when
a segment register is being loaded; for limit checks this means
cases such as:
* for #GP, when RIP is beyond the limit on a far call (before the first
instruction is executed). We do not implement this check, but it
would be in em_jmp_far/em_call_far.
* for #SS, if the new stack overflows during an inter-privilege-level
call to a non-conforming code segment. We do not implement stack
switching at all.
So use an error code of zero.
Reviewed-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The decode phase of the x86 emulator assumes that every instruction with the
ModRM flag, and which can be used with RIP-relative addressing, has either
SrcMem or DstMem. This is not the case for several instructions - prefetch,
hint-nop and clflush.
Adding SrcMem|NoAccess for prefetch and hint-nop and SrcMem for clflush.
This fixes CVE-2014-8480.
Fixes: 41061cdb98
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, all group15 instructions are decoded as clflush (e.g., mfence,
xsave). In addition, the clflush instruction requires no prefix (66/f2/f3)
would exist. If prefix exists it may encode a different instruction (e.g.,
clflushopt).
Creating a group for clflush, and different group for each prefix.
This has been the case forever, but the next patch needs the cflush group
in order to fix a bug introduced in 3.17.
Fixes: 41061cdb98
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A failure to decode the instruction can cause a NULL pointer access.
This is fixed simply by moving the "done" label as close as possible
to the return.
This fixes CVE-2014-8481.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Cc: stable@vger.kernel.org
Fixes: 41061cdb98
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Once an instruction crosses a page boundary, the size read from the second page
disregards the common case that part of the operand resides on the first page.
As a result, fetch of long insturctions may fail, and thereby cause the
decoding to fail as well.
Cc: stable@vger.kernel.org
Fixes: 5cfc7e0f5e
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Far jmp/call/ret may fault while loading a new RIP. Currently KVM does not
handle this case, and may result in failed vm-entry once the assignment is
done. The tricky part of doing so is that loading the new CS affects the
VMCS/VMCB state, so if we fail during loading the new RIP, we are left in
unconsistent state. Therefore, this patch saves on 64-bit the old CS
descriptor and restores it if loading RIP failed.
This fixes CVE-2014-3647.
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before changing rip (during jmp, call, ret, etc.) the target should be asserted
to be canonical one, as real CPUs do. During sysret, both target rsp and rip
should be canonical. If any of these values is noncanonical, a #GP exception
should occur. The exception to this rule are syscall and sysenter instructions
in which the assigned rip is checked during the assignment to the relevant
MSRs.
This patch fixes the emulator to behave as real CPUs do for near branches.
Far branches are handled by the next patch.
This fixes CVE-2014-3647.
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Relative jumps and calls do the masking according to the operand size, and not
according to the address size as the KVM emulator does today.
This patch fixes KVM behavior.
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In 64-bit mode a #GP should be delivered to the guest "if the code segment
descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit
set and the D-bit clear." - Intel SDM "Interrupt 13—General Protection
Exception (#GP)".
This patch fixes the behavior of CS loading emulation code. Although the
comment says that segment loading is not supported in long mode, this function
is executed in long mode, so the fix is necassary.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unlike VMCALL, the instructions VMXOFF, VMLAUNCH and VMRESUME should cause a UD
exception in real-mode or vm86. However, the emulator considers all these
instructions the same for the matter of mode checks, and emulation upon exit
due to #UD exception.
As a result, the hypervisor behaves incorrectly on vm86 mode. VMXOFF, VMLAUNCH
or VMRESUME cause on vm86 exit due to #UD. The hypervisor then emulates these
instruction and inject #GP to the guest instead of #UD.
This patch creates a new group for these instructions and mark only VMCALL as
an instruction which can be emulated.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These were reported when running Jailhouse on AMD processors.
