linux_dsm_epyc7002/drivers/char/random.c
Theodore Ts'o 644008df89 random: initialize the last_time field in struct timer_rand_state
Since we initialize jiffies to wrap five minutes before boot (see
INITIAL_JIFFIES defined in include/linux/jiffies.h) it's important to
make sure the last_time field is initialized to INITIAL_JIFFIES.
Otherwise, the entropy estimator will overestimate the amount of
entropy resulting from the first call to add_timer_randomness(),
generally by about 8 bits.

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2013-11-03 18:20:05 -05:00

1673 lines
50 KiB
C

/*
* random.c -- A strong random number generator
*
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
*
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
* rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU General Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
/*
* (now, with legal B.S. out of the way.....)
*
* This routine gathers environmental noise from device drivers, etc.,
* and returns good random numbers, suitable for cryptographic use.
* Besides the obvious cryptographic uses, these numbers are also good
* for seeding TCP sequence numbers, and other places where it is
* desirable to have numbers which are not only random, but hard to
* predict by an attacker.
*
* Theory of operation
* ===================
*
* Computers are very predictable devices. Hence it is extremely hard
* to produce truly random numbers on a computer --- as opposed to
* pseudo-random numbers, which can easily generated by using a
* algorithm. Unfortunately, it is very easy for attackers to guess
* the sequence of pseudo-random number generators, and for some
* applications this is not acceptable. So instead, we must try to
* gather "environmental noise" from the computer's environment, which
* must be hard for outside attackers to observe, and use that to
* generate random numbers. In a Unix environment, this is best done
* from inside the kernel.
*
* Sources of randomness from the environment include inter-keyboard
* timings, inter-interrupt timings from some interrupts, and other
* events which are both (a) non-deterministic and (b) hard for an
* outside observer to measure. Randomness from these sources are
* added to an "entropy pool", which is mixed using a CRC-like function.
* This is not cryptographically strong, but it is adequate assuming
* the randomness is not chosen maliciously, and it is fast enough that
* the overhead of doing it on every interrupt is very reasonable.
* As random bytes are mixed into the entropy pool, the routines keep
* an *estimate* of how many bits of randomness have been stored into
* the random number generator's internal state.
*
* When random bytes are desired, they are obtained by taking the SHA
* hash of the contents of the "entropy pool". The SHA hash avoids
* exposing the internal state of the entropy pool. It is believed to
* be computationally infeasible to derive any useful information
* about the input of SHA from its output. Even if it is possible to
* analyze SHA in some clever way, as long as the amount of data
* returned from the generator is less than the inherent entropy in
* the pool, the output data is totally unpredictable. For this
* reason, the routine decreases its internal estimate of how many
* bits of "true randomness" are contained in the entropy pool as it
* outputs random numbers.
*
* If this estimate goes to zero, the routine can still generate
* random numbers; however, an attacker may (at least in theory) be
* able to infer the future output of the generator from prior
* outputs. This requires successful cryptanalysis of SHA, which is
* not believed to be feasible, but there is a remote possibility.
* Nonetheless, these numbers should be useful for the vast majority
* of purposes.
*
* Exported interfaces ---- output
* ===============================
*
* There are three exported interfaces; the first is one designed to
* be used from within the kernel:
*
* void get_random_bytes(void *buf, int nbytes);
*
* This interface will return the requested number of random bytes,
* and place it in the requested buffer.
*
* The two other interfaces are two character devices /dev/random and
* /dev/urandom. /dev/random is suitable for use when very high
* quality randomness is desired (for example, for key generation or
* one-time pads), as it will only return a maximum of the number of
* bits of randomness (as estimated by the random number generator)
* contained in the entropy pool.
*
* The /dev/urandom device does not have this limit, and will return
* as many bytes as are requested. As more and more random bytes are
* requested without giving time for the entropy pool to recharge,
* this will result in random numbers that are merely cryptographically
* strong. For many applications, however, this is acceptable.
*
* Exported interfaces ---- input
* ==============================
*
* The current exported interfaces for gathering environmental noise
* from the devices are:
*
* void add_device_randomness(const void *buf, unsigned int size);
* void add_input_randomness(unsigned int type, unsigned int code,
* unsigned int value);
* void add_interrupt_randomness(int irq, int irq_flags);
* void add_disk_randomness(struct gendisk *disk);
*
* add_device_randomness() is for adding data to the random pool that
* is likely to differ between two devices (or possibly even per boot).
* This would be things like MAC addresses or serial numbers, or the
* read-out of the RTC. This does *not* add any actual entropy to the
* pool, but it initializes the pool to different values for devices
* that might otherwise be identical and have very little entropy
* available to them (particularly common in the embedded world).
*
* add_input_randomness() uses the input layer interrupt timing, as well as
* the event type information from the hardware.
*
* add_interrupt_randomness() uses the interrupt timing as random
* inputs to the entropy pool. Using the cycle counters and the irq source
* as inputs, it feeds the randomness roughly once a second.
*
* add_disk_randomness() uses what amounts to the seek time of block
* layer request events, on a per-disk_devt basis, as input to the
* entropy pool. Note that high-speed solid state drives with very low
* seek times do not make for good sources of entropy, as their seek
* times are usually fairly consistent.
