This fixes a crash on s390 with fake NUMA enabled.
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Fixes: 1e7f583af6 ("random: make /dev/urandom scalable for silly userspace programs")
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Don't allow RNDADDTOENTCNT or RNDADDENTROPY to accept a negative
entropy value. It doesn't make any sense to subtract from the entropy
counter, and it can trigger a warning:
random: negative entropy/overflow: pool input count -40000
------------[ cut here ]------------
WARNING: CPU: 3 PID: 6828 at drivers/char/random.c:670[< none
>] credit_entropy_bits+0x21e/0xad0 drivers/char/random.c:670
Modules linked in:
CPU: 3 PID: 6828 Comm: a.out Not tainted 4.7.0-rc4+ #4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
ffffffff880b58e0 ffff88005dd9fcb0 ffffffff82cc838f ffffffff87158b40
fffffbfff1016b1c 0000000000000000 0000000000000000 ffffffff87158b40
ffffffff83283dae 0000000000000009 ffff88005dd9fcf8 ffffffff8136d27f
Call Trace:
[< inline >] __dump_stack lib/dump_stack.c:15
[<ffffffff82cc838f>] dump_stack+0x12e/0x18f lib/dump_stack.c:51
[<ffffffff8136d27f>] __warn+0x19f/0x1e0 kernel/panic.c:516
[<ffffffff8136d48c>] warn_slowpath_null+0x2c/0x40 kernel/panic.c:551
[<ffffffff83283dae>] credit_entropy_bits+0x21e/0xad0 drivers/char/random.c:670
[< inline >] credit_entropy_bits_safe drivers/char/random.c:734
[<ffffffff8328785d>] random_ioctl+0x21d/0x250 drivers/char/random.c:1546
[< inline >] vfs_ioctl fs/ioctl.c:43
[<ffffffff8185316c>] do_vfs_ioctl+0x18c/0xff0 fs/ioctl.c:674
[< inline >] SYSC_ioctl fs/ioctl.c:689
[<ffffffff8185405f>] SyS_ioctl+0x8f/0xc0 fs/ioctl.c:680
[<ffffffff86a995c0>] entry_SYSCALL_64_fastpath+0x23/0xc1
arch/x86/entry/entry_64.S:207
---[ end trace 5d4902b2ba842f1f ]---
This was triggered using the test program:
// autogenerated by syzkaller (http://github.com/google/syzkaller)
int main() {
int fd = open("/dev/random", O_RDWR);
int val = -5000;
ioctl(fd, RNDADDTOENTCNT, &val);
return 0;
}
It's harmless in that (a) only root can trigger it, and (b) after
complaining the code never does let the entropy count go negative, but
it's better to simply not allow this userspace from passing in a
negative entropy value altogether.
Google-Bug-Id: #29575089
Reported-By: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
On a system with a 4 socket (NUMA) system where a large number of
application threads were all trying to read from /dev/urandom, this
can result in the system spending 80% of its time contending on the
global urandom spinlock. The application should have used its own
PRNG, but let's try to help it from running, lemming-like, straight
over the locking cliff.
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
get_random_long() reads from the get_random_int_hash array using an
unsigned long pointer. For this code to be guaranteed correct on all
architectures, the array must be aligned to an unsigned long boundary.
Cc: stable@kernel.org
Signed-off-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The Hyper-V Linux Integration Services use the VMBus implementation for
communication with the Hypervisor. VMBus registers its own interrupt
handler that completely bypasses the common Linux interrupt handling.
This implies that the interrupt entropy collector is not triggered.
This patch adds the interrupt entropy collection callback into the VMBus
interrupt handler function.
Cc: stable@kernel.org
Signed-off-by: Stephan Mueller <stephan.mueller@atsec.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Since systemd is consistently using /dev/urandom before it is
initialized, we can't see the other potentially dangerous users of
/dev/urandom immediately after boot. So print the first ten such
complaints instead.
Cc: stable@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If we have a hardware RNG and are using the in-kernel rngd, we should
use this to initialize the non-blocking pool so that getrandom(2)
doesn't block unnecessarily.
Cc: stable@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Commit d07e22597d ("mm: mmap: add new /proc tunable for mmap_base
ASLR") added the ability to choose from a range of values to use for
entropy count in generating the random offset to the mmap_base address.
The maximum value on this range was set to 32 bits for 64-bit x86
systems, but this value could be increased further, requiring more than
the 32 bits of randomness provided by get_random_int(), as is already
possible for arm64. Add a new function: get_random_long() which more
naturally fits with the mmap usage of get_random_int() but operates
exactly the same as get_random_int().
Also, fix the shifting constant in mmap_rnd() to be an unsigned long so
that values greater than 31 bits generate an appropriate mask without
overflow. This is especially important on x86, as its shift instruction
uses a 5-bit mask for the shift operand, which meant that any value for
mmap_rnd_bits over 31 acts as a no-op and effectively disables mmap_base
randomization.
Finally, replace calls to get_random_int() with get_random_long() where
appropriate.
This patch (of 2):
Add get_random_long().
Signed-off-by: Daniel Cashman <dcashman@android.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: David S. Miller <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nick Kralevich <nnk@google.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Mark Salyzyn <salyzyn@android.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes the kernel blocking API as it has been completely
replaced by the callback API.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The get_blocking_random_bytes API is broken because the wait can
be arbitrarily long (potentially forever) so there is no safe way
of calling it from within the kernel.
This patch replaces it with a callback API instead. The callback
is invoked potentially from interrupt context so the user needs
to schedule their own work thread if necessary.
In addition to adding callbacks, they can also be removed as
otherwise this opens up a way for user-space to allocate kernel
memory with no bound (by opening algif_rng descriptors and then
closing them).
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The added API calls provide a synchronous function call
get_blocking_random_bytes where the caller is blocked until
the nonblocking_pool is initialized.
CC: Andreas Steffen <andreas.steffen@strongswan.org>
CC: Theodore Ts'o <tytso@mit.edu>
CC: Sandy Harris <sandyinchina@gmail.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If more than one application invokes getrandom(2) before the pool
is ready, then all bar one will be stuck forever because we use
wake_up_interruptible which wakes up a single task.
This patch replaces it with wake_up_all.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There was a bad typo in commit 43759d4f42 ("random: use an improved
fast_mix() function") and I didn't notice because it "looked right", so
I saw what I expected to see when I reviewed it.
Only months later did I look and notice it's not the Threefish-inspired
mix function that I had designed and optimized.
Mea Culpa. Each input bit still has a chance to affect each output bit,
and the fast pool is spilled *long* before it fills, so it's not a total
disaster, but it's definitely not the intended great improvement.
I'm still working on finding better rotation constants. These are good
enough, but since it's unrolled twice, it's possible to get better
mixing for free by using eight different constants rather than repeating
the same four.
Signed-off-by: George Spelvin <linux@horizon.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
optimized away by GCC. This is important when we are wiping
cryptographically sensitive material.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJUQTmuAAoJENNvdpvBGATwFToP/jOGL/Z5NE7Oa33jC+oRDdEC
6gDXi27emzkll5BsxRLOR26vxXZ9AsBBI+U9pmhy64pcSUSxocTIZ+Bh0bx/LQyd
w6HTTTYFk9GNtQCGrxRoNBPLdH/qz83ClvlWmpjsYpIEFfSOU3YncygSbps3uSeZ
tdXiI5G1zZNGrljQrL+roJCZX5TP4XxHFbdUjeyV9Z8210oYTwCfpzHjg9+D24f0
rwTOHa0Lp6IrecU4Vlq4PFP+y4/ZdYYVwnpyX5UtTHP3QP176PcrwvnAl4Ys/8Lx
9uqj+gNrUnC6KHsSKhUxwMq9Ch7nu6iLLAYuIUMvxZargsmbNQFShHZyu2mwDgko
bp+oTw8byOQyv6g/hbFpTVwfwpiv/AGu8VxmG3ORGqndOldTh+oQ9xMnuBZA8sXX
PxHxEUY9hr66nVFg4iuxT/2KJJA+Ol8ARkB0taCWhwavzxXJeedEVEw5nbtQxRsM
AJGxjBsAgSw7SJD03yAQH5kRGYvIdv03JRbIiMPmKjlP+pl1JkzOAPhVMUD+24vI
x6oFpSa5FH5utlt3nCZuxlOYBuWhWKIhUzEoY2HwCsyISQScPcwL9EP15sWceY5i
8+Wylvf+yqGVU3KopCBBV/oX3Wm/kj1A8OP/4Kk8UHw9k2btjYETYayhP1DHKnIt
/4pr4+oGd5GlFOHRteXp
=i29U
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull /dev/random updates from Ted Ts'o:
"This adds a memzero_explicit() call which is guaranteed not to be
optimized away by GCC. This is important when we are wiping
cryptographically sensitive material"
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
crypto: memzero_explicit - make sure to clear out sensitive data
random: add and use memzero_explicit() for clearing data
zatimend has reported that in his environment (3.16/gcc4.8.3/corei7)
memset() calls which clear out sensitive data in extract_{buf,entropy,
entropy_user}() in random driver are being optimized away by gcc.
