Mike reports that since e9e9250b (sched: Scale down cpu_power due to RT
tasks), wake_affine() goes funny on RT tasks due to them still having a
!0 weight and wake_affine() still subtracts that from the rq weight.
Since nobody should be using se->weight for RT tasks, set the value to
zero. Also, since we now use ->cpu_power to normalize rq weights to
account for RT cpu usage, add that factor into the imbalance computation.
Reported-by: Mike Galbraith <efault@gmx.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1275316109.27810.22969.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently migration_thread is serving three purposes - migration
pusher, context to execute active_load_balance() and forced context
switcher for expedited RCU synchronize_sched. All three roles are
hardcoded into migration_thread() and determining which job is
scheduled is slightly messy.
This patch kills migration_thread and replaces all three uses with
cpu_stop. The three different roles of migration_thread() are
splitted into three separate cpu_stop callbacks -
migration_cpu_stop(), active_load_balance_cpu_stop() and
synchronize_sched_expedited_cpu_stop() - and each use case now simply
asks cpu_stop to execute the callback as necessary.
synchronize_sched_expedited() was implemented with private
preallocated resources and custom multi-cpu queueing and waiting
logic, both of which are provided by cpu_stop.
synchronize_sched_expedited_count is made atomic and all other shared
resources along with the mutex are dropped.
synchronize_sched_expedited() also implemented a check to detect cases
where not all the callback got executed on their assigned cpus and
fall back to synchronize_sched(). If called with cpu hotplug blocked,
cpu_stop already guarantees that and the condition cannot happen;
otherwise, stop_machine() would break. However, this patch preserves
the paranoid check using a cpumask to record on which cpus the stopper
ran so that it can serve as a bisection point if something actually
goes wrong theree.
Because the internal execution state is no longer visible,
rcu_expedited_torture_stats() is removed.
This patch also renames cpu_stop threads to from "stopper/%d" to
"migration/%d". The names of these threads ultimately don't matter
and there's no reason to make unnecessary userland visible changes.
With this patch applied, stop_machine() and sched now share the same
resources. stop_machine() is faster without wasting any resources and
sched migration users are much cleaner.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Josh Triplett <josh@freedesktop.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Issues in the current select_idle_sibling() logic in select_task_rq_fair()
in the context of a task wake-up:
a) Once we select the idle sibling, we use that domain (spanning the cpu that
the task is currently woken-up and the idle sibling that we found) in our
wake_affine() decisions. This domain is completely different from the
domain(we are supposed to use) that spans the cpu that the task currently
woken-up and the cpu where the task previously ran.
b) We do select_idle_sibling() check only for the cpu that the task is
currently woken-up on. If select_task_rq_fair() selects the previously run
cpu for waking the task, doing a select_idle_sibling() check
for that cpu also helps and we don't do this currently.
c) In the scenarios where the cpu that the task is woken-up is busy but
with its HT siblings are idle, we are selecting the task be woken-up
on the idle HT sibling instead of a core that it previously ran
and currently completely idle. i.e., we are not taking decisions based on
wake_affine() but directly selecting an idle sibling that can cause
an imbalance at the SMT/MC level which will be later corrected by the
periodic load balancer.
Fix this by first going through the load imbalance calculations using
wake_affine() and once we make a decision of woken-up cpu vs previously-ran cpu,
then choose a possible idle sibling for waking up the task on.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1270079265.7835.8.camel@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Dave reported that his large SPARC machines spend lots of time in
hweight64(), try and optimize some of those needless cpumask_weight()
invocations (esp. with the large offstack cpumasks these are very
expensive indeed).
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to reduce the dependency on TASK_WAKING rework the enqueue
interface to support a proper flags field.
Replace the int wakeup, bool head arguments with an int flags argument
and create the following flags:
ENQUEUE_WAKEUP - the enqueue is a wakeup of a sleeping task,
ENQUEUE_WAKING - the enqueue has relative vruntime due to
having sched_class::task_waking() called,
ENQUEUE_HEAD - the waking task should be places on the head
of the priority queue (where appropriate).