*
* All of these routines try to estimate how many bits of randomness a
* particular randomness source. They do this by keeping track of the
* first and second order deltas of the event timings.
*
* Ensuring unpredictability at system startup
* ============================================
*
* When any operating system starts up, it will go through a sequence
* of actions that are fairly predictable by an adversary, especially
* if the start-up does not involve interaction with a human operator.
* This reduces the actual number of bits of unpredictability in the
* entropy pool below the value in entropy_count. In order to
* counteract this effect, it helps to carry information in the
* entropy pool across shut-downs and start-ups. To do this, put the
* following lines an appropriate script which is run during the boot
* sequence:
*
* echo "Initializing random number generator..."
* random_seed=/var/run/random-seed
* # Carry a random seed from start-up to start-up
* # Load and then save the whole entropy pool
* if [ -f $random_seed ]; then
* cat $random_seed >/dev/urandom
* else
* touch $random_seed
* fi
* chmod 600 $random_seed
* dd if=/dev/urandom of=$random_seed count=1 bs=512
*
* and the following lines in an appropriate script which is run as
* the system is shutdown:
*
* # Carry a random seed from shut-down to start-up
* # Save the whole entropy pool
* echo "Saving random seed..."
* random_seed=/var/run/random-seed
* touch $random_seed
* chmod 600 $random_seed
* dd if=/dev/urandom of=$random_seed count=1 bs=512
*
* For example, on most modern systems using the System V init
* scripts, such code fragments would be found in
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
*
* Effectively, these commands cause the contents of the entropy pool
* to be saved at shut-down time and reloaded into the entropy pool at
* start-up. (The 'dd' in the addition to the bootup script is to
* make sure that /etc/random-seed is different for every start-up,
* even if the system crashes without executing rc.0.) Even with
* complete knowledge of the start-up activities, predicting the state
* of the entropy pool requires knowledge of the previous history of
* the system.
*
* Configuring the /dev/random driver under Linux
* ==============================================
*
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
* the /dev/mem major number (#1). So if your system does not have
* /dev/random and /dev/urandom created already, they can be created
* by using the commands:
*
* mknod /dev/random c 1 8
* mknod /dev/urandom c 1 9
*
* Acknowledgements:
* =================
*
* Ideas for constructing this random number generator were derived
* from Pretty Good Privacy's random number generator, and from private
* discussions with Phil Karn. Colin Plumb provided a faster random
* number generator, which speed up the mixing function of the entropy
* pool, taken from PGPfone. Dale Worley has also contributed many
* useful ideas and suggestions to improve this driver.
*
* Any flaws in the design are solely my responsibility, and should
* not be attributed to the Phil, Colin, or any of authors of PGP.
*
* Further background information on this topic may be obtained from
* RFC 1750, "Randomness Recommendations for Security", by Donald
* Eastlake, Steve Crocker, and Jeff Schiller.
*/
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/cryptohash.h>
#include <linux/fips.h>
#include <linux/ptrace.h>
#include <linux/kmemcheck.h>
#include <linux/workqueue.h>
#ifdef CONFIG_GENERIC_HARDIRQS
# include <linux/irq.h>
#endif
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/io.h>
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>
/*
* Configuration information
*/
#define INPUT_POOL_SHIFT 12
#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT 10
#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
#define SEC_XFER_SIZE 512
#define EXTRACT_SIZE 10
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
/*
* To allow fractional bits to be tracked, the entropy_count field is
* denominated in units of 1/8th bits.
*
* 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
* credit_entropy_bits() needs to be 64 bits wide.
*/
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
/*
* The minimum number of bits of entropy before we wake up a read on
* /dev/random. Should be enough to do a significant reseed.
*/
static int random_read_wakeup_thresh = 64;
/*
* If the entropy count falls under this number of bits, then we
* should wake up processes which are selecting or polling on write
* access to /dev/random.
*/
static int random_write_wakeup_thresh = 28 * OUTPUT_POOL_WORDS;
/*
* The minimum number of seconds between urandom pool resending. We
* do this to limit the amount of entropy that can be drained from the
* input pool even if there are heavy demands on /dev/urandom.
*/
static int random_min_urandom_seed = 60;
/*
* Originally, we used a primitive polynomial of degree .poolwords
* over GF(2). The taps for various sizes are defined below. They
* were chosen to be evenly spaced except for the last tap, which is 1
* to get the twisting happening as fast as possible.
*
* For the purposes of better mixing, we use the CRC-32 polynomial as
* well to make a (modified) twisted Generalized Feedback Shift
* Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
* generators. ACM Transactions on Modeling and Computer Simulation
* 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
* GFSR generators II. ACM Transactions on Mdeling and Computer
* Simulation 4:254-266)
*
* Thanks to Colin Plumb for suggesting this.
*
* The mixing operation is much less sensitive than the output hash,
* where we use SHA-1. All that we want of mixing operation is that
* it be a good non-cryptographic hash; i.e. it not produce collisions
* when fed "random" data of the sort we expect to see. As long as
* the pool state differs for different inputs, we have preserved the
* input entropy and done a good job. The fact that an intelligent
* attacker can construct inputs that will produce controlled
* alterations to the pool's state is not important because we don't
* consider such inputs to contribute any randomness. The only
* property we need with respect to them is that the attacker can't
* increase his/her knowledge of the pool's state. Since all
* additions are reversible (knowing the final state and the input,
* you can reconstruct the initial state), if an attacker has any
* uncertainty about the initial state, he/she can only shuffle that
* uncertainty about, but never cause any collisions (which would
* decrease the uncertainty).