Add a helper memzero_explicit() (similarly as explicit_bzero() variants)
that can be used in such cases where a variable with sensitive data is
being cleared out in the end. Other use cases might also be in crypto
code. [ I have put this into lib/string.c though, as it's always built-in
and doesn't need any dependencies then. ]
Fixes kernel bugzilla: 82041
Reported-by: zatimend@hotmail.co.uk
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
A single case of using __get_cpu_var for address calculation.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
call, which is a superset of OpenBSD's getentropy(2) call, for use
with userspace crypto libraries such as LibreSSL. Also add the
ability to have a kernel thread to pull entropy from hardware rng
devices into /dev/random.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJT4VkhAAoJENNvdpvBGATwGMwP/0DvcJnk8Xg2pE67GrBlkL4V
ltDYZBUNI3Z9YqPFMbN02kt8jBJ4o8NVrD9XXSAmk0NbNV6pc4SdGUU7BBcms4BF
DX4CasmQS1EMKOxsszlvEbj9Q25u9ODJhUKsr1ZQKe3wfjx1gKRQ1QHHcrqgbGc0
tjkBU/TW+8daza6dGYrUrO34BPeN5Y4xbBG5WmVOLGgbDH7J3ZKGzkG21R5zHraI
tPJzZ3KGj+Cf1TtamBOpyF+SLqM7qi43JY/1l8LfDzJgJhB3NxOR1ig/Pk6z1qLi
2xYm1hb+EQqJGaToMXEl5fLLcYfnJmLYD/dWNq/pOVXFqC5cGxYIH1h+Nwzywvy3
hVqh4yDU5HXgu8mOMPPc23azicJflZwCNq0vTTDE+orYnb8n9Sbg0l+rUQ45BZua
tVfGKT1LZuYtM0axYQ4fIfqS9bxsyRJcF6HNNaEMQJsm0V0prwlz0hXkaod1uOJd
CwOn9+CpZUGCgj5paRS+zTOtcl39+X1tIhcWTHEDMpMzIqnk8KpkLGqCDisBZNBF
UbjEaTA8w6tBxRX5FZ9qdmRFvsxCJH7nOxmmsaIOZ/7QXQHQNrxI2+v6yd4HWJAw
yZnaVR5o6sojKc8zp9nOXQ219G1zvt4l6XyTqIP+gKWJGDKGCsMXXzEg1OchO+rI
Oo8s5+ytZB9qei7QwLAf
=wLqJ
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull randomness updates from Ted Ts'o:
"Cleanups and bug fixes to /dev/random, add a new getrandom(2) system
call, which is a superset of OpenBSD's getentropy(2) call, for use
with userspace crypto libraries such as LibreSSL.
Also add the ability to have a kernel thread to pull entropy from
hardware rng devices into /dev/random"
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
hwrng: Pass entropy to add_hwgenerator_randomness() in bits, not bytes
random: limit the contribution of the hw rng to at most half
random: introduce getrandom(2) system call
hw_random: fix sparse warning (NULL vs 0 for pointer)
random: use registers from interrupted code for CPU's w/o a cycle counter
hwrng: add per-device entropy derating
hwrng: create filler thread
random: add_hwgenerator_randomness() for feeding entropy from devices
random: use an improved fast_mix() function
random: clean up interrupt entropy accounting for archs w/o cycle counters
random: only update the last_pulled time if we actually transferred entropy
random: remove unneeded hash of a portion of the entropy pool
random: always update the entropy pool under the spinlock
For people who don't trust a hardware RNG which can not be audited,
the changes to add support for RDSEED can be troubling since 97% or
more of the entropy will be contributed from the in-CPU hardware RNG.
We now have a in-kernel khwrngd, so for those people who do want to
implicitly trust the CPU-based system, we could create an arch-rng
hw_random driver, and allow khwrng refill the entropy pool. This
allows system administrator whether or not they trust the CPU (I
assume the NSA will trust RDRAND/RDSEED implicitly :-), and if so,
what level of entropy derating they want to use.
The reason why this is a really good idea is that if different people
use different levels of entropy derating, it will make it much more
difficult to design a backdoor'ed hwrng that can be generally
exploited in terms of the output of /dev/random when different attack
targets are using differing levels of entropy derating.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The getrandom(2) system call was requested by the LibreSSL Portable
developers. It is analoguous to the getentropy(2) system call in
OpenBSD.
The rationale of this system call is to provide resiliance against
file descriptor exhaustion attacks, where the attacker consumes all
available file descriptors, forcing the use of the fallback code where
/dev/[u]random is not available. Since the fallback code is often not
well-tested, it is better to eliminate this potential failure mode
entirely.
The other feature provided by this new system call is the ability to
request randomness from the /dev/urandom entropy pool, but to block
until at least 128 bits of entropy has been accumulated in the
/dev/urandom entropy pool. Historically, the emphasis in the
/dev/urandom development has been to ensure that urandom pool is
initialized as quickly as possible after system boot, and preferably
before the init scripts start execution.
This is because changing /dev/urandom reads to block represents an
interface change that could potentially break userspace which is not
acceptable. In practice, on most x86 desktop and server systems, in
general the entropy pool can be initialized before it is needed (and
in modern kernels, we will printk a warning message if not). However,
on an embedded system, this may not be the case. And so with this new
interface, we can provide the functionality of blocking until the
urandom pool has been initialized. Any userspace program which uses
this new functionality must take care to assure that if it is used
during the boot process, that it will not cause the init scripts or
other portions of the system startup to hang indefinitely.
SYNOPSIS
#include <linux/random.h>
int getrandom(void *buf, size_t buflen, unsigned int flags);
DESCRIPTION
The system call getrandom() fills the buffer pointed to by buf
with up to buflen random bytes which can be used to seed user
space random number generators (i.e., DRBG's) or for other
cryptographic uses. It should not be used for Monte Carlo
simulations or other programs/algorithms which are doing
probabilistic sampling.
If the GRND_RANDOM flags bit is set, then draw from the
/dev/random pool instead of the /dev/urandom pool. The
/dev/random pool is limited based on the entropy that can be
obtained from environmental noise, so if there is insufficient
entropy, the requested number of bytes may not be returned.
If there is no entropy available at all, getrandom(2) will
either block, or return an error with errno set to EAGAIN if
the GRND_NONBLOCK bit is set in flags.
If the GRND_RANDOM bit is not set, then the /dev/urandom pool
will be used. Unlike using read(2) to fetch data from
/dev/urandom, if the urandom pool has not been sufficiently
initialized, getrandom(2) will block (or return -1 with the
errno set to EAGAIN if the GRND_NONBLOCK bit is set in flags).
The getentropy(2) system call in OpenBSD can be emulated using
the following function:
int getentropy(void *buf, size_t buflen)
{
int ret;
if (buflen > 256)
goto failure;
ret = getrandom(buf, buflen, 0);
if (ret < 0)
return ret;
if (ret == buflen)
return 0;
failure:
errno = EIO;
return -1;
}
RETURN VALUE
On success, the number of bytes that was filled in the buf is
returned. This may not be all the bytes requested by the
caller via buflen if insufficient entropy was present in the
/dev/random pool, or if the system call was interrupted by a
signal.
On error, -1 is returned, and errno is set appropriately.
ERRORS
EINVAL An invalid flag was passed to getrandom(2)
EFAULT buf is outside the accessible address space.
EAGAIN The requested entropy was not available, and
getentropy(2) would have blocked if the
GRND_NONBLOCK flag was not set.
EINTR While blocked waiting for entropy, the call was
interrupted by a signal handler; see the description
of how interrupted read(2) calls on "slow" devices
are handled with and without the SA_RESTART flag
in the signal(7) man page.
NOTES
For small requests (buflen <= 256) getrandom(2) will not
return EINTR when reading from the urandom pool once the
entropy pool has been initialized, and it will return all of
the bytes that have been requested. This is the recommended
way to use getrandom(2), and is designed for compatibility
with OpenBSD's getentropy() system call.
However, if you are using GRND_RANDOM, then getrandom(2) may
block until the entropy accounting determines that sufficient
environmental noise has been gathered such that getrandom(2)
will be operating as a NRBG instead of a DRBG for those people
who are working in the NIST SP 800-90 regime. Since it may
block for a long time, these guarantees do *not* apply. The
user may want to interrupt a hanging process using a signal,
so blocking until all of the requested bytes are returned
would be unfriendly.
For this reason, the user of getrandom(2) MUST always check
the return value, in case it returns some error, or if fewer
bytes than requested was returned. In the case of
!GRND_RANDOM and small request, the latter should never
happen, but the careful userspace code (and all crypto code
should be careful) should check for this anyway!
Finally, unless you are doing long-term key generation (and
perhaps not even then), you probably shouldn't be using
GRND_RANDOM. The cryptographic algorithms used for
/dev/urandom are quite conservative, and so should be
sufficient for all purposes. The disadvantage of GRND_RANDOM
is that it can block, and the increased complexity required to
deal with partially fulfilled getrandom(2) requests.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Zach Brown <zab@zabbo.net>
The expression entropy_count -= ibytes << (ENTROPY_SHIFT + 3) could
actually increase entropy_count if during assignment of the unsigned
expression on the RHS (mind the -=) we reduce the value modulo
2^width(int) and assign it to entropy_count. Trinity found this.