For symmetry also convert sched_class::dequeue() to a flags scheme.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Oleg noticed a few races with the TASK_WAKING usage on fork.
- since TASK_WAKING is basically a spinlock, it should be IRQ safe
- since we set TASK_WAKING (*) without holding rq->lock it could
be there still is a rq->lock holder, thereby not actually
providing full serialization.
(*) in fact we clear PF_STARTING, which in effect enables TASK_WAKING.
Cure the second issue by not setting TASK_WAKING in sched_fork(), but
only temporarily in wake_up_new_task() while calling select_task_rq().
Cure the first by holding rq->lock around the select_task_rq() call,
this will disable IRQs, this however requires that we push down the
rq->lock release into select_task_rq_fair()'s cgroup stuff.
Because select_task_rq_fair() still needs to drop the rq->lock we
cannot fully get rid of TASK_WAKING.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Disabling affine wakeups is too horrible to contemplate. Remove the feature flag.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301890.6785.50.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This features has been enabled for quite a while, after testing showed that
easing preemption for light tasks was harmful to high priority threads.
Remove the feature flag.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301675.6785.44.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This feature never earned its keep, remove it.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301591.6785.42.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Our preemption model relies too heavily on sleeper fairness to disable it
without dire consequences. Remove the feature, and save a branch or two.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301520.6785.40.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This feature hasn't been enabled in a long time, remove effectively dead code.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301447.6785.38.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Don't bother with selection when the current cpu is idle. Recent load
balancing changes also make it no longer necessary to check wake_affine()
success before returning the selected sibling, so we now always use it.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301369.6785.36.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Allow LAST_BUDDY to kick in sooner, improving cache utilization as soon as
a second buddy pair arrives on scene. The cost is latency starting to climb
sooner, the tbenefit for tbench 8 on my Q6600 box is ~2%. No detrimental
effects noted in normal idesktop usage.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301285.6785.34.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that we no longer depend on the clock being updated prior to enqueueing
on migratory wakeup, we can clean up a bit, placing calls to update_rq_clock()
exactly where they are needed, ie on enqueue, dequeue and schedule events.
In the case of a freshly enqueued task immediately preempting, we can skip the
update during preemption, as the clock was just updated by the enqueue event.
We also save an unneeded call during a migratory wakeup by not updating the
previous runqueue, where update_curr() won't be invoked.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301199.6785.32.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Both avg_overlap and avg_wakeup had an inherent problem in that their accuracy
was detrimentally affected by cross-cpu wakeups, this because we are missing
the necessary call to update_curr(). This can't be fixed without increasing
overhead in our already too fat fastpath.
Additionally, with recent load balancing changes making us prefer to place tasks
in an idle cache domain (which is good for compute bound loads), communicating
tasks suffer when a sync wakeup, which would enable affine placement, is turned
into a non-sync wakeup by SYNC_LESS. With one task on the runqueue, wake_affine()
rejects the affine wakeup request, leaving the unfortunate where placed, taking
frequent cache misses.
Remove it, and recover some fastpath cycles.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301121.6785.30.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Testing the load which led to this heuristic (nfs4 kbuild) shows that it has
outlived it's usefullness. With intervening load balancing changes, I cannot
see any difference with/without, so recover there fastpath cycles.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301062.6785.29.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Put all statistic fields of sched_entity in one struct, sched_statistics,
and embed it into sched_entity.
This change allows to memset the sched_statistics to 0 when needed (for
instance when forking), avoiding bugs of non initialized fields.
Signed-off-by: Lucas De Marchi <lucas.de.marchi@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268275065-18542-1-git-send-email-lucas.de.marchi@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On platforms like dual socket quad-core platform, the scheduler load
balancer is not detecting the load imbalances in certain scenarios. This
is leading to scenarios like where one socket is completely busy (with
all the 4 cores running with 4 tasks) and leaving another socket
completely idle. This causes performance issues as those 4 tasks share
the memory controller, last-level cache bandwidth etc. Also we won't be
taking advantage of turbo-mode as much as we would like, etc.