*
* Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
* Videau in their paper, "The Linux Pseudorandom Number Generator
* Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
* paper, they point out that we are not using a true Twisted GFSR,
* since Matsumoto & Kurita used a trinomial feedback polynomial (that
* is, with only three taps, instead of the six that we are using).
* As a result, the resulting polynomial is neither primitive nor
* irreducible, and hence does not have a maximal period over
* GF(2**32). They suggest a slight change to the generator
* polynomial which improves the resulting TGFSR polynomial to be
* irreducible, which we have made here.
*/
static struct poolinfo {
int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
{ S(128), 104, 76, 51, 25, 1 },
/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
{ S(32), 26, 19, 14, 7, 1 },
#if 0
/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
{ S(2048), 1638, 1231, 819, 411, 1 },
/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
{ S(1024), 817, 615, 412, 204, 1 },
/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
{ S(1024), 819, 616, 410, 207, 2 },
/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
{ S(512), 411, 308, 208, 104, 1 },
/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
{ S(512), 409, 307, 206, 102, 2 },
/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
{ S(512), 409, 309, 205, 103, 2 },
/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
{ S(256), 205, 155, 101, 52, 1 },
/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
{ S(128), 103, 78, 51, 27, 2 },
/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
{ S(64), 52, 39, 26, 14, 1 },
#endif
};
/*
* Static global variables
*/
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
static struct fasync_struct *fasync;
/**********************************************************************
*
* OS independent entropy store. Here are the functions which handle
* storing entropy in an entropy pool.
*
**********************************************************************/
struct entropy_store;
struct entropy_store {
/* read-only data: */
const struct poolinfo *poolinfo;
__u32 *pool;
const char *name;
struct entropy_store *pull;
struct work_struct push_work;
/* read-write data: */
unsigned long last_pulled;
spinlock_t lock;
unsigned short add_ptr;
unsigned short input_rotate;
int entropy_count;
int entropy_total;
unsigned int initialized:1;
unsigned int limit:1;
unsigned int last_data_init:1;
__u8 last_data[EXTRACT_SIZE];
};
static void push_to_pool(struct work_struct *work);
static __u32 input_pool_data[INPUT_POOL_WORDS];
static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
static struct entropy_store input_pool = {
.poolinfo = &poolinfo_table[0],
.name = "input",
.limit = 1,
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
.pool = input_pool_data
};
static struct entropy_store blocking_pool = {
.poolinfo = &poolinfo_table[1],
.name = "blocking",
.limit = 1,
.pull = &input_pool,
.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
.pool = blocking_pool_data,
.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
push_to_pool),
};
static struct entropy_store nonblocking_pool = {
.poolinfo = &poolinfo_table[1],
.name = "nonblocking",
.pull = &input_pool,
.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
.pool = nonblocking_pool_data,
.push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
push_to_pool),
};
static __u32 const twist_table[8] = {
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
/*
* This function adds bytes into the entropy "pool". It does not
* update the entropy estimate. The caller should call
* credit_entropy_bits if this is appropriate.
*
* The pool is stirred with a primitive polynomial of the appropriate
* degree, and then twisted. We twist by three bits at a time because
* it's cheap to do so and helps slightly in the expected case where
* the entropy is concentrated in the low-order bits.
*/
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
int nbytes, __u8 out[64])
{
unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
int input_rotate;
int wordmask = r->poolinfo->poolwords - 1;
const char *bytes = in;
__u32 w;
tap1 = r->poolinfo->tap1;
tap2 = r->poolinfo->tap2;
tap3 = r->poolinfo->tap3;
tap4 = r->poolinfo->tap4;
tap5 = r->poolinfo->tap5;
smp_rmb();
input_rotate = ACCESS_ONCE(r->input_rotate);
i = ACCESS_ONCE(r->add_ptr);
/* mix one byte at a time to simplify size handling and churn faster */
while (nbytes--) {
w = rol32(*bytes++, input_rotate);
i = (i - 1) & wordmask;
/* XOR in the various taps */
w ^= r->pool[i];
w ^= r->pool[(i + tap1) & wordmask];
w ^= r->pool[(i + tap2) & wordmask];
w ^= r->pool[(i + tap3) & wordmask];
w ^= r->pool[(i + tap4) & wordmask];
w ^= r->pool[(i + tap5) & wordmask];
/* Mix the result back in with a twist */
r->pool[i] = (w >> 3) ^ twist_table[w & 7];
/*
* Normally, we add 7 bits of rotation to the pool.
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
}
ACCESS_ONCE(r->input_rotate) = input_rotate;
ACCESS_ONCE(r->add_ptr) = i;
smp_wmb();
if (out)
for (j = 0; j < 16; j++)
((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
}
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
int nbytes, __u8 out[64])
{
trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
_mix_pool_bytes(r, in, nbytes, out);
}
static void mix_pool_bytes(struct entropy_store *r, const void *in,
int nbytes, __u8 out[64])
{
unsigned long flags;
trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
spin_lock_irqsave(&r->lock, flags);
_mix_pool_bytes(r, in, nbytes, out);
spin_unlock_irqrestore(&r->lock, flags);
}
struct fast_pool {
__u32 pool[4];
unsigned long last;
unsigned short count;
unsigned char rotate;
unsigned char last_timer_intr;
};
/*
* This is a fast mixing routine used by the interrupt randomness
* collector. It's hardcoded for an 128 bit pool and assumes that any
* locks that might be needed are taken by the caller.
