See the SDM, volume 3, section 4.4.1:
If PAE paging would be in use following an execution of MOV to CR0 or
MOV to CR4 (see Section 4.1.1) and the instruction is modifying any of
CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then
the PDPTEs are loaded from the address in CR3.
Fixes: b9baba8614 ("KVM, pkeys: expose CPUID/CR4 to guest")
Cc: Huaitong Han <huaitong.han@intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200817181655.3716509-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
See the SDM, volume 3, section 4.4.1:
If PAE paging would be in use following an execution of MOV to CR0 or
MOV to CR4 (see Section 4.1.1) and the instruction is modifying any of
CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then
the PDPTEs are loaded from the address in CR3.
Fixes: 0be0226f07 ("KVM: MMU: fix SMAP virtualization")
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200817181655.3716509-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't attempt to load PDPTRs if EFER.LME=1, i.e. if 64-bit mode is
enabled. A recent change to reload the PDTPRs when CR0.CD or CR0.NW is
toggled botched the EFER.LME handling and sends KVM down the PDTPR path
when is_paging() is true, i.e. when the guest toggles CD/NW in 64-bit
mode.
Split the CR0 checks for 64-bit vs. 32-bit PAE into separate paths. The
64-bit path is specifically checking state when paging is toggled on,
i.e. CR0.PG transititions from 0->1. The PDPTR path now needs to run if
the new CR0 state has paging enabled, irrespective of whether paging was
already enabled. Trying to shave a few cycles to make the PDPTR path an
"else if" case is a mess.
Fixes: d42e3fae6f ("kvm: x86: Read PDPTEs on CR0.CD and CR0.NW changes")
Cc: Jim Mattson <jmattson@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Peter Shier <pshier@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200714015732.32426-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* Report last CPU for debugging
* Emulate smaller MAXPHYADDR in the guest than in the host
* .noinstr and tracing fixes from Thomas
* nested SVM page table switching optimization and fixes
Generic:
* Unify shadow MMU cache data structures across architectures
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl8pC+oUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNcOwgAjomqtEqQNlp7DdZT7VyyklzbxX1/
ud7v+oOJ8K4sFlf64lSthjPo3N9rzZCcw+yOXmuyuITngXOGc3tzIwXpCzpLtuQ1
WO1Ql3B/2dCi3lP5OMmsO1UAZqy9pKLg1dfeYUPk48P5+p7d/NPmk+Em5kIYzKm5
JsaHfCp2EEXomwmljNJ8PQ1vTjIQSSzlgYUBZxmCkaaX7zbEUMtxAQCStHmt8B84
33LczwXBm3viSWrzsoBV37I70+tseugiSGsCfUyupXOvq55d6D9FCqtCb45Hn4Vh
Ik8ggKdalsk/reiGEwNw1/3nr6mRMkHSbl+Mhc4waOIFf9dn0urgQgOaDg==
=YVx0
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- implement diag318
x86:
- Report last CPU for debugging
- Emulate smaller MAXPHYADDR in the guest than in the host
- .noinstr and tracing fixes from Thomas
- nested SVM page table switching optimization and fixes
Generic:
- Unify shadow MMU cache data structures across architectures"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
KVM: SVM: Fix sev_pin_memory() error handling
KVM: LAPIC: Set the TDCR settable bits
KVM: x86: Specify max TDP level via kvm_configure_mmu()
KVM: x86/mmu: Rename max_page_level to max_huge_page_level
KVM: x86: Dynamically calculate TDP level from max level and MAXPHYADDR
KVM: VXM: Remove temporary WARN on expected vs. actual EPTP level mismatch
KVM: x86: Pull the PGD's level from the MMU instead of recalculating it
KVM: VMX: Make vmx_load_mmu_pgd() static
KVM: x86/mmu: Add separate helper for shadow NPT root page role calc
KVM: VMX: Drop a duplicate declaration of construct_eptp()
KVM: nSVM: Correctly set the shadow NPT root level in its MMU role
KVM: Using macros instead of magic values
MIPS: KVM: Fix build error caused by 'kvm_run' cleanup
KVM: nSVM: remove nonsensical EXITINFO1 adjustment on nested NPF
KVM: x86: Add a capability for GUEST_MAXPHYADDR < HOST_MAXPHYADDR support
KVM: VMX: optimize #PF injection when MAXPHYADDR does not match
KVM: VMX: Add guest physical address check in EPT violation and misconfig
KVM: VMX: introduce vmx_need_pf_intercept
KVM: x86: update exception bitmap on CPUID changes
KVM: x86: rename update_bp_intercept to update_exception_bitmap
...