Initialize ctxt->exception.vector with an invalid exception number,
and warn if it remained invalid even though the emulator got
an X86EMUL_PROPAGATE_FAULT return code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Always get it through emulate_exception or emulate_ts. This
ensures that the ctxt->exception fields have been populated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts the check added by commit 5045b46803 (KVM: x86: check CS.DPL
against RPL during task switch, 2014-05-15). Although the CS.DPL=CS.RPL
check is mentioned in table 7-1 of the SDM as causing a #TSS exception,
it is not mentioned in table 6-6 that lists "invalid TSS conditions"
which cause #TSS exceptions. In fact it causes some tests to fail, which
pass on bare-metal.
Keep the rest of the commit, since we will find new uses for it in 3.18.
Reported-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit d40a6898e5 mistakenly caused instructions which are not marked as
EmulateOnUD to be emulated upon #UD exception. The commit caused the check of
whether the instruction flags include EmulateOnUD to never be evaluated. As a
result instructions whose emulation is broken may be emulated. This fix moves
the evaluation of EmulateOnUD so it would be evaluated.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
[Tweak operand order in &&, remove EmulateOnUD where it's now superfluous.
- Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Resolve a shadow warning generated in W=2 builds by the nested
use of the min macro by instead using the min3 macro for the
minimum of 3 values.
Signed-off-by: Mark Rustad <mark.d.rustad@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch updates RF for rep-string emulation. The flag is set upon the first
iteration, and cleared after the last (if emulated). It is intended to make
sure that if a trap (in future data/io #DB emulation) or interrupt is delivered
to the guest during the rep-string instruction, RF will be set correctly. RF
affects whether instruction breakpoint in the guest is masked.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RFLAGS.RF was cleaned in several functions (e.g., syscall) in the x86 emulator.
Now that we clear it before the execution of an instruction in the emulator, we
can remove the specific cleanup of RFLAGS.RF.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When an instruction is emulated RFLAGS.RF should be cleared. KVM previously did
not do so. This patch clears RFLAGS.RF after interception is done. If a fault
occurs during the instruction, RFLAGS.RF will be set by a previous patch. This
patch does not handle the case of traps/interrupts during rep-strings. Traps
are only expected to occur on debug watchpoints, and those are anyhow not
handled by the emulator.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RFLAGS.RF is always zero after popf. Therefore, popf should not updated RF, as
anyhow emulating popf, just as any other instruction should clear RFLAGS.RF.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Certain instructions (e.g., mwait and monitor) cause a #UD exception when they
are executed in user mode. This is in contrast to the regular privileged
instructions which cause #GP. In order not to mess with SVM interception of
mwait and monitor which assumes privilege level assertions take place before
interception, a flag has been added.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Certain instructions, such as monitor and xsave do not support big real mode
and cause a #GP exception if any of the accessed bytes effective address are
not within [0, 0xffff]. This patch introduces a flag to mark these
instructions, including the necassary checks.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the CS base is not page-aligned, the linear address of the code could
get close to the page boundary (e.g. 0x...ffe) even if the EIP value is
not. So we need to first linearize the address, and only then compute
the number of valid bytes that can be fetched.
This happens relatively often when executing real mode code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We do not need a memory copying loop anymore in insn_fetch; we
can use a byte-aligned pointer to access instruction fields directly
from the fetch_cache. This eliminates 50-150 cycles (corresponding to
a 5-10% improvement in performance) from each instruction.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
do_insn_fetch_bytes will only be called once in a given insn_fetch and
insn_fetch_arr, because in fact it will only be called at most twice
for any instruction and the first call is explicit in x86_decode_insn.
This observation lets us hoist the call out of the memory copying loop.
It does not buy performance, because most fetches are one byte long
anyway, but it prepares for the next patch.
The overflow check is tricky, but correct. Because do_insn_fetch_bytes
has already been called once, we know that fc->end is at least 15. So
it is okay to subtract the number of bytes we want to read.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hoist the common case up from do_insn_fetch_byte to do_insn_fetch,
and prime the fetch_cache in x86_decode_insn. This helps a bit the
compiler and the branch predictor, but above all it lays the
ground for further changes in the next few patches.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
rip_relative is only set if decode_modrm runs, and if you have ModRM
you will also have a memopp. We can then access memopp unconditionally.