*/
static void fast_mix(struct fast_pool *f, __u32 input[4])
{
__u32 w;
unsigned input_rotate = f->rotate;
w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
f->pool[0] = (w >> 3) ^ twist_table[w & 7];
input_rotate = (input_rotate + 14) & 31;
w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
f->pool[1] = (w >> 3) ^ twist_table[w & 7];
input_rotate = (input_rotate + 7) & 31;
w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
f->pool[2] = (w >> 3) ^ twist_table[w & 7];
input_rotate = (input_rotate + 7) & 31;
w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
f->pool[3] = (w >> 3) ^ twist_table[w & 7];
input_rotate = (input_rotate + 7) & 31;
f->rotate = input_rotate;
f->count++;
}
/*
* Credit (or debit) the entropy store with n bits of entropy.
* Use credit_entropy_bits_safe() if the value comes from userspace
* or otherwise should be checked for extreme values.
*/
static void credit_entropy_bits(struct entropy_store *r, int nbits)
{
int entropy_count, orig;
const int pool_size = r->poolinfo->poolfracbits;
int nfrac = nbits << ENTROPY_SHIFT;
if (!nbits)
return;
retry:
entropy_count = orig = ACCESS_ONCE(r->entropy_count);
if (nfrac < 0) {
/* Debit */
entropy_count += nfrac;
} else {
/*
* Credit: we have to account for the possibility of
* overwriting already present entropy. Even in the
* ideal case of pure Shannon entropy, new contributions
* approach the full value asymptotically:
*
* entropy <- entropy + (pool_size - entropy) *
* (1 - exp(-add_entropy/pool_size))
*
* For add_entropy <= pool_size/2 then
* (1 - exp(-add_entropy/pool_size)) >=
* (add_entropy/pool_size)*0.7869...
* so we can approximate the exponential with
* 3/4*add_entropy/pool_size and still be on the
* safe side by adding at most pool_size/2 at a time.
*
* The use of pool_size-2 in the while statement is to
* prevent rounding artifacts from making the loop
* arbitrarily long; this limits the loop to log2(pool_size)*2
* turns no matter how large nbits is.
*/
int pnfrac = nfrac;
const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
/* The +2 corresponds to the /4 in the denominator */
do {
unsigned int anfrac = min(pnfrac, pool_size/2);
unsigned int add =
((pool_size - entropy_count)*anfrac*3) >> s;
entropy_count += add;
pnfrac -= anfrac;
} while (unlikely(entropy_count < pool_size-2 && pnfrac));
}
if (entropy_count < 0) {
pr_warn("random: negative entropy/overflow: pool %s count %d\n",
r->name, entropy_count);
WARN_ON(1);
entropy_count = 0;
} else if (entropy_count > pool_size)
entropy_count = pool_size;
if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
goto retry;
r->entropy_total += nbits;
if (!r->initialized && nbits > 0) {
if (r->entropy_total > 128) {
if (r == &nonblocking_pool)
pr_notice("random: %s pool is initialized\n",
r->name);
r->initialized = 1;
r->entropy_total = 0;
}
}
trace_credit_entropy_bits(r->name, nbits,
entropy_count >> ENTROPY_SHIFT,
r->entropy_total, _RET_IP_);
if (r == &input_pool) {
int entropy_bytes = entropy_count >> ENTROPY_SHIFT;
/* should we wake readers? */
if (entropy_bytes >= random_read_wakeup_thresh) {
wake_up_interruptible(&random_read_wait);
kill_fasync(&fasync, SIGIO, POLL_IN);
}
/* If the input pool is getting full, send some
* entropy to the two output pools, flipping back and
* forth between them, until the output pools are 75%
* full.
*/
if (entropy_bytes > random_write_wakeup_thresh &&
r->initialized &&
r->entropy_total >= 2*random_read_wakeup_thresh) {
static struct entropy_store *last = &blocking_pool;
struct entropy_store *other = &blocking_pool;
if (last == &blocking_pool)
other = &nonblocking_pool;
if (other->entropy_count <=
3 * other->poolinfo->poolfracbits / 4)
last = other;
if (last->entropy_count <=
3 * last->poolinfo->poolfracbits / 4) {
schedule_work(&last->push_work);
r->entropy_total = 0;
}
}
}
}
static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
{
const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
/* Cap the value to avoid overflows */
nbits = min(nbits, nbits_max);
nbits = max(nbits, -nbits_max);
credit_entropy_bits(r, nbits);
}
/*********************************************************************
*
* Entropy input management
*
*********************************************************************/
/* There is one of these per entropy source */
struct timer_rand_state {
cycles_t last_time;
long last_delta, last_delta2;
unsigned dont_count_entropy:1;
};
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
/*
* Add device- or boot-specific data to the input and nonblocking
* pools to help initialize them to unique values.
*
* None of this adds any entropy, it is meant to avoid the
* problem of the nonblocking pool having similar initial state
* across largely identical devices.