to the generic code. Pretty much a straight forward 1:1 conversion plus the
consolidation of the KVM handling of pending work before entering guest
mode.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8pEFgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYocEwD/474Eb7LzZ8yahyUBirWJP3k3qzgs9j
dZUxqB6LNuDOstEyTGLPdx1dmQP2vHbFfjoM7YBOH37EGcHsqjGliLvn2Y05ZD7O
6kYwjz6qVnJcm3IMtfSUn/8LkfO5pGUdKd3U5ngDmPLpkeaQ4nPKqiO0uIb0wzwa
cO7l10tG4YjMCWQxPNIaOh8kncLieQBediJPFjkQjV+Fh33kSU3LWTl3fccz6b5+
mgSUFL0qjQpp+Nl7lCaDQQiAop9GTUETfDtximRydZauiM2NpCfz+QBmQzq50Xv1
G3DWZoBIZBjmWJUgfSmS/s4GOYkBTBnT/fUcZmIDcgdRwvtEvRzIhcP87/wn7P3N
UKpLdHqmvA0BFDXZbNZgS362++29pj5Lnb+u3QbWSKQ9UqHN0NUlSY4wzfTLXsGp
Mzpp4TW0u/8kyOlo7wK3lVDgNJaPG31aiNVuDPgLe4cEluO5cq7/7g2GcFBqF1Ly
SqNGD1IccteNQTNvDopczPy7qUl5Lal+Ia06szNSPR48gLrvhSWdyYr2i1sD7vx4
hAhR0Hsi9dacGv46TrRw1OdDzq9bOW68G8GIgLJgDXaayPXLnx6TQEUjzQtIkE/i
ydTPUarp5QOFByt+RBjI90ZcW4RuLgMTOEVONPXtSn8IoCP2Kdg9u3gD9AmUW3Q2
JFkKMiSiJPGxlw==
=84y7
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 conversion to generic entry code from Thomas Gleixner:
"The conversion of X86 syscall, interrupt and exception entry/exit
handling to the generic code.
Pretty much a straight-forward 1:1 conversion plus the consolidation
of the KVM handling of pending work before entering guest mode"
* tag 'x86-entry-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kvm: Use __xfer_to_guest_mode_work_pending() in kvm_run_vcpu()
x86/kvm: Use generic xfer to guest work function
x86/entry: Cleanup idtentry_enter/exit
x86/entry: Use generic interrupt entry/exit code
x86/entry: Cleanup idtentry_entry/exit_user
x86/entry: Use generic syscall exit functionality
x86/entry: Use generic syscall entry function
x86/ptrace: Provide pt_regs helper for entry/exit
x86/entry: Move user return notifier out of loop
x86/entry: Consolidate 32/64 bit syscall entry
x86/entry: Consolidate check_user_regs()
x86: Correct noinstr qualifiers
x86/idtentry: Remove stale comment
Capture the max TDP level during kvm_configure_mmu() instead of using a
kvm_x86_ops hook to do it at every vCPU creation.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate the desired TDP level on the fly using the max TDP level and
MAXPHYADDR instead of doing the same when CPUID is updated. This avoids
the hidden dependency on cpuid_maxphyaddr() in vmx_get_tdp_level() and
also standardizes the "use 5-level paging iff MAXPHYADDR > 48" behavior
across x86.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The comments explicitely explain that the work flags check and handling in
kvm_run_vcpu() is done with preemption and interrupts enabled as KVM
invokes the check again right before entering guest mode with interrupts
disabled which guarantees that the work flags are observed and handled
before VMENTER.
Nevertheless the flag pending check in kvm_run_vcpu() uses the helper
variant which requires interrupts to be disabled triggering an instant
lockdep splat. This was caught in testing before and then not fixed up in
the patch before applying. :(
Use the relaxed and intentionally racy __xfer_to_guest_mode_work_pending()
instead.
