Commit Graph

1938 Commits

Author SHA1 Message Date
Junaid Shahid
ee1fa209f5 KVM: x86: Sync SPTEs when injecting page/EPT fault into L1
When injecting a page fault or EPT violation/misconfiguration, KVM is
not syncing any shadow PTEs associated with the faulting address,
including those in previous MMUs that are associated with L1's current
EPTP (in a nested EPT scenario), nor is it flushing any hardware TLB
entries.  All this is done by kvm_mmu_invalidate_gva.

Page faults that are either !PRESENT or RSVD are exempt from the flushing,
as the CPU is not allowed to cache such translations.

Signed-off-by: Junaid Shahid <junaids@google.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-04-20 17:26:05 -04:00
Paolo Bonzini
0cd665bd20 KVM: x86: cleanup kvm_inject_emulated_page_fault
To reconstruct the kvm_mmu to be used for page fault injection, we
can simply use fault->nested_page_fault.  This matches how
fault->nested_page_fault is assigned in the first place by
FNAME(walk_addr_generic).

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-04-20 17:26:05 -04:00
Venkatesh Srinivas
2ca1a06a54 kvm: Handle reads of SandyBridge RAPL PMU MSRs rather than injecting #GP
Linux 3.14 unconditionally reads the RAPL PMU MSRs on boot, without handling
General Protection Faults on reading those MSRs. Rather than injecting a #GP,
which prevents boot, handle the MSRs by returning 0 for their data. Zero was
checked to be safe by code review of the RAPL PMU driver and in discussion
with the original driver author (eranian@google.com).

Signed-off-by: Venkatesh Srinivas <venkateshs@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200416184254.248374-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-04-17 11:06:33 -04:00
Steve Rutherford
7289fdb5dc KVM: Remove CREATE_IRQCHIP/SET_PIT2 race
Fixes a NULL pointer dereference, caused by the PIT firing an interrupt
before the interrupt table has been initialized.

SET_PIT2 can race with the creation of the IRQchip. In particular,
if SET_PIT2 is called with a low PIT timer period (after the creation of
the IOAPIC, but before the instantiation of the irq routes), the PIT can
fire an interrupt at an uninitialized table.

Signed-off-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200416191152.259434-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-04-17 11:04:01 -04:00
Sean Christopherson
53b3d8e9d5 KVM: x86: Export kvm_propagate_fault() (as kvm_inject_emulated_page_fault)
Export the page fault propagation helper so that VMX can use it to
correctly emulate TLB invalidation on page faults in an upcoming patch.

In the (hopefully) not-too-distant future, SGX virtualization will also
want access to the helper for injecting page faults to the correct level
(L1 vs. L2) when emulating ENCLS instructions.

Rename the function to kvm_inject_emulated_page_fault() to clarify that
it is (a) injecting a fault and (b) only for page faults.  WARN if it's
invoked with an exception other than PF_VECTOR.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-6-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-04-15 12:08:50 -04:00
Xiaoyao Li
9de6fe3c28 KVM: x86: Emulate split-lock access as a write in emulator
Emulate split-lock accesses as writes if split lock detection is on
to avoid #AC during emulation, which will result in a panic(). This
should never occur for a well-behaved guest, but a malicious guest can
manipulate the TLB to trigger emulation of a locked instruction[1].

More discussion can be found at [2][3].

[1] https://lkml.kernel.org/r/8c5b11c9-58df-38e7-a514-dc12d687b198@redhat.com
[2] https://lkml.kernel.org/r/20200131200134.GD18946@linux.intel.com
[3] https://lkml.kernel.org/r/20200227001117.GX9940@linux.intel.com

Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/20200410115517.084300242@linutronix.de
2020-04-11 16:40:55 +02:00
Wanpeng Li
4064a4c6a1 KVM: X86: Filter out the broadcast dest for IPI fastpath
Except destination shorthand, a destination value 0xffffffff is used to
broadcast interrupts, let's also filter out this for single target IPI
fastpath.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1585815626-28370-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-04-07 08:34:16 -04:00
Linus Torvalds
8c1b724ddb ARM:
* GICv4.1 support
 * 32bit host removal
 
 PPC:
 * secure (encrypted) using under the Protected Execution Framework
 ultravisor
 
 s390:
 * allow disabling GISA (hardware interrupt injection) and protected
 VMs/ultravisor support.
 
 x86:
 * New dirty bitmap flag that sets all bits in the bitmap when dirty
 page logging is enabled; this is faster because it doesn't require bulk
 modification of the page tables.
 * Initial work on making nested SVM event injection more similar to VMX,
 and less buggy.
 * Various cleanups to MMU code (though the big ones and related
 optimizations were delayed to 5.8).  Instead of using cr3 in function
 names which occasionally means eptp, KVM too has standardized on "pgd".
 * A large refactoring of CPUID features, which now use an array that
 parallels the core x86_features.
 * Some removal of pointer chasing from kvm_x86_ops, which will also be
 switched to static calls as soon as they are available.
 * New Tigerlake CPUID features.
 * More bugfixes, optimizations and cleanups.
 
 Generic:
 * selftests: cleanups, new MMU notifier stress test, steal-time test
 * CSV output for kvm_stat.
 
 KVM/MIPS has been broken since 5.5, it does not compile due to a patch committed
 by MIPS maintainers.  I had already prepared a fix, but the MIPS maintainers
 prefer to fix it in generic code rather than KVM so they are taking care of it.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl6GOnIUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMfxwf/ZKLZiRoaovXCOG71M/eHtQb8ZIqU
 3MPy+On3eC5Sk/aBxWUL9EFZsbYG6kYdbZ1VOvG9XPBoLlnkDSm/IR0kaELHtnjj
 oGVda/tvGn46Ne39y8xBptmb91WDcWH0vFthT/CwlMxAw3xjr+gG7Qyo+8F2CW6m
 SSSuLiHSBnyO1cQKruBTHZ8qnR8LlnfXEqtd6Y4LFLic0LbLIoIdRcT3wjQrcZrm
 Djd7wbTEYZjUfoqZ72ekwEDUsONcDLDSKcguDO9pSMSCGhpxCVT5Vy68KRpoIMs2
 nzNWDKjvqQo5zb2+GWxJgkd12Hv+n7PCXZMbVrWBu1pQsewUns9m4mkpGw==
 =6fGt
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - GICv4.1 support

   - 32bit host removal

  PPC:
   - secure (encrypted) using under the Protected Execution Framework
     ultravisor

  s390:
   - allow disabling GISA (hardware interrupt injection) and protected
     VMs/ultravisor support.

  x86:
   - New dirty bitmap flag that sets all bits in the bitmap when dirty
     page logging is enabled; this is faster because it doesn't require
     bulk modification of the page tables.

   - Initial work on making nested SVM event injection more similar to
     VMX, and less buggy.

   - Various cleanups to MMU code (though the big ones and related
     optimizations were delayed to 5.8). Instead of using cr3 in
     function names which occasionally means eptp, KVM too has
     standardized on "pgd".

   - A large refactoring of CPUID features, which now use an array that
     parallels the core x86_features.

   - Some removal of pointer chasing from kvm_x86_ops, which will also
     be switched to static calls as soon as they are available.

   - New Tigerlake CPUID features.

   - More bugfixes, optimizations and cleanups.

  Generic:
   - selftests: cleanups, new MMU notifier stress test, steal-time test

   - CSV output for kvm_stat"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (277 commits)
  x86/kvm: fix a missing-prototypes "vmread_error"
  KVM: x86: Fix BUILD_BUG() in __cpuid_entry_get_reg() w/ CONFIG_UBSAN=y
  KVM: VMX: Add a trampoline to fix VMREAD error handling
  KVM: SVM: Annotate svm_x86_ops as __initdata
  KVM: VMX: Annotate vmx_x86_ops as __initdata
  KVM: x86: Drop __exit from kvm_x86_ops' hardware_unsetup()
  KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
  KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
  KVM: VMX: Configure runtime hooks using vmx_x86_ops
  KVM: VMX: Move hardware_setup() definition below vmx_x86_ops
  KVM: x86: Move init-only kvm_x86_ops to separate struct
  KVM: Pass kvm_init()'s opaque param to additional arch funcs
  s390/gmap: return proper error code on ksm unsharing
  KVM: selftests: Fix cosmetic copy-paste error in vm_mem_region_move()
  KVM: Fix out of range accesses to memslots
  KVM: X86: Micro-optimize IPI fastpath delay
  KVM: X86: Delay read msr data iff writes ICR MSR
  KVM: PPC: Book3S HV: Add a capability for enabling secure guests
  KVM: arm64: GICv4.1: Expose HW-based SGIs in debugfs
  KVM: arm64: GICv4.1: Allow non-trapping WFI when using HW SGIs
  ...
2020-04-02 15:13:15 -07:00
Sean Christopherson
afaf0b2f9b KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
Replace the kvm_x86_ops pointer in common x86 with an instance of the
struct to save one pointer dereference when invoking functions.  Copy the
struct by value to set the ops during kvm_init().

Arbitrarily use kvm_x86_ops.hardware_enable to track whether or not the
ops have been initialized, i.e. a vendor KVM module has been loaded.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-7-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-31 10:48:08 -04:00
Sean Christopherson
69c6f69aa3 KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
Set kvm_x86_ops with the vendor's ops only after ->hardware_setup()
completes to "prevent" using kvm_x86_ops before they are ready, i.e. to
generate a null pointer fault instead of silently consuming unconfigured
state.

An alternative implementation would be to have ->hardware_setup()
return the vendor's ops, but that would require non-trivial refactoring,
and would arguably result in less readable code, e.g. ->hardware_setup()
would need to use ERR_PTR() in multiple locations, and each vendor's
declaration of the runtime ops would be less obvious.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-6-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-31 10:48:07 -04:00
Sean Christopherson
d008dfdb0e KVM: x86: Move init-only kvm_x86_ops to separate struct
Move the kvm_x86_ops functions that are used only within the scope of
kvm_init() into a separate struct, kvm_x86_init_ops.  In addition to
identifying the init-only functions without restorting to code comments,
this also sets the stage for waiting until after ->hardware_setup() to
set kvm_x86_ops.  Setting kvm_x86_ops after ->hardware_setup() is
desirable as many of the hooks are not usable until ->hardware_setup()
completes.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-3-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-31 10:48:04 -04:00
Sean Christopherson
b990408537 KVM: Pass kvm_init()'s opaque param to additional arch funcs
Pass @opaque to kvm_arch_hardware_setup() and
kvm_arch_check_processor_compat() to allow architecture specific code to
reference @opaque without having to stash it away in a temporary global
variable.  This will enable x86 to separate its vendor specific callback
ops, which are passed via @opaque, into "init" and "runtime" ops without
having to stash away the "init" ops.

No functional change intended.

Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Tested-by: Cornelia Huck <cohuck@redhat.com> #s390
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-2-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-31 10:48:03 -04:00
Paolo Bonzini
cf39d37539 KVM/arm updates for Linux 5.7
- GICv4.1 support
 - 32bit host removal
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl6DKKIPHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDDe0P/30Oda6HJdcUY+g0dnHkH8N7t+VKjPPnihlX
 WBaT0Y4SzMsfAtG5lQqS48A50dXKWW70QvwkZjxu7abQhYFWGd2SGtTQxwqJXT8J
 I6MBh4r9xrIfiqzVT2BXslA6id5H6wCyyFI6vKm/IFkIu1J6JtwnKakQ0CIddS1d
 Blbgj5jcxGw+2xOppHCQXbWwwDdmYWkMZEBZjmhkezddqLDK+oaAUiUhHHHizTsB
 kLjgqYBVENpR1zDIsGpQAJloKXAiHfBQshQAmnhnBNzXE60LZ0n0/iODU9U5FDEO
 5j0DRWccKvsIMsUh7JpPr5xerGJ0rqk1IwPC2JcyzfRbvRLMpK1IOWfhI5Tg5lbP
 4Ev96QLEMBnKOWMSE0MqnMdq6JPzDLA6WZ28HZe2nc3/oWNgsSDtlXigx4xFFxTX
 zfc2YpAgFu3xJkPf8PtWTFvItm0AvFNFynPg0Rr/NsGf/FGeszYR4cLcHmv5NlWS
 IiV4+lgnlmr2LZr3VjUaumbtWIpuVF4Db5Al2K2E/PCN7ObfEkyCweDic8ophkH8
 sMS9TI38aH1Efy+I2Nfxxqpy8BcElZAMrAWt9R27A4JRLHdr7j5DsGnyRigXHgRe
 pFgbqtk/EjWkHwjaJVg8kPxf2+2P05VZsQeGG721nbKAIKDetM3RA2BflexdsptY
 kXplNsVr
 =eILh
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm updates for Linux 5.7

- GICv4.1 support
- 32bit host removal
2020-03-31 10:44:53 -04:00
Linus Torvalds
dbb381b619 timekeeping and timer updates:
Core:
 
   - Consolidation of the vDSO build infrastructure to address the
     difficulties of cross-builds for ARM64 compat vDSO libraries by
     restricting the exposure of header content to the vDSO build.
 
     This is achieved by splitting out header content into separate
     headers. which contain only the minimaly required information which is
     necessary to build the vDSO. These new headers are included from the
     kernel headers and the vDSO specific files.
 
   - Enhancements to the generic vDSO library allowing more fine grained
     control over the compiled in code, further reducing architecture
     specific storage and preparing for adopting the generic library by PPC.
 
   - Cleanup and consolidation of the exit related code in posix CPU timers.
 