*/
void add_device_randomness(const void *buf, unsigned int size)
{
unsigned long time = random_get_entropy() ^ jiffies;
unsigned long flags;
trace_add_device_randomness(size, _RET_IP_);
spin_lock_irqsave(&input_pool.lock, flags);
_mix_pool_bytes(&input_pool, buf, size, NULL);
_mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
spin_unlock_irqrestore(&input_pool.lock, flags);
spin_lock_irqsave(&nonblocking_pool.lock, flags);
_mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
_mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
}
EXPORT_SYMBOL(add_device_randomness);
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*
* The number "num" is also added to the pool - it should somehow describe
* the type of event which just happened. This is currently 0-255 for
* keyboard scan codes, and 256 upwards for interrupts.
*
*/
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
struct entropy_store *r;
struct {
long jiffies;
unsigned cycles;
unsigned num;
} sample;
long delta, delta2, delta3;
preempt_disable();
sample.jiffies = jiffies;
sample.cycles = random_get_entropy();
sample.num = num;
r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
mix_pool_bytes(r, &sample, sizeof(sample), NULL);
/*
* Calculate number of bits of randomness we probably added.
* We take into account the first, second and third-order deltas
* in order to make our estimate.
*/
if (!state->dont_count_entropy) {
delta = sample.jiffies - state->last_time;
state->last_time = sample.jiffies;
delta2 = delta - state->last_delta;
state->last_delta = delta;
delta3 = delta2 - state->last_delta2;
state->last_delta2 = delta2;
if (delta < 0)
delta = -delta;
if (delta2 < 0)
delta2 = -delta2;
if (delta3 < 0)
delta3 = -delta3;
if (delta > delta2)
delta = delta2;
if (delta > delta3)
delta = delta3;
/*
* delta is now minimum absolute delta.
* Round down by 1 bit on general principles,
* and limit entropy entimate to 12 bits.
*/
credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
}
preempt_enable();
}
void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value)
{
static unsigned char last_value;
/* ignore autorepeat and the like */
if (value == last_value)
return;
last_value = value;
add_timer_randomness(&input_timer_state,
(type << 4) ^ code ^ (code >> 4) ^ value);
trace_add_input_randomness(ENTROPY_BITS(&input_pool));
}
EXPORT_SYMBOL_GPL(add_input_randomness);
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
void add_interrupt_randomness(int irq, int irq_flags)
{
struct entropy_store *r;
struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
struct pt_regs *regs = get_irq_regs();
unsigned long now = jiffies;
cycles_t cycles = random_get_entropy();
__u32 input[4], c_high, j_high;
__u64 ip;
c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
j_high = (sizeof(now) > 4) ? now >> 32 : 0;
input[0] = cycles ^ j_high ^ irq;
input[1] = now ^ c_high;
ip = regs ? instruction_pointer(regs) : _RET_IP_;
input[2] = ip;
input[3] = ip >> 32;
fast_mix(fast_pool, input);
if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
return;
fast_pool->last = now;
r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
/*
* If we don't have a valid cycle counter, and we see
* back-to-back timer interrupts, then skip giving credit for
* any entropy.
*/
if (cycles == 0) {
if (irq_flags & __IRQF_TIMER) {
if (fast_pool->last_timer_intr)
return;
fast_pool->last_timer_intr = 1;
} else
fast_pool->last_timer_intr = 0;
}
credit_entropy_bits(r, 1);
}
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
if (!disk || !disk->random)
return;
/* first major is 1, so we get >= 0x200 here */
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
}
#endif
/*********************************************************************
*
* Entropy extraction routines
*
*********************************************************************/
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
size_t nbytes, int min, int rsvd);
/*
* This utility inline function is responsible for transferring entropy
* from the primary pool to the secondary extraction pool. We make
* sure we pull enough for a 'catastrophic reseed'.
*/
static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
if (r->limit == 0 && random_min_urandom_seed) {
unsigned long now = jiffies;
if (time_before(now,
r->last_pulled + random_min_urandom_seed * HZ))
return;
r->last_pulled = now;
}
if (r->pull &&
r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
r->entropy_count < r->poolinfo->poolfracbits)
_xfer_secondary_pool(r, nbytes);
}
static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
__u32 tmp[OUTPUT_POOL_WORDS];
/* For /dev/random's pool, always leave two wakeup worth's BITS */
int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
int bytes = nbytes;
/* pull at least as many as BYTES as wakeup BITS */
bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
/* but never more than the buffer size */
bytes = min_t(int, bytes, sizeof(tmp));
trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
bytes = extract_entropy(r->pull, tmp, bytes,
random_read_wakeup_thresh / 8, rsvd);
mix_pool_bytes(r, tmp, bytes, NULL);
credit_entropy_bits(r, bytes*8);
}
/*
* Used as a workqueue function so that when the input pool is getting
* full, we can "spill over" some entropy to the output pools. That
* way the output pools can store some of the excess entropy instead
* of letting it go to waste.
*/
static void push_to_pool(struct work_struct *work)
{
struct entropy_store *r = container_of(work, struct entropy_store,
push_work);
BUG_ON(!r);
_xfer_secondary_pool(r, random_read_wakeup_thresh/8);
trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
r->pull->entropy_count >> ENTROPY_SHIFT);
}
/*
* These functions extracts randomness from the "entropy pool", and
* returns it in a buffer.
