Remove repeated calculation for number of channels while creating a
target device.
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
nvm_tgt_types list was protected by wrong lock for NVM_INFO ioctl call
and can race with addition or removal of target types. Also
unregistering target type was not protected correctly.
Fixes: 5cd907853 ("lightnvm: remove nested lock conflict with mm")
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When a virtual block device is formatted and mounted after creating
with "nvme lnvm create... -t pblk", a removal from "nvm lnvm remove"
would result in this:
446416.309757] bdi-block not registered
[446416.309773] ------------[ cut here ]------------
[446416.309780] WARNING: CPU: 3 PID: 4319 at fs/fs-writeback.c:2159
__mark_inode_dirty+0x268/0x340
Ideally removal should return -EBUSY as block device is mounted after
formatting. This patch tries to address this checking if whole device
or any partition of it already mounted or not before removal.
Whole device is checked using "bd_super" member of block device. This
member is always set once block device has been mounted using a
filesystem. Another member "bd_part_count" takes care of checking any
if any partitions are under use. "bd_part_count" is only updated
under locks when partitions are opened or closed (first open and last
release). This at least does take care sending -EBUSY if removal is
being attempted while whole block device or any partition is mounted.
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If target type module e.g. pblk here is unloaded (rmmod) while module
is in use (after creating target) system crashes. We fix this by
using module API refcnt.
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Signed-off-by: Matias Bjørling <m@bjorling.me>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Legacy queue sets request's request_list, mq doesn't. This makes mq does
the same thing, so we can find cgroup of a request. Note, we really
only use blkg field of request_list, it's pointless to allocate mempool
for request_list in mq case.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Fix two issues:
- the per-cpu stat flush is unnecessary, nobody uses per-cpu stat except
sum it to global stat. We can do the calculation there. The flush just
wastes cpu time.
- some fields are signed int/s64. I don't see the point.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A null pointer dereference can occur when blkcg is removed manually
with writeback IOs inflight. This is caused by the following case:
Writeback kworker submit the bio and set bio->bi_cg_private to tg
in blk_throtl_assoc_bio.
Then we remove the block cgroup manually, the blkg and tg would be
freed if there is no request inflight.
When the submitted bio come back, blk_throtl_bio_endio() fetch the tg
which was already freed.
Fix this by increasing the refcount of blkg in funcion
blk_throtl_assoc_bio() so that the blkg will not be freed until the
bio_endio called.
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jiufei Xue <jiufei.xjf@alibaba-inc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since commit 925a6efb8f ("Btrfs: stop using
try_to_writeback_inodes_sb_nr to flush delalloc") this function hasn't
been used outside so stop exporting it.
In addition we merge it into try_to_writeback_inodes_sb() which is the
only caller. Also change return type of try_to_writeback_inodes_sb to
void as the only user ext4 doesn't care.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The commit "block, bfq: decrease burst size when queues in burst
exit" introduced the decrement of burst_size on the removal of a
bfq_queue from the burst list. Unfortunately, this decrement can
happen to be performed even when burst size is already equal to 0,
because of unbalanced decrements. A description follows of the cause
of these unbalanced decrements, namely a wrong assumption, and of the
way how this wrong assumption leads to unbalanced decrements.
The wrong assumption is that a bfq_queue can exit only if the process
associated with the bfq_queue has exited. This is false, because a
bfq_queue, say Q, may exit also as a consequence of a merge with
another bfq_queue. In this case, Q exits because the I/O of its
associated process has been redirected to another bfq_queue.
The decrement unbalance occurs because Q may then be re-created after
a split, and added back to the current burst list, *without*
incrementing burst_size. burst_size is not incremented because Q is
not a new bfq_queue added to the burst list, but a bfq_queue only
temporarily removed from the list, and, before the commit "bfq-sq,
bfq-mq: decrease burst size when queues in burst exit", burst_size was
not decremented when Q was removed.
This commit addresses this issue by just checking whether the exiting
bfq_queue is a merged bfq_queue, and, in that case, not decrementing
burst_size. Unfortunately, this still leaves room for unbalanced
decrements, in the following rarer case: on a split, the bfq_queue
happens to be inserted into a different burst list than that it was
removed from when merged. If this happens, the number of elements in
the new burst list becomes higher than burst_size (by one). When the
bfq_queue then exits, it is of course not in a merged state any
longer, thus burst_size is decremented, which results in an unbalanced
decrement. To handle this sporadic, unlucky case in a simple way,
this commit also checks that burst_size is larger than 0 before
decrementing it.
Finally, this commit removes an useless, extra check: the check that
the bfq_queue is sync, performed before checking whether the bfq_queue
is in the burst list. This extra check is redundant, because only sync
bfq_queues can be inserted into the burst list.
Fixes: 7cb04004fa ("block, bfq: decrease burst size when queues in burst exit")
Reported-by: Philip Müller <philm@manjaro.org>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Tested-by: Philip Müller <philm@manjaro.org>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Similarly to CFQ, BFQ has its write-throttling heuristics, and it
is better not to combine them with further write-throttling
heuristics of a different nature.
So this commit disables write-back throttling for a device if BFQ
is used as I/O scheduler for that device.
Signed-off-by: Luca Miccio <lucmiccio@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After disable periodic writeback by writing 0 to
dirty_writeback_centisecs, the handler wb_workfn() will not be
entered again until the dirty background limit reaches or
sync syscall is executed or no enough free memory available or
vmscan is triggered.