Fixes: 72c3c0fe54 ("x86/kvm: Use generic xfer to guest work function")
Reported-by: Qian Cai <cai@lca.pw> writes:
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87bljxa2sa.fsf@nanos.tec.linutronix.de
Use the generic infrastructure to check for and handle pending work before
transitioning into guest mode.
This now handles TIF_NOTIFY_RESUME as well which was ignored so
far. Handling it is important as this covers task work and task work will
be used to offload the heavy lifting of POSIX CPU timers to thread context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200722220520.979724969@linutronix.de
Using uninitialized_var() is dangerous as it papers over real bugs[1]
(or can in the future), and suppresses unrelated compiler warnings
(e.g. "unused variable"). If the compiler thinks it is uninitialized,
either simply initialize the variable or make compiler changes.
In preparation for removing[2] the[3] macro[4], remove all remaining
needless uses with the following script:
git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \
xargs perl -pi -e \
's/\buninitialized_var\(([^\)]+)\)/\1/g;
s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;'
drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid
pathological white-space.
No outstanding warnings were found building allmodconfig with GCC 9.3.0
for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64,
alpha, and m68k.
[1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/
[2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/
[4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/
Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5
Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB
Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers
Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs
Signed-off-by: Kees Cook <keescook@chromium.org>
This patch adds a new capability KVM_CAP_SMALLER_MAXPHYADDR which
allows userspace to query if the underlying architecture would
support GUEST_MAXPHYADDR < HOST_MAXPHYADDR and hence act accordingly
(e.g. qemu can decide if it should warn for -cpu ..,phys-bits=X)
The complications in this patch are due to unexpected (but documented)
behaviour we see with NPF vmexit handling in AMD processor. If
SVM is modified to add guest physical address checks in the NPF
and guest #PF paths, we see the followning error multiple times in
the 'access' test in kvm-unit-tests:
test pte.p pte.36 pde.p: FAIL: pte 2000021 expected 2000001
Dump mapping: address: 0x123400000000
------L4: 24c3027
------L3: 24c4027
------L2: 24c5021
------L1: 1002000021
This is because the PTE's accessed bit is set by the CPU hardware before
the NPF vmexit. This is handled completely by hardware and cannot be fixed
in software.
Therefore, availability of the new capability depends on a boolean variable
allow_smaller_maxphyaddr which is set individually by VMX and SVM init
routines. On VMX it's always set to true, on SVM it's only set to true
when NPT is not enabled.
CC: Tom Lendacky <thomas.lendacky@amd.com>
CC: Babu Moger <babu.moger@amd.com>
Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Message-Id: <20200710154811.418214-10-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We would like to introduce a callback to update the #PF intercept
when CPUID changes. Just reuse update_bp_intercept since VMX is
already using update_exception_bitmap instead of a bespoke function.
While at it, remove an unnecessary assignment in the SVM version,
which is already done in the caller (kvm_arch_vcpu_ioctl_set_guest_debug)
and has nothing to do with the exception bitmap.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds two helper functions that will be used to support virtualizing
MAXPHYADDR in both kvm-intel.ko and kvm.ko.
kvm_fixup_and_inject_pf_error() injects a page fault for a user-specified GVA,
while kvm_mmu_is_illegal_gpa() checks whether a GPA exceeds vCPU address limits.
Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200710154811.418214-2-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
state_test/smm_test selftests are failing on AMD with:
"Unexpected result from KVM_GET_MSRS, r: 51 (failed MSR was 0x345)"
MSR_IA32_PERF_CAPABILITIES is an emulated MSR on Intel but it is not
known to AMD code, we can move the emulation to common x86 code. For
AMD, we basically just allow the host to read and write zero to the MSR.
Fixes: 27461da310 ("KVM: x86/pmu: Support full width counting")
Suggested-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200710152559.1645827-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the functions which are inside the RCU off region into the
non-instrumentable text section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200708195322.037311579@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Context tracking for KVM happens way too early in the vcpu_run()
code. Anything after guest_enter_irqoff() and before guest_exit_irqoff()
cannot use RCU and should also be not instrumented.
The current way of doing this covers way too much code. Move it closer to
the actual vmenter/exit code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200708195321.724574345@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To avoid complex and in some cases incorrect logic in
kvm_spec_ctrl_test_value, just try the guest's given value on the host
processor instead, and if it doesn't #GP, allow the guest to set it.