   - Small cleanups and enhancements here and there
 
  Drivers:
 
   - The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
 
   - Correct the clock rate of PIT64b global clock
 
   - setup_irq() cleanup
 
   - Preparation for PWM and suspend support for the TI DM timer
 
   - Expand the fttmr010 driver to support ast2600 systems
 
   - The usual small fixes, enhancements and cleanups all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B+QETHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYofJ5D/94s5fpaqiuNcaAsLq2D3DRIrTnqxx7
 yEeAOPcbYV1bM1SgY/M83L5yGc2S8ny787e26abwRTCZhZV3eAmRTphIFFIZR0Xk
 xS+i67odscbdJTRtztKj3uQ9rFxefszRuphyaa89pwSY9nnyMWLcahGSQOGs0LJK
 hvmgwPjyM1drNfPxgPiaFg7vDr2XxNATpQr/FBt+BhelvVan8TlAfrkcNPiLr++Y
 Axz925FP7jMaRRbZ1acji34gLiIAZk0jLCUdbix7YkPrqDB4GfO+v8Vez+fGClbJ
 uDOYeR4r1+Be/BtSJtJ2tHqtsKCcAL6agtaE2+epZq5HbzaZFRvBFaxgFNF8WVcn
 3FFibdEMdsRNfZTUVp5wwgOLN0UIqE/7LifE12oLEL2oFB5H2PiNEUw3E02XHO11
 rL3zgHhB6Ke1sXKPCjSGdmIQLbxZmV5kOlQFy7XuSeo5fmRapVzKNffnKcftIliF
 1HNtZbgdA+3tdxMFCqoo1QX+kotl9kgpslmdZ0qHAbaRb3xqLoSskbqEjFRMuSCC
 8bjJrwboD9T5GPfwodSCgqs/58CaSDuqPFbIjCay+p90Fcg6wWAkZtyG04ZLdPRc
 GgNNdN4gjTD9bnrRi8cH47z1g8OO4vt4K4SEbmjo8IlDW+9jYMxuwgR88CMeDXd7
 hu7aKsr2I2q/WQ==
 =5o9G
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timekeeping and timer updates from Thomas Gleixner:
 "Core:

   - Consolidation of the vDSO build infrastructure to address the
     difficulties of cross-builds for ARM64 compat vDSO libraries by
     restricting the exposure of header content to the vDSO build.

     This is achieved by splitting out header content into separate
     headers. which contain only the minimaly required information which
     is necessary to build the vDSO. These new headers are included from
     the kernel headers and the vDSO specific files.

   - Enhancements to the generic vDSO library allowing more fine grained
     control over the compiled in code, further reducing architecture
     specific storage and preparing for adopting the generic library by
     PPC.

   - Cleanup and consolidation of the exit related code in posix CPU
     timers.

   - Small cleanups and enhancements here and there

  Drivers:

   - The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support

   - Correct the clock rate of PIT64b global clock

   - setup_irq() cleanup

   - Preparation for PWM and suspend support for the TI DM timer

   - Expand the fttmr010 driver to support ast2600 systems

   - The usual small fixes, enhancements and cleanups all over the
     place"

* tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
  Revert "clocksource/drivers/timer-probe: Avoid creating dead devices"
  vdso: Fix clocksource.h macro detection
  um: Fix header inclusion
  arm64: vdso32: Enable Clang Compilation
  lib/vdso: Enable common headers
  arm: vdso: Enable arm to use common headers
  x86/vdso: Enable x86 to use common headers
  mips: vdso: Enable mips to use common headers
  arm64: vdso32: Include common headers in the vdso library
  arm64: vdso: Include common headers in the vdso library
  arm64: Introduce asm/vdso/processor.h
  arm64: vdso32: Code clean up
  linux/elfnote.h: Replace elf.h with UAPI equivalent
  scripts: Fix the inclusion order in modpost
  common: Introduce processor.h
  linux/ktime.h: Extract common header for vDSO
  linux/jiffies.h: Extract common header for vDSO
  linux/time64.h: Extract common header for vDSO
  linux/time32.h: Extract common header for vDSO
  linux/time.h: Extract common header for vDSO
  ...
2020-03-30 18:51:47 -07:00
Wanpeng Li
d5361678e6 KVM: X86: Micro-optimize IPI fastpath delay
This patch optimizes the virtual IPI fastpath emulation sequence:

write ICR2                          send virtual IPI
read ICR2                           write ICR2
send virtual IPI         ==>        write ICR
write ICR

We can observe ~0.67% performance improvement for IPI microbenchmark
(https://lore.kernel.org/kvm/20171219085010.4081-1-ynorov@caviumnetworks.com/)
on Skylake server.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1585189202-1708-4-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-26 05:58:26 -04:00
Wanpeng Li
8a1038de11 KVM: X86: Delay read msr data iff writes ICR MSR
Delay read msr data until we identify guest accesses ICR MSR to avoid
to penalize all other MSR writes.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1585189202-1708-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-26 05:58:25 -04:00
Wanpeng Li
e1be9ac8e6 KVM: X86: Narrow down the IPI fastpath to single target IPI
The original single target IPI fastpath patch forgot to filter the
ICR destination shorthand field. Multicast IPI is not suitable for
this feature since wakeup the multiple sleeping vCPUs will extend
the interrupt disabled time, it especially worse in the over-subscribe
and VM has a little bit more vCPUs scenario. Let's narrow it down to
single target IPI.

Two VMs, each is 76 vCPUs, one running 'ebizzy -M', the other
running cyclictest on all vCPUs, w/ this patch, the avg score
of cyclictest can improve more than 5%. (pv tlb, pv ipi, pv
sched yield are disabled during testing to avoid the disturb).

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1585189202-1708-3-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-26 05:44:21 -04:00
Paolo Bonzini
d332945418 KVM: x86: remove bogus user-triggerable WARN_ON
The WARN_ON is essentially comparing a user-provided value with 0.  It is
trivial to trigger it just by passing garbage to KVM_SET_CLOCK.  Guests
can break if you do so, but the same applies to every KVM_SET_* ioctl.
So, if it hurts when you do like this, just do not do it.

Reported-by: syzbot+00be5da1d75f1cc95f6b@syzkaller.appspotmail.com
Fixes: 9446e6fce0 ("KVM: x86: fix WARN_ON check of an unsigned less than zero")
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-20 13:43:21 -04:00
Xiaoyao Li
cf6c26ec7b KVM: x86: Code style cleanup in kvm_arch_dev_ioctl()
In kvm_arch_dev_ioctl(), the brackets of case KVM_X86_GET_MCE_CAP_SUPPORTED
accidently encapsulates case KVM_GET_MSR_FEATURE_INDEX_LIST and case
KVM_GET_MSRS. It doesn't affect functionality but it's misleading.

Remove unnecessary brackets and opportunistically add a "break" in the
default path.

Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-18 14:05:45 +01:00
Paolo Bonzini
8e205a6b2a KVM: X86: correct meaningless kvm_apicv_activated() check
After test_and_set_bit() for kvm->arch.apicv_inhibit_reasons, we will
always get false when calling kvm_apicv_activated() because it's sure
apicv_inhibit_reasons do not equal to 0.

What the code wants to do, is check whether APICv was *already* active
and if so skip the costly request; we can do this using cmpxchg.

Reported-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:59 +01:00
Suravee Suthikulpanit
ab56f8e62d kvm: svm: Introduce GA Log tracepoint for AVIC
GA Log tracepoint is useful when debugging AVIC performance
issue as it can be used with perf to count the number of times
IOMMU AVIC injects interrupts through the slow-path instead of
directly inject interrupts to the target vcpu.

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:56 +01:00
Paolo Bonzini
727a7e27cf KVM: x86: rename set_cr3 callback and related flags to load_mmu_pgd
The set_cr3 callback is not setting the guest CR3, it is setting the
root of the guest page tables, either shadow or two-dimensional.
To make this clearer as well as to indicate that the MMU calls it
via kvm_mmu_load_cr3, rename it to load_mmu_pgd.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:52 +01:00
Sean Christopherson
f91af5176c KVM: x86: Refactor kvm_cpuid() param that controls out-of-range logic
Invert and rename the kvm_cpuid() param that controls out-of-range logic
to better reflect the semantics of the affected callers, i.e. callers
that bypass the out-of-range logic do so because they are looking up an
exact guest CPUID entry, e.g. to query the maxphyaddr.

Similarly, rename kvm_cpuid()'s internal "found" to "exact" to clarify
that it tracks whether or not the exact requested leaf was found, as
opposed to any usable leaf being found.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:50 +01:00
Sean Christopherson
23493d0a17 KVM x86: Extend AMD specific guest behavior to Hygon virtual CPUs
Extend guest_cpuid_is_amd() to cover Hygon virtual CPUs and rename it
accordingly.  Hygon CPUs use an AMD-based core and so have the same
basic behavior as AMD CPUs.

Fixes: b8f4abb652 ("x86/kvm: Add Hygon Dhyana support to KVM")
Cc: Pu Wen <puwen@hygon.cn>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:48 +01:00
Paolo Bonzini
408e9a318f KVM: CPUID: add support for supervisor states
Current CPUID 0xd enumeration code does not support supervisor
states, because KVM only supports setting IA32_XSS to zero.
Change it instead to use a new variable supported_xss, to be
set from the hardware_setup callback which is in charge of CPU
capabilities.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:45 +01:00
Sean Christopherson
91661989d1 KVM: x86: Move VMX's host_efer to common x86 code
Move host_efer to common x86 code and use it for CPUID's is_efer_nx() to
avoid constantly re-reading the MSR.

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:42 +01:00
Sean Christopherson
600087b614 KVM: Drop largepages_enabled and its accessor/mutator
Drop largepages_enabled, kvm_largepages_enabled() and
kvm_disable_largepages() now that all users are gone.

Note, largepages_enabled was an x86-only flag that got left in common
KVM code when KVM gained support for multiple architectures.

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:42 +01:00
Sean Christopherson
a1bead2aba KVM: VMX: Directly query Intel PT mode when refreshing PMUs
Use vmx_pt_mode_is_host_guest() in intel_pmu_refresh() instead of
bouncing through kvm_x86_ops->pt_supported, and remove ->pt_supported()
as the PMU code was the last remaining user.

Opportunistically clean up the wording of a comment that referenced
kvm_x86_ops->pt_supported().

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:38 +01:00
Sean Christopherson
7b874c26a6 KVM: x86: Check for Intel PT MSR virtualization using KVM cpu caps
Use kvm_cpu_cap_has() to check for Intel PT when processing the list of
virtualized MSRs to pave the way toward removing ->pt_supported().

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:37 +01:00
Sean Christopherson
139085101f KVM: x86: Use KVM cpu caps to detect MSR_TSC_AUX virt support
Check for MSR_TSC_AUX virtualization via kvm_cpu_cap_has() and drop
->rdtscp_supported().

Note, vmx_rdtscp_supported() needs to hang around a tiny bit longer due
other usage in VMX code.

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:35 +01:00
Sean Christopherson
90d2f60f41 KVM: x86: Use KVM cpu caps to track UMIP emulation
Set UMIP in kvm_cpu_caps when it is emulated by VMX, even though the
bit will effectively be dropped by do_host_cpuid().  This allows
checking for UMIP emulation via kvm_cpu_caps instead of a dedicated
kvm_x86_ops callback.

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:28 +01:00
Sean Christopherson
c10398b6d0 KVM: x86: Use KVM cpu caps to mark CR4.LA57 as not-reserved
Add accessor(s) for KVM cpu caps and use said accessor to detect
hardware support for LA57 instead of manually querying CPUID.

Note, the explicit conversion to bool via '!!' in kvm_cpu_cap_has() is
technically unnecessary, but it gives people a warm fuzzy feeling.

No functional change intended.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:27 +01:00
Sean Christopherson
cfc481810c KVM: x86: Calculate the supported xcr0 mask at load time
Add a new global variable, supported_xcr0, to track which xcr0 bits can
be exposed to the guest instead of calculating the mask on every call.
The supported bits are constant for a given instance of KVM.

This paves the way toward eliminating the ->mpx_supported() call in
kvm_mpx_supported(), e.g. eliminates multiple retpolines in VMX's nested
VM-Enter path, and eventually toward eliminating ->mpx_supported()
altogether.

No functional change intended.

Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:58:09 +01:00
Sean Christopherson
06add254c7 KVM: x86: Shrink the usercopy region of the emulation context
Shuffle a few operand structs to the end of struct x86_emulate_ctxt and
update the cache creation to whitelist only the region of the emulation
context that is expected to be copied to/from user memory, e.g. the
instruction operands, registers, and fetch/io/mem caches.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:53 +01:00
Sean Christopherson
2f728d66e8 KVM: x86: Move kvm_emulate.h into KVM's private directory
Now that the emulation context is dynamically allocated and not embedded
in struct kvm_vcpu, move its header, kvm_emulate.h, out of the public
asm directory and into KVM's private x86 directory.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:52 +01:00
Sean Christopherson
c9b8b07cde KVM: x86: Dynamically allocate per-vCPU emulation context
Allocate the emulation context instead of embedding it in struct
kvm_vcpu_arch.

Dynamic allocation provides several benefits:

  - Shrinks the size x86 vcpus by ~2.5k bytes, dropping them back below
    the PAGE_ALLOC_COSTLY_ORDER threshold.
  - Allows for dropping the include of kvm_emulate.h from asm/kvm_host.h
    and moving kvm_emulate.h into KVM's private directory.
  - Allows a reducing KVM's attack surface by shrinking the amount of
    vCPU data that is exposed to usercopy.
  - Allows a future patch to disable the emulator entirely, which may or
    may not be a realistic endeavor.

Mark the entire struct as valid for usercopy to maintain existing
behavior with respect to hardened usercopy.  Future patches can shrink
the usercopy range to cover only what is necessary.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:52 +01:00
Sean Christopherson
21f1b8f29e KVM: x86: Explicitly pass an exception struct to check_intercept
Explicitly pass an exception struct when checking for intercept from
the emulator, which eliminates the last reference to arch.emulate_ctxt
in vendor specific code.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:50 +01:00
Sean Christopherson
2e3bb4d886 KVM: x86: Refactor I/O emulation helpers to provide vcpu-only variant
Add variants of the I/O helpers that take a vCPU instead of an emulation
context.  This will eventually allow KVM to limit use of the emulation
context to the full emulation path.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:49 +01:00
Sean Christopherson
abbed4fa94 KVM: x86: Fix warning due to implicit truncation on 32-bit KVM
Explicitly cast the integer literal to an unsigned long when stuffing a
non-canonical value into the host virtual address during private memslot
deletion.  The explicit cast fixes a warning that gets promoted to an
error when running with KVM's newfangled -Werror setting.

  arch/x86/kvm/x86.c:9739:9: error: large integer implicitly truncated
  to unsigned type [-Werror=overflow]

Fixes: a3e967c0b87d3 ("KVM: Terminate memslot walks via used_slots"
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:48 +01:00
Sean Christopherson
d8dd54e063 KVM: x86/mmu: Rename kvm_mmu->get_cr3() to ->get_guest_pgd()
Rename kvm_mmu->get_cr3() to call out that it is retrieving a guest
value, as opposed to kvm_mmu->set_cr3(), which sets a host value, and to
note that it will return something other than CR3 when nested EPT is in
use.  Hopefully the new name will also make it more obvious that L1's
nested_cr3 is returned in SVM's nested NPT case.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:46 +01:00
Sean Christopherson
a1c77abb8d KVM: nVMX: Properly handle userspace interrupt window request
Return true for vmx_interrupt_allowed() if the vCPU is in L2 and L1 has
external interrupt exiting enabled.  IRQs are never blocked in hardware
if the CPU is in the guest (L2 from L1's perspective) when IRQs trigger
VM-Exit.