Note that rip_relative cannot be hoisted up to decode_modrm, or you
break "mov $0, xyz(%rip)".
Also, move typecast on "out of range value" of mem.ea to decode_modrm.
Together, all these optimizations save about 50 cycles on each emulated
instructions (4-6%).
Signed-off-by: Bandan Das <bsd@redhat.com>
[Fix immediate operands with rip-relative addressing. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86_decode_insn already sets a default for seg_override,
so remove it from the zeroed area. Also replace set/get functions
with direct access to the field.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A lot of initializations are unnecessary as they get set to
appropriate values before actually being used. Optimize
placement of fields in x86_emulate_ctxt
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the if conditional - that will help us avoid
an "else initialize to 0" Also, rearrange operators
for slightly better code.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The same information can be gleaned from ctxt->d and avoids having
to zero/NULL initialize intercept and check_perm
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Core emulator functions all belong in emulator.c,
x86 should have no knowledge of emulator internals
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "if/return" checks are useless, because we return X86EMUL_CONTINUE
anyway if we do not return.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can just blindly move all 16 bytes of ctxt->src's value to ctxt->dst.
write_register_operand will take care of writing only the lower bytes.
Avoiding a call to memcpy (the compiler optimizes it out) gains about
200 cycles on kvm-unit-tests for register-to-register moves, and makes
them about as fast as arithmetic instructions.
We could perhaps get a larger speedup by moving all instructions _except_
moves out of x86_emulate_insn, removing opcode_len, and replacing the
switch statement with an inlined em_mov.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are several checks for "peculiar" aspects of instructions in both
x86_decode_insn and x86_emulate_insn. Group them together, and guard
them with a single "if" that lets the processor quickly skip them all.
Make this more effective by adding two more flag bits that say whether the
.intercept and .check_perm fields are valid. We will reuse these
flags later to avoid initializing fields of the emulate_ctxt struct.
This skims about 30 cycles for each emulated instructions, which is
approximately a 3% improvement.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Obtaining the port number from DX is bogus as a) there are immediate
port accesses and b) user space may have changed the register content
while processing the PIO access. Forward the correct value from the
instruction emulator instead.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On long-mode the current NOP (0x90) emulation still writes back to RAX. As a
result, EAX is zero-extended and the high 32-bits of RAX are cleared.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even if the condition of cmov is not satisfied, bits[63:32] should be cleared.
This is clearly stated in Intel's CMOVcc documentation. The solution is to
reassign the destination onto itself if the condition is unsatisfied. For that
matter the original destination value needs to be read.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return unhandlable error on inter-privilege level ret instruction. This is
since the current emulation does not check the privilege level correctly when
loading the CS, and does not pop RSP/SS as needed.
Cc: stable@vger.kernel.org
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The emulator does not emulate the xadd instruction correctly if the two
operands are the same. In this (unlikely) situation the result should be the
sum of X and X (2X) when it is currently X. The solution is to first perform
writeback to the source, before writing to the destination. The only
instruction which should be affected is xadd, as the other instructions that
perform writeback to the source use the extended accumlator (e.g., RAX:RDX).
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current emulation of bit operations ignores the offset from the destination
on 64-bit target memory operands. This patch fixes this behavior.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We did not do that when interruptibility was added to the emulator,
because at the time pop to segment was not implemented. Now it is,
add it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In 64-bit mode, when the destination is a register, the assignment is done
according to the operand size. Otherwise (memory operand or no 64-bit mode), a
16-bit assignment is performed.