One such case is when host CPU supports STIBP mitigation
but doesn't support IBRS (as is the case with some Zen2 AMD cpus),
and in this case we were giving guest #GP when it tried to use STIBP
The reason why can can do the host test is that IA32_SPEC_CTRL msr is
passed to the guest, after the guest sets it to a non zero value
for the first time (due to performance reasons),
and as as result of this, it is pointless to emulate #GP condition on
this first access, in a different way than what the host CPU does.
This is based on a patch from Sean Christopherson, who suggested this idea.
Fixes: 6441fa6178 ("KVM: x86: avoid incorrect writes to host MSR_IA32_SPEC_CTRL")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200708115731.180097-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Beside called in kvm_vcpu_ioctl_set_cpuid*(), kvm_update_cpuid() is also
called 5 places else in x86.c and 1 place else in lapic.c. All those 6
places only need the part of updating guest CPUIDs (OSXSAVE, OSPKE, APIC,
KVM_FEATURE_PV_UNHALT, ...) based on the runtime vcpu state, so extract
them as a separate kvm_update_cpuid_runtime().
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200709043426.92712-3-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Canonicalization and Consistency Checks" in APM vol. 2
the following guest state is illegal:
"Any MBZ bit of CR3 is set."
"Any MBZ bit of CR4 is set."
Suggeted-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <1594168797-29444-3-git-send-email-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of creating the mask for guest CR4 reserved bits in kvm_valid_cr4(),
do it in kvm_update_cpuid() so that it can be reused instead of creating it
each time kvm_valid_cr4() is called.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <1594168797-29444-2-git-send-email-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the SDM, when PAE paging would be in use following a
MOV-to-CR0 that modifies any of CR0.CD, CR0.NW, or CR0.PG, then the
PDPTEs are loaded from the address in CR3. Previously, kvm only loaded
the PDPTEs when PAE paging would be in use following a MOV-to-CR0 that
modified CR0.PG.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200707223630.336700-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since this field is now in kvm_vcpu_arch, clean things up a little by
setting it in vendor-agnostic code: vcpu_enter_guest. Note that it
must be set after the call to kvm_x86_ops.run(), since it can't be
updated before pre_sev_run().
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-7-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
More often than not, a failed VM-entry in an x86 production
environment is induced by a defective CPU. To help identify the bad
hardware, include the id of the last logical CPU to run a vCPU in the
information provided to userspace on a KVM exit for failed VM-entry or
for KVM internal errors not associated with emulation. The presence of
this additional information is indicated by a new capability,
KVM_CAP_LAST_CPU.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-5-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Logically the ignore_msrs and report_ignored_msrs should also apply to feature
MSRs. Add them in.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200622220442.21998-3-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR accesses can be one of:
(1) KVM internal access,
(2) userspace access (e.g., via KVM_SET_MSRS ioctl),
(3) guest access.
The ignore_msrs was previously handled by kvm_get_msr_common() and
kvm_set_msr_common(), which is the bottom of the msr access stack. It's
working in most cases, however it could dump unwanted warning messages to dmesg
even if kvm get/set the msrs internally when calling __kvm_set_msr() or
__kvm_get_msr() (e.g. kvm_cpuid()). Ideally we only want to trap cases (2)
or (3), but not (1) above.
To achieve this, move the ignore_msrs handling upper until the callers of
__kvm_get_msr() and __kvm_set_msr(). To identify the "msr missing" event, a
new return value (KVM_MSR_RET_INVALID==2) is used for that.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200622220442.21998-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject a #GP on MOV CR4 if CR4.LA57 is toggled in 64-bit mode, which is
illegal per Intel's SDM:
CR4.LA57
57-bit linear addresses (bit 12 of CR4) ... blah blah blah ...
This bit cannot be modified in IA-32e mode.
Note, the pseudocode for MOV CR doesn't call out the fault condition,
which is likely why the check was missed during initial development.
This is arguably an SDM bug and will hopefully be fixed in future
release of the SDM.
Fixes: fd8cb43373 ("KVM: MMU: Expose the LA57 feature to VM.")