The new check percolates up to kvm_vcpu_ready_for_interrupt_injection()
and thus vcpu_run(), and so KVM will exit to userspace if userspace has
requested an interrupt window (to inject an IRQ into L1).

Remove the @external_intr param from vmx_check_nested_events(), which is
actually an indicator that userspace wants an interrupt window, e.g.
it's named @req_int_win further up the stack.  Injecting a VM-Exit into
L1 to try and bounce out to L0 userspace is all kinds of broken and is
no longer necessary.

Remove the hack in nested_vmx_vmexit() that attempted to workaround the
breakage in vmx_check_nested_events() by only filling interrupt info if
there's an actual interrupt pending.  The hack actually made things
worse because it caused KVM to _never_ fill interrupt info when the
LAPIC resides in userspace (kvm_cpu_has_interrupt() queries
interrupt.injected, which is always cleared by prepare_vmcs12() before
reaching the hack in nested_vmx_vmexit()).

Fixes: 6550c4df7e ("KVM: nVMX: Fix interrupt window request with "Acknowledge interrupt on exit"")
Cc: stable@vger.kernel.org
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:40 +01:00
Wanpeng Li
b34de572a8 KVM: X86: trigger kvmclock sync request just once on VM creation
In the progress of vCPUs creation, it queues a kvmclock sync worker to the global
workqueue before each vCPU creation completes. The workqueue subsystem guarantees
not to queue the already queued work; however, we can make the logic more clear by
making just one leader to trigger this kvmclock sync request, and also save on
cacheline bouncing caused by test_and_set_bit.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:40 +01:00
Wanpeng Li
4abaffce4d KVM: LAPIC: Recalculate apic map in batch
In the vCPU reset and set APIC_BASE MSR path, the apic map will be recalculated
several times, each time it will consume 10+ us observed by ftrace in my
non-overcommit environment since the expensive memory allocate/mutex/rcu etc
operations. This patch optimizes it by recaluating apic map in batch, I hope
this can benefit the serverless scenario which can frequently create/destroy
VMs.

Before patch:

kvm_lapic_reset  ~27us

After patch:

kvm_lapic_reset  ~14us

Observed by ftrace, improve ~48%.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:39 +01:00
Jay Zhou
3c9bd4006b KVM: x86: enable dirty log gradually in small chunks
It could take kvm->mmu_lock for an extended period of time when
enabling dirty log for the first time. The main cost is to clear
all the D-bits of last level SPTEs. This situation can benefit from
manual dirty log protect as well, which can reduce the mmu_lock
time taken. The sequence is like this:

1. Initialize all the bits of the dirty bitmap to 1 when enabling
   dirty log for the first time
2. Only write protect the huge pages
3. KVM_GET_DIRTY_LOG returns the dirty bitmap info
4. KVM_CLEAR_DIRTY_LOG will clear D-bit for each of the leaf level
   SPTEs gradually in small chunks

Under the Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz environment,
I did some tests with a 128G windows VM and counted the time taken
of memory_global_dirty_log_start, here is the numbers:

VM Size        Before    After optimization
128G           460ms     10ms

Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:37 +01:00
Sean Christopherson
562b6b089d KVM: x86: Consolidate VM allocation and free for VMX and SVM
Move the VM allocation and free code to common x86 as the logic is
more or less identical across SVM and VMX.

Note, although hyperv.hv_pa_pg is part of the common kvm->arch, it's
(currently) only allocated by VMX VMs.  But, since kfree() plays nice
when passed a NULL pointer, the superfluous call for SVM is harmless
and avoids future churn if SVM gains support for HyperV's direct TLB
flush.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
[Make vm_size a field instead of a function. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:33 +01:00
Sean Christopherson
b3594ffbf9 KVM: x86/mmu: Move kvm_arch_flush_remote_tlbs_memslot() to mmu.c
Move kvm_arch_flush_remote_tlbs_memslot() from x86.c to mmu.c in
preparation for calling kvm_flush_remote_tlbs_with_address() instead of
kvm_flush_remote_tlbs().  The with_address() variant is statically
defined in mmu.c, arguably kvm_arch_flush_remote_tlbs_memslot() belongs
in mmu.c anyways, and defining kvm_arch_flush_remote_tlbs_memslot() in
mmu.c will allow the compiler to inline said function when a future
patch consolidates open coded variants of the function.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:28 +01:00
Sean Christopherson
0577d1abe7 KVM: Terminate memslot walks via used_slots
Refactor memslot handling to treat the number of used slots as the de
facto size of the memslot array, e.g. return NULL from id_to_memslot()
when an invalid index is provided instead of relying on npages==0 to
detect an invalid memslot.  Rework the sorting and walking of memslots
in advance of dynamically sizing memslots to aid bisection and debug,
e.g. with luck, a bug in the refactoring will bisect here and/or hit a
WARN instead of randomly corrupting memory.

Alternatively, a global null/invalid memslot could be returned, i.e. so
callers of id_to_memslot() don't have to explicitly check for a NULL
memslot, but that approach runs the risk of introducing difficult-to-
debug issues, e.g. if the global null slot is modified.  Constifying
the return from id_to_memslot() to combat such issues is possible, but
would require a massive refactoring of arch specific code and would
still be susceptible to casting shenanigans.

Add function comments to update_memslots() and search_memslots() to
explicitly (and loudly) state how memslots are sorted.

Opportunistically stuff @hva with a non-canonical value when deleting a
private memslot on x86 to detect bogus usage of the freed slot.

No functional change intended.

Tested-by: Christoffer Dall <christoffer.dall@arm.com>
Tested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:26 +01:00
Sean Christopherson
0dff084607 KVM: Provide common implementation for generic dirty log functions
Move the implementations of KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG
for CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT into common KVM code.
The arch specific implemenations are extremely similar, differing
only in whether the dirty log needs to be sync'd from hardware (x86)
and how the TLBs are flushed.  Add new arch hooks to handle sync
and TLB flush; the sync will also be used for non-generic dirty log
support in a future patch (s390).

The ulterior motive for providing a common implementation is to
eliminate the dependency between arch and common code with respect to
the memslot referenced by the dirty log, i.e. to make it obvious in the
code that the validity of the memslot is guaranteed, as a future patch
will rework memslot handling such that id_to_memslot() can return NULL.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:24 +01:00
Sean Christopherson
e96c81ee89 KVM: Simplify kvm_free_memslot() and all its descendents
Now that all callers of kvm_free_memslot() pass NULL for @dont, remove
the param from the top-level routine and all arch's implementations.

No functional change intended.

Tested-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:22 +01:00
Sean Christopherson
21198846de KVM: x86: Free arrays for old memslot when moving memslot's base gfn
Explicitly free the metadata arrays (stored in slot->arch) in the old
memslot structure when moving the memslot's base gfn is committed.  This
eliminates x86's dependency on kvm_free_memslot() being called when a
memslot move is committed, and paves the way for removing the funky code
in kvm_free_memslot() that conditionally frees structures based on its
@dont param.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:21 +01:00
Sean Christopherson
9d4c197c0e KVM: Drop "const" attribute from old memslot in commit_memory_region()
Drop the "const" attribute from @old in kvm_arch_commit_memory_region()
to allow arch specific code to free arch specific resources in the old
memslot without having to cast away the attribute.  Freeing resources in
kvm_arch_commit_memory_region() paves the way for simplifying
kvm_free_memslot() by eliminating the last usage of its @dont param.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:20 +01:00
Sean Christopherson
414de7abbf KVM: Drop kvm_arch_create_memslot()
Remove kvm_arch_create_memslot() now that all arch implementations are
effectively nops.  Removing kvm_arch_create_memslot() eliminates the
possibility for arch specific code to allocate memory prior to setting
a memslot, which sets the stage for simplifying kvm_free_memslot().

Cc: Janosch Frank <frankja@linux.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:17 +01:00
Sean Christopherson
0dab98b7ad KVM: x86: Allocate memslot resources during prepare_memory_region()
Allocate the various metadata structures associated with a new memslot
during kvm_arch_prepare_memory_region(), which paves the way for
removing kvm_arch_create_memslot() altogether.  Moving x86's memory
allocation only changes the order of kernel memory allocations between
x86 and common KVM code.

Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:16 +01:00
Sean Christopherson
edd4fa37ba KVM: x86: Allocate new rmap and large page tracking when moving memslot
Reallocate a rmap array and recalcuate large page compatibility when
moving an existing memslot to correctly handle the alignment properties
of the new memslot.  The number of rmap entries required at each level
is dependent on the alignment of the memslot's base gfn with respect to
that level, e.g. moving a large-page aligned memslot so that it becomes
unaligned will increase the number of rmap entries needed at the now
unaligned level.

Not updating the rmap array is the most obvious bug, as KVM accesses
garbage data beyond the end of the rmap.  KVM interprets the bad data as
pointers, leading to non-canonical #GPs, unexpected #PFs, etc...

  general protection fault: 0000 [#1] SMP
  CPU: 0 PID: 1909 Comm: move_memory_reg Not tainted 5.4.0-rc7+ #139
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:rmap_get_first+0x37/0x50 [kvm]
  Code: <48> 8b 3b 48 85 ff 74 ec e8 6c f4 ff ff 85 c0 74 e3 48 89 d8 5b c3
  RSP: 0018:ffffc9000021bbc8 EFLAGS: 00010246
  RAX: ffff00617461642e RBX: ffff00617461642e RCX: 0000000000000012
  RDX: ffff88827400f568 RSI: ffffc9000021bbe0 RDI: ffff88827400f570
  RBP: 0010000000000000 R08: ffffc9000021bd00 R09: ffffc9000021bda8
  R10: ffffc9000021bc48 R11: 0000000000000000 R12: 0030000000000000
  R13: 0000000000000000 R14: ffff88827427d700 R15: ffffc9000021bce8
  FS:  00007f7eda014700(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f7ed9216ff8 CR3: 0000000274391003 CR4: 0000000000162eb0
  Call Trace:
   kvm_mmu_slot_set_dirty+0xa1/0x150 [kvm]
   __kvm_set_memory_region.part.64+0x559/0x960 [kvm]
   kvm_set_memory_region+0x45/0x60 [kvm]
   kvm_vm_ioctl+0x30f/0x920 [kvm]
   do_vfs_ioctl+0xa1/0x620
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x4c/0x170
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7f7ed9911f47
  Code: <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 21 6f 2c 00 f7 d8 64 89 01 48
  RSP: 002b:00007ffc00937498 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  RAX: ffffffffffffffda RBX: 0000000001ab0010 RCX: 00007f7ed9911f47
  RDX: 0000000001ab1350 RSI: 000000004020ae46 RDI: 0000000000000004
  RBP: 000000000000000a R08: 0000000000000000 R09: 00007f7ed9214700
  R10: 00007f7ed92149d0 R11: 0000000000000246 R12: 00000000bffff000
  R13: 0000000000000003 R14: 00007f7ed9215000 R15: 0000000000000000
  Modules linked in: kvm_intel kvm irqbypass
  ---[ end trace 0c5f570b3358ca89 ]---

The disallow_lpage tracking is more subtle.  Failure to update results
in KVM creating large pages when it shouldn't, either due to stale data
or again due to indexing beyond the end of the metadata arrays, which
can lead to memory corruption and/or leaking data to guest/userspace.

Note, the arrays for the old memslot are freed by the unconditional call
to kvm_free_memslot() in __kvm_set_memory_region().

Fixes: 05da45583d ("KVM: MMU: large page support")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:13 +01:00
Sean Christopherson
744e699c7e KVM: x86: Move gpa_val and gpa_available into the emulator context
Move the GPA tracking into the emulator context now that the context is
guaranteed to be initialized via __init_emulate_ctxt() prior to
dereferencing gpa_{available,val}, i.e. now that seeing a stale
gpa_available will also trigger a WARN due to an invalid context.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:12 +01:00
Sean Christopherson
92daa48b34 KVM: x86: Add EMULTYPE_PF when emulation is triggered by a page fault
Add a new emulation type flag to explicitly mark emulation related to a
page fault.  Move the propation of the GPA into the emulator from the
page fault handler into x86_emulate_instruction, using EMULTYPE_PF as an
indicator that cr2 is valid.  Similarly, don't propagate cr2 into the
exception.address when it's *not* valid.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:12 +01:00
Miaohe Lin
e080e538e6 KVM: x86: eliminate some unreachable code
These code are unreachable, remove them.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:09 +01:00
Wanpeng Li
9a11997e75 KVM: X86: Fix dereference null cpufreq policy
Naresh Kamboju reported:

   Linux version 5.6.0-rc4 (oe-user@oe-host) (gcc version
  (GCC)) #1 SMP Sun Mar 1 22:59:08 UTC 2020
   kvm: no hardware support
   BUG: kernel NULL pointer dereference, address: 000000000000028c
   #PF: supervisor read access in kernel mode
   #PF: error_code(0x0000) - not-present page
   PGD 0 P4D 0
   Oops: 0000 [#1] SMP NOPTI
   CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.6.0-rc4 #1
   Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
  04/01/2014
   RIP: 0010:kobject_put+0x12/0x1c0
   Call Trace:
    cpufreq_cpu_put+0x15/0x20
    kvm_arch_init+0x1f6/0x2b0
    kvm_init+0x31/0x290
    ? svm_check_processor_compat+0xd/0xd
    ? svm_check_processor_compat+0xd/0xd
    svm_init+0x21/0x23
    do_one_initcall+0x61/0x2f0
    ? rdinit_setup+0x30/0x30
    ? rcu_read_lock_sched_held+0x4f/0x80
    kernel_init_freeable+0x219/0x279
    ? rest_init+0x250/0x250
    kernel_init+0xe/0x110
    ret_from_fork+0x27/0x50
   Modules linked in:
   CR2: 000000000000028c
   ---[ end trace 239abf40c55c409b ]---
   RIP: 0010:kobject_put+0x12/0x1c0

cpufreq policy which is get by cpufreq_cpu_get() can be NULL if it is failure,
this patch takes care of it.