[ Commit modified by tytso to add an additional safety check for a
negative entropy_count -- which should never happen, and to also add
an additional paranoia check to prevent overly large count values to
be passed into urandom_read(). ]
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
For CPU's that don't have a cycle counter, or something equivalent
which can be used for random_get_entropy(), random_get_entropy() will
always return 0. In that case, substitute with the saved interrupt
registers to add a bit more unpredictability.
Some folks have suggested hashing all of the registers
unconditionally, but this would increase the overhead of
add_interrupt_randomness() by at least an order of magnitude, and this
would very likely be unacceptable.
The changes in this commit have been benchmarked as mostly unaffecting
the overhead of add_interrupt_randomness() if the entropy counter is
present, and doubling the overhead if it is not present.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: Jörn Engel <joern@logfs.org>
This patch adds an interface to the random pool for feeding entropy
in-kernel.
Signed-off-by: Torsten Duwe <duwe@suse.de>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Use more efficient fast_mix() function. Thanks to George Spelvin for
doing the leg work to find a more efficient mixing function.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: George Spelvin <linux@horizon.com>
For architectures that don't have cycle counters, the algorithm for
deciding when to avoid giving entropy credit due to back-to-back timer
interrupts didn't make any sense, since we were checking every 64
interrupts. Change it so that we only give an entropy credit if the
majority of the interrupts are not based on the timer.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: George Spelvin <linux@horizon.com>
In xfer_secondary_pull(), check to make sure we need to pull from the
secondary pool before checking and potentially updating the
last_pulled time.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: George Spelvin <linux@horizon.com>
We previously extracted a portion of the entropy pool in
mix_pool_bytes() and hashed it in to avoid racing CPU's from returning
duplicate random values. Now that we are using a spinlock to prevent
this from happening, this is no longer necessary. So remove it, to
simplify the code a bit.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: George Spelvin <linux@horizon.com>
Instead of using lockless techniques introduced in commit
902c098a36, use spin_trylock to try to grab entropy pool's lock. If
we can't get the lock, then just try again on the next interrupt.
Based on discussions with George Spelvin.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: George Spelvin <linux@horizon.com>
Commit 0fb7a01af5 "random: simplify accounting code", introduced in
v3.15, has a very nasty accounting problem when the entropy pool has
has fewer bytes of entropy than the number of requested reserved
bytes. In that case, "have_bytes - reserved" goes negative, and since
size_t is unsigned, the expression:
ibytes = min_t(size_t, ibytes, have_bytes - reserved);
... does not do the right thing. This is rather bad, because it
defeats the catastrophic reseeding feature in the
xfer_secondary_pool() path.
It also can cause the "BUG: spinlock trylock failure on UP" for some
kernel configurations when prandom_reseed() calls get_random_bytes()
in the early init, since when the entropy count gets corrupted,
credit_entropy_bits() erroneously believes that the nonblocking pool
has been fully initialized (when in fact it is not), and so it calls
prandom_reseed(true) recursively leading to the spinlock BUG.
The logic is *not* the same it was originally, but in the cases where
it matters, the behavior is the same, and the resulting code is
hopefully easier to read and understand.
Fixes: 0fb7a01af5 "random: simplify accounting code"
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: Greg Price <price@mit.edu>
Cc: stable@vger.kernel.org #v3.15
This typedef is unnecessary and should just be removed.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull block core updates from Jens Axboe:
"It's a big(ish) round this time, lots of development effort has gone
into blk-mq in the last 3 months. Generally we're heading to where
3.16 will be a feature complete and performant blk-mq. scsi-mq is
progressing nicely and will hopefully be in 3.17. A nvme port is in
progress, and the Micron pci-e flash driver, mtip32xx, is converted
and will be sent in with the driver pull request for 3.16.
This pull request contains:
- Lots of prep and support patches for scsi-mq have been integrated.
All from Christoph.
- API and code cleanups for blk-mq from Christoph.
- Lots of good corner case and error handling cleanup fixes for
blk-mq from Ming Lei.
- A flew of blk-mq updates from me:
* Provide strict mappings so that the driver can rely on the CPU
to queue mapping. This enables optimizations in the driver.
* Provided a bitmap tagging instead of percpu_ida, which never
really worked well for blk-mq. percpu_ida relies on the fact
that we have a lot more tags available than we really need, it
fails miserably for cases where we exhaust (or are close to
exhausting) the tag space.
* Provide sane support for shared tag maps, as utilized by scsi-mq
* Various fixes for IO timeouts.
* API cleanups, and lots of perf tweaks and optimizations.
- Remove 'buffer' from struct request. This is ancient code, from
when requests were always virtually mapped. Kill it, to reclaim
some space in struct request. From me.
- Remove 'magic' from blk_plug. Since we store these on the stack
and since we've never caught any actual bugs with this, lets just
get rid of it. From me.
- Only call part_in_flight() once for IO completion, as includes two
atomic reads. Hopefully we'll get a better implementation soon, as
the part IO stats are now one of the more expensive parts of doing
IO on blk-mq. From me.
- File migration of block code from {mm,fs}/ to block/. This
includes bio.c, bio-integrity.c, bounce.c, and ioprio.c. From me,
from a discussion on lkml.
That should describe the meat of the pull request. Also has various
little fixes and cleanups from Dave Jones, Shaohua Li, Duan Jiong,
Fengguang Wu, Fabian Frederick, Randy Dunlap, Robert Elliott, and Sam
Bradshaw"
* 'for-3.16/core' of git://git.kernel.dk/linux-block: (100 commits)
blk-mq: push IPI or local end_io decision to __blk_mq_complete_request()
blk-mq: remember to start timeout handler for direct queue
block: ensure that the timer is always added
blk-mq: blk_mq_unregister_hctx() can be static
blk-mq: make the sysfs mq/ layout reflect current mappings
blk-mq: blk_mq_tag_to_rq should handle flush request
block: remove dead code in scsi_ioctl:blk_verify_command
blk-mq: request initialization optimizations
block: add queue flag for disabling SG merging
block: remove 'magic' from struct blk_plug
blk-mq: remove alloc_hctx and free_hctx methods
blk-mq: add file comments and update copyright notices
blk-mq: remove blk_mq_alloc_request_pinned
blk-mq: do not use blk_mq_alloc_request_pinned in blk_mq_map_request
blk-mq: remove blk_mq_wait_for_tags
blk-mq: initialize request in __blk_mq_alloc_request
blk-mq: merge blk_mq_alloc_reserved_request into blk_mq_alloc_request
blk-mq: add helper to insert requests from irq context
blk-mq: remove stale comment for blk_mq_complete_request()
blk-mq: allow non-softirq completions
...
Commit ee1de406ba ("random: simplify accounting logic") simplified
things too much, in that it allows the following to trigger an
overflow that results in a BUG_ON crash:
dd if=/dev/urandom of=/dev/zero bs=67108707 count=1
Thanks to Peter Zihlstra for discovering the crash, and Hannes
Frederic for analyizing the root cause.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Greg Price <price@mit.edu>
This will be needed for pending changes to the scsi midlayer that now
calls lower level block APIs, as well as any blk-mq driver that wants to
contribute to the random pool.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Jens Axboe <axboe@fb.com>
Add predicate functions for having arch_get_random[_seed]*(). The
only current use is to avoid the loop in arch_random_refill() when
arch_get_random_seed_long() is unavailable.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If we have arch_get_random_seed*(), try to use it for emergency refill
of the entropy pool before giving up and blocking on /dev/random. It
may or may not work in the moment, but if it does work, it will give
the user better service than blocking will.
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Use arch_get_random_seed*() in two places in the Linux random
driver (drivers/char/random.c):
1. During entropy pool initialization, use RDSEED in favor of RDRAND,
with a fallback to the latter. Entropy exhaustion is unlikely to
happen there on physical hardware as the machine is single-threaded
at that point, but could happen in a virtual machine. In that
case, the fallback to RDRAND will still provide more than adequate
entropy pool initialization.
2. Once a second, issue RDSEED and, if successful, feed it to the
entropy pool. To ensure an extra layer of security, only credit
half the entropy just in case.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
To help assuage the fears of those who think the NSA can introduce a
massive hack into the instruction decode and out of order execution
engine in the CPU without hundreds of Intel engineers knowing about
it (only one of which woud need to have the conscience and courage of
Edward Snowden to spill the beans to the public), use the HWRNG to
initialize the SHA starting value, instead of xor'ing it in
afterwards.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
These are a recurring cause of confusion, so rename them to
hopefully be clearer.
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The variable 'entropy_bytes' is set from an expression that actually
counts bits. Fortunately it's also only compared to values that also
count bits. Rename it accordingly.
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
With this we handle "reserved" in just one place. As a bonus the
code becomes less nested, and the "wakeup_write" flag variable
becomes unnecessary. The variable "flags" was already unused.
This code behaves identically to the previous version except in
two pathological cases that don't occur. If the argument "nbytes"
is already less than "min", then we didn't previously enforce
"min". If r->limit is false while "reserved" is nonzero, then we
previously applied "reserved" in checking whether we had enough
bits, even though we don't apply it to actually limit how many we
take. The callers of account() never exercise either of these cases.