Cc: stable@vger.kernel.org
Reported-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703021714.5549-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Syzbot reported that:
CPU: 1 PID: 6780 Comm: syz-executor153 Not tainted 5.7.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:__apic_accept_irq+0x46/0xb80
Call Trace:
kvm_arch_async_page_present+0x7de/0x9e0
kvm_check_async_pf_completion+0x18d/0x400
kvm_arch_vcpu_ioctl_run+0x18bf/0x69f0
kvm_vcpu_ioctl+0x46a/0xe20
ksys_ioctl+0x11a/0x180
__x64_sys_ioctl+0x6f/0xb0
do_syscall_64+0xf6/0x7d0
entry_SYSCALL_64_after_hwframe+0x49/0xb3
The testcase enables APF mechanism in MSR_KVM_ASYNC_PF_EN with ASYNC_PF_INT
enabled w/o setting MSR_KVM_ASYNC_PF_INT before, what's worse, interrupt
based APF 'page ready' event delivery depends on in kernel lapic, however,
we didn't bail out when lapic is not in kernel during guest setting
MSR_KVM_ASYNC_PF_EN which causes the null-ptr-deref in host later.
This patch fixes it.
Reported-by: syzbot+1bf777dfdde86d64b89b@syzkaller.appspotmail.com
Fixes: 2635b5c4a0 (KVM: x86: interrupt based APF 'page ready' event delivery)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1593426391-8231-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Linux TSC calibration procedure is subject to small variations
(its common to see +-1 kHz difference between reboots on a given CPU, for example).
So migrating a guest between two hosts with identical processor can fail, in case
of a small variation in calibrated TSC between them.
Without TSC scaling, the current kernel interface will either return an error
(if user_tsc_khz <= tsc_khz) or enable TSC catchup mode.
This change enables the following TSC tolerance check to
accept KVM_SET_TSC_KHZ within tsc_tolerance_ppm (which is 250ppm by default).
/*
* Compute the variation in TSC rate which is acceptable
* within the range of tolerance and decide if the
* rate being applied is within that bounds of the hardware
* rate. If so, no scaling or compensation need be done.
*/
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
use_scaling = 1;
}
NTP daemon in the guest can correct this difference (NTP can correct upto 500ppm).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20200616114741.GA298183@fuller.cnet>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only MSR address range 0x800 through 0x8ff is architecturally reserved
and dedicated for accessing APIC registers in x2APIC mode.
Fixes: 0105d1a526 ("KVM: x2apic interface to lapic")
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200616073307.16440-1-xiaoyao.li@intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
__kvm_set_memory_region does not use the hva at all, so trying to
catch use-after-delete is pointless and, worse, it fails access_ok
now that we apply it to all memslots including private kernel ones.
This fixes an AVIC regression.
Fixes: 09d952c971 ("KVM: check userspace_addr for all memslots")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'Page not present' event may or may not get injected depending on
guest's state. If the event wasn't injected, there is no need to
inject the corresponding 'page ready' event as the guest may get
confused. E.g. Linux thinks that the corresponding 'page not present'
event wasn't delivered *yet* and allocates a 'dummy entry' for it.
This entry is never freed.
Note, 'wakeup all' events have no corresponding 'page not present'
event and always get injected.
s390 seems to always be able to inject 'page not present', the
change is effectively a nop.
Suggested-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200610175532.779793-2-vkuznets@redhat.com>
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=208081
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When userspace configures KVM_GUESTDBG_SINGLESTEP, KVM will manage the
presence of X86_EFLAGS_TF via kvm_set/get_rflags on vcpus. The actual
rflag bit is therefore hidden from callers.
That includes init_emulate_ctxt() which uses the value returned from
kvm_get_flags() to set ctxt->tf. As a result, x86_emulate_instruction()
will skip a single step, leaving singlestep_rip stale and not returning
to userspace.
This resolves the issue by observing the vcpu guest_debug configuration
alongside ctxt->tf in x86_emulate_instruction(), performing the single
step if set.