Some of the comparisons in the scheduler load balancing code are
comparing the "weighted cpu load that is scaled wrt sched_group's
cpu_power" with the "weighted average load per task that is not scaled
wrt sched_group's cpu_power". While this has probably been broken for a
longer time (for multi socket numa nodes etc), the problem got aggrevated
via this recent change:
|
| commit f93e65c186
| Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
| Date: Tue Sep 1 10:34:32 2009 +0200
|
| sched: Restore __cpu_power to a straight sum of power
|
Also with this change, the sched group cpu power alone no longer reflects
the group capacity that is needed to implement MC, MT performance
(default) and power-savings (user-selectable) policies.
We need to use the computed group capacity (sgs.group_capacity, that is
computed using the SD_PREFER_SIBLING logic in update_sd_lb_stats()) to
find out if the group with the max load is above its capacity and how
much load to move etc.
Reported-by: Ma Ling <ling.ma@intel.com>
Initial-Analysis-by: Zhang, Yanmin <yanmin_zhang@linux.intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
[ -v2: build fix ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org> # [2.6.32.x, 2.6.33.x]
LKML-Reference: <1266970432.11588.22.camel@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts: kernel/sched.c
Necessary due to the urgent fixes which conflict with the code move
from sched.c to sched_fair.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The ability of enqueueing a task to the head of a SCHED_FIFO priority
list is required to fix some violations of POSIX scheduling policy.
Extend the related functions with a "head" argument.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Carsten Emde <cbe@osadl.org>
Tested-by: Mathias Weber <mathias.weber.mw1@roche.com>
LKML-Reference: <20100120171629.734886007@linutronix.de>
We want to update the sched_group_powers when balance_cpu == this_cpu.
Currently the group powers are updated only if the balance_cpu is the
first CPU in the local group. But balance_cpu = this_cpu could also be
the first idle cpu in the group. Hence fix the place where the group
powers are updated.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Joel Schopp <jschopp@austin.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1264017764.5717.127.camel@jschopp-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since all load_balance() callers will have !NULL balance parameters we
can now assume so and remove a few checks.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The two functions: load_balance{,_newidle}() are very similar, with the
following differences:
- rq->lock usage
- sb->balance_interval updates
- *balance check
So remove the load_balance_newidle() call with load_balance(.idle =
CPU_NEWLY_IDLE), explicitly unlock the rq->lock before calling (would be
done by double_lock_balance() anyway), and ignore the other differences
for now.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
load_balance() and load_balance_newidle() look remarkably similar, one
key point they differ in is the condition on when to active balance.
So split out that logic into a separate function.
One side effect is that previously load_balance_newidle() used to fail
and return -1 under these conditions, whereas now it doesn't. I've not
yet fully figured out the whole -1 return case for either
load_balance{,_newidle}().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since load-balancing can hold rq->locks for quite a long while, allow
breaking out early when there is lock contention.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move code around to get rid of fwd declarations.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Again, since we only iterate the fair class, remove the abstraction.
Since this is the last user of the rq_iterator, remove all that too.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since we only ever iterate the fair class, do away with this abstraction.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Take out the sched_class methods for load-balancing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Straight fwd code movement.
Since non of the load-balance abstractions are used anymore, do away with
them and simplify the code some. In preparation move the code around.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
SD_PREFER_SIBLING is set at the CPU domain level if power saving isn't
enabled, leading to many cache misses on large machines as we traverse
looking for an idle shared cache to wake to. Change the enabler of
select_idle_sibling() to SD_SHARE_PKG_RESOURCES, and enable same at the
sibling domain level.
Reported-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1262612696.15495.15.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kernel/sched: don't expose local functions
The get_rr_interval_* functions are all class methods of
struct sched_class. They are not exported so make them
static.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <201001132021.53253.hartleys@visionengravers.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to remove the cfs_rq dependency from set_task_cpu() we
need to ensure the task is cfs_rq invariant for all callsites.
The simple approach is to substract cfs_rq->min_vruntime from
se->vruntime on dequeue, and add cfs_rq->min_vruntime on
enqueue.
However, this has the downside of breaking FAIR_SLEEPERS since
we loose the old vruntime as we only maintain the relative
position.