Before the previous commit, it was possible for "nbytes" to be less
than "min" if userspace chose a pathological configuration, but no
longer.
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
We use this value in a few places other than its literal meaning,
in particular in _xfer_secondary_pool() as a minimum number of
bits to pull from the input pool at a time into either output
pool. It doesn't make sense to pull more bits than the whole size
of an output pool.
We could and possibly should separate the quantities "how much
should the input pool have to have to wake up /dev/random readers"
and "how much should we transfer from the input to an output pool
at a time", but nobody is likely to be sad they can't set the first
quantity to more than 1024 bits, so for now just limit them both.
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The only mutable data accessed here is ->entropy_count, but since
10b3a32d2 ("random: fix accounting race condition") we use cmpxchg to
protect our accesses to ->entropy_count here. Drop the use of the
lock.
Cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This logic is exactly equivalent to the old logic, but it should
be easier to see what it's doing.
The equivalence depends on one fact from outside this function:
when 'r->limit' is false, 'reserved' is zero. (Well, two facts;
the other is that 'reserved' is never negative.)
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
This comment didn't quite keep up as extract_entropy() was split into
four functions. Put each bit by the function it describes.
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The loop condition never changes until just before a break, so we
might as well write it as a constant. Also since a996996dd7
("random: drop weird m_time/a_time manipulation") we don't do anything
after the loop finishes, so the 'break's might as well return
directly. Some other simplifications.
There should be no change in behavior introduced by this commit.
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
After this remark was written, commit d2e7c96af added a use of
arch_get_random_long() inside the get_random_bytes codepath.
The main point stands, but it needs to be reworded.
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
There's only one function here now, as uuid_strategy is long gone.
Also make the bit about "If accesses via ..." clearer.
Signed-off-by: Greg Price <price@mit.edu>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
the following areas: performance, avoiding waste of entropy, better
tracking of entropy estimates, support for non-x86 platforms that have
a register which can't be used for fine-grained timekeeping, but which
might be good enough for the random driver.
Also add some printk's so that we can see how quickly /dev/urandom can
get initialized, and when programs try to use /dev/urandom before it
is fully initialized (since this could be a security issue). This
shouldn't be an issue on x86 desktop/laptops --- a test on my Lenovo
T430s laptop shows that /dev/urandom is getting fully initialized
approximately two seconds before the root file system is mounted
read/write --- this may be an issue with ARM and MIPS embedded/mobile
systems, though. These printk's will be a useful canary before
potentially adding a future change to start blocking processes which
try to read from /dev/urandom before it is initialized, which is
something FreeBSD does already for security reasons, and which
security folks have been agitating for Linux to also adopt.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQIcBAABCAAGBQJShC4MAAoJENNvdpvBGATwC0QQAMujsIxTZnsHwQrbb5eJf1kD
74TwQyEfWw5qnGQrc8JOoAbe1MG7C4QlfHxRsWxvCD8G+Mft4Q5ZgZOt0/ecAGD6
Tid58EaZGSfK9+YE6jgvJFekQADCREdPSxBASJ3cECT6dXXBX9IqR9gbAK02mM+w
QZdbgWBMsPJZiHSsCNeRbZ9oIiPdcNDsMJwzJhirPUeAnKCaX3z+LWc3XcMw7wYi
q5cSl0ENZd6QsBKs37A1ol5BtLEsoot2t3HKdnpOBsDQKSJ712KduwN5jUfs6h9D
0fqmVHwfKsge+D8/3NgBKz+yWLQnGkuB4Ibo+09BZXwH3rYU1/gKm0iLNi0yQ5fV
73bn4pqF6cZdDNgj0Ic+MyYAW+S/NOQ6TcF/3eSAPW6z/wHZOfZ2njCh1GEHBOKI
6iZZu+Ek7QyFJ/z5Fr1bXFJR7V99r7hRD3gwMCMZ/mjhloB2cyD0a2A9kFP85ykI
I4tFEnq0FpX/K60ag4hiLnqVx/TsmbdMoz+8OpQckHgQJrZMuRRf1d+T4au47Y6K
uXGLpSuvkALYW2koo2OoO2d873N/89fqFL8lI8Iy0YlgAxxxm++gl1Mql/E1wPOa
5jB0lW/jex/CquE7meTgRlM/fTU/HVbe3608ZNUYBJUHS9K/PaSnCCu2ya8/TsSW
xeVS/vMnNvtGerdEIyKm
=wla0
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull /dev/random changes from Ted Ts'o:
"The /dev/random changes for 3.13 including a number of improvements in
the following areas: performance, avoiding waste of entropy, better
tracking of entropy estimates, support for non-x86 platforms that have
a register which can't be used for fine-grained timekeeping, but which
might be good enough for the random driver.
Also add some printk's so that we can see how quickly /dev/urandom can
get initialized, and when programs try to use /dev/urandom before it
is fully initialized (since this could be a security issue). This
shouldn't be an issue on x86 desktop/laptops --- a test on my Lenovo
T430s laptop shows that /dev/urandom is getting fully initialized
approximately two seconds before the root file system is mounted
read/write --- this may be an issue with ARM and MIPS embedded/mobile
systems, though. These printk's will be a useful canary before
potentially adding a future change to start blocking processes which
try to read from /dev/urandom before it is initialized, which is
something FreeBSD does already for security reasons, and which
security folks have been agitating for Linux to also adopt"
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
random: add debugging code to detect early use of get_random_bytes()
random: initialize the last_time field in struct timer_rand_state
random: don't zap entropy count in rand_initialize()
random: printk notifications for urandom pool initialization
random: make add_timer_randomness() fill the nonblocking pool first
random: convert DEBUG_ENT to tracepoints
random: push extra entropy to the output pools
random: drop trickle mode
random: adjust the generator polynomials in the mixing function slightly
random: speed up the fast_mix function by a factor of four
random: cap the rate which the /dev/urandom pool gets reseeded
random: optimize the entropy_store structure
random: optimize spinlock use in add_device_randomness()
random: fix the tracepoint for get_random_bytes(_arch)
random: account for entropy loss due to overwrites
random: allow fractional bits to be tracked
random: statically compute poolbitshift, poolbytes, poolbits
random: mix in architectural randomness earlier in extract_buf()
The Tausworthe PRNG is initialized at late_initcall time. At that time the
entropy pool serving get_random_bytes is not filled sufficiently. This
patch adds an additional reseeding step as soon as the nonblocking pool
gets marked as initialized.
On some machines it might be possible that late_initcall gets called after
the pool has been initialized. In this situation we won't reseed again.
(A call to prandom_seed_late blocks later invocations of early reseed
attempts.)
Joint work with Daniel Borkmann.
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since we initialize jiffies to wrap five minutes before boot (see
INITIAL_JIFFIES defined in include/linux/jiffies.h) it's important to
make sure the last_time field is initialized to INITIAL_JIFFIES.
Otherwise, the entropy estimator will overestimate the amount of
entropy resulting from the first call to add_timer_randomness(),
generally by about 8 bits.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The rand_initialize() function was being run fairly late in the kernel
boot sequence. This was unfortunate, since it zero'ed the entropy
counters, thus throwing away credit that was accumulated earlier in
the boot sequence, and it also meant that initcall functions run
before rand_initialize were using a minimally initialized pool.
To fix this, fix init_std_data() to no longer zap the entropy counter;
it wasn't necessary, and move rand_initialize() to be an early
initcall.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Print a notification to the console when the nonblocking pool is
initialized. Also printk a warning when a process tries reading from
/dev/urandom before it is fully initialized.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Change add_timer_randomness() so that it directs incoming entropy to
the nonblocking pool first if it hasn't been fully initialized yet.
This matches the strategy we use in add_interrupt_randomness(), which
allows us to push the randomness where we need it the most during when
the system is first booting up, so that get_random_bytes() and
/dev/urandom become safe to use as soon as possible.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
non-x86 platforms, in particular MIPS and ARM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQIcBAABCAAGBQJSVvO/AAoJENNvdpvBGATwNZ4P+wadRWY/Gdz/p9332qdVrGYs
nP4DPWSg+n3RH/fOnacEwHF5vqapTe03G82NriCaVGFP8O9j7bo6ByMKKkIR7yvr
4sHUX4YMc/DwchaIHH2xp8fQoMc3Mv7mn8bodTtPXgveeldEvtuUQM0q+j4DXZUT
qSLMGElgJYrpIf2Cm8JAIBkt2QuzpZPPX7Z6glZunpvfLSMmgn3Vj2ilNEx1YCFH
v+Rk1ZYLjg2LzUYqaO7HOXlRJqmE10I7ZmNvPXJZ9fuPmGYD9FU6WeHhmIAFYdFw
V6bAzou+LbnuNVoW6yiDvrKcOXgh2Spbk6SaKVSrcjVPfc87ocNzGWI4OTfNy1xI
Kv9u4YfU3pIUWPDGx0mvT/KXAXl/PGVfu7bYXDcN2I2tqlrbBPdIWqpFB2eTn7/j
//XbatoT6gGZTuseCKhYXWpG8AE5pCfbjGnd9il21fvlUDdkIq42wAs96qjc6Ruj
tPCi5yYzLiHsn4eau+SJqI1KxPLf6YJw9Qo+f70FGl63wXJU9Vr07ID2rGTwXm1m
Qf1joTtx900PvfzUaD0ODbQZaTbX6ebSOkriKpKWYwg+26Gdc7JAxIVI3HDOlOR+
++r1M4ERwDic/xdVsB6Mngmop3d1BeNU2IAoiRDZwcJpS1+MLivlIbd1PjBAt0bU
+oOm+wseHEzSnlgucQ0g
=qnTe
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull /dev/random changes from Ted Ts'o:
"These patches are designed to enable improvements to /dev/random for
non-x86 platforms, in particular MIPS and ARM"
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
random: allow architectures to optionally define random_get_entropy()
random: run random_int_secret_init() run after all late_initcalls
Instead of using the random driver's ad-hoc DEBUG_ENT() mechanism, use
tracepoints instead. This allows for a much more fine-grained control
of which debugging mechanism which a developer might need, and unifies
the debugging messages with all of the existing tracepoints.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
As the input pool gets filled, start transfering entropy to the output
pools until they get filled. This allows us to use the output pools
to store more system entropy. Waste not, want not....