Fixes: aaec7c03de (KVM: x86: avoid useless copy of cpufreq policy)
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-02 17:06:52 +01:00
Erwan Velu
ef935c25fd kvm: x86: Limit the number of "kvm: disabled by bios" messages
In older version of systemd(219), at boot time, udevadm is called with :
	/usr/bin/udevadm trigger --type=devices --action=add"

This program generates an echo "add" in /sys/devices/system/cpu/cpu<x>/uevent,
leading to the "kvm: disabled by bios" message in case of your Bios disabled
the virtualization extensions.

On a modern system running up to 256 CPU threads, this pollutes the Kernel logs.

This patch offers to ratelimit this message to avoid any userspace program triggering
this uevent printing this message too often.

This patch is only a workaround but greatly reduce the pollution without
breaking the current behavior of printing a message if some try to instantiate
KVM on a system that doesn't support it.

Note that recent versions of systemd (>239) do not have trigger this behavior.

This patch will be useful at least for some using older systemd with recent Kernels.

Signed-off-by: Erwan Velu <e.velu@criteo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-28 11:37:20 +01:00
Paolo Bonzini
aaec7c03de KVM: x86: avoid useless copy of cpufreq policy
struct cpufreq_policy is quite big and it is not a good idea
to allocate one on the stack.  Just use cpufreq_cpu_get and
cpufreq_cpu_put which is even simpler.

Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-28 10:54:50 +01:00
Oliver Upton
5ef8acbdd6 KVM: nVMX: Emulate MTF when performing instruction emulation
Since commit 5f3d45e7f2 ("kvm/x86: add support for
MONITOR_TRAP_FLAG"), KVM has allowed an L1 guest to use the monitor trap
flag processor-based execution control for its L2 guest. KVM simply
forwards any MTF VM-exits to the L1 guest, which works for normal
instruction execution.

However, when KVM needs to emulate an instruction on the behalf of an L2
guest, the monitor trap flag is not emulated. Add the necessary logic to
kvm_skip_emulated_instruction() to synthesize an MTF VM-exit to L1 upon
instruction emulation for L2.

Fixes: 5f3d45e7f2 ("kvm/x86: add support for MONITOR_TRAP_FLAG")
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-23 09:36:23 +01:00
Thomas Gleixner
b95a8a27c3 x86/vdso: Use generic VDSO clock mode storage
Switch to the generic VDSO clock mode storage.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> (VDSO parts)
Acked-by: Juergen Gross <jgross@suse.com> (Xen parts)
Acked-by: Paolo Bonzini <pbonzini@redhat.com> (KVM parts)
Link: https://lkml.kernel.org/r/20200207124403.152039903@linutronix.de
2020-02-17 14:40:23 +01:00
Paolo Bonzini
9446e6fce0 KVM: x86: fix WARN_ON check of an unsigned less than zero
The check cpu->hv_clock.system_time < 0 is redundant since system_time
is a u64 and hence can never be less than zero.  But what was actually
meant is to check that the result is positive, since kernel_ns and
v->kvm->arch.kvmclock_offset are both s64.

Reported-by: Colin King <colin.king@canonical.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Addresses-Coverity: ("Macro compares unsigned to 0")
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-12 20:09:46 +01:00
Sean Christopherson
7a02674d15 KVM: x86/mmu: Avoid retpoline on ->page_fault() with TDP
Wrap calls to ->page_fault() with a small shim to directly invoke the
TDP fault handler when the kernel is using retpolines and TDP is being
used.  Single out the TDP fault handler and annotate the TDP path as
likely to coerce the compiler into preferring it over the indirect
function call.

Rename tdp_page_fault() to kvm_tdp_page_fault(), as it's exposed outside
of mmu.c to allow inlining the shim.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-12 20:09:42 +01:00
Miaohe Lin
20796447a1 KVM: x86: remove duplicated KVM_REQ_EVENT request
The KVM_REQ_EVENT request is already made in kvm_set_rflags(). We should
not make it again.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-12 20:09:40 +01:00
Oliver Upton
a06230b62b KVM: x86: Deliver exception payload on KVM_GET_VCPU_EVENTS
KVM allows the deferral of exception payloads when a vCPU is in guest
mode to allow the L1 hypervisor to intercept certain events (#PF, #DB)
before register state has been modified. However, this behavior is
incompatible with the KVM_{GET,SET}_VCPU_EVENTS ABI, as userspace
expects register state to have been immediately modified. Userspace may
opt-in for the payload deferral behavior with the
KVM_CAP_EXCEPTION_PAYLOAD per-VM capability. As such,
kvm_multiple_exception() will immediately manipulate guest registers if
the capability hasn't been requested.

Since the deferral is only necessary if a userspace ioctl were to be
serviced at the same as a payload bearing exception is recognized, this
behavior can be relaxed. Instead, opportunistically defer the payload
from kvm_multiple_exception() and deliver the payload before completing
a KVM_GET_VCPU_EVENTS ioctl.

Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-12 12:34:10 +01:00
Oliver Upton
307f1cfa26 KVM: x86: Mask off reserved bit from #DB exception payload
KVM defines the #DB payload as compatible with the 'pending debug
exceptions' field under VMX, not DR6. Mask off bit 12 when applying the
payload to DR6, as it is reserved on DR6 but not the 'pending debug
exceptions' field.

Fixes: f10c729ff9 ("kvm: vmx: Defer setting of DR6 until #DB delivery")
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-12 12:34:09 +01:00
Sean Christopherson
d76c7fbc01 KVM: x86: Mark CR4.UMIP as reserved based on associated CPUID bit
Re-add code to mark CR4.UMIP as reserved if UMIP is not supported by the
host.  The UMIP handling was unintentionally dropped during a recent
refactoring.

Not flagging CR4.UMIP allows the guest to set its CR4.UMIP regardless of
host support or userspace desires.  On CPUs with UMIP support, including
emulated UMIP, this allows the guest to enable UMIP against the wishes
of the userspace VMM.  On CPUs without any form of UMIP, this results in
a failed VM-Enter due to invalid guest state.

Fixes: 345599f9a2 ("KVM: x86: Add macro to ensure reserved cr4 bits checks stay in sync")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 16:30:19 +01:00
Paolo Bonzini
8171cd6880 KVM: x86: use raw clock values consistently
Commit 53fafdbb8b ("KVM: x86: switch KVMCLOCK base to monotonic raw
clock") changed kvmclock to use tkr_raw instead of tkr_mono.  However,
the default kvmclock_offset for the VM was still based on the monotonic
clock and, if the raw clock drifted enough from the monotonic clock,
this could cause a negative system_time to be written to the guest's
struct pvclock.  RHEL5 does not like it and (if it boots fast enough to
observe a negative time value) it hangs.

There is another thing to be careful about: getboottime64 returns the
host boot time with tkr_mono frequency, and subtracting the tkr_raw-based
kvmclock value will cause the wallclock to be off if tkr_raw drifts
from tkr_mono.  To avoid this, compute the wallclock delta from the
current time instead of being clever and using getboottime64.

Fixes: 53fafdbb8b ("KVM: x86: switch KVMCLOCK base to monotonic raw clock")
Cc: stable@vger.kernel.org
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:45 +01:00
Paolo Bonzini
917f9475c0 KVM: x86: reorganize pvclock_gtod_data members
We will need a copy of tk->offs_boot in the next patch.  Store it and
cleanup the struct: instead of storing tk->tkr_xxx.base with the tk->offs_boot
included, store the raw value in struct pvclock_clock and sum it in
do_monotonic_raw and do_realtime.   tk->tkr_xxx.xtime_nsec also moves
to struct pvclock_clock.

While at it, fix a (usually harmless) typo in do_monotonic_raw, which
was using gtod->clock.shift instead of gtod->raw_clock.shift.

Fixes: 53fafdbb8b ("KVM: x86: switch KVMCLOCK base to monotonic raw clock")
Cc: stable@vger.kernel.org
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:45 +01:00
Suravee Suthikulpanit
f4fdc0a2ed kvm: x86: hyperv: Use APICv update request interface
Since disabling APICv has to be done for all vcpus on AMD-based
system, adopt the newly introduced kvm_request_apicv_update()
interface, and introduce a new APICV_INHIBIT_REASON_HYPERV.

Also, remove the kvm_vcpu_deactivate_apicv() since no longer used.

Cc: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:43 +01:00
Suravee Suthikulpanit
2de9d0ccd0 kvm: x86: Introduce x86 ops hook for pre-update APICv
AMD SVM AVIC needs to update APIC backing page mapping before changing
APICv mode. Introduce struct kvm_x86_ops.pre_update_apicv_exec_ctrl
function hook to be called prior KVM APICv update request to each vcpu.

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:42 +01:00
Suravee Suthikulpanit
ef8efd7a15 kvm: x86: Introduce APICv x86 ops for checking APIC inhibit reasons
Inibit reason bits are used to determine if APICv deactivation is
applicable for a particular hardware virtualization architecture.

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:42 +01:00
Suravee Suthikulpanit
24bbf74c0c kvm: x86: Add APICv (de)activate request trace points
Add trace points when sending request to (de)activate APICv.

Suggested-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:41 +01:00
Suravee Suthikulpanit
8df14af42f kvm: x86: Add support for dynamic APICv activation
Certain runtime conditions require APICv to be temporary deactivated
during runtime.  The current implementation only support run-time
deactivation of APICv when Hyper-V SynIC is enabled, which is not
temporary.

In addition, for AMD, when APICv is (de)activated at runtime,
all vcpus in the VM have to operate in the same mode.  Thus the
requesting vcpu must notify the others.

So, introduce the following:
 * A new KVM_REQ_APICV_UPDATE request bit
 * Interfaces to request all vcpus to update APICv status
 * A new interface to update APICV-related parameters for each vcpu

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:41 +01:00
Suravee Suthikulpanit
4e19c36f2d kvm: x86: Introduce APICv inhibit reason bits
There are several reasons in which a VM needs to deactivate APICv
e.g. disable APICv via parameter during module loading, or when
enable Hyper-V SynIC support. Additional inhibit reasons will be
introduced later on when dynamic APICv is supported,

Introduce KVM APICv inhibit reason bits along with a new variable,
apicv_inhibit_reasons, to help keep track of APICv state for each VM,

Initially, the APICV_INHIBIT_REASON_DISABLE bit is used to indicate
the case where APICv is disabled during KVM module load.
(e.g. insmod kvm_amd avic=0 or insmod kvm_intel enable_apicv=0).

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
[Do not use get_enable_apicv; consider irqchip_split in svm.c. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05 15:17:40 +01:00
Linus Torvalds
e813e65038 ARM: Cleanups and corner case fixes
PPC: Bugfixes
 
 x86:
 * Support for mapping DAX areas with large nested page table entries.
 * Cleanups and bugfixes here too.  A particularly important one is
 a fix for FPU load when the thread has TIF_NEED_FPU_LOAD.  There is
 also a race condition which could be used in guest userspace to exploit
 the guest kernel, for which the embargo expired today.
 * Fast path for IPI delivery vmexits, shaving about 200 clock cycles
 from IPI latency.
 * Protect against "Spectre-v1/L1TF" (bring data in the cache via
 speculative out of bound accesses, use L1TF on the sibling hyperthread
 to read it), which unfortunately is an even bigger whack-a-mole game
 than SpectreV1.
 
 Sean continues his mission to rewrite KVM.  In addition to a sizable
 number of x86 patches, this time he contributed a pretty large refactoring
 of vCPU creation that affects all architectures but should not have any
 visible effect.
 
 s390 will come next week together with some more x86 patches.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJeMxtCAAoJEL/70l94x66DQxIIAJv9hMmXLQHGFnUMskjGErR6
 DCLSC0YRdRMwE50CerblyJtGsMwGsPyHZwvZxoAceKJ9w0Yay9cyaoJ87ItBgHoY
 ce0HrqIUYqRSJ/F8WH2lSzkzMBr839rcmqw8p1tt4D5DIsYnxHGWwRaaP+5M/1KQ
 YKFu3Hea4L00U339iIuDkuA+xgz92LIbsn38svv5fxHhPAyWza0rDEYHNgzMKuoF
 IakLf5+RrBFAh6ZuhYWQQ44uxjb+uQa9pVmcqYzzTd5t1g4PV5uXtlJKesHoAvik
 Eba8IEUJn+HgQJjhp3YxQYuLeWOwRF3bwOiZ578MlJ4OPfYXMtbdlqCQANHOcGk=
 =H/q1
 -----END PGP SIGNATURE-----

Merge tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "This is the first batch of KVM changes.

  ARM:
   - cleanups and corner case fixes.

  PPC:
   - Bugfixes

  x86:
   - Support for mapping DAX areas with large nested page table entries.

   - Cleanups and bugfixes here too. A particularly important one is a
     fix for FPU load when the thread has TIF_NEED_FPU_LOAD. There is
     also a race condition which could be used in guest userspace to
     exploit the guest kernel, for which the embargo expired today.

   - Fast path for IPI delivery vmexits, shaving about 200 clock cycles
     from IPI latency.

   - Protect against "Spectre-v1/L1TF" (bring data in the cache via
     speculative out of bound accesses, use L1TF on the sibling
     hyperthread to read it), which unfortunately is an even bigger
     whack-a-mole game than SpectreV1.