To solve this, we observe that we only migrate runnable tasks,
we do this using deactivate_task(.sleep=0) and
activate_task(.wakeup=0), therefore we can restrain the
min_vruntime invariance to that state.
The only other case is wakeup balancing, since we want to
maintain the old vruntime we cannot make it relative on dequeue,
but since we don't migrate inactive tasks, we can do so right
before we activate it again.
This is where we need the new pre-wakeup hook, we need to call
this while still holding the old rq->lock. We could fold it into
->select_task_rq(), but since that has multiple callsites and
would obfuscate the locking requirements, that seems like a
fudge.
This leaves the fork() case, simply make sure that ->task_fork()
leaves the ->vruntime in a relative state.
This covers all cases where set_task_cpu() gets called, and
ensures it sees a relative vruntime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.191697025@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
The normalized values are also recalculated in case the scaling factor
changes.
This patch updates the internally used scheduler tuning values that are
normalized to one cpu in case a user sets new values via sysfs.
Together with patch 2 of this series this allows to let user configured
values scale (or not) to cpu add/remove events taking place later.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1259579808-11357-4-git-send-email-ehrhardt@linux.vnet.ibm.com>
[ v2: fix warning ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As scaling now takes place on all kind of cpu add/remove events a user
that configures values via proc should be able to configure if his set
values are still rescaled or kept whatever happens.
As the comments state that log2 was just a second guess that worked the
interface is not just designed for on/off, but to choose a scaling type.
Currently this allows none, log and linear, but more important it allwos
us to keep the interface even if someone has an even better idea how to
scale the values.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1259579808-11357-3-git-send-email-ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Based on Peter Zijlstras patch suggestion this enables recalculation of
the scheduler tunables in response of a change in the number of cpus. It
also adds a max of eight cpus that are considered in that scaling.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1259579808-11357-2-git-send-email-ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As Nick pointed out, and realized by myself when doing:
sched: Fix balance vs hotplug race
the patch:
sched: for_each_domain() vs RCU
is wrong, sched_domains are freed after synchronize_sched(), which
means disabling preemption is enough.
Reported-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
WAKEUP_RUNNING was an experiment, not sure why that ever ended up being
merged...
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Streamline the wakeup preemption code a bit, unifying the preempt path
so that they all do the same.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If a RT task is woken up while a non-RT task is running,
check_preempt_wakeup() is called to check whether the new task can
preempt the old task. The function returns quickly without going deeper
because it is apparent that a RT task can always preempt a non-RT task.
In this situation, check_preempt_wakeup() always calls update_curr() to
update vruntime value of the currently running task. However, the
function call is unnecessary and redundant at that moment because (1) a
non-RT task can always be preempted by a RT task regardless of its
vruntime value, and (2) update_curr() will be called shortly when the
context switch between two occurs.
By moving update_curr() in check_preempt_wakeup(), we can avoid
redundant call to update_curr(), slightly reducing the time taken to
wake up RT tasks.
Signed-off-by: Jupyung Lee <jupyung@gmail.com>
[ Place update_curr() right before the wake_preempt_entity() call, which
is the only thing that relies on the updated vruntime ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1258451500-6714-1-git-send-email-jupyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently we try to do task placement in wake_up_new_task() after we do
the load-balance pass in sched_fork(). This yields complicated semantics
in that we have to deal with tasks on different RQs and the
set_task_cpu() calls in copy_process() and sched_fork()
Rename ->task_new() to ->task_fork() and call it from sched_fork()
before the balancing, this gives the policy a clear point to place the
task.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sched_rr_get_param calls
task->sched_class->get_rr_interval(task) without protection
against a concurrent sched_setscheduler() call which modifies
task->sched_class.
Serialize the access with task_rq_lock(task) and hand the rq
pointer into get_rr_interval() as it's needed at least in the
sched_fair implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <alpine.LFD.2.00.0912090930120.3089@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of only considering SD_WAKE_AFFINE | SD_PREFER_SIBLING
domains also allow all SD_PREFER_SIBLING domains below a
SD_WAKE_AFFINE domain to change the affinity target.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091112145610.909723612@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clean up the new affine to idle sibling bits while trying to
grok them. Should not have any function differences.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091112145610.832503781@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When waking affine, check for an idle shared cache, and if
found, wake to that CPU/sibling instead of the waker's CPU.