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The add_timer_randomness() used to drop into trickle mode when entropy
pool was estimated to be 87.5% full. This was important when
add_timer_randomness() was used to sample interrupts. It's not used
for this any more --- add_interrupt_randomness() now uses fast_mix()
instead. By elimitating trickle mode, it allows us to fully utilize
entropy provided by add_input_randomness() and add_disk_randomness()
even when the input pool is above the old trickle threshold of 87.5%.
This helps to answer the criticism in [1] in their hypothetical
scenario where our entropy estimator was inaccurate, even though the
measurements in [2] seem to indicate that our entropy estimator given
real-life entropy collection is actually pretty good, albeit on the
conservative side (which was as it was designed).
[1] http://eprint.iacr.org/2013/338.pdf
[2] http://eprint.iacr.org/2012/251.pdf
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
Videau in their paper, "The Linux Pseudorandom Number Generator
Revisited" (see: http://eprint.iacr.org/2012/251.pdf).
They suggested a slight change to improve our mixing functions
slightly. I also adjusted the comments to better explain what is
going on, and to document why the polynomials were changed.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
By mixing the entropy in chunks of 32-bit words instead of byte by
byte, we can speed up the fast_mix function significantly. Since it
is called on every single interrupt, on systems with a very heavy
interrupt load, this can make a noticeable difference.
Also fix a compilation warning in add_interrupt_randomness() and avoid
xor'ing cycles and jiffies together just in case we have an
architecture which tries to define random_get_entropy() by returning
jiffies.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reported-by: Jörn Engel <joern@logfs.org>
In order to avoid draining the input pool of its entropy at too high
of a rate, enforce a minimum time interval between reseedings of the
urandom pool. This is set to 60 seconds by default.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
The add_device_randomness() function calls mix_pool_bytes() twice for
the input pool and the non-blocking pool, for a total of four times.
By using _mix_pool_byte() and taking the spinlock in
add_device_randomness(), we can halve the number of times we need
take each pool's spinlock.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Fix a problem where get_random_bytes_arch() was calling the tracepoint
get_random_bytes(). So add a new tracepoint for
get_random_bytes_arch(), and make get_random_bytes() and
get_random_bytes_arch() call their correct tracepoint.
Also, add a new tracepoint for add_device_randomness()
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When we write entropy into a non-empty pool, we currently don't
account at all for the fact that we will probabilistically overwrite
some of the entropy in that pool. This means that unless the pool is
fully empty, we are currently *guaranteed* to overestimate the amount
of entropy in the pool!
Assuming Shannon entropy with zero correlations we end up with an
exponentally decaying value of new entropy added:
entropy <- entropy + (pool_size - entropy) *
(1 - exp(-add_entropy/pool_size))
However, calculations involving fractional exponentials are not
practical in the kernel, so apply a piecewise linearization:
For add_entropy <= pool_size/2 then
(1 - exp(-add_entropy/pool_size)) >= (add_entropy/pool_size)*0.7869...
... so we can approximate the exponential with
3/4*add_entropy/pool_size and still be on the
safe side by adding at most pool_size/2 at a time.
In order for the loop not to take arbitrary amounts of time if a bad
ioctl is received, terminate if we are within one bit of full. This
way the loop is guaranteed to terminate after no more than
log2(poolsize) iterations, no matter what the input value is. The
vast majority of the time the loop will be executed exactly once.
The piecewise linearization is very conservative, approaching 3/4 of
the usable input value for small inputs, however, our entropy
estimation is pretty weak at best, especially for small values; we
have no handle on correlation; and the Shannon entropy measure (Rényi
entropy of order 1) is not the correct one to use in the first place,
but rather the correct entropy measure is the min-entropy, the Rényi
entropy of infinite order.
As such, this conservatism seems more than justified.
This does introduce fractional bit values. I have left it to have 3
bits of fraction, so that with a pool of 2^12 bits the multiply in
credit_entropy_bits() can still fit into an int, as 2*(3+12) < 31. It
is definitely possible to allow for more fractional accounting, but
that multiply then would have to be turned into a 32*32 -> 64 multiply.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: DJ Johnston <dj.johnston@intel.com>
Allow fractional bits of entropy to be tracked by scaling the entropy
counter (fixed point). This will be used in a subsequent patch that
accounts for entropy lost due to overwrites.
[ Modified by tytso to fix up a few missing places where the
entropy_count wasn't properly converted from fractional bits to
bits. ]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Use a macro to statically compute poolbitshift (will be used in a
subsequent patch), poolbytes, and poolbits. On virtually all
architectures the cost of a memory load with an offset is the same as
the one of a memory load.
It is still possible for this to generate worse code since the C
compiler doesn't know the fixed relationship between these fields, but
that is somewhat unlikely.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Previously if CPU chip had a built-in random number generator (i.e.,
RDRAND on newer x86 chips), we mixed it in at the very end of
extract_buf() using an XOR operation.
We now mix it in right after the calculate a hash across the entire
pool. This has the advantage that any contribution of entropy from
the CPU's HWRNG will get mixed back into the pool. In addition, it
means that if the HWRNG has any defects (either accidentally or
maliciously introduced), this will be mitigated via the non-linear
transform of the SHA-1 hash function before we hand out generated
output.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Allow architectures which have a disabled get_cycles() function to
provide a random_get_entropy() function which provides a fine-grained,
rapidly changing counter that can be used by the /dev/random driver.
For example, an architecture might have a rapidly changing register
used to control random TLB cache eviction, or DRAM refresh that
doesn't meet the requirements of get_cycles(), but which is good
enough for the needs of the random driver.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@vger.kernel.org
The some platforms (e.g., ARM) initializes their clocks as
late_initcalls for some unknown reason. So make sure
random_int_secret_init() is run after all of the late_initcalls are
run.
Cc: stable@vger.kernel.org
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
After the last architecture switched to generic hard irqs the config
options HAVE_GENERIC_HARDIRQS & GENERIC_HARDIRQS and the related code
for !CONFIG_GENERIC_HARDIRQS can be removed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This typedef is unnecessary and should just be removed.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 902c098a36 ("random: use lockless techniques in the interrupt
path") turned IRQ path from being spinlock protected into lockless
cmpxchg-retry update.
That commit removed r->lock serialization between crediting entropy bits
from IRQ context and accounting when extracting entropy on userspace
read path, but didn't turn the r->entropy_count reads/updates in
account() to use cmpxchg as well.
It has been observed, that under certain circumstances this leads to
read() on /dev/urandom to return 0 (EOF), as r->entropy_count gets
corrupted and becomes negative, which in turn results in propagating 0
all the way from account() to the actual read() call.
Convert the accounting code to be the proper lockless counterpart of
what has been partially done by 902c098a36.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Greg KH <greg@kroah.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ec8f02da9e ("random: prime last_data value per fips
requirements") added priming of last_data per fips requirements.
Unfortuantely, it did so in a way that can lead to multiple threads all
incrementing nbytes, but only one actually doing anything with the extra
data, which leads to some fun random corruption and panics.
The fix is to simply do everything needed to prime last_data in a single
shot, so there's no window for multiple cpus to increment nbytes -- in
fact, we won't even increment or decrement nbytes anymore, we'll just
extract the needed EXTRACT_SIZE one time per pool and then carry on with
the normal routine.
All these changes have been tested across multiple hosts and
architectures where panics were previously encoutered. The code changes
are are strictly limited to areas only touched when when booted in fips
mode.
This change should also go into 3.8-stable, to make the myriads of fips
users on 3.8.x happy.
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Jan Stodola <jstodola@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Matt Mackall <mpm@selenic.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several places in kernel where modules unescapes input to convert
C-Style Escape Sequences into byte codes.
The patch provides generic implementation of such approach. Test cases are
also included into the patch.