  Sean continues his mission to rewrite KVM. In addition to a sizable
  number of x86 patches, this time he contributed a pretty large
  refactoring of vCPU creation that affects all architectures but should
  not have any visible effect.

  s390 will come next week together with some more x86 patches"

* tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
  x86/KVM: Clean up host's steal time structure
  x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed
  x86/kvm: Cache gfn to pfn translation
  x86/kvm: Introduce kvm_(un)map_gfn()
  x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bit
  KVM: PPC: Book3S PR: Fix -Werror=return-type build failure
  KVM: PPC: Book3S HV: Release lock on page-out failure path
  KVM: arm64: Treat emulated TVAL TimerValue as a signed 32-bit integer
  KVM: arm64: pmu: Only handle supported event counters
  KVM: arm64: pmu: Fix chained SW_INCR counters
  KVM: arm64: pmu: Don't mark a counter as chained if the odd one is disabled
  KVM: arm64: pmu: Don't increment SW_INCR if PMCR.E is unset
  KVM: x86: Use a typedef for fastop functions
  KVM: X86: Add 'else' to unify fastop and execute call path
  KVM: x86: inline memslot_valid_for_gpte
  KVM: x86/mmu: Use huge pages for DAX-backed files
  KVM: x86/mmu: Remove lpage_is_disallowed() check from set_spte()
  KVM: x86/mmu: Fold max_mapping_level() into kvm_mmu_hugepage_adjust()
  KVM: x86/mmu: Zap any compound page when collapsing sptes
  KVM: x86/mmu: Remove obsolete gfn restoration in FNAME(fetch)
  ...
2020-01-31 09:30:41 -08:00
Paolo Bonzini
4cbc418a44 Merge branch 'cve-2019-3016' into kvm-next-5.6
From Boris Ostrovsky:

The KVM hypervisor may provide a guest with ability to defer remote TLB
flush when the remote VCPU is not running. When this feature is used,
the TLB flush will happen only when the remote VPCU is scheduled to run
again. This will avoid unnecessary (and expensive) IPIs.

Under certain circumstances, when a guest initiates such deferred action,
the hypervisor may miss the request. It is also possible that the guest
may mistakenly assume that it has already marked remote VCPU as needing
a flush when in fact that request had already been processed by the
hypervisor. In both cases this will result in an invalid translation
being present in a vCPU, potentially allowing accesses to memory locations
in that guest's address space that should not be accessible.

Note that only intra-guest memory is vulnerable.

The five patches address both of these problems:
1. The first patch makes sure the hypervisor doesn't accidentally clear
a guest's remote flush request
2. The rest of the patches prevent the race between hypervisor
acknowledging a remote flush request and guest issuing a new one.

Conflicts:
	arch/x86/kvm/x86.c [move from kvm_arch_vcpu_free to kvm_arch_vcpu_destroy]
2020-01-30 18:47:59 +01:00
Boris Ostrovsky
a6bd811f12 x86/KVM: Clean up host's steal time structure
Now that we are mapping kvm_steal_time from the guest directly we
don't need keep a copy of it in kvm_vcpu_arch.st. The same is true
for the stime field.

This is part of CVE-2019-3016.

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-30 18:45:55 +01:00
Boris Ostrovsky
b043138246 x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed
There is a potential race in record_steal_time() between setting
host-local vcpu->arch.st.steal.preempted to zero (i.e. clearing
KVM_VCPU_PREEMPTED) and propagating this value to the guest with
kvm_write_guest_cached(). Between those two events the guest may
still see KVM_VCPU_PREEMPTED in its copy of kvm_steal_time, set
KVM_VCPU_FLUSH_TLB and assume that hypervisor will do the right
thing. Which it won't.

Instad of copying, we should map kvm_steal_time and that will
guarantee atomicity of accesses to @preempted.

This is part of CVE-2019-3016.

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-30 18:45:55 +01:00
Boris Ostrovsky
917248144d x86/kvm: Cache gfn to pfn translation
__kvm_map_gfn()'s call to gfn_to_pfn_memslot() is
* relatively expensive
* in certain cases (such as when done from atomic context) cannot be called

Stashing gfn-to-pfn mapping should help with both cases.

This is part of CVE-2019-3016.

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-30 18:45:55 +01:00
Boris Ostrovsky
8c6de56a42 x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bit
kvm_steal_time_set_preempted() may accidentally clear KVM_VCPU_FLUSH_TLB
bit if it is called more than once while VCPU is preempted.

This is part of CVE-2019-3016.

(This bug was also independently discovered by Jim Mattson
<jmattson@google.com>)

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-30 18:45:54 +01:00
Peng Hao
4d6d07aee8 kvm/x86: export kvm_vector_hashing_enabled() is unnecessary
kvm_vector_hashing_enabled() is just called in kvm.ko module.

Signed-off-by: Peng Hao <richard.peng@oppo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:58 +01:00
Krish Sadhukhan
b91991bf6b KVM: nVMX: Check GUEST_DR7 on vmentry of nested guests
According to section "Checks on Guest Control Registers, Debug Registers, and
and MSRs" in Intel SDM vol 3C, the following checks are performed on vmentry
of nested guests:

    If the "load debug controls" VM-entry control is 1, bits 63:32 in the DR7
    field must be 0.

In KVM, GUEST_DR7 is set prior to the vmcs02 VM-entry by kvm_set_dr() and the
latter synthesizes a #GP if any bit in the high dword in the former is set.
Hence this field needs to be checked in software.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:55 +01:00
Peter Xu
6a3c623ba8 KVM: X86: Drop x86_set_memory_region()
The helper x86_set_memory_region() is only used in vmx_set_tss_addr()
and kvm_arch_destroy_vm().  Push the lock upper in both cases.  With
that, drop x86_set_memory_region().

This prepares to allow __x86_set_memory_region() to return a HVA
mapped, because the HVA will need to be protected by the lock too even
after __x86_set_memory_region() returns.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:53 +01:00
Sean Christopherson
2620fe268e KVM: x86: Revert "KVM: X86: Fix fpu state crash in kvm guest"
Reload the current thread's FPU state, which contains the guest's FPU
state, to the CPU registers if necessary during vcpu_enter_guest().
TIF_NEED_FPU_LOAD can be set any time control is transferred out of KVM,
e.g. if I/O is triggered during a KVM call to get_user_pages() or if a
softirq occurs while KVM is scheduled in.

Moving the handling of TIF_NEED_FPU_LOAD from vcpu_enter_guest() to
kvm_arch_vcpu_load(), effectively kvm_sched_in(), papered over a bug
where kvm_put_guest_fpu() failed to account for TIF_NEED_FPU_LOAD.  The
easiest way to the kvm_put_guest_fpu() bug was to run with involuntary
preemption enable, thus handling TIF_NEED_FPU_LOAD during kvm_sched_in()
made the bug go away.  But, removing the handling in vcpu_enter_guest()
exposed KVM to the rare case of a softirq triggering kernel_fpu_begin()
between vcpu_load() and vcpu_enter_guest().

Now that kvm_{load,put}_guest_fpu() correctly handle TIF_NEED_FPU_LOAD,
revert the commit to both restore the vcpu_enter_guest() behavior and
eliminate the superfluous switch_fpu_return() in kvm_arch_vcpu_load().

Note, leaving the handling in kvm_arch_vcpu_load() isn't wrong per se,
but it is unnecessary, and most critically, makes it extremely difficult
to find bugs such as the kvm_put_guest_fpu() issue due to shrinking the
window where a softirq can corrupt state.

A sample trace triggered by warning if TIF_NEED_FPU_LOAD is set while
vcpu state is loaded:

 <IRQ>
  gcmaes_crypt_by_sg.constprop.12+0x26e/0x660
  ? 0xffffffffc024547d
  ? __qdisc_run+0x83/0x510
  ? __dev_queue_xmit+0x45e/0x990
  ? ip_finish_output2+0x1a8/0x570
  ? fib4_rule_action+0x61/0x70
  ? fib4_rule_action+0x70/0x70
  ? fib_rules_lookup+0x13f/0x1c0
  ? helper_rfc4106_decrypt+0x82/0xa0
  ? crypto_aead_decrypt+0x40/0x70
  ? crypto_aead_decrypt+0x40/0x70
  ? crypto_aead_decrypt+0x40/0x70
  ? esp_output_tail+0x8f4/0xa5a [esp4]
  ? skb_ext_add+0xd3/0x170
  ? xfrm_input+0x7a6/0x12c0
  ? xfrm4_rcv_encap+0xae/0xd0
  ? xfrm4_transport_finish+0x200/0x200
  ? udp_queue_rcv_one_skb+0x1ba/0x460
  ? udp_unicast_rcv_skb.isra.63+0x72/0x90
  ? __udp4_lib_rcv+0x51b/0xb00
  ? ip_protocol_deliver_rcu+0xd2/0x1c0
  ? ip_local_deliver_finish+0x44/0x50
  ? ip_local_deliver+0xe0/0xf0
  ? ip_protocol_deliver_rcu+0x1c0/0x1c0
  ? ip_rcv+0xbc/0xd0
  ? ip_rcv_finish_core.isra.19+0x380/0x380
  ? __netif_receive_skb_one_core+0x7e/0x90
  ? netif_receive_skb_internal+0x3d/0xb0
  ? napi_gro_receive+0xed/0x150
  ? 0xffffffffc0243c77
  ? net_rx_action+0x149/0x3b0
  ? __do_softirq+0xe4/0x2f8
  ? handle_irq_event_percpu+0x6a/0x80
  ? irq_exit+0xe6/0xf0
  ? do_IRQ+0x7f/0xd0
  ? common_interrupt+0xf/0xf
  </IRQ>
  ? irq_entries_start+0x20/0x660
  ? vmx_get_interrupt_shadow+0x2f0/0x710 [kvm_intel]
  ? kvm_set_msr_common+0xfc7/0x2380 [kvm]
  ? recalibrate_cpu_khz+0x10/0x10
  ? ktime_get+0x3a/0xa0
  ? kvm_arch_vcpu_ioctl_run+0x107/0x560 [kvm]
  ? kvm_init+0x6bf/0xd00 [kvm]
  ? __seccomp_filter+0x7a/0x680
  ? do_vfs_ioctl+0xa4/0x630
  ? security_file_ioctl+0x32/0x50
  ? ksys_ioctl+0x60/0x90
  ? __x64_sys_ioctl+0x16/0x20
  ? do_syscall_64+0x5f/0x1a0
  ? entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 9564a1ccad733a90 ]---

This reverts commit e751732486.

Fixes: e751732486 ("KVM: X86: Fix fpu state crash in kvm guest")
Reported-by: Derek Yerger <derek@djy.llc>
Reported-by: kernel@najdan.com
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Thomas Lambertz <mail@thomaslambertz.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:48 +01:00
Sean Christopherson
c9aef3b85f KVM: x86: Handle TIF_NEED_FPU_LOAD in kvm_{load,put}_guest_fpu()
Handle TIF_NEED_FPU_LOAD similar to how fpu__copy() handles the flag
when duplicating FPU state to a new task struct.  TIF_NEED_FPU_LOAD can
be set any time control is transferred out of KVM, be it voluntarily,
e.g. if I/O is triggered during a KVM call to get_user_pages, or
involuntarily, e.g. if softirq runs after an IRQ occurs.  Therefore,
KVM must account for TIF_NEED_FPU_LOAD whenever it is (potentially)
accessing CPU FPU state.

Fixes: 5f409e20b7 ("x86/fpu: Defer FPU state load until return to userspace")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:46 +01:00
Paolo Bonzini
3911b65ee1 Revert "KVM: x86: Add a WARN on TIF_NEED_FPU_LOAD in kvm_load_guest_fpu()"
This reverts commit 95145c25a7.
The next few patches will fix the issue so the warning is not
needed anymore; revert it separately to simplify application to
stable kernels.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:46 +01:00
Miaohe Lin
767b839afa KVM: x86: avoid clearing pending exception event twice
The exception pending event is cleared by kvm_clear_exception_queue(). We
shouldn't clear it again.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:44 +01:00
Marios Pomonis
ea740059ec KVM: x86: Protect DR-based index computations from Spectre-v1/L1TF attacks
This fixes a Spectre-v1/L1TF vulnerability in __kvm_set_dr() and
kvm_get_dr().
Both kvm_get_dr() and kvm_set_dr() (a wrapper of __kvm_set_dr()) are
exported symbols so KVM should tream them conservatively from a security
perspective.

Fixes: 020df0794f ("KVM: move DR register access handling into generic code")

Signed-off-by: Nick Finco <nifi@google.com>
Signed-off-by: Marios Pomonis <pomonis@google.com>
Reviewed-by: Andrew Honig <ahonig@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:43 +01:00
Marios Pomonis
6ec4c5eee1 KVM: x86: Protect MSR-based index computations from Spectre-v1/L1TF attacks in x86.c
This fixes a Spectre-v1/L1TF vulnerability in set_msr_mce() and
get_msr_mce().
Both functions contain index computations based on the
(attacker-controlled) MSR number.

Fixes: 890ca9aefa ("KVM: Add MCE support")

Signed-off-by: Nick Finco <nifi@google.com>
Signed-off-by: Marios Pomonis <pomonis@google.com>
Reviewed-by: Andrew Honig <ahonig@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:41 +01:00
Sean Christopherson
ddd259c9aa KVM: Drop kvm_arch_vcpu_init() and kvm_arch_vcpu_uninit()
Remove kvm_arch_vcpu_init() and kvm_arch_vcpu_uninit() now that all
arch specific implementations are nops.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:33 +01:00
Sean Christopherson
95a0d01eef KVM: x86: Move all vcpu init code into kvm_arch_vcpu_create()
Fold init() into create() now that the two are called back-to-back by
common KVM code (kvm_vcpu_init() calls kvm_arch_vcpu_init() as its last
action, and kvm_vm_ioctl_create_vcpu() calls kvm_arch_vcpu_create()
immediately thereafter).  This paves the way for removing
kvm_arch_vcpu_init() entirely.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:29 +01:00
Sean Christopherson
afede96df5 KVM: Drop kvm_arch_vcpu_setup()
Remove kvm_arch_vcpu_setup() now that all arch specific implementations
are nops.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:28 +01:00
Sean Christopherson
5f73db112e KVM: x86: Move guts of kvm_arch_vcpu_setup() into kvm_arch_vcpu_create()
Fold setup() into create() now that the two are called back-to-back by
common KVM code.  This paves the way for removing kvm_arch_vcpu_setup().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:25 +01:00
Sean Christopherson
e529ef66e6 KVM: Move vcpu alloc and init invocation to common code
Now that all architectures tightly couple vcpu allocation/free with the
mandatory calls to kvm_{un}init_vcpu(), move the sequences verbatim to
common KVM code.