*
* The min parameter specifies the minimum amount we can pull before
* failing to avoid races that defeat catastrophic reseeding while the
* reserved parameter indicates how much entropy we must leave in the
* pool after each pull to avoid starving other readers.
*
* Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
*/
static size_t account(struct entropy_store *r, size_t nbytes, int min,
int reserved)
{
unsigned long flags;
int wakeup_write = 0;
int have_bytes;
int entropy_count, orig;
size_t ibytes;
/* Hold lock while accounting */
spin_lock_irqsave(&r->lock, flags);
BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
/* Can we pull enough? */
retry:
entropy_count = orig = ACCESS_ONCE(r->entropy_count);
have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
ibytes = nbytes;
if (have_bytes < min + reserved) {
ibytes = 0;
} else {
/* If limited, never pull more than available */
if (r->limit && ibytes + reserved >= have_bytes)
ibytes = have_bytes - reserved;
if (have_bytes >= ibytes + reserved)
entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
else
entropy_count = reserved << (ENTROPY_SHIFT + 3);
if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
goto retry;
if ((r->entropy_count >> ENTROPY_SHIFT)
< random_write_wakeup_thresh)
wakeup_write = 1;
}
spin_unlock_irqrestore(&r->lock, flags);
trace_debit_entropy(r->name, 8 * ibytes);
if (wakeup_write) {
wake_up_interruptible(&random_write_wait);
kill_fasync(&fasync, SIGIO, POLL_OUT);
}
return ibytes;
}
static void extract_buf(struct entropy_store *r, __u8 *out)
{
int i;
union {
__u32 w[5];
unsigned long l[LONGS(20)];
} hash;
__u32 workspace[SHA_WORKSPACE_WORDS];
__u8 extract[64];
unsigned long flags;
/* Generate a hash across the pool, 16 words (512 bits) at a time */
sha_init(hash.w);
spin_lock_irqsave(&r->lock, flags);
for (i = 0; i < r->poolinfo->poolwords; i += 16)
sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
/*
* If we have a architectural hardware random number
* generator, mix that in, too.
*/
for (i = 0; i < LONGS(20); i++) {
unsigned long v;
if (!arch_get_random_long(&v))
break;
hash.l[i] ^= v;
}
/*
* We mix the hash back into the pool to prevent backtracking
* attacks (where the attacker knows the state of the pool
* plus the current outputs, and attempts to find previous
* ouputs), unless the hash function can be inverted. By
* mixing at least a SHA1 worth of hash data back, we make
* brute-forcing the feedback as hard as brute-forcing the
* hash.
*/
__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
spin_unlock_irqrestore(&r->lock, flags);
/*
* To avoid duplicates, we atomically extract a portion of the
* pool while mixing, and hash one final time.
*/
sha_transform(hash.w, extract, workspace);
memset(extract, 0, sizeof(extract));
memset(workspace, 0, sizeof(workspace));
/*
* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.
*/
hash.w[0] ^= hash.w[3];
hash.w[1] ^= hash.w[4];
hash.w[2] ^= rol32(hash.w[2], 16);
memcpy(out, &hash, EXTRACT_SIZE);
memset(&hash, 0, sizeof(hash));
}
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
size_t nbytes, int min, int reserved)
{
ssize_t ret = 0, i;
__u8 tmp[EXTRACT_SIZE];
unsigned long flags;
/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
if (fips_enabled) {
spin_lock_irqsave(&r->lock, flags);
if (!r->last_data_init) {
r->last_data_init = 1;
spin_unlock_irqrestore(&r->lock, flags);
trace_extract_entropy(r->name, EXTRACT_SIZE,
ENTROPY_BITS(r), _RET_IP_);
xfer_secondary_pool(r, EXTRACT_SIZE);
extract_buf(r, tmp);
spin_lock_irqsave(&r->lock, flags);
memcpy(r->last_data, tmp, EXTRACT_SIZE);
}
spin_unlock_irqrestore(&r->lock, flags);
}
trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
xfer_secondary_pool(r, nbytes);
nbytes = account(r, nbytes, min, reserved);
while (nbytes) {
extract_buf(r, tmp);
if (fips_enabled) {
spin_lock_irqsave(&r->lock, flags);
if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
panic("Hardware RNG duplicated output!\n");
memcpy(r->last_data, tmp, EXTRACT_SIZE);
spin_unlock_irqrestore(&r->lock, flags);
}
i = min_t(int, nbytes, EXTRACT_SIZE);
memcpy(buf, tmp, i);
nbytes -= i;
buf += i;
ret += i;
}
/* Wipe data just returned from memory */
memset(tmp, 0, sizeof(tmp));
return ret;
}
static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
size_t nbytes)
{
ssize_t ret = 0, i;
__u8 tmp[EXTRACT_SIZE];
trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
xfer_secondary_pool(r, nbytes);
nbytes = account(r, nbytes, 0, 0);
while (nbytes) {
if (need_resched()) {
if (signal_pending(current)) {
if (ret == 0)
ret = -ERESTARTSYS;
break;
}
schedule();
}
extract_buf(r, tmp);
i = min_t(int, nbytes, EXTRACT_SIZE);
if (copy_to_user(buf, tmp, i)) {
ret = -EFAULT;
break;
}
nbytes -= i;
buf += i;
ret += i;
}
/* Wipe data just returned from memory */
memset(tmp, 0, sizeof(tmp));
return ret;
}
/*
* This function is the exported kernel interface. It returns some
* number of good random numbers, suitable for key generation, seeding
* TCP sequence numbers, etc. It does not use the hw random number
* generator, if available; use get_random_bytes_arch() for that.