[akpm@linux-foundation.org: clarify comment]
[akpm@linux-foundation.org: export get_random_int() to modules]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Samuel Thibault <samuel.thibault@ens-lyon.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: William Hubbs <w.d.hubbs@gmail.com>
Cc: Chris Brannon <chris@the-brannons.com>
Cc: Kirk Reiser <kirk@braille.uwo.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
used by a thread when it exits.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABCAAGBQJROTMZAAoJENNvdpvBGATw3/YQAIbsAxj8i16k/fCtKzXNjzL8
/CWdJR7P+hzIpCnbNekpXaTFstvzi4aud5DMV00B17cLk87AGcjm/XhUfHRoWDjf
Q15/3Zm+xHDGN/A3vLjQEb15yjlc/Z0X83JR6+StcNYh5tDujwz/QYAAUStH10yV
xY8DlErDKANeeoAaPtmbqB+4+mllXzCjp8nqtSMl6aR29YRBi50fOF9Hli9Mrm7+
hqZz61xWBGZpRuWvXEWFkRhRxhwJ03UMOPxzTeGvh4+f8/JexF0U9/a3qMWbJK6P
jcuBh6J4MVKN9y77C2Py4VCiDEVQCQHWFfA9+tIG6SxTnkteKi1s7Z5oNDUcobkQ
2cmPcoM7ChDseojxcPJX3rzA0popFk6IzeRYyeKzenKqSsabcFB/BnGR2u0N5hqd
8JIRNu+Wo08OjgP9PFge3quymNOrJThQWlMNMq4rNuk6mKKxAXkLyt87dfYmIzt1
nIVZXjjqaziTR0mIe5FskeAPIUgGsxaN5hAqEfReE2pmykcJSJza1I/9g9FtGXGa
bI9UUZsHWZ0lVQMz2axrGJsBmkoJS5E7ZHWjJW0fW0gO6ufLX/kd7eW4PYRvLwMm
VTwh1aalcEz0LvPV01Ayc1fq1FEVm7i2OsZ5VI20TR4sbgX5MNjSeDMf2v87/wVd
B3NpSTt6FN02VnbaY+Tj
=09UJ
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull random fixes from Ted Ts'o:
"Fix a circular locking dependency in random's collection of cputime
used by a thread when it exits."
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
random: fix locking dependency with the tasklist_lock
Commit 6133705494 introduced a circular lock dependency because
posix_cpu_timers_exit() is called by release_task(), which is holding
a writer lock on tasklist_lock, and this can cause a deadlock since
kill_fasync() gets called with nonblocking_pool.lock taken.
There's no reason why kill_fasync() needs to be taken while the random
pool is locked, so move it out to fix this locking dependency.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reported-by: Russ Dill <Russ.Dill@gmail.com>
Cc: stable@kernel.org
The static lock initializers want to be fed the proper name of the
lock and not some random string. In mainline random strings are
obfuscating the readability of debug output, but for RT they prevent
the spinlock substitution. Fix it up.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The value stored in last_data must be primed for FIPS 140-2 purposes. Upon
first use, either on system startup or after an RNDCLEARPOOL ioctl, we
need to take an initial random sample, store it internally in last_data,
then pass along the value after that to the requester, so that consistency
checks aren't being run against stale and possibly known data.
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: "David S. Miller" <davem@davemloft.net>
CC: Matt Mackall <mpm@selenic.com>
CC: linux-crypto@vger.kernel.org
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Fix the following warnings in formatting debug output:
drivers/char/random.c: In function ‘xfer_secondary_pool’:
drivers/char/random.c:827: warning: format ‘%d’ expects type ‘int’, but argument 7 has type ‘size_t’
drivers/char/random.c: In function ‘account’:
drivers/char/random.c:859: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘size_t’
drivers/char/random.c:881: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘size_t’
drivers/char/random.c: In function ‘random_read’:
drivers/char/random.c:1141: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘ssize_t’
drivers/char/random.c:1145: warning: format ‘%d’ expects type ‘int’, but argument 5 has type ‘ssize_t’
drivers/char/random.c:1145: warning: format ‘%d’ expects type ‘int’, but argument 6 has type ‘long unsigned int’
by using '%zd' instead of '%d' to properly denote ssize_t/size_t conversion.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The module parameter that turns debugging mode (which basically means
printing a few extra lines during runtime) is in '#if 0' block. Forcing
everyone who would like to see how entropy is behaving on his system to
rebuild seems to be a little bit too harsh.
If we were concerned about speed, we could potentially turn 'debug' into a
static key, but I don't think it's necessary.
Drop the '#if 0' block to allow using the 'debug' parameter without rebuilding.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Mix in any architectural randomness in extract_buf() instead of
xfer_secondary_buf(). This allows us to mix in more architectural
randomness, and it also makes xfer_secondary_buf() faster, moving a
tiny bit of additional CPU overhead to process which is extracting the
randomness.
[ Commit description modified by tytso to remove an extended
advertisement for the RDRAND instruction. ]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: DJ Johnston <dj.johnston@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Many platforms have per-machine instance data (serial numbers,
asset tags, etc.) squirreled away in areas that are accessed
during early system bringup. Mixing this data into the random
pools has a very high value in providing better random data,
so we should allow (and even encourage) architecture code to
call add_device_randomness() from the setup_arch() paths.
However, this limits our options for internal structure of
the random driver since random_initialize() is not called
until long after setup_arch().
Add a big fat comment to rand_initialize() spelling out
this requirement.
Suggested-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
With the new interrupt sampling system, we are no longer using the
timer_rand_state structure in the irq descriptor, so we can stop
initializing it now.
[ Merged in fixes from Sedat to find some last missing references to
rand_initialize_irq() ]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Create a new function, get_random_bytes_arch() which will use the
architecture-specific hardware random number generator if it is
present. Change get_random_bytes() to not use the HW RNG, even if it
is avaiable.
The reason for this is that the hw random number generator is fast (if
it is present), but it requires that we trust the hardware
manufacturer to have not put in a back door. (For example, an
increasing counter encrypted by an AES key known to the NSA.)
It's unlikely that Intel (for example) was paid off by the US
Government to do this, but it's impossible for them to prove otherwise
--- especially since Bull Mountain is documented to use AES as a
whitener. Hence, the output of an evil, trojan-horse version of
RDRAND is statistically indistinguishable from an RDRAND implemented
to the specifications claimed by Intel. Short of using a tunnelling
electronic microscope to reverse engineer an Ivy Bridge chip and
disassembling and analyzing the CPU microcode, there's no way for us
to tell for sure.
Since users of get_random_bytes() in the Linux kernel need to be able
to support hardware systems where the HW RNG is not present, most
time-sensitive users of this interface have already created their own
cryptographic RNG interface which uses get_random_bytes() as a seed.
So it's much better to use the HW RNG to improve the existing random
number generator, by mixing in any entropy returned by the HW RNG into
/dev/random's entropy pool, but to always _use_ /dev/random's entropy
pool.
This way we get almost of the benefits of the HW RNG without any
potential liabilities. The only benefits we forgo is the
speed/performance enhancements --- and generic kernel code can't
depend on depend on get_random_bytes() having the speed of a HW RNG
anyway.
For those places that really want access to the arch-specific HW RNG,
if it is available, we provide get_random_bytes_arch().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@vger.kernel.org
If the CPU supports a hardware random number generator, use it in
xfer_secondary_pool(), where it will significantly improve things and
where we can afford it.
Also, remove the use of the arch-specific rng in
add_timer_randomness(), since the call is significantly slower than
get_cycles(), and we're much better off using it in
xfer_secondary_pool() anyway.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@vger.kernel.org
Add a new interface, add_device_randomness() for adding data to the
random pool that is likely to differ between two devices (or possibly
even per boot). This would be things like MAC addresses or serial
numbers, or the read-out of the RTC. This does *not* add any actual
entropy to the pool, but it initializes the pool to different values
for devices that might otherwise be identical and have very little
entropy available to them (particularly common in the embedded world).
[ Modified by tytso to mix in a timestamp, since there may be some
variability caused by the time needed to detect/configure the hardware
in question. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@vger.kernel.org
The real-time Linux folks don't like add_interrupt_randomness() taking
a spinlock since it is called in the low-level interrupt routine.
This also allows us to reduce the overhead in the fast path, for the
random driver, which is the interrupt collection path.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@vger.kernel.org
We've been moving away from add_interrupt_randomness() for various
reasons: it's too expensive to do on every interrupt, and flooding the
CPU with interrupts could theoretically cause bogus floods of entropy
from a somewhat externally controllable source.
This solves both problems by limiting the actual randomness addition
to just once a second or after 64 interrupts, whicever comes first.
During that time, the interrupt cycle data is buffered up in a per-cpu
pool. Also, we make sure the the nonblocking pool used by urandom is
initialized before we start feeding the normal input pool. This
assures that /dev/urandom is returning unpredictable data as soon as
possible.
(Based on an original patch by Linus, but significantly modified by
tytso.)
Tested-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu>
Reported-by: Zakir Durumeric <zakir@umich.edu>
Reported-by: J. Alex Halderman <jhalderm@umich.edu>.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@vger.kernel.org
/proc/sys/kernel/random/boot_id can be read concurrently by userspace
processes. If two (or more) user-space processes concurrently read
boot_id when sysctl_bootid is not yet assigned, a race can occur making
boot_id differ between the reads. Because the whole point of the boot id
is to be unique across a kernel execution, fix this by protecting this
operation with a spinlock.