Currently, 16-bit assignment is always done to the destination.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
cmpxchg16b is currently unimplemented in the emulator. The least we can do is
return error upon the emulation of this instruction.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The rdpmc emulation checks that the counter (ECX) is not higher than 2, without
taking into considerations bits 30:31 role (e.g., bit 30 marks whether the
counter is fixed). The fix uses the pmu information for checking the validity
of the pmu counter.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the operand-size prefix (0x66) is used in 64-bit mode, the emulator would
assume the destination operand is 64-bit, when it should be 32-bit.
Reminder: movnti does not support 16-bit operands and its default operand size
is 32-bit.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current implementation of cmpxchg does not update the flags correctly,
since the accumulator should be compared with the destination and not the other
way around. The current implementation does not update the flags correctly.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SGDT and SIDT instructions are not privilaged, i.e. they can be executed
with CPL>0.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current emulator implementation ignores the high 32 bits of the base in
long-mode. During segment load from the LDT, the base of the LDT is calculated
incorrectly and may cause the wrong segment to be loaded.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current implementation ignores the LDTR/TR base high 32-bits on long-mode.
As a result the loaded segment descriptor may be incorrect.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently the emulator does not recognize vex-prefix instructions. However, it
may incorrectly decode lgdt/lidt instructions and try to execute them. This
patch returns unhandlable error on their emulation.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MOV CR/DR instructions ignore the mod field (in the ModR/M byte). As the SDM
states: "The 2 bits in the mod field are ignored". Accordingly, the second
operand of these instructions is always a general purpose register.
The current emulator implementation does not do so. If the mod bits do not
equal 3, it expects the second operand to be in memory.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Table 7-1 of the SDM mentions a check that the code segment's
DPL must match the selector's RPL. This was not done by KVM,
fix it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
During task switch, all of CS.DPL, CS.RPL, SS.DPL must match (in addition
to all the other requirements) and will be the new CPL. So far this
worked by carefully setting the CS selector and flag before doing the
task switch; setting CS.selector will already change the CPL.
However, this will not work once we get the CPL from SS.DPL, because
then you will have to set the full segment descriptor cache to change
the CPL. ctxt->ops->cpl(ctxt) will then return the old CPL during the
task switch, and the check that SS.DPL == CPL will fail.
Temporarily assume that the CPL comes from CS.RPL during task switch
to a protected-mode task. This is the same approach used in QEMU's
emulation code, which (until version 2.0) manually tracks the CPL.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The IN instruction is not be affected by REP-prefix as INS is. Therefore, the
emulation should ignore the REP prefix as well. The current emulator
implementation tries to perform writeback when IN instruction with REP-prefix
is emulated. This causes it to perform wrong memory write or spurious #GP
exception to be injected to the guest.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
According to Intel specifications, PAE and non-PAE does not have any reserved
bits. In long-mode, regardless to PCIDE, only the high bits (above the
physical address) are reserved.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
According to Intel specifications, only general purpose registers and segment
selectors should be saved in the old TSS during 32-bit task-switch.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add emulation for 0x66 prefixed instruction of 0f 28 opcode
that has been added earlier.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All decode_register() callers check if instruction has rex prefix
to properly decode one byte operand. It make sense to move the check
inside.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
When I was looking at RHEL5.9's failure to start with
unrestricted_guest=0/emulate_invalid_guest_state=1, I got it working with a
slightly older tree than kvm.git. I now debugged the remaining failure,
which was introduced by commit 660696d1 (KVM: X86 emulator: fix
source operand decoding for 8bit mov[zs]x instructions, 2013-04-24)
introduced a similar mis-emulation to the one in commit 8acb4207 (KVM:
fix sil/dil/bpl/spl in the mod/rm fields, 2013-05-30). The incorrect
decoding occurs in 8-bit movzx/movsx instructions whose 8-bit operand
is sil/dil/bpl/spl.
Needless to say, "movzbl %bpl, %eax" does occur in RHEL5.9's decompression
prolog, just a handful of instructions before finally giving control to
the decompressed vmlinux and getting out of the invalid guest state.