*/
void get_random_bytes(void *buf, int nbytes)
{
trace_get_random_bytes(nbytes, _RET_IP_);
extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
}
EXPORT_SYMBOL(get_random_bytes);
/*
* This function will use the architecture-specific hardware random
* number generator if it is available. The arch-specific hw RNG will
* almost certainly be faster than what we can do in software, but it
* is impossible to verify that it is implemented securely (as
* opposed, to, say, the AES encryption of a sequence number using a
* key known by the NSA). So it's useful if we need the speed, but
* only if we're willing to trust the hardware manufacturer not to
* have put in a back door.
*/
void get_random_bytes_arch(void *buf, int nbytes)
{
char *p = buf;
trace_get_random_bytes_arch(nbytes, _RET_IP_);
while (nbytes) {
unsigned long v;
int chunk = min(nbytes, (int)sizeof(unsigned long));
if (!arch_get_random_long(&v))
break;
memcpy(p, &v, chunk);
p += chunk;
nbytes -= chunk;
}
if (nbytes)
extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
}
EXPORT_SYMBOL(get_random_bytes_arch);
/*
* init_std_data - initialize pool with system data
*
* @r: pool to initialize
*
* This function clears the pool's entropy count and mixes some system
* data into the pool to prepare it for use. The pool is not cleared
* as that can only decrease the entropy in the pool.
*/
static void init_std_data(struct entropy_store *r)
{
int i;
ktime_t now = ktime_get_real();
unsigned long rv;
r->last_pulled = jiffies;
mix_pool_bytes(r, &now, sizeof(now), NULL);
for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
if (!arch_get_random_long(&rv))
rv = random_get_entropy();
mix_pool_bytes(r, &rv, sizeof(rv), NULL);
}
mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
}
/*
* Note that setup_arch() may call add_device_randomness()
* long before we get here. This allows seeding of the pools
* with some platform dependent data very early in the boot
* process. But it limits our options here. We must use
* statically allocated structures that already have all
* initializations complete at compile time. We should also
* take care not to overwrite the precious per platform data
* we were given.
*/
static int rand_initialize(void)
{
init_std_data(&input_pool);
init_std_data(&blocking_pool);
init_std_data(&nonblocking_pool);
return 0;
}
early_initcall(rand_initialize);
#ifdef CONFIG_BLOCK
void rand_initialize_disk(struct gendisk *disk)
{
struct timer_rand_state *state;
/*
* If kzalloc returns null, we just won't use that entropy
* source.
*/
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
if (state) {
state->last_time = INITIAL_JIFFIES;
disk->random = state;
}
}
#endif
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
ssize_t n, retval = 0, count = 0;
if (nbytes == 0)
return 0;
while (nbytes > 0) {
n = nbytes;
if (n > SEC_XFER_SIZE)
n = SEC_XFER_SIZE;
n = extract_entropy_user(&blocking_pool, buf, n);
if (n < 0) {
retval = n;
break;
}
trace_random_read(n*8, (nbytes-n)*8,
ENTROPY_BITS(&blocking_pool),
ENTROPY_BITS(&input_pool));
if (n == 0) {
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
break;
}
wait_event_interruptible(random_read_wait,
ENTROPY_BITS(&input_pool) >=
random_read_wakeup_thresh);
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
continue;
}
count += n;
buf += n;
nbytes -= n;
break; /* This break makes the device work */
/* like a named pipe */
}
return (count ? count : retval);
}
static ssize_t
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
int ret;
if (unlikely(nonblocking_pool.initialized == 0))
printk_once(KERN_NOTICE "random: %s urandom read "
"with %d bits of entropy available\n",
current->comm, nonblocking_pool.entropy_total);
ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
ENTROPY_BITS(&input_pool));
return ret;
}
static unsigned int
random_poll(struct file *file, poll_table * wait)
{
unsigned int mask;
poll_wait(file, &random_read_wait, wait);
poll_wait(file, &random_write_wait, wait);
mask = 0;
if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
mask |= POLLIN | POLLRDNORM;
if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
mask |= POLLOUT | POLLWRNORM;
return mask;
}
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
{
size_t bytes;
__u32 buf[16];
const char __user *p = buffer;
while (count > 0) {
bytes = min(count, sizeof(buf));
if (copy_from_user(&buf, p, bytes))
return -EFAULT;
count -= bytes;
p += bytes;
mix_pool_bytes(r, buf, bytes, NULL);
cond_resched();
}
return 0;
}
static ssize_t random_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
size_t ret;
ret = write_pool(&blocking_pool, buffer, count);
if (ret)
return ret;
ret = write_pool(&nonblocking_pool, buffer, count);
if (ret)
return ret;
return (ssize_t)count;
}
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
int size, ent_count;
int __user *p = (int __user *)arg;
int retval;
switch (cmd) {
case RNDGETENTCNT:
/* inherently racy, no point locking */
ent_count = ENTROPY_BITS(&input_pool);
if (put_user(ent_count, p))
return -EFAULT;
return 0;
case RNDADDTOENTCNT:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p))
return -EFAULT;
credit_entropy_bits_safe(&input_pool, ent_count);
return 0;
case RNDADDENTROPY:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p++))
return -EFAULT;
if (ent_count < 0)
return -EINVAL;
if (get_user(size, p++))
return -EFAULT;
retval = write_pool(&input_pool, (const char __user *)p,
size);
if (retval < 0)
return retval;
credit_entropy_bits_safe(&input_pool, ent_count);
return 0;
case RNDZAPENTCNT:
case RNDCLEARPOOL:
/*
* Clear the entropy pool counters. We no longer clear
* the entropy pool, as that's silly.