Given that this operation is not frequently used, hitting the spinlock
on each call should not be an issue.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86/rdrand' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
random: Adjust the number of loops when initializing
random: Use arch-specific RNG to initialize the entropy store
When we are initializing using arch_get_random_long() we only need to
loop enough times to touch all the bytes in the buffer; using
poolwords for that does twice the number of operations necessary on a
64-bit machine, since in the random number generator code "word" means
32 bits.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
If there is an architecture-specific random number generator (such as
RDRAND for Intel architectures), use it to initialize /dev/random's
entropy stores. Even in the worst case, if RDRAND is something like
AES(NSA_KEY, counter++), it won't hurt, and it will definitely help
against any other adversaries.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
module_param(bool) used to counter-intuitively take an int. In
fddd5201 (mid-2009) we allowed bool or int/unsigned int using a messy
trick.
It's time to remove the int/unsigned int option. For this version
it'll simply give a warning, but it'll break next kernel version.
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We still don't use rdrand in /dev/random, which just seems stupid. We
accept the *cycle*counter* as a random input, but we don't accept
rdrand? That's just broken.
Sure, people can do things in user space (write to /dev/random, use
rdrand in addition to /dev/random themselves etc etc), but that
*still* seems to be a particularly stupid reason for saying "we
shouldn't bother to try to do better in /dev/random".
And even if somebody really doesn't trust rdrand as a source of random
bytes, it seems singularly stupid to trust the cycle counter *more*.
So I'd suggest the attached patch. I'm not going to even bother
arguing that we should add more bits to the entropy estimate, because
that's not the point - I don't care if /dev/random fills up slowly or
not, I think it's just stupid to not use the bits we can get from
rdrand and mix them into the strong randomness pool.
Link: http://lkml.kernel.org/r/CA%2B55aFwn59N1=m651QAyTy-1gO1noGbK18zwKDwvwqnravA84A@mail.gmail.com
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If there is an architecture-specific random number generator we use it
to acquire randomness one "long" at a time. We should put these random
words into consecutive words in the result buffer - not just overwrite
the first word again and again.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-rdrand-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, random: Verify RDRAND functionality and allow it to be disabled
x86, random: Architectural inlines to get random integers with RDRAND
random: Add support for architectural random hooks
Fix up trivial conflicts in drivers/char/random.c: the architectural
random hooks touched "get_random_int()" that was simplified to use MD5
and not do the keyptr thing any more (see commit 6e5714eaf7: "net:
Compute protocol sequence numbers and fragment IDs using MD5").
Computers have become a lot faster since we compromised on the
partial MD4 hash which we use currently for performance reasons.
MD5 is a much safer choice, and is inline with both RFC1948 and
other ISS generators (OpenBSD, Solaris, etc.)
Furthermore, only having 24-bits of the sequence number be truly
unpredictable is a very serious limitation. So the periodic
regeneration and 8-bit counter have been removed. We compute and
use a full 32-bit sequence number.
For ipv6, DCCP was found to use a 32-bit truncated initial sequence
number (it needs 43-bits) and that is fixed here as well.
Reported-by: Dan Kaminsky <dan@doxpara.com>
Tested-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for architecture-specific hooks into the kernel-directed
random number generator interfaces. This patchset does not use the
architecture random number generator interfaces for the
userspace-directed interfaces (/dev/random and /dev/urandom), thus
eliminating the need to distinguish between them based on a pool
pointer.
Changes in version 3:
- Moved the hooks from extract_entropy() to get_random_bytes().
- Changes the hooks to inlines.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Theodore Ts'o" <tytso@mit.edu>
IPv6 fragment identification generation is way beyond what we use for
IPv4 : It uses a single generator. Its not scalable and allows DOS
attacks.
Now inetpeer is IPv6 aware, we can use it to provide a more secure and
scalable frag ident generator (per destination, instead of system wide)
This patch :
1) defines a new secure_ipv6_id() helper
2) extends inet_getid() to provide 32bit results
3) extends ipv6_select_ident() with a new dest parameter
Reported-by: Fernando Gont <fernando@gont.com.ar>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At present, the comment header in random.c makes no mention of
add_disk_randomness, and instead, suggests that disk activity adds to the
random pool by way of add_interrupt_randomness, which appears to not have
been the case since sometime prior to the existence of git, and even prior
to bitkeeper. Didn't look any further back. At least, as far as I can
tell, there are no storage drivers setting IRQF_SAMPLE_RANDOM, which is a
requirement for add_interrupt_randomness to trigger, so the only way for a
disk to contribute entropy is by way of add_disk_randomness. Update
comments accordingly, complete with special mention about solid state
drives being a crappy source of entropy (see e2e1a148bc for reference).
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
__this_cpu_inc can create a single instruction to do the same as
__get_cpu_var()++.
Cc: Richard Kennedy <richard@rsk.demon.co.uk>
Cc: Matt Mackall <mpm@selenic.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Re-order structure entropy_store to remove 8 bytes of padding on
64 bit builds, so shrinking this structure from 72 to 64 bytes
and allowing it to fit into one cache line.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rather than dynamically allocate 10 bytes, move it to static allocation.
This saves space and avoids the need for error checking.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Some comments misspell "truly"; this fixes them. No code changes.
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The previous changeset left behind an unused inode variable.
This patch removes it.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
No other driver does anything remotely like this that I know of except
for the tty drivers, and I can't see any reason for random/urandom to do
it. In fact, it's a (trivial, harmless) timing information leak. And
obviously, it generates power- and flash-cycle wasting I/O, especially
if combined with something like hwrngd. Also, it breaks ubifs's
expectations.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
For consistency drop & in front of every proc_handler. Explicity
taking the address is unnecessary and it prevents optimizations
like stubbing the proc_handlers to NULL.
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Now that sys_sysctl is a wrapper around /proc/sys all of
the binary sysctl support elsewhere in the tree is
dead code.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Corey Minyard <minyard@acm.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Neil Brown <neilb@suse.de>
Cc: "James E.J. Bottomley" <James.Bottomley@suse.de>
Acked-by: Clemens Ladisch <clemens@ladisch.de> for drivers/char/hpet.c
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
FIPS-140 requires that all random number generators implement continuous self
tests in which each extracted block of data is compared against the last block
for repetition. The ansi_cprng implements such a test, but it would be nice if
the hw rng's did the same thing. Obviously its not something thats always
needed, but it seems like it would be a nice feature to have on occasion. I've
written the below patch which allows individual entropy stores to be flagged as
desiring a continuous test to be run on them as is extracted. By default this
option is off, but is enabled in the event that fips mode is selected during
bootup.
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Martin Knoblauch reports that trying to build 2.6.30-rc6-git3 with
RHEL4.3 userspace (gcc (GCC) 3.4.5 20051201 (Red Hat 3.4.5-2)) causes an
internal compiler error (ICE):
drivers/char/random.c: In function `get_random_int':
drivers/char/random.c:1672: error: unrecognizable insn:
(insn 202 148 150 0 /scratch/build/linux-2.6.30-rc6-git3/arch/x86/include/asm/tsc.h:23 (set (reg:SI 0 ax [91])
(subreg:SI (plus:DI (plus:DI (reg:DI 0 ax [88])
(subreg:DI (reg:SI 6 bp) 0))
(const_int -4 [0xfffffffffffffffc])) 0)) -1 (nil)
(nil))
drivers/char/random.c:1672: internal compiler error: in extract_insn, at recog.c:2083
and after some debugging it turns out that it's due to the code trying
to figure out the rough value of the current stack pointer by taking an
address of an uninitialized variable and casting that to an integer.
This is clearly a compiler bug, but it's not worth fighting - while the
current stack kernel pointer might be somewhat hard to predict in user
space, it's also not generally going to change for a lot of the call
chains for a particular process.
So just drop it, and mumble some incoherent curses at the compiler.
Tested-by: Martin Knoblauch <spamtrap@knobisoft.de>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's a really simple patch that basically just open-codes the current
"secure_ip_id()" call, but when open-coding it we now use a _static_
hashing area, so that it gets updated every time.
And to make sure somebody can't just start from the same original seed of
all-zeroes, and then do the "half_md4_transform()" over and over until
they get the same sequence as the kernel has, each iteration also mixes in
the same old "current->pid + jiffies" we used - so we should now have a
regular strong pseudo-number generator, but we also have one that doesn't
have a single seed.
Note: the "pid + jiffies" is just meant to be a tiny tiny bit of noise. It
has no real meaning. It could be anything. I just picked the previous
seed, it's just that now we keep the state in between calls and that will
feed into the next result, and that should make all the difference.