This improves pgsql+oltp ramp up by roughly 8%. Possibly more
for other loads, depending on overlap. The trade-off is a
roughly 1% peak downturn if tasks are truly synchronous.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@kernel.org>
LKML-Reference: <1256654138.17752.7.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch restores the effectiveness of LAST_BUDDY in preventing
pgsql+oltp from collapsing due to wakeup preemption. It also
switches LAST_BUDDY to exclusively do what it does best, namely
mitigate the effects of aggressive wakeup preemption, which
improves vmark throughput markedly, and restores mysql+oltp
scalability.
Since buddies are about scalability, enable them beginning at the
point where we begin expanding sched_latency, namely
sched_nr_latency. Previously, buddies were cleared aggressively,
which seriously reduced their effectiveness. Not clearing
aggressively however, produces a small drop in mysql+oltp
throughput immediately after peak, indicating that LAST_BUDDY is
actually doing some harm. This is right at the point where X on the
desktop in competition with another load wants low latency service.
Ergo, do not enable until we need to scale.
To mitigate latency induced by buddies, or by a task just missing
wakeup preemption, check latency at tick time.
Last hunk prevents buddies from stymieing BALANCE_NEWIDLE via
CACHE_HOT_BUDDY.
Supporting performance tests:
tip = v2.6.32-rc5-1497-ga525b32
tipx = NO_GENTLE_FAIR_SLEEPERS NEXT_BUDDY granularity knobs = 31 knobs + 31 buddies
tip+x = NO_GENTLE_FAIR_SLEEPERS granularity knobs = 31 knobs
(Three run averages except where noted.)
vmark:
------
tip 108466 messages per second
tip+ 125307 messages per second
tip+x 125335 messages per second
tipx 117781 messages per second
2.6.31.3 122729 messages per second
mysql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 9949.89 18690.20 34801.24 34460.04 32682.88 30765.97 28305.27 25059.64 19548.08
tip+ 10013.90 18526.84 34900.38 34420.14 33069.83 32083.40 30578.30 28010.71 25605.47
tipx 9698.71 18002.70 34477.56 33420.01 32634.30 31657.27 29932.67 26827.52 21487.18
2.6.31.3 8243.11 18784.20 34404.83 33148.38 31900.32 31161.90 29663.81 25995.94 18058.86
pgsql+oltp:
-----------
clients 1 2 4 8 16 32 64 128 256
..........................................................................................
tip 13686.37 26609.25 51934.28 51347.81 49479.51 45312.65 36691.91 26851.57 24145.35
tip+ (1x) 13907.85 27135.87 52951.98 52514.04 51742.52 50705.43 49947.97 48374.19 46227.94
tip+x 13906.78 27065.81 52951.19 52542.59 52176.11 51815.94 50838.90 49439.46 46891.00
tipx 13742.46 26769.81 52351.99 51891.73 51320.79 50938.98 50248.65 48908.70 46553.84
2.6.31.3 13815.35 26906.46 52683.34 52061.31 51937.10 51376.80 50474.28 49394.47 47003.25
Signed-off-by: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Yanmin reported a hackbench regression due to:
> commit de69a80be3
> Author: Peter Zijlstra <a.p.zijlstra@chello.nl>
> Date: Thu Sep 17 09:01:20 2009 +0200
>
> sched: Stop buddies from hogging the system
I really liked de69a80b, and it affecting hackbench shows I wasn't
crazy ;-)
So hackbench is a multi-cast, with one sender spraying multiple
receivers, who in their turn don't spray back.
This would be exactly the scenario that patch 'cures'. Previously
we would not clear the last buddy after running the next task,
allowing the sender to get back to work sooner than it otherwise
ought to have been, increasing latencies for other tasks.