*/
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
input_pool.entropy_count = 0;
nonblocking_pool.entropy_count = 0;
blocking_pool.entropy_count = 0;
return 0;
default:
return -EINVAL;
}
}
static int random_fasync(int fd, struct file *filp, int on)
{
return fasync_helper(fd, filp, on, &fasync);
}
const struct file_operations random_fops = {
.read = random_read,
.write = random_write,
.poll = random_poll,
.unlocked_ioctl = random_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
};
const struct file_operations urandom_fops = {
.read = urandom_read,
.write = random_write,
.unlocked_ioctl = random_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
};
/***************************************************************
* Random UUID interface
*
* Used here for a Boot ID, but can be useful for other kernel
* drivers.
***************************************************************/
/*
* Generate random UUID
*/
void generate_random_uuid(unsigned char uuid_out[16])
{
get_random_bytes(uuid_out, 16);
/* Set UUID version to 4 --- truly random generation */
uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
/* Set the UUID variant to DCE */
uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
}
EXPORT_SYMBOL(generate_random_uuid);
/********************************************************************
*
* Sysctl interface
*
********************************************************************/
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
static int min_read_thresh = 8, min_write_thresh;
static int max_read_thresh = INPUT_POOL_WORDS * 32;
static int max_write_thresh = INPUT_POOL_WORDS * 32;
static char sysctl_bootid[16];
/*
* These functions is used to return both the bootid UUID, and random
* UUID. The difference is in whether table->data is NULL; if it is,
* then a new UUID is generated and returned to the user.
*
* If the user accesses this via the proc interface, it will be returned
* as an ASCII string in the standard UUID format. If accesses via the
* sysctl system call, it is returned as 16 bytes of binary data.
*/
static int proc_do_uuid(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct ctl_table fake_table;
unsigned char buf[64], tmp_uuid[16], *uuid;
uuid = table->data;
if (!uuid) {
uuid = tmp_uuid;
generate_random_uuid(uuid);
} else {
static DEFINE_SPINLOCK(bootid_spinlock);
spin_lock(&bootid_spinlock);
if (!uuid[8])
generate_random_uuid(uuid);
spin_unlock(&bootid_spinlock);
}
sprintf(buf, "%pU", uuid);
fake_table.data = buf;
fake_table.maxlen = sizeof(buf);
return proc_dostring(&fake_table, write, buffer, lenp, ppos);
}
/*
* Return entropy available scaled to integral bits
*/
static int proc_do_entropy(ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
ctl_table fake_table;
int entropy_count;
entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
fake_table.data = &entropy_count;
fake_table.maxlen = sizeof(entropy_count);
return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
{
.procname = "poolsize",
.data = &sysctl_poolsize,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
{
.procname = "entropy_avail",
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_do_entropy,
.data = &input_pool.entropy_count,
},
{
.procname = "read_wakeup_threshold",
.data = &random_read_wakeup_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_read_thresh,
.extra2 = &max_read_thresh,
},
{
.procname = "write_wakeup_threshold",
.data = &random_write_wakeup_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_write_thresh,
.extra2 = &max_write_thresh,
},
{
.procname = "urandom_min_reseed_secs",
.data = &random_min_urandom_seed,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "boot_id",
.data = &sysctl_bootid,
.maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{
.procname = "uuid",
.maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{ }
};
#endif /* CONFIG_SYSCTL */
static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
int random_int_secret_init(void)
{
get_random_bytes(random_int_secret, sizeof(random_int_secret));
return 0;
}
/*
* Get a random word for internal kernel use only. Similar to urandom but
* with the goal of minimal entropy pool depletion. As a result, the random
* value is not cryptographically secure but for several uses the cost of
* depleting entropy is too high
*/
static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
unsigned int get_random_int(void)
{
__u32 *hash;
unsigned int ret;
if (arch_get_random_int(&ret))
return ret;
hash = get_cpu_var(get_random_int_hash);
hash[0] += current->pid + jiffies + random_get_entropy();
md5_transform(hash, random_int_secret);
ret = hash[0];
put_cpu_var(get_random_int_hash);
return ret;
}
EXPORT_SYMBOL(get_random_int);
/*
* randomize_range() returns a start address such that
*
* [...... <range> .....]
* start end
*
* a <range> with size "len" starting at the return value is inside in the
* area defined by [start, end], but is otherwise randomized.
*/
unsigned long
randomize_range(unsigned long start, unsigned long end, unsigned long len)
{
unsigned long range = end - len - start;
if (end <= start + len)
return 0;
return PAGE_ALIGN(get_random_int() % range + start);
}