Move both allocation and initialization in a single patch to eliminate
thrash in arch specific code.  The bisection benefits of moving the two
pieces in separate patches is marginal at best, whereas the odds of
introducing a transient arch specific bug are non-zero.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27 19:59:20 +01:00
Sean Christopherson
4543bdc088 KVM: Introduce kvm_vcpu_destroy()
Add kvm_vcpu_destroy() and wire up all architectures to call the common
function instead of their arch specific implementation.  The common
destruction function will be used by future patches to move allocation
and initialization of vCPUs to common KVM code, i.e. to free resources
that are allocated by arch agnostic code.

No functional change intended.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:19:11 +01:00
Sean Christopherson
d2423b347d KVM: x86: Invoke kvm_vcpu_uninit() immediately prior to freeing vcpu
Move the call to kvm_vcpu_uninit() in kvm_arch_vcpu_destroy() down a few
lines so that it is invoked immediately prior to freeing the vCPU.  This
paves the way for moving the uninit and free sequence to common KVM code
without an associated functional change.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:19:10 +01:00
Sean Christopherson
897cc38eaa KVM: Add kvm_arch_vcpu_precreate() to handle pre-allocation issues
Add a pre-allocation arch hook to handle checks that are currently done
by arch specific code prior to allocating the vCPU object.  This paves
the way for moving the allocation to common KVM code.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:19:07 +01:00
Sean Christopherson
50b143e1b3 KVM: x86: Drop kvm_arch_vcpu_free()
Remove the superfluous kvm_arch_vcpu_free() as it is no longer called
from commmon KVM code.  Note, kvm_arch_vcpu_destroy() *is* called from
common code, i.e. choosing which function to whack is not completely
arbitrary.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:19:06 +01:00
Sean Christopherson
208050dac5 KVM: x86: Remove spurious clearing of async #PF MSR
Remove a bogus clearing of apf.msr_val from kvm_arch_vcpu_destroy().

apf.msr_val is only set to a non-zero value by kvm_pv_enable_async_pf(),
which is only reachable by kvm_set_msr_common(), i.e. by writing
MSR_KVM_ASYNC_PF_EN.  KVM does not autonomously write said MSR, i.e.
can only be written via KVM_SET_MSRS or KVM_RUN.  Since KVM_SET_MSRS and
KVM_RUN are vcpu ioctls, they require a valid vcpu file descriptor.
kvm_arch_vcpu_destroy() is only called if KVM_CREATE_VCPU fails, and KVM
declares KVM_CREATE_VCPU successful once the vcpu fd is installed and
thus visible to userspace.  Ergo, apf.msr_val cannot be non-zero when
kvm_arch_vcpu_destroy() is called.

Fixes: 344d9588a9 ("KVM: Add PV MSR to enable asynchronous page faults delivery.")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:19:05 +01:00
Sean Christopherson
9d979c7e6f KVM: x86: Remove spurious kvm_mmu_unload() from vcpu destruction path
x86 does not load its MMU until KVM_RUN, which cannot be invoked until
after vCPU creation succeeds.  Given that kvm_arch_vcpu_destroy() is
called if and only if vCPU creation fails, it is impossible for the MMU
to be loaded.

Note, the bogus kvm_mmu_unload() call was added during an unrelated
refactoring of vCPU allocation, i.e. was presumably added as an
opportunstic "fix" for a perceived leak.

Fixes: fb3f0f51d9 ("KVM: Dynamically allocate vcpus")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:19:04 +01:00
Sean Christopherson
987b2594ed KVM: x86: Move kvm_vcpu_init() invocation to common code
Move the kvm_cpu_{un}init() calls to common x86 code as an intermediate
step to removing kvm_cpu_{un}init() altogether.

Note, VMX'x alloc_apic_access_page() and init_rmode_identity_map() are
per-VM allocations and are intentionally kept if vCPU creation fails.
They are freed by kvm_arch_destroy_vm().

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:57 +01:00
Sean Christopherson
d813a8ba54 KVM: x86: Move allocation of pio_data page down a few lines
Allocate the pio_data page after creating the MMU and local APIC so that
all direct memory allocations are grouped together.  This allows setting
the return value to -ENOMEM prior to starting the allocations instead of
setting it in the fail path for every allocation.

The pio_data page is only consumed when KVM_RUN is invoked, i.e. moving
its allocation has no real functional impact.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:57 +01:00
Sean Christopherson
fc6e2a1845 KVM: x86: Move FPU allocation to common x86 code
The allocation of FPU structs is identical across VMX and SVM, move it
to common x86 code.  Somewhat arbitrarily place the allocation so that
it resides directly above the associated initialization via fx_init(),
e.g. instead of retaining its position with respect to the overall vcpu
creation flow.  Although the names names kvm_arch_vcpu_create() and
kvm_arch_vcpu_init() might suggest otherwise, x86 does not have a clean
split between 'create' and 'init'.  Allocating the struct immediately
prior to the first use arguably improves readability *now*, and will
yield even bigger improvements when kvm_arch_vcpu_init() is removed in
a future patch.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:56 +01:00
Sean Christopherson
a9dd6f09d7 KVM: x86: Allocate vcpu struct in common x86 code
Move allocation of VMX and SVM vcpus to common x86.  Although the struct
being allocated is technically a VMX/SVM struct, it can be interpreted
directly as a 'struct kvm_vcpu' because of the pre-existing requirement
that 'struct kvm_vcpu' be located at offset zero of the arch/vendor vcpu
struct.

Remove the message from the build-time assertions regarding placement of
the struct, as compatibility with the arch usercopy region is no longer
the sole dependent on 'struct kvm_vcpu' being at offset zero.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:55 +01:00
Sean Christopherson
16be9ddea2 KVM: x86: Free wbinvd_dirty_mask if vCPU creation fails
Free the vCPU's wbinvd_dirty_mask if vCPU creation fails after
kvm_arch_vcpu_init(), e.g. when installing the vCPU's file descriptor.
Do the freeing by calling kvm_arch_vcpu_free() instead of open coding
the freeing.  This adds a likely superfluous, but ultimately harmless,
call to kvmclock_reset(), which only clears vcpu->arch.pv_time_enabled.
Using kvm_arch_vcpu_free() allows for additional cleanup in the future.

Fixes: f5f48ee15c ("KVM: VMX: Execute WBINVD to keep data consistency with assigned devices")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:52 +01:00
Paolo Bonzini
6441fa6178 KVM: x86: avoid incorrect writes to host MSR_IA32_SPEC_CTRL
If the guest is configured to have SPEC_CTRL but the host does not
(which is a nonsensical configuration but these are not explicitly
forbidden) then a host-initiated MSR write can write vmx->spec_ctrl
(respectively svm->spec_ctrl) and trigger a #GP when KVM tries to
restore the host value of the MSR.  Add a more comprehensive check
for valid bits of SPEC_CTRL, covering host CPUID flags and,
since we are at it and it is more correct that way, guest CPUID
flags too.

For AMD, remove the unnecessary is_guest_mode check around setting
the MSR interception bitmap, so that the code looks the same as
for Intel.

Cc: Jim Mattson <jmattson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 09:18:47 +01:00
Paolo Bonzini
99634e3ec0 KVM: x86: list MSR_IA32_UCODE_REV as an emulated MSR
Even if it's read-only, it can still be written to by userspace.  Let
them know by adding it to KVM_GET_MSR_INDEX_LIST.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-23 09:51:07 +01:00
Sean Christopherson
87382003e3 KVM: x86: Refactor and rename bit() to feature_bit() macro
Rename bit() to __feature_bit() to give it a more descriptive name, and
add a macro, feature_bit(), to stuff the X68_FEATURE_ prefix to keep
line lengths manageable for code that hardcodes the bit to be retrieved.

No functional change intended.

Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 14:45:28 +01:00
Sean Christopherson
5ae78e95ed KVM: x86: Add dedicated emulator helpers for querying CPUID features
Add feature-specific helpers for querying guest CPUID support from the
emulator instead of having the emulator do a full CPUID and perform its
own bit tests.  The primary motivation is to eliminate the emulator's
usage of bit() so that future patches can add more extensive build-time
assertions on the usage of bit() without having to expose yet more code
to the emulator.

Note, providing a generic guest_cpuid_has() to the emulator doesn't work
due to the existing built-time assertions in guest_cpuid_has(), which
require the feature being checked to be a compile-time constant.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:22 +01:00
Sean Christopherson
345599f9a2 KVM: x86: Add macro to ensure reserved cr4 bits checks stay in sync
Add a helper macro to generate the set of reserved cr4 bits for both
host and guest to ensure that adding a check on guest capabilities is
also added for host capabilities, and vice versa.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:16 +01:00
Sean Christopherson
f1cdecf580 KVM: x86: Ensure all logical CPUs have consistent reserved cr4 bits
Check the current CPU's reserved cr4 bits against the mask calculated
for the boot CPU to ensure consistent behavior across all CPUs.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:58:05 +01:00
Sean Christopherson
b11306b53b KVM: x86: Don't let userspace set host-reserved cr4 bits
Calculate the host-reserved cr4 bits at runtime based on the system's
capabilities (using logic similar to __do_cpuid_func()), and use the
dynamically generated mask for the reserved bit check in kvm_set_cr4()
instead using of the static CR4_RESERVED_BITS define.  This prevents
userspace from "enabling" features in cr4 that are not supported by the
system, e.g. by ignoring KVM_GET_SUPPORTED_CPUID and specifying a bogus
CPUID for the vCPU.

Allowing userspace to set unsupported bits in cr4 can lead to a variety
of undesirable behavior, e.g. failed VM-Enter, and in general increases
KVM's attack surface.  A crafty userspace can even abuse CR4.LA57 to
induce an unchecked #GP on a WRMSR.

On a platform without LA57 support:

  KVM_SET_CPUID2 // CPUID_7_0_ECX.LA57 = 1
  KVM_SET_SREGS  // CR4.LA57 = 1
  KVM_SET_MSRS   // KERNEL_GS_BASE = 0x0004000000000000
  KVM_RUN

leads to a #GP when writing KERNEL_GS_BASE into hardware:

  unchecked MSR access error: WRMSR to 0xc0000102 (tried to write 0x0004000000000000)
  at rIP: 0xffffffffa00f239a (vmx_prepare_switch_to_guest+0x10a/0x1d0 [kvm_intel])
  Call Trace:
   kvm_arch_vcpu_ioctl_run+0x671/0x1c70 [kvm]
   kvm_vcpu_ioctl+0x36b/0x5d0 [kvm]
   do_vfs_ioctl+0xa1/0x620
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x4c/0x170
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7fc08133bf47

Note, the above sequence fails VM-Enter due to invalid guest state.
Userspace can allow VM-Enter to succeed (after the WRMSR #GP) by adding
a KVM_SET_SREGS w/ CR4.LA57=0 after KVM_SET_MSRS, in which case KVM will
technically leak the host's KERNEL_GS_BASE into the guest.  But, as
KERNEL_GS_BASE is a userspace-defined value/address, the leak is largely
benign as a malicious userspace would simply be exposing its own data to
the guest, and attacking a benevolent userspace would require multiple
bugs in the userspace VMM.

Cc: stable@vger.kernel.org
Cc: Jun Nakajima <jun.nakajima@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:59 +01:00
Miaohe Lin
cad23e72b7 KVM: x86: check kvm_pit outside kvm_vm_ioctl_reinject()
check kvm_pit outside kvm_vm_ioctl_reinject() to keep codestyle consistent
with other kvm_pit func and prepare for futher cleanups.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:18 +01:00
Wanpeng Li
1e9e2622a1 KVM: VMX: FIXED+PHYSICAL mode single target IPI fastpath
ICR and TSCDEADLINE MSRs write cause the main MSRs write vmexits in our
product observation, multicast IPIs are not as common as unicast IPI like
RESCHEDULE_VECTOR and CALL_FUNCTION_SINGLE_VECTOR etc.

This patch introduce a mechanism to handle certain performance-critical
WRMSRs in a very early stage of KVM VMExit handler.

This mechanism is specifically used for accelerating writes to x2APIC ICR
that attempt to send a virtual IPI with physical destination-mode, fixed
delivery-mode and single target. Which was found as one of the main causes
of VMExits for Linux workloads.

The reason this mechanism significantly reduce the latency of such virtual
IPIs is by sending the physical IPI to the target vCPU in a very early stage
of KVM VMExit handler, before host interrupts are enabled and before expensive
operations such as reacquiring KVM’s SRCU lock.
Latency is reduced even more when KVM is able to use APICv posted-interrupt
mechanism (which allows to deliver the virtual IPI directly to target vCPU
without the need to kick it to host).

Testing on Xeon Skylake server:

The virtual IPI latency from sender send to receiver receive reduces
more than 200+ cpu cycles.

Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21 13:57:12 +01:00
Sean Christopherson
32ad73db7f x86/msr-index: Clean up bit defines for IA32_FEATURE_CONTROL MSR
As pointed out by Boris, the defines for bits in IA32_FEATURE_CONTROL
are quite a mouthful, especially the VMX bits which must differentiate
between enabling VMX inside and outside SMX (TXT) operation.  Rename the
MSR and its bit defines to abbreviate FEATURE_CONTROL as FEAT_CTL to
make them a little friendlier on the eyes.

Arguably, the MSR itself should keep the full IA32_FEATURE_CONTROL name
to match Intel's SDM, but a future patch will add a dedicated Kconfig,
file and functions for the MSR. Using the full name for those assets is
rather unwieldy, so bite the bullet and use IA32_FEAT_CTL so that its
nomenclature is consistent throughout the kernel.