Now, since those receivers don't poke back, they don't enforce the
buddy relation, which means there's nothing to re-elect the sender.
Cure this by less agressively clearing the buddy stats. Only clear
buddies when they were not chosen. It should still avoid a buddy
sticking around long after its served its time.
Reported-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Mike Galbraith <efault@gmx.de>
LKML-Reference: <1255084986.8802.46.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Simplify sys_sched_rr_get_interval() system call
sched: Fix potential NULL derference of doms_cur
sched: Fix raciness in runqueue_is_locked()
sched: Re-add lost cpu_allowed check to sched_fair.c::select_task_rq_fair()
sched: Remove unneeded indentation in sched_fair.c::place_entity()
By removing the need for it to know details of scheduling classes.
This allows PlugSched to define orthogonal scheduling classes.
Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <06d1b89ee15a0eef82d7.1253496713@mudlark.pw.nest>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While doing some testing, I pinned mplayer, only to find it
following X around like a puppy. Looking at commit c88d591, I found
a cpu_allowed check that went AWOL. I plugged it back in where it
looks like it needs to go, and now when I say "sit, stay!", mplayer
obeys again.
'c88d591 sched: Merge select_task_rq_fair() and
sched_balance_self()' accidentally dropped the check, causing
wake_affine() to pull pinned tasks - put it back.
[ v2: use a cheaper version from Peter ]
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The SD_POWERSAVING_BALANCE|SD_PREFER_LOCAL code can break out of
the domain iteration early, making us miss the SD_WAKE_AFFINE bits.
Fix this by continuing iteration until there is no need for a
larger domain.
This also cleans up the cgroup stuff a bit, but not having two
update_shares() invocations.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clear buddies more agressively.
The (theoretical, haven't actually observed any of this) problem is
that when we do not select either buddy in pick_next_entity()
because they are too far ahead of the left-most task, we do not
clear the buddies.
This means that as soon as we service the left-most task, these
same buddies will be tried again on the next schedule. Now if the
left-most task was a pure hog, it wouldn't have done any wakeups
and it wouldn't have set buddies of its own. That leads to the old
buddies dominating, which would lead to bad latencies.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Create a new wakeup preemption mode, preempt towards tasks that run
shorter on avg. It sets next buddy to be sure we actually run the task
we preempted for.
Test results:
root@twins:~# while :; do :; done &
[1] 6537
root@twins:~# while :; do :; done &
[2] 6538
root@twins:~# while :; do :; done &
[3] 6539
root@twins:~# while :; do :; done &
[4] 6540
root@twins:/home/peter# ./latt -c4 sleep 4
Entries: 48 (clients=4)
Averages:
------------------------------
Max 4750 usec
Avg 497 usec
Stdev 737 usec
root@twins:/home/peter# echo WAKEUP_RUNNING > /debug/sched_features
root@twins:/home/peter# ./latt -c4 sleep 4
Entries: 48 (clients=4)
Averages:
------------------------------
Max 14 usec
Avg 5 usec
Stdev 3 usec
Disabled by default - needs more testing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <new-submission>
Clean up the code a little.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We don't need to call update_shares() for each domain we iterate,
just got the largets one.
However, we should call it before wake_affine() as well, so that
that can use up-to-date values too.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add back FAIR_SLEEPERS and GENTLE_FAIR_SLEEPERS.
FAIR_SLEEPERS is the old logic: credit sleepers with their sleep time.
GENTLE_FAIR_SLEEPERS dampens this a bit: 50% of their sleep time gets
credited.
The hope here is to still give the benefits of fair-sleepers logic
(quick wakeups, etc.) while not allow them to have 100% of their
sleep time as if they were running.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
And turn it on for NUMA and MC domains. This improves
locality in balancing decisions by keeping up to
capacity amount of tasks local before looking for idle
CPUs. (and twice the capacity if SD_POWERSAVINGS_BALANCE
is set.)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently we use overlap to weaken the SYNC hint, but allow it to
set the hint as well.
echo NO_SYNC_WAKEUP > /debug/sched_features
echo SYNC_MORE > /debug/sched_features
preserves pipe-test behaviour without using the WF_SYNC hint.