Cc: stable@vger.kernel.org
Signed-off-by: Felipe Franciosi <felipe@nutanix.com>
Message-Id: <20200519081048.8204-1-felipe@nutanix.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make x86_fpu_cache static now that FPU allocation and destruction is
handled entirely by common x86 code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200608180218.20946-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit b1394e745b ("KVM: x86: fix APIC page invalidation") tried
to fix inappropriate APIC page invalidation by re-introducing arch
specific kvm_arch_mmu_notifier_invalidate_range() and calling it from
kvm_mmu_notifier_invalidate_range_start. However, the patch left a
possible race where the VMCS APIC address cache is updated *before*
it is unmapped:
(Invalidator) kvm_mmu_notifier_invalidate_range_start()
(Invalidator) kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD)
(KVM VCPU) vcpu_enter_guest()
(KVM VCPU) kvm_vcpu_reload_apic_access_page()
(Invalidator) actually unmap page
Because of the above race, there can be a mismatch between the
host physical address stored in the APIC_ACCESS_PAGE VMCS field and
the host physical address stored in the EPT entry for the APIC GPA
(0xfee0000). When this happens, the processor will not trap APIC
accesses, and will instead show the raw contents of the APIC-access page.
Because Windows OS periodically checks for unexpected modifications to
the LAPIC register, this will show up as a BSOD crash with BugCheck
CRITICAL_STRUCTURE_CORRUPTION (109) we are currently seeing in
https://bugzilla.redhat.com/show_bug.cgi?id=1751017.
The root cause of the issue is that kvm_arch_mmu_notifier_invalidate_range()
cannot guarantee that no additional references are taken to the pages in
the range before kvm_mmu_notifier_invalidate_range_end(). Fortunately,
this case is supported by the MMU notifier API, as documented in
include/linux/mmu_notifier.h:
* If the subsystem
* can't guarantee that no additional references are taken to
* the pages in the range, it has to implement the
* invalidate_range() notifier to remove any references taken
* after invalidate_range_start().
The fix therefore is to reload the APIC-access page field in the VMCS
from kvm_mmu_notifier_invalidate_range() instead of ..._range_start().
Cc: stable@vger.kernel.org
Fixes: b1394e745b ("KVM: x86: fix APIC page invalidation")
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=197951
Signed-off-by: Eiichi Tsukata <eiichi.tsukata@nutanix.com>
Message-Id: <20200606042627.61070-1-eiichi.tsukata@nutanix.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
handle_vmptrst()/handle_vmread() stopped injecting #PF unconditionally
and switched to nested_vmx_handle_memory_failure() which just kills the
guest with KVM_EXIT_INTERNAL_ERROR in case of MMIO access, zeroing
'exception' in kvm_write_guest_virt_system() is not needed anymore.
This reverts commit 541ab2aeb2.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200605115906.532682-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the code and correct the comments to show that the actions
taken to update existing mappings to disable or enable dirty logging
are not necessary when creating, moving, or deleting a memslot.
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Message-Id: <1591128450-11977-4-git-send-email-anthony.yznaga@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On large memory guests it has been observed that creating a memslot
for a very large range can take noticeable amount of time.
Investigation showed that the time is spent walking the rmaps to update
existing sptes to remove write access or set/clear dirty bits to support
dirty logging. These rmap walks are unnecessary when creating or moving
a memslot. A newly created memslot will not have any existing mappings,
and the existing mappings of a moved memslot will have been invalidated
and flushed. Any mappings established once the new/moved memslot becomes
visible will be set using the properties of the new slot.
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Message-Id: <1591128450-11977-3-git-send-email-anthony.yznaga@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There's no write access to remove. An existing memslot cannot be updated
to set or clear KVM_MEM_READONLY, and any mappings established in a newly
created or moved read-only memslot will already be read-only.
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Message-Id: <1591128450-11977-2-git-send-email-anthony.yznaga@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for Hyper-V synthetic debugger (syndbg) interface.
The syndbg interface is using MSRs to emulate a way to send/recv packets
data.
The debug transport dll (kdvm/kdnet) will identify if Hyper-V is enabled
and if it supports the synthetic debugger interface it will attempt to
use it, instead of trying to initialize a network adapter.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Jon Doron <arilou@gmail.com>
Message-Id: <20200529134543.1127440-4-arilou@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel CPUs have a new alternative MSR range (starting from MSR_IA32_PMC0)
for GP counters that allows writing the full counter width. Enable this
range from a new capability bit (IA32_PERF_CAPABILITIES.FW_WRITE[bit 13]).
The guest would query CPUID to get the counter width, and sign extends
the counter values as needed. The traditional MSRs always limit to 32bit,
even though the counter internally is larger (48 or 57 bits).