Opportunistically, fix a few other annoyances with the defines:

  - Relocate the bit defines so that they immediately follow the MSR
    define, e.g. aren't mistaken as belonging to MISC_FEATURE_CONTROL.
  - Add whitespace around the block of feature control defines to make
    it clear they're all related.
  - Use BIT() instead of manually encoding the bit shift.
  - Use "VMX" instead of "VMXON" to match the SDM.
  - Append "_ENABLED" to the LMCE (Local Machine Check Exception) bit to
    be consistent with the kernel's verbiage used for all other feature
    control bits.  Note, the SDM refers to the LMCE bit as LMCE_ON,
    likely to differentiate it from IA32_MCG_EXT_CTL.LMCE_EN.  Ignore
    the (literal) one-off usage of _ON, the SDM is simply "wrong".

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-2-sean.j.christopherson@intel.com
2020-01-13 17:23:08 +01:00
Sean Christopherson
736c291c9f KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM
Convert a plethora of parameters and variables in the MMU and page fault
flows from type gva_t to gpa_t to properly handle TDP on 32-bit KVM.

Thanks to PSE and PAE paging, 32-bit kernels can access 64-bit physical
addresses.  When TDP is enabled, the fault address is a guest physical
address and thus can be a 64-bit value, even when both KVM and its guest
are using 32-bit virtual addressing, e.g. VMX's VMCS.GUEST_PHYSICAL is a
64-bit field, not a natural width field.

Using a gva_t for the fault address means KVM will incorrectly drop the
upper 32-bits of the GPA.  Ditto for gva_to_gpa() when it is used to
translate L2 GPAs to L1 GPAs.

Opportunistically rename variables and parameters to better reflect the
dual address modes, e.g. use "cr2_or_gpa" for fault addresses and plain
"addr" instead of "vaddr" when the address may be either a GVA or an L2
GPA.  Similarly, use "gpa" in the nonpaging_page_fault() flows to avoid
a confusing "gpa_t gva" declaration; this also sets the stage for a
future patch to combing nonpaging_page_fault() and tdp_page_fault() with
minimal churn.

Sprinkle in a few comments to document flows where an address is known
to be a GVA and thus can be safely truncated to a 32-bit value.  Add
WARNs in kvm_handle_page_fault() and FNAME(gva_to_gpa_nested)() to help
document such cases and detect bugs.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:02 +01:00
Sean Christopherson
95145c25a7 KVM: x86: Add a WARN on TIF_NEED_FPU_LOAD in kvm_load_guest_fpu()
WARN once in kvm_load_guest_fpu() if TIF_NEED_FPU_LOAD is observed, as
that would mean that KVM is corrupting userspace's FPU by saving
unknown register state into arch.user_fpu.  Add a comment to explain
why KVM WARNs on TIF_NEED_FPU_LOAD instead of implementing logic
similar to fpu__copy().

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:02 +01:00
Sean Christopherson
f958bd2314 KVM: x86: Fix potential put_fpu() w/o load_fpu() on MPX platform
Unlike most state managed by XSAVE, MPX is initialized to zero on INIT.
Because INITs are usually recognized in the context of a VCPU_RUN call,
kvm_vcpu_reset() puts the guest's FPU so that the FPU state is resident
in memory, zeros the MPX state, and reloads FPU state to hardware.  But,
in the unlikely event that an INIT is recognized during
kvm_arch_vcpu_ioctl_get_mpstate() via kvm_apic_accept_events(),
kvm_vcpu_reset() will call kvm_put_guest_fpu() without a preceding
kvm_load_guest_fpu() and corrupt the guest's FPU state (and possibly
userspace's FPU state as well).

Given that MPX is being removed from the kernel[*], fix the bug with the
simple-but-ugly approach of loading the guest's FPU during
KVM_GET_MP_STATE.

[*] See commit f240652b60 ("x86/mpx: Remove MPX APIs").

Fixes: f775b13eed ("x86,kvm: move qemu/guest FPU switching out to vcpu_run")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:16:01 +01:00
Miaohe Lin
0a03cbdac1 KVM: x86: Fix some comment typos
Fix some typos in comment.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 18:15:58 +01:00
Peter Xu
150a84fee8 KVM: X86: Convert the last users of "shorthand = 0" to use macros
Change the last users of "shorthand = 0" to use APIC_DEST_NOSHORT.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 17:33:16 +01:00
Peter Xu
c96001c570 KVM: X86: Use APIC_DEST_* macros properly in kvm_lapic_irq.dest_mode
We were using either APIC_DEST_PHYSICAL|APIC_DEST_LOGICAL or 0|1 to
fill in kvm_lapic_irq.dest_mode.  It's fine only because in most cases
when we check against dest_mode it's against APIC_DEST_PHYSICAL (which
equals to 0).  However, that's not consistent.  We'll have problem
when we want to start checking against APIC_DEST_LOGICAL, which does
not equals to 1.

This patch firstly introduces kvm_lapic_irq_dest_mode() helper to take
any boolean of destination mode and return the APIC_DEST_* macro.
Then, it replaces the 0|1 settings of irq.dest_mode with the helper.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08 17:33:14 +01:00
Linus Torvalds
3f59dbcace Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
 "The main kernel side changes in this cycle were:

   - Various Intel-PT updates and optimizations (Alexander Shishkin)

   - Prohibit kprobes on Xen/KVM emulate prefixes (Masami Hiramatsu)

   - Add support for LSM and SELinux checks to control access to the
     perf syscall (Joel Fernandes)

   - Misc other changes, optimizations, fixes and cleanups - see the
     shortlog for details.

  There were numerous tooling changes as well - 254 non-merge commits.
  Here are the main changes - too many to list in detail:

   - Enhancements to core tooling infrastructure, perf.data, libperf,
     libtraceevent, event parsing, vendor events, Intel PT, callchains,
     BPF support and instruction decoding.

   - There were updates to the following tools:

        perf annotate
        perf diff
        perf inject
        perf kvm
        perf list
        perf maps
        perf parse
        perf probe
        perf record
        perf report
        perf script
        perf stat
        perf test
        perf trace

   - And a lot of other changes: please see the shortlog and Git log for
     more details"

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (279 commits)
  perf parse: Fix potential memory leak when handling tracepoint errors
  perf probe: Fix spelling mistake "addrees" -> "address"
  libtraceevent: Fix memory leakage in copy_filter_type
  libtraceevent: Fix header installation
  perf intel-bts: Does not support AUX area sampling
  perf intel-pt: Add support for decoding AUX area samples
  perf intel-pt: Add support for recording AUX area samples
  perf pmu: When using default config, record which bits of config were changed by the user
  perf auxtrace: Add support for queuing AUX area samples
  perf session: Add facility to peek at all events
  perf auxtrace: Add support for dumping AUX area samples
  perf inject: Cut AUX area samples
  perf record: Add aux-sample-size config term
  perf record: Add support for AUX area sampling
  perf auxtrace: Add support for AUX area sample recording
  perf auxtrace: Move perf_evsel__find_pmu()
  perf record: Add a function to test for kernel support for AUX area sampling
  perf tools: Add kernel AUX area sampling definitions
  perf/core: Make the mlock accounting simple again
  perf report: Jump to symbol source view from total cycles view
  ...
2019-11-26 15:04:47 -08:00
Ingo Molnar
ceb9e77324 Merge branch 'x86/core' into perf/core, to resolve conflicts and to pick up completed topic tree
Conflicts:
	tools/perf/check-headers.sh

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-25 09:09:27 +01:00
Sean Christopherson
ad5996d9a0 KVM: x86: Grab KVM's srcu lock when setting nested state
Acquire kvm->srcu for the duration of ->set_nested_state() to fix a bug
where nVMX derefences ->memslots without holding ->srcu or ->slots_lock.

The other half of nested migration, ->get_nested_state(), does not need
to acquire ->srcu as it is a purely a dump of internal KVM (and CPU)
state to userspace.

Detected as an RCU lockdep splat that is 100% reproducible by running
KVM's state_test selftest with CONFIG_PROVE_LOCKING=y.  Note that the
failing function, kvm_is_visible_gfn(), is only checking the validity of
a gfn, it's not actually accessing guest memory (which is more or less
unsupported during vmx_set_nested_state() due to incorrect MMU state),
i.e. vmx_set_nested_state() itself isn't fundamentally broken.  In any
case, setting nested state isn't a fast path so there's no reason to go
out of our way to avoid taking ->srcu.

  =============================
  WARNING: suspicious RCU usage
  5.4.0-rc7+ #94 Not tainted
  -----------------------------
  include/linux/kvm_host.h:626 suspicious rcu_dereference_check() usage!

               other info that might help us debug this:

  rcu_scheduler_active = 2, debug_locks = 1
  1 lock held by evmcs_test/10939:
   #0: ffff88826ffcb800 (&vcpu->mutex){+.+.}, at: kvm_vcpu_ioctl+0x85/0x630 [kvm]

  stack backtrace:
  CPU: 1 PID: 10939 Comm: evmcs_test Not tainted 5.4.0-rc7+ #94
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Call Trace:
   dump_stack+0x68/0x9b
   kvm_is_visible_gfn+0x179/0x180 [kvm]
   mmu_check_root+0x11/0x30 [kvm]
   fast_cr3_switch+0x40/0x120 [kvm]
   kvm_mmu_new_cr3+0x34/0x60 [kvm]
   nested_vmx_load_cr3+0xbd/0x1f0 [kvm_intel]
   nested_vmx_enter_non_root_mode+0xab8/0x1d60 [kvm_intel]
   vmx_set_nested_state+0x256/0x340 [kvm_intel]
   kvm_arch_vcpu_ioctl+0x491/0x11a0 [kvm]
   kvm_vcpu_ioctl+0xde/0x630 [kvm]
   do_vfs_ioctl+0xa2/0x6c0
   ksys_ioctl+0x66/0x70
   __x64_sys_ioctl+0x16/0x20
   do_syscall_64+0x54/0x200
   entry_SYSCALL_64_after_hwframe+0x49/0xbe
  RIP: 0033:0x7f59a2b95f47

Fixes: 8fcc4b5923 ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-23 11:30:15 +01:00
Sean Christopherson
05c19c2fe1 KVM: x86: Open code shared_msr_update() in its only caller
Fold shared_msr_update() into its sole user to eliminate its pointless
bounds check, its godawful printk, its misleading comment (it's called
under a global lock), and its woefully inaccurate name.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-23 11:29:38 +01:00
Sean Christopherson
24885d1d79 KVM: x86: Remove a spurious export of a static function
A recent change inadvertently exported a static function, which results
in modpost throwing a warning.  Fix it.

Fixes: cbbaa2727a ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-23 11:28:59 +01:00
Mao Wenan
db5a95ec16 KVM: x86: remove set but not used variable 'called'
Fixes gcc '-Wunused-but-set-variable' warning:

arch/x86/kvm/x86.c: In function kvm_make_scan_ioapic_request_mask:
arch/x86/kvm/x86.c:7911:7: warning: variable called set but not
used [-Wunused-but-set-variable]

It is not used since commit 7ee30bc132 ("KVM: x86: deliver KVM
IOAPIC scan request to target vCPUs")

Signed-off-by: Mao Wenan <maowenan@huawei.com>
Fixes: 7ee30bc132 ("KVM: x86: deliver KVM IOAPIC scan request to target vCPUs")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-21 12:03:49 +01:00
Paolo Bonzini
46f4f0aabc Merge branch 'kvm-tsx-ctrl' into HEAD
Conflicts:
	arch/x86/kvm/vmx/vmx.c
2019-11-21 12:03:40 +01:00
Paolo Bonzini
c11f83e062 KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionality
The current guest mitigation of TAA is both too heavy and not really
sufficient.  It is too heavy because it will cause some affected CPUs
(those that have MDS_NO but lack TAA_NO) to fall back to VERW and
get the corresponding slowdown.  It is not really sufficient because
it will cause the MDS_NO bit to disappear upon microcode update, so
that VMs started before the microcode update will not be runnable
anymore afterwards, even with tsx=on.

Instead, if tsx=on on the host, we can emulate MSR_IA32_TSX_CTRL for
the guest and let it run without the VERW mitigation.  Even though
MSR_IA32_TSX_CTRL is quite heavyweight, and we do not want to write
it on every vmentry, we can use the shared MSR functionality because
the host kernel need not protect itself from TSX-based side-channels.

Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-21 10:00:59 +01:00
Paolo Bonzini
edef5c36b0 KVM: x86: implement MSR_IA32_TSX_CTRL effect on CPUID
Because KVM always emulates CPUID, the CPUID clear bit
(bit 1) of MSR_IA32_TSX_CTRL must be emulated "manually"
by the hypervisor when performing said emulation.

Right now neither kvm-intel.ko nor kvm-amd.ko implement
MSR_IA32_TSX_CTRL but this will change in the next patch.

Reviewed-by: Jim Mattson <jmattson@google.com>
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-21 09:59:31 +01:00
Paolo Bonzini
de1fca5d6e KVM: x86: do not modify masked bits of shared MSRs
"Shared MSRs" are guest MSRs that are written to the host MSRs but
keep their value until the next return to userspace.  They support
a mask, so that some bits keep the host value, but this mask is
only used to skip an unnecessary MSR write and the value written
to the MSR is always the guest MSR.

Fix this and, while at it, do not update smsr->values[slot].curr if
for whatever reason the wrmsr fails.  This should only happen due to
reserved bits, so the value written to smsr->values[slot].curr
will not match when the user-return notifier and the host value will
always be restored.  However, it is untidy and in rare cases this
can actually avoid spurious WRMSRs on return to userspace.

Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-21 09:59:22 +01:00
Paolo Bonzini
cbbaa2727a KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES
KVM does not implement MSR_IA32_TSX_CTRL, so it must not be presented
to the guests.  It is also confusing to have !ARCH_CAP_TSX_CTRL_MSR &&
!RTM && ARCH_CAP_TAA_NO: lack of MSR_IA32_TSX_CTRL suggests TSX was not
hidden (it actually was), yet the value says that TSX is not vulnerable
to microarchitectural data sampling.  Fix both.

Cc: stable@vger.kernel.org
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-21 09:59:10 +01:00
Liran Alon
5637f60b68 KVM: x86: Unexport kvm_vcpu_reload_apic_access_page()
The function is only used in kvm.ko module.

Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-20 14:23:26 +01:00
Nitesh Narayan Lal
7ee30bc132 KVM: x86: deliver KVM IOAPIC scan request to target vCPUs
In IOAPIC fixed delivery mode instead of flushing the scan
requests to all vCPUs, we should only send the requests to
vCPUs specified within the destination field.

This patch introduces kvm_get_dest_vcpus_mask() API which
retrieves an array of target vCPUs by using
kvm_apic_map_get_dest_lapic() and then based on the
vcpus_idx, it sets the bit in a bitmap. However, if the above
fails kvm_get_dest_vcpus_mask() finds the target vCPUs by
traversing all available vCPUs. Followed by setting the
bits in the bitmap.

If we had different vCPUs in the previous request for the
same redirection table entry then bits corresponding to
these vCPUs are also set. This to done to keep
ioapic_handled_vectors synchronized.

This bitmap is then eventually passed on to
kvm_make_vcpus_request_mask() to generate a masked request
only for the target vCPUs.

This would enable us to reduce the latency overhead on isolated
vCPUs caused by the IPI to process due to KVM_REQ_IOAPIC_SCAN.

Suggested-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Nitesh Narayan Lal <nitesh@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15 11:44:22 +01:00
Like Xu
b35e5548b4 KVM: x86/vPMU: Add lazy mechanism to release perf_event per vPMC
Currently, a host perf_event is created for a vPMC functionality emulation.
It’s unpredictable to determine if a disabled perf_event will be reused.
If they are disabled and are not reused for a considerable period of time,
those obsolete perf_events would increase host context switch overhead that
could have been avoided.

If the guest doesn't WRMSR any of the vPMC's MSRs during an entire vcpu
sched time slice, and its independent enable bit of the vPMC isn't set,
we can predict that the guest has finished the use of this vPMC, and then
do request KVM_REQ_PMU in kvm_arch_sched_in and release those perf_events
in the first call of kvm_pmu_handle_event() after the vcpu is scheduled in.

This lazy mechanism delays the event release time to the beginning of the
next scheduled time slice if vPMC's MSRs aren't changed during this time
slice. If guest comes back to use this vPMC in next time slice, a new perf
event would be re-created via perf_event_create_kernel_counter() as usual.

Suggested-by: Wei Wang <wei.w.wang@intel.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15 11:44:10 +01:00
Like Xu
98ff80f5b7 KVM: x86/vPMU: Rename pmu_ops callbacks from msr_idx to rdpmc_ecx
The leagcy pmu_ops->msr_idx_to_pmc is only called in kvm_pmu_rdpmc, so
this function actually receives the contents of ECX before RDPMC, and
translates it to a kvm_pmc. Let's clarify its semantic by renaming the
existing msr_idx_to_pmc to rdpmc_ecx_to_pmc, and is_valid_msr_idx to
is_valid_rdpmc_ecx; likewise for the wrapper kvm_pmu_is_valid_msr_idx.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15 11:44:08 +01:00
Liran Alon
27cbe7d618 KVM: x86: Prevent set vCPU into INIT/SIPI_RECEIVED state when INIT are latched
Commit 4b9852f4f3 ("KVM: x86: Fix INIT signal handling in various CPU states")
fixed KVM to also latch pending LAPIC INIT event when vCPU is in VMX
operation.

However, current API of KVM_SET_MP_STATE allows userspace to put vCPU
into KVM_MP_STATE_SIPI_RECEIVED or KVM_MP_STATE_INIT_RECEIVED even when
vCPU is in VMX operation.

Fix this by introducing a util method to check if vCPU state latch INIT
signals and use it in KVM_SET_MP_STATE handler.

Fixes: 4b9852f4f3 ("KVM: x86: Fix INIT signal handling in various CPU states")
Reported-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15 11:44:00 +01:00
Liran Alon
ff90afa755 KVM: x86: Evaluate latched_init in KVM_SET_VCPU_EVENTS when vCPU not in SMM
Commit 4b9852f4f3 ("KVM: x86: Fix INIT signal handling in various CPU states")
fixed KVM to also latch pending LAPIC INIT event when vCPU is in VMX
operation.

However, current API of KVM_SET_VCPU_EVENTS defines this field as
part of SMM state and only set pending LAPIC INIT event if vCPU is
specified to be in SMM mode (events->smi.smm is set).

Change KVM_SET_VCPU_EVENTS handler to set pending LAPIC INIT event
by latched_init field regardless of if vCPU is in SMM mode or not.

Fixes: 4b9852f4f3 ("KVM: x86: Fix INIT signal handling in various CPU states")
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15 11:43:59 +01:00
Xiaoyao Li
6cbee2b9ec KVM: X86: Reset the three MSR list number variables to 0 in kvm_init_msr_list()
When applying commit 7a5ee6edb4 ("KVM: X86: Fix initialization of MSR
lists"), it forgot to reset the three MSR lists number varialbes to 0
while removing the useless conditionals.

Fixes: 7a5ee6edb4 (KVM: X86: Fix initialization of MSR lists)
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-13 15:50:39 +01:00
Linus Torvalds
8c5bd25bf4 Bugfixes: unwinding of KVM_CREATE_VM failure,
VT-d posted interrupts, DAX/ZONE_DEVICE,
 module unload/reload.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJdyrEsAAoJEL/70l94x66DIOkH/Asqrh4o4pwfRHWE+9rnM6PI
 j8oFi7Q4eRXJnP4zEMnMbb6xD/BfSH1tWEcPcYgIxD/t0DFx8F92/xsETAJ/Qc5n
 CWpmnhMkJqERlV+GSRuBqnheMo0CEH1Ab1QZKhh5U3//pK3OtGY9WyydJHWcquTh
 bGh2pnxwVZOtIIEmclUUfKjyR2Fu8hJLnQwzWgYZ27UK7J2pLmiiTX0vwQG359Iq
 sDn9ND33pCBW5e/D2mzccRjOJEvzwrumewM1sRDsoAYLJzUjg9+xD83vZDa1d7R6
 gajCDFWVJbPoLvUY+DgsZBwMMlogElimJMT/Zft3ERbCsYJbFvcmwp4JzyxDxQ4=
 =J6KN
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "Fix unwinding of KVM_CREATE_VM failure, VT-d posted interrupts,
  DAX/ZONE_DEVICE, and module unload/reload"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: MMU: Do not treat ZONE_DEVICE pages as being reserved
  KVM: VMX: Introduce pi_is_pir_empty() helper
  KVM: VMX: Do not change PID.NDST when loading a blocked vCPU
  KVM: VMX: Consider PID.PIR to determine if vCPU has pending interrupts
  KVM: VMX: Fix comment to specify PID.ON instead of PIR.ON
  KVM: X86: Fix initialization of MSR lists
  KVM: fix placement of refcount initialization
  KVM: Fix NULL-ptr deref after kvm_create_vm fails
2019-11-12 13:19:15 -08:00
Chenyi Qiang
7a5ee6edb4 KVM: X86: Fix initialization of MSR lists
The three MSR lists(msrs_to_save[], emulated_msrs[] and
msr_based_features[]) are global arrays of kvm.ko, which are
adjusted (copy supported MSRs forward to override the unsupported MSRs)
when insmod kvm-{intel,amd}.ko, but it doesn't reset these three arrays
to their initial value when rmmod kvm-{intel,amd}.ko. Thus, at the next
installation, kvm-{intel,amd}.ko will do operations on the modified
arrays with some MSRs lost and some MSRs duplicated.

So define three constant arrays to hold the initial MSR lists and
initialize msrs_to_save[], emulated_msrs[] and msr_based_features[]
based on the constant arrays.

Cc: stable@vger.kernel.org
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
[Remove now useless conditionals. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-12 10:17:25 +01:00
Miaohe Lin
7f7f0d9c0b KVM: x86: get rid of odd out jump label in pdptrs_changed
The odd out jump label is really not needed. Get rid of
it by return true directly while r < 0 as suggested by
Paolo. This further lead to var changed being unused.
Remove it too.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-11 15:11:28 +01:00
Junaid Shahid
1aa9b9572b kvm: x86: mmu: Recovery of shattered NX large pages
The page table pages corresponding to broken down large pages are zapped in
FIFO order, so that the large page can potentially be recovered, if it is
not longer being used for execution.  This removes the performance penalty
for walking deeper EPT page tables.

By default, one large page will last about one hour once the guest
reaches a steady state.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 20:26:00 +01:00
Paolo Bonzini
b8e8c8303f kvm: mmu: ITLB_MULTIHIT mitigation
With some Intel processors, putting the same virtual address in the TLB
as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit
and cause the processor to issue a machine check resulting in a CPU lockup.

Unfortunately when EPT page tables use huge pages, it is possible for a
malicious guest to cause this situation.

Add a knob to mark huge pages as non-executable. When the nx_huge_pages
parameter is enabled (and we are using EPT), all huge pages are marked as
NX. If the guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.

This is not an issue for shadow paging (except nested EPT), because then
the host is in control of TLB flushes and the problematic situation cannot
happen.  With nested EPT, again the nested guest can cause problems shadow
and direct EPT is treated in the same way.

[ tglx: Fixup default to auto and massage wording a bit ]

Originally-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 12:22:02 +01:00
Marcelo Tosatti
53fafdbb8b KVM: x86: switch KVMCLOCK base to monotonic raw clock
Commit 0bc48bea36 ("KVM: x86: update master clock before computing
kvmclock_offset")
switches the order of operations to avoid the conversion

TSC (without frequency correction) ->
system_timestamp (with frequency correction),

which might cause a time jump.

However, it leaves any other masterclock update unsafe, which includes,
at the moment:

        * HV_X64_MSR_REFERENCE_TSC MSR write.
        * TSC writes.
        * Host suspend/resume.

Avoid the time jump issue by using frequency uncorrected
CLOCK_MONOTONIC_RAW clock.

Its the guests time keeping software responsability
to track and correct a reference clock such as UTC.

This fixes forward time jump (which can result in
failure to bring up a vCPU) during vCPU hotplug:

Oct 11 14:48:33 storage kernel: CPU2 has been hot-added
Oct 11 14:48:34 storage kernel: CPU3 has been hot-added
Oct 11 14:49:22 storage kernel: smpboot: Booting Node 0 Processor 2 APIC 0x2          <-- time jump of almost 1 minute
Oct 11 14:49:22 storage kernel: smpboot: do_boot_cpu failed(-1) to wakeup CPU#2
Oct 11 14:49:23 storage kernel: smpboot: Booting Node 0 Processor 3 APIC 0x3
Oct 11 14:49:23 storage kernel: kvm-clock: cpu 3, msr 0:7ff640c1, secondary cpu clock

Which happens because:

                /*
                 * Wait 10s total for a response from AP
                 */
                boot_error = -1;
                timeout = jiffies + 10*HZ;
                while (time_before(jiffies, timeout)) {
                         ...
                }

Analyzed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-02 11:42:02 +01:00
Pawan Gupta
e1d38b63ac kvm/x86: Export MDS_NO=0 to guests when TSX is enabled
Export the IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0 to guests on TSX
Async Abort(TAA) affected hosts that have TSX enabled and updated
microcode. This is required so that the guests don't complain,

  "Vulnerable: Clear CPU buffers attempted, no microcode"

when the host has the updated microcode to clear CPU buffers.

Microcode update also adds support for MSR_IA32_TSX_CTRL which is
enumerated by the ARCH_CAP_TSX_CTRL bit in IA32_ARCH_CAPABILITIES MSR.
Guests can't do this check themselves when the ARCH_CAP_TSX_CTRL bit is
not exported to the guests.

In this case export MDS_NO=0 to the guests. When guests have
CPUID.MD_CLEAR=1, they deploy MDS mitigation which also mitigates TAA.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
2019-10-28 08:36:59 +01:00
Jim Mattson
671ddc700f KVM: nVMX: Don't leak L1 MMIO regions to L2
If the "virtualize APIC accesses" VM-execution control is set in the
VMCS, the APIC virtualization hardware is triggered when a page walk
in VMX non-root mode terminates at a PTE wherein the address of the 4k
page frame matches the APIC-access address specified in the VMCS. On
hardware, the APIC-access address may be any valid 4k-aligned physical
address.

KVM's nVMX implementation enforces the additional constraint that the
APIC-access address specified in the vmcs12 must be backed by
a "struct page" in L1. If not, L0 will simply clear the "virtualize
APIC accesses" VM-execution control in the vmcs02.

The problem with this approach is that the L1 guest has arranged the
vmcs12 EPT tables--or shadow page tables, if the "enable EPT"
VM-execution control is clear in the vmcs12--so that the L2 guest
physical address(es)--or L2 guest linear address(es)--that reference
the L2 APIC map to the APIC-access address specified in the
vmcs12. Without the "virtualize APIC accesses" VM-execution control in
the vmcs02, the APIC accesses in the L2 guest will directly access the
APIC-access page in L1.

When there is no mapping whatsoever for the APIC-access address in L1,
the L2 VM just loses the intended APIC virtualization. However, when
the APIC-access address is mapped to an MMIO region in L1, the L2
guest gets direct access to the L1 MMIO device. For example, if the
APIC-access address specified in the vmcs12 is 0xfee00000, then L2
gets direct access to L1's APIC.

Since this vmcs12 configuration is something that KVM cannot
faithfully emulate, the appropriate response is to exit to userspace
with KVM_INTERNAL_ERROR_EMULATION.

Fixes: fe3ef05c75 ("KVM: nVMX: Prepare vmcs02 from vmcs01 and vmcs12")
Reported-by: Dan Cross <dcross@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-22 19:04:40 +02:00
Aaron Lewis
864e2ab2b4 kvm: x86: Move IA32_XSS to kvm_{get,set}_msr_common
Hoist support for RDMSR/WRMSR of IA32_XSS from vmx into common code so
that it can be used for svm as well.

Right now, kvm only allows the guest IA32_XSS to be zero,
so the guest's usage of XSAVES will be exactly the same as XSAVEC.

Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Change-Id: Ie4b0f777d71e428fbee6e82071ac2d7618e9bb40
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-22 15:47:12 +02:00