I made that hash be a per-cpu data just to avoid cache-line ping-pong:
having multiple CPU's write to the same data would be fine for randomness,
and add yet another layer of chaos to it, but since get_random_int() is
supposed to be a fast interface I did it that way instead. I considered
using "__raw_get_cpu_var()" to avoid any preemption overhead while still
getting the hash be _mostly_ ping-pong free, but in the end good taste won
out.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Align rekey_work. Even though it's infrequent, we may as well line it up.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ingo Molnar wrote:
>
> tip/kernel/fork.c: In function 'copy_signal':
> tip/kernel/fork.c:825: warning: unused variable 'ret'
> tip/drivers/char/random.c: In function 'get_timer_rand_state':
> tip/drivers/char/random.c:584: error: dereferencing pointer to incomplete type
> tip/drivers/char/random.c: In function 'set_timer_rand_state':
> tip/drivers/char/random.c:594: error: dereferencing pointer to incomplete type
> make[3]: *** [drivers/char/random.o] Error 1
irq_desc is defined in linux/irq.h, so include it in the genirq case.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: clean up sparseirq fallout on random.c
Ingo suggested to change some ifdef from SPARSE_IRQ to GENERIC_HARDIRQS
so we could some #ifdef later if all arch support genirq
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As a non-atomic value, it's only safe to look at entropy_count when the
pool lock is held, so we move the BUG_ON inside the lock for correctness.
Also remove the spurious comment. It's ok for entropy_count to
temporarily exceed POOLBITS so long as it's left in a consistent state
when the lock is released.
This is a more correct, simple, and idiomatic fix for the bug in
8b76f46a2d. I've left the reorderings introduced by that patch in place
as they're harmless, even though they don't properly deal with potential
atomicity issues.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
those two functions only used in that C file
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: new feature
Problem on distro kernels: irq_desc[NR_IRQS] takes megabytes of RAM with
NR_CPUS set to large values. The goal is to be able to scale up to much
larger NR_IRQS value without impacting the (important) common case.
To solve this, we generalize irq_desc[NR_IRQS] to an (optional) array of
irq_desc pointers.
When CONFIG_SPARSE_IRQ=y is used, we use kzalloc_node to get irq_desc,
this also makes the IRQ descriptors NUMA-local (to the site that calls
request_irq()).
This gets rid of the irq_cfg[] static array on x86 as well: irq_cfg now
uses desc->chip_data for x86 to store irq_cfg.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As it is, all instances of ->release() for files that have ->fasync()
need to remember to evict file from fasync lists; forgetting that
creates a hole and we actually have a bunch that *does* forget.
So let's keep our lives simple - let __fput() check FASYNC in
file->f_flags and call ->fasync() there if it's been set. And lose that
crap in ->release() instances - leaving it there is still valid, but we
don't have to bother anymore.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This merges branches irq/genirq, irq/sparseirq-v4, timers/hpet-percpu
and x86/uv.
The sparseirq branch is just preliminary groundwork: no sparse IRQs are
actually implemented by this tree anymore - just the new APIs are added
while keeping the old way intact as well (the new APIs map 1:1 to
irq_desc[]). The 'real' sparse IRQ support will then be a relatively
small patch ontop of this - with a v2.6.29 merge target.
* 'genirq-v28-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (178 commits)
genirq: improve include files
intr_remapping: fix typo
io_apic: make irq_mis_count available on 64-bit too
genirq: fix name space collisions of nr_irqs in arch/*
genirq: fix name space collision of nr_irqs in autoprobe.c
genirq: use iterators for irq_desc loops
proc: fixup irq iterator
genirq: add reverse iterator for irq_desc
x86: move ack_bad_irq() to irq.c
x86: unify show_interrupts() and proc helpers
x86: cleanup show_interrupts
genirq: cleanup the sparseirq modifications
genirq: remove artifacts from sparseirq removal
genirq: revert dynarray
genirq: remove irq_to_desc_alloc
genirq: remove sparse irq code
genirq: use inline function for irq_to_desc
genirq: consolidate nr_irqs and for_each_irq_desc()
x86: remove sparse irq from Kconfig
genirq: define nr_irqs for architectures with GENERIC_HARDIRQS=n
...
name and nlen parameters passed to ->strategy hook are unused, remove
them. In general ->strategy hook should know what it's doing, and don't
do something tricky for which, say, pointer to original userspace array
may be needed (name).
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net> [ networking bits ]
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This code is not ready, but we need to rip it out instead of rebasing
as we would lose the APIC/IO_APIC unification otherwise.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
irq_timer_state[] is a NR_IRQS sized array that is a side-by array to
the real irq_desc[] array.
Integrate that field into the (now dynamic) irq_desc dynamic array and
save some RAM.
v2: keep the old way to support arch not support irq_desc
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Implement disk_devt() and part_devt() and use them to directly
access devt instead of computing it from ->major and ->first_minor.
Note that all references to ->major and ->first_minor outside of
block layer is used to determine devt of the disk (the part0) and as
->major and ->first_minor will continue to represent devt for the
disk, converting these users aren't strictly necessary. However,
convert them for consistency.
* Implement disk_max_parts() to avoid directly deferencing
genhd->minors.
* Update bdget_disk() such that it doesn't assume consecutive minor
space.
* Move devt computation from register_disk() to add_disk() and make it
the only one (all other usages use the initially determined value).
These changes clean up the code and will help disk->part dereference
fix and extended block device numbers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Fix a bug reported by and diagnosed by Aaron Straus.
This is a regression intruduced into 2.6.26 by
commit adc782dae6
Author: Matt Mackall <mpm@selenic.com>
Date: Tue Apr 29 01:03:07 2008 -0700
random: simplify and rename credit_entropy_store
credit_entropy_bits() does:
spin_lock_irqsave(&r->lock, flags);
...
if (r->entropy_count > r->poolinfo->POOLBITS)
r->entropy_count = r->poolinfo->POOLBITS;
so there is a time window in which this BUG_ON():
static size_t account(struct entropy_store *r, size_t nbytes, int min,
int reserved)
{
unsigned long flags;
BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
/* Hold lock while accounting */
spin_lock_irqsave(&r->lock, flags);
can trigger.
We could fix this by moving the assertion inside the lock, but it seems
safer and saner to revert to the old behaviour wherein
entropy_store.entropy_count at no time exceeds
entropy_store.poolinfo->POOLBITS.
Reported-by: Aaron Straus <aaron@merfinllc.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: <stable@kernel.org> [2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use incoming network tuple as seed for NAT port randomization.
This avoids concerns of leaking net_random() bits, and also gives better
port distribution. Don't have NAT server, compile tested only.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
[ added missing EXPORT_SYMBOL_GPL ]
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
On 32-bit architectures PAGE_ALIGN() truncates 64-bit values to the 32-bit
boundary. For example:
u64 val = PAGE_ALIGN(size);
always returns a value < 4GB even if size is greater than 4GB.
The problem resides in PAGE_MASK definition (from include/asm-x86/page.h for
example):
#define PAGE_SHIFT 12
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1))
...
#define PAGE_ALIGN(addr) (((addr)+PAGE_SIZE-1)&PAGE_MASK)
The "~" is performed on a 32-bit value, so everything in "and" with
PAGE_MASK greater than 4GB will be truncated to the 32-bit boundary.
Using the ALIGN() macro seems to be the right way, because it uses
typeof(addr) for the mask.
Also move the PAGE_ALIGN() definitions out of include/asm-*/page.h in
include/linux/mm.h.
See also lkml discussion: http://lkml.org/lkml/2008/6/11/237
[akpm@linux-foundation.org: fix drivers/media/video/uvc/uvc_queue.c]
[akpm@linux-foundation.org: fix v850]
[akpm@linux-foundation.org: fix powerpc]
[akpm@linux-foundation.org: fix arm]
[akpm@linux-foundation.org: fix mips]
[akpm@linux-foundation.org: fix drivers/media/video/pvrusb2/pvrusb2-dvb.c]
[akpm@linux-foundation.org: fix drivers/mtd/maps/uclinux.c]
[akpm@linux-foundation.org: fix powerpc]
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- emphasize bits in the name
- make zero bits lock-free
- simplify logic
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch add_entropy_words to a byte-oriented interface, eliminating numerous
casts and byte/word size rounding issues. This also reduces the overall
bit/byte/word confusion in this code.
We now mix a byte at a time into the word-based pool. This takes four times
as many iterations, but should be negligible compared to hashing overhead.
This also increases our pool churn, which adds some depth against some
theoretical failure modes.
The function name is changed to emphasize pool mixing and deemphasize entropy
(the samples mixed in may not contain any). extract is added to the core
function to make it clear that it extracts from the pool.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The add_ptr variable wasn't used in a sensible way, use only i instead.
i got reused later for a different purpose, use j instead.
While we're here, put tap0 first in the tap list and add a comment.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The urandom output pool (ie the fast path) fits in one cacheline, so
this is pretty unnecessary. Further, the output path has already
fetched the entire pool to hash it before calling in here.
(This was the only user of prefetch_range in the kernel, and it passed
in words rather than bytes!)
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Earlier changes greatly reduce the number of times we grab the lock
per output byte, so we shouldn't need this particular hack any more.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At each extraction, we change (poolbits / 16) + 32 bits in the pool,
or 96 bits in the case of the secondary pools. Thus, a brute-force
backtracking attack on the pool state is less difficult than breaking
the hash. In certain cases, this difficulty may be is reduced to 2^64
iterations.
Instead, hash the entire pool in one go, then feedback the whole hash
(160 bits) in one go. This will make backtracking at least as hard as
inverting the hash.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- split the SHA variables apart into hash and workspace
- rename data to extract
- wipe extract and workspace after hashing
Signed-off-by: Matt Mackall <mpm@selenic.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>