Because OpMem8 bypasses decode_modrm, the same handling of the REX prefix
must be applied to OpMem8.
Reported-by: Michele Baldessari <michele@redhat.com>
Cc: stable@vger.kernel.org
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Yet another instruction that we fail to emulate, this time found
in Windows 2008R2 32-bit.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This basically came from the need to be able to boot 32-bit Atom SMP
guests on an AMD host, i.e. a host which doesn't support MOVBE. As a
matter of fact, qemu has since recently received MOVBE support but we
cannot share that with kvm emulation and thus we have to do this in the
host. We're waay faster in kvm anyway. :-)
So, we piggyback on the #UD path and emulate the MOVBE functionality.
With it, an 8-core SMP guest boots in under 6 seconds.
Also, requesting MOVBE emulation needs to happen explicitly to work,
i.e. qemu -cpu n270,+movbe...
Just FYI, a fairly straight-forward boot of a MOVBE-enabled 3.9-rc6+
kernel in kvm executes MOVBE ~60K times.
Signed-off-by: Andre Przywara <andre@andrep.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add initial support for handling three-byte instructions in the
emulator.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call it EmulateOnUD which is exactly what we're trying to do with
vendor-specific instructions.
Rename ->only_vendor_specific_insn to something shorter, while at it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a field to the current emulation context which contains the
instruction opcode length. This will streamline handling of opcodes of
different length.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Opcode CA
This gets used by a DOS based NetWare guest.
Signed-off-by: Bruce Rogers <brogers@suse.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On the x86 side, there are some optimizations and documentation updates.
The big ARM/KVM change for 3.11, support for AArch64, will come through
Catalin Marinas's tree. s390 and PPC have misc cleanups and bugfixes.
There is a conflict due to "s390/pgtable: fix ipte notify bit" having
entered 3.10 through Martin Schwidefsky's s390 tree. This pull request
has additional changes on top, so this tree's version is the correct one.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQIcBAABAgAGBQJR0oU6AAoJEBvWZb6bTYbynnsP/RSUrrHrA8Wu1tqVfAKu+1y5
6OIihqZ9x11/YMaNofAfv86jqxFu0/j7CzMGphNdjzujqKI+Q1tGe7oiVCmKzoG+
UvSctWsz0lpllgBtnnrm5tcfmG6rrddhLtpA7m320+xCVx8KV5P4VfyHZEU+Ho8h
ziPmb2mAQ65gBNX6nLHEJ3ITTgad6gt4NNbrKIYpyXuWZQJypzaRqT/vpc4md+Ed
dCebMXsL1xgyb98EcnOdrWH1wV30MfucR7IpObOhXnnMKeeltqAQPvaOlKzZh4dK
+QfxJfdRZVS0cepcxzx1Q2X3dgjoKQsHq1nlIyz3qu1vhtfaqBlixLZk0SguZ/R9
1S1YqucZiLRO57RD4q0Ak5oxwobu18ZoqJZ6nledNdWwDe8bz/W2wGAeVty19ky0
qstBdM9jnwXrc0qrVgZp3+s5dsx3NAm/KKZBoq4sXiDLd/yBzdEdWIVkIrU3X9wU
3X26wOmBxtsB7so/JR7ciTsQHelmLicnVeXohAEP9CjIJffB81xVXnXs0P0SYuiQ
RzbSCwjPzET4JBOaHWT0Dhv0DTS/EaI97KzlN32US3Bn3WiLlS1oDCoPFoaLqd2K
LxQMsXS8anAWxFvexfSuUpbJGPnKSidSQoQmJeMGBa9QhmZCht3IL16/Fb641ToN
xBohzi49L9FDbpOnTYfz
=1zpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"On the x86 side, there are some optimizations and documentation
updates. The big ARM/KVM change for 3.11, support for AArch64, will
come through Catalin Marinas's tree. s390 and PPC have misc cleanups
and bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (87 commits)
KVM: PPC: Ignore PIR writes
KVM: PPC: Book3S PR: Invalidate SLB entries properly
KVM: PPC: Book3S PR: Allow guest to use 1TB segments
KVM: PPC: Book3S PR: Don't keep scanning HPTEG after we find a match
KVM: PPC: Book3S PR: Fix invalidation of SLB entry 0 on guest entry
KVM: PPC: Book3S PR: Fix proto-VSID calculations