Worth playing with on more workloads...
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Avoid the cache buddies from biasing the time distribution away
from fork()ers. Normally the next buddy will be the preferred
scheduling target, but this makes fork()s prefer to run the new
child, whereas we prefer to run the parent, since that will
generate more work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to extend the functions to have more than 1 flag (sync),
rename the argument to flags, and explicitly define a WF_ space for
individual flags.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to be able to rename the sync argument, we need to rename
the current flag argument.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When merging select_task_rq_fair() and sched_balance_self() we lost
the use of wake_idx, restore that and set them to 0 to make wake
balancing more aggressive.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While merging select_task_rq_fair() and sched_balance_self() I made
a mistake that leads to testing the wrong task affinty.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
for_each_domain() uses RCU to serialize the sched_domains, except
it doesn't actually use rcu_read_lock() and instead relies on
disabling preemption -> FAIL.
XXX: audit other sched_domain code.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
One of the problems of power-saving balancing is that under certain
scenarios it is too slow and allows tons of real work to pile up.
Avoid this by ignoring the powersave stuff when there's real work
to be done.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The problem with wake_idle() is that is doesn't respect things like
cpu_power, which means it doesn't deal well with SMT nor the recent
RT interaction.
To cure this, it needs to do what sched_balance_self() does, which
leads to the possibility of merging select_task_rq_fair() and
sched_balance_self().
Modify sched_balance_self() to:
- update_shares() when walking up the domain tree,
(it only called it for the top domain, but it should
have done this anyway), which allows us to remove
this ugly bit from try_to_wake_up().
- do wake_affine() on the smallest domain that contains
both this (the waking) and the prev (the wakee) cpu for
WAKE invocations.
Then use the top-down balance steps it had to replace wake_idle().
This leads to the dissapearance of SD_WAKE_BALANCE and
SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE.
SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective.
Touch all topology bits to replace the old with new SD flags --
platforms might need re-tuning, enabling SD_BALANCE_WAKE
conditionally on a NUMA distance seems like a good additional
feature, magny-core and small nehalem systems would want this
enabled, systems with slow interconnects would not.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rather ugly patch to fully place the sched_balance_self() code
inside the fair class.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move the sched_balance_self() code into sched_fair.c
This facilitates the merger of sched_balance_self() and
sched_fair::select_task_rq().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a NEXT_BUDDY feature flag to aid in debugging.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It consists of two conditions, split them out in separate toggles
so we can test them independently.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This allows more precise tracking of how the scheduler accounts
(and acts upon) a task having spent N nanoseconds of CPU time.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This weird perf trace output:
cc1-9943 [001] 2802.059479616: sched_stat_wait: task: as:9944 wait: 2801938766276 [ns]
Is caused by setting one component field of the delta to zero
a bit too early. Move it to later.
( Note, this does not affect the NEW_FAIR_SLEEPERS interactivity bug,
it's just a reporting bug in essence. )
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nikos Chantziaras <realnc@arcor.de>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <4AA93D34.8040500@arcor.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reduce the latency target from 20 msecs to 5 msecs.
Why? Larger latencies increase spread, which is good for scaling,
but bad for worst case latency.
We still have the ilog(nr_cpus) rule to scale up on bigger
server boxes.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1252486344.28645.18.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Set child_runs_first default to off.
It hurts 'optimal' make -j<NR_CPUS> workloads as make jobs
get preempted by child tasks, reducing parallelism.
Note, this patch might make existing races in user
applications more prominent than before - so breakages
might be bisected to this commit.
Child-runs-first is broken on SMP to begin with, and we
already had it off briefly in v2.6.23 so most of the
offenders ought to be fixed. Would be nice not to revert
this commit but fix those apps finally ...
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1252486344.28645.18.camel@marge.simson.net>
[ made the sysctl independent of CONFIG_SCHED_DEBUG, in case
people want to work around broken apps. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A fork/exec load is usually "pass the baton", so the child
should never be placed behind the parent. With START_DEBIT we
make room for the new task, but with child_runs_first, that
room comes out of the _parent's_ hide. There's nothing to say
that the parent wasn't ahead of min_vruntime at fork() time,
which means that the "baton carrier", who is essentially the
parent in drag, can gain time and increase scheduling latencies
for waiters.