When the new capability is set, use the alternative range which do not
have these restrictions. This lowers the overhead of perf stat slightly
because it has to do less interrupts to accumulate the counter value.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20200529074347.124619-3-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change kvm_pmu_get_msr() to get the msr_data struct, as the host_initiated
field from the struct could be used by get_msr. This also makes this API
consistent with kvm_pmu_set_msr. No functional changes.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Message-Id: <20200529074347.124619-2-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce new capability to indicate that KVM supports interrupt based
delivery of 'page ready' APF events. This includes support for both
MSR_KVM_ASYNC_PF_INT and MSR_KVM_ASYNC_PF_ACK.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If two page ready notifications happen back to back the second one is not
delivered and the only mechanism we currently have is
kvm_check_async_pf_completion() check in vcpu_run() loop. The check will
only be performed with the next vmexit when it happens and in some cases
it may take a while. With interrupt based page ready notification delivery
the situation is even worse: unlike exceptions, interrupts are not handled
immediately so we must check if the slot is empty. This is slow and
unnecessary. Introduce dedicated MSR_KVM_ASYNC_PF_ACK MSR to communicate
the fact that the slot is free and host should check its notification
queue. Mandate using it for interrupt based 'page ready' APF event
delivery.
As kvm_check_async_pf_completion() is going away from vcpu_run() we need
a way to communicate the fact that vcpu->async_pf.done queue has
transitioned from empty to non-empty state. Introduce
kvm_arch_async_page_present_queued() and KVM_REQ_APF_READY to do the job.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Concerns were expressed around APF delivery via synthetic #PF exception as
in some cases such delivery may collide with real page fault. For 'page
ready' notifications we can easily switch to using an interrupt instead.
Introduce new MSR_KVM_ASYNC_PF_INT mechanism and deprecate the legacy one.
One notable difference between the two mechanisms is that interrupt may not
get handled immediately so whenever we would like to deliver next event
(regardless of its type) we must be sure the guest had read and cleared
previous event in the slot.
While on it, get rid on 'type 1/type 2' names for APF events in the
documentation as they are causing confusion. Use 'page not present'
and 'page ready' everywhere instead.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An innocent reader of the following x86 KVM code:
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
return true;
...
may get very confused: if APF mechanism is not enabled, why do we report
that we 'can inject async page present'? In reality, upon injection
kvm_arch_async_page_present() will check the same condition again and,
in case APF is disabled, will just drop the item. This is fine as the
guest which deliberately disabled APF doesn't expect to get any APF
notifications.
Rename kvm_arch_can_inject_async_page_present() to
kvm_arch_can_dequeue_async_page_present() to make it clear what we are
checking: if the item can be dequeued (meaning either injected or just
dropped).
On s390 kvm_arch_can_inject_async_page_present() always returns 'true' so
the rename doesn't matter much.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, APF mechanism relies on the #PF abuse where the token is being
passed through CR2. If we switch to using interrupts to deliver page-ready
notifications we need a different way to pass the data. Extent the existing
'struct kvm_vcpu_pv_apf_data' with token information for page-ready
notifications.
While on it, rename 'reason' to 'flags'. This doesn't change the semantics
as we only have reasons '1' and '2' and these can be treated as bit flags
but KVM_PV_REASON_PAGE_READY is going away with interrupt based delivery
making 'reason' name misleading.
The newly introduced apf_put_user_ready() temporary puts both flags and
token information, this will be changed to put token only when we switch
to interrupt based notifications.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 9a6e7c3981 (""KVM: async_pf: Fix #DF due to inject "Page not
Present" and "Page Ready" exceptions simultaneously") added a protection
against 'page ready' notification coming before 'page not present' is
delivered. This situation seems to be impossible since commit 2a266f2355
("KVM MMU: check pending exception before injecting APF) which added
'vcpu->arch.exception.pending' check to kvm_can_do_async_pf.
On x86, kvm_arch_async_page_present() has only one call site:
kvm_check_async_pf_completion() loop and we only enter the loop when
kvm_arch_can_inject_async_page_present(vcpu) which when async pf msr
is enabled, translates into kvm_can_do_async_pf().
There is also one problem with the cancellation mechanism. We don't seem
to check that the 'page not present' notification we're canceling matches
the 'page ready' notification so in theory, we may erroneously drop two
valid events.
Revert the commit.
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>