KVM: PPC: Guard doorbell exception with CONFIG_PPC_DOORBELL
KVM: Fix RTC interrupt coalescing tracking
kvm: Add a tracepoint write_tsc_offset
KVM: MMU: Inform users of mmio generation wraparound
KVM: MMU: document fast invalidate all mmio sptes
KVM: MMU: document fast invalidate all pages
KVM: MMU: document fast page fault
KVM: MMU: document mmio page fault
KVM: MMU: document write_flooding_count
KVM: MMU: document clear_spte_count
KVM: MMU: drop kvm_mmu_zap_mmio_sptes
KVM: MMU: init kvm generation close to mmio wrap-around value
KVM: MMU: add tracepoint for check_mmio_spte
KVM: MMU: fast invalidate all mmio sptes
...
The x86-64 extended low-byte registers were fetched correctly from reg,
but not from mod/rm.
This fixes another bug in the boot of RHEL5.9 64-bit, but it is still
not enough.
Cc: <stable@vger.kernel.org> # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This is encountered when booting RHEL5.9 64-bit. There is another bug
after this one that is not a simple emulation failure, but this one lets
the boot proceed a bit.
Cc: <stable@vger.kernel.org> # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Since DIV and IDIV can generate exceptions, we need an additional output
parameter indicating whether an execption has occured. To avoid increasing
register pressure on i386, we use %rsi, which is already allocated for
the fastop code pointer.
Gleb: added comment about fop usage as exception indication.
Signed-off-by: Avi Kivity <avi.kivity@gmail.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Single-operand MUL and DIV access an extended accumulator: AX for byte
instructions, and DX:AX, EDX:EAX, or RDX:RAX for larger-sized instructions.
Add support for fetching the extended accumulator.
In order not to change things too much, RDX is loaded into Src2, which is
already loaded by fastop(). This avoids increasing register pressure on
i386.
Gleb: disable src writeback for ByteOp div/mul.
Signed-off-by: Avi Kivity <avi.kivity@gmail.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Some instructions write back the source operand, not just the destination.
Add support for doing this via the decode flags.
Gleb: add BUG_ON() to prevent source to be memory operand.
Signed-off-by: Avi Kivity <avi.kivity@gmail.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This is an almost-undocumented instruction available in 32-bit mode.
I say "almost" undocumented because AMD documents it in their opcode
maps just to say that it is unavailable in 64-bit mode (sections
"A.2.1 One-Byte Opcodes" and "B.3 Invalid and Reassigned Instructions
in 64-Bit Mode").
It is roughly equivalent to "sbb %al, %al" except it does not
set the flags. Use fastop to emulate it, but do not use the opcode
directly because it would fail if the host is 64-bit!
Reported-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: stable@vger.kernel.org # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This is used by SGABIOS, KVM breaks with emulate_invalid_guest_state=1.
It is just a MOV in disguise, with a funny source address.
Reported-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: stable@vger.kernel.org # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This is used by SGABIOS, KVM breaks with emulate_invalid_guest_state=1.
AAM needs the source operand to be unsigned; do the same in AAD as well
for consistency, even though it does not affect the result.
Reported-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: stable@vger.kernel.org # 3.9
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Source operand for one byte mov[zs]x is decoded incorrectly if it is in
high byte register. Fix that.
Cc: stable@vger.kernel.org
Signed-off-by: Gleb Natapov <gleb@redhat.com>