With NEW_FAIR_SLEEPERS + START_DEBIT + child_runs_first
enabled, we essentially pass the sleeper fairness off to the
child, which is fine, but if we don't base placement on the
parent's updated vruntime, we can end up compounding latency
woes if the child itself then does fork/exec. The debit
incurred at fork doesn't hurt the parent who is then going to
sleep and maybe exit, but the child who acquires the error
harms all comers.
This improves latencies of make -j<n> kernel build workloads.
Reported-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
wake_affine() would always fail under low-load situations where
both prev and this were idle, because adding a single task will
always be a significant imbalance, even if there's nothing
around that could balance it.
Deal with this by allowing imbalance when there's nothing you
can do about it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
select_task_rq_fair() incorrectly skips the wake_affine()
logic, remove this.
When prev_cpu == this_cpu, the code jumps straight to the
wake_idle() logic, this doesn't give the wake_affine() logic
the chance to pin the task to this cpu.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add 3 schedstat tracepoints to help account for wait-time,
sleep-time and iowait-time.
They can also be used as a perf-counter source to profile tasks
on these clocks.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <new-submission>
[ build fix for the !CONFIG_SCHEDSTATS case ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For counting how long an application has been waiting for
(disk) IO, there currently is only the HZ sample driven
information available, while for all other counters in this
class, a high resolution version is available via
CONFIG_SCHEDSTATS.
In order to make an improved bootchart tool possible, we also
need a higher resolution version of the iowait time.
This patch below adds this scheduler statistic to the kernel.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4A64B813.1080506@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A frequent mistake appears to be to call task_of() on a
scheduler entity that is not actually a task, which can result
in a wild pointer.
Add a check to catch these mistakes.
Suggested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reflect "active" cpus in the rq->rd->online field, instead of
the online_map.
The motivation is that things that use the root-domain code
(such as cpupri) only care about cpus classified as "active"
anyway. By synchronizing the root-domain state with the active
map, we allow several optimizations.
For instance, we can remove an extra cpumask_and from the
scheduler hotpath by utilizing rq->rd->online (since it is now
a cached version of cpu_active_map & rq->rd->span).
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Max Krasnyansky <maxk@qualcomm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20090730145723.25226.24493.stgit@dev.haskins.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The latencytop and sleep accounting code assumes that any
scheduler entity represents a task, this is not so.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I spotted two sites that didn't take vruntime wrap-around into
account. Fix these by creating a comparison helper that does do
so.
Signed-off-by: Fabio Checconi <fabio@gandalf.sssup.it>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
One of the isolation modifications for SCHED_IDLE is the
unitization of sleeper credit. However the check for this
assumes that the sched_entity we're placing always belongs to a
task.
This is potentially not true with group scheduling and leaves
us rummaging randomly when we try to pull the policy.
Signed-off-by: Paul Turner <pjt@google.com>
Cc: peterz@infradead.org
LKML-Reference: <alpine.DEB.1.00.0907101649570.29914@kitami.corp.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Access to local variable lw is aliased by usage of pointer load.
Access to pointer load in calc_delta_mine() happens when lw is
already out of scope.
[ Reported by static code analysis. ]
Signed-off-by: Christian Engelmayer <christian.engelmayer@frequentis.com>
LKML-Reference: <20090616103512.0c846e51@frequentis.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: micro-optimization
Under group scheduling we traverse up until we are at common siblings
to make the wakeup comparison on.
At this point however, they should have the same parent so continuing
to check up the tree is redundant.
Signed-off-by: Paul Turner <pjt@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <alpine.DEB.1.00.0904081520320.30317@kitami.corp.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Intel reported a 10% regression (mysql+sysbench) on a 16-way machine
with these patches:
1596e29: sched: symmetric sync vs avg_overlap
d942fb6: sched: fix sync wakeups
Revert them.
Reported-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Bisected-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>