So the periodic writeback can't be enabled by writing a non-zero
value to dirty_writeback_centisecs.
As it can be disabled by sysctl, it should be able to enable by
sysctl as well.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch removes redundant checks for null values on bio_pool and
bvec_pool.
Found using make coccicheck M=block/ on linux-net tree on the
next-20170929 tag.
Signed-off-by: Tim Hansen <devtimhansen@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
mempool_destroy() already checks for a NULL value being passed in, this
eliminates duplicate checks.
This was caught by running make coccicheck M=block/ on linus' tree on
commit 77ede3a014 (current head as of this
patch).
Reviewed-by: Kyle Fortin <kyle.fortin@oracle.com>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Tim Hansen <devtimhansen@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After commit b35bd0d9f8, pdflush_proc_obsolete() is no longer
used. Kill the function and declaration.
Reported-by: Rakesh Pandit <rakesh@tuxera.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We already have a queue_is_rq_based helper to check if a request_queue
is request based, so we can remove the flag for it.
Acked-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This tunable has been obsolete since 2.6.32, and writes to the
file have been failing and complaining in dmesg since then:
nr_pdflush_threads exported in /proc is scheduled for removal
That was 8 years ago. Remove the file ABI obsolete notice, and
the sysfs file.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Handle start-all writeback like we do periodic or kupdate
style writeback - by marking the bdi_writeback as needing a full
flush, and simply waking the thread. This eliminates the need to
allocate and queue a specific work item just for this purpose.
After this change, we truly only ever have one of them running at
any point in time. We mark the need to start all flushes, and the
writeback thread will clear it once it has processed the request.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For memory ordering guarantees on stores, we need to ensure that
these two bits share the same byte of storage in the unsigned
long. Add a comment as to why, and a BUILD_BUG_ON() to ensure that
we don't violate this requirement.
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Attempt to untangle the ordering in blk-mq. The patch introducing the
single smp_mb__before_atomic() is obviously broken in that it doesn't
clearly specify a pairing barrier and an obtained guarantee.
The comment is further misleading in that it hints that the
deadline store and the COMPLETE store also need to be ordered, but
AFAICT there is no such dependency. However what does appear to be
important is the clear happening _after_ the store, and that worked by
pure accident.
This clarifies blk_mq_start_request() -- we should not get there with
STARTING set -- this simplifies the code and makes the barrier usage
sane (the old code could be read to allow not having _any_ atomic after
the barrier, in which case the barrier hasn't got anything to order). We
then also introduce the missing pairing barrier for it.
Also down-grade the barrier to smp_wmb(), this is cheaper for
PowerPC/ARM and doesn't cost anything extra on x86.
And it documents the STARTING vs COMPLETE ordering. Although I've not
been entirely successful in reverse engineering the blk-mq state
machine so there might still be more funnies around timeout vs
requeue.
If I got anything wrong, feel free to educate me by adding comments to
clarify things ;-)
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Bart Van Assche <bart.vanassche@wdc.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Fixes: 538b753418 ("blk-mq: request deadline must be visible before marking rq as started")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
No need to have this helper inline in a header. Also drop the __ prefix.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If many queues belonging to the same group happen to be created
shortly after each other, then the concurrent processes associated
with these queues have typically a common goal, and they get it done
as soon as possible if not hampered by device idling. Examples are
processes spawned by git grep, or by systemd during boot. As for
device idling, this mechanism is currently necessary for weight
raising to succeed in its goal: privileging I/O. In view of these
facts, BFQ does not provide the above queues with either weight
raising or device idling.
On the other hand, a burst of queue creations may be caused also by
the start-up of a complex application. In this case, these queues need
usually to be served one after the other, and as quickly as possible,
to maximise responsiveness. Therefore, in this case the best strategy
is to weight-raise all the queues created during the burst, i.e., the
exact opposite of the strategy for the above case.
To distinguish between the two cases, BFQ uses an empirical burst-size
threshold, found through extensive tests and monitoring of daily
usage. Only large bursts, i.e., burst with a size above this
threshold, are considered as generated by a high number of parallel
processes. In this respect, upstart-based boot proved to be rather
hard to detect as generating a large burst of queue creations, because
with upstart most of the queues created in a burst exit *before* the
next queues in the same burst are created. To address this issue, I
changed the burst-detection mechanism so as to not decrease the size
of the current burst even if one of the queues in the burst is
eliminated.
Unfortunately, this missing decrease causes false positives on very
fast systems: on the start-up of a complex application, such as
libreoffice writer, so many queues are created, served and exited
shortly after each other, that a large burst of queue creations is
wrongly detected as occurring. These false positives just disappear if
the size of a burst is decreased when one of the queues in the burst
exits. This commit restores the missing burst-size decrease, relying
of the fact that upstart is apparently unlikely to be used on systems
running this and future versions of the kernel.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Mauro Andreolini <mauro.andreolini@unimore.it>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Tested-by: Mirko Montanari <mirkomontanari91@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A just-created bfq_queue, say Q, may happen to be merged with another
bfq_queue on the very first invocation of the function
__bfq_insert_request. In such a case, even if Q would clearly deserve
interactive weight raising (as it has just been created), the function
bfq_add_request does not make it to be invoked for Q, and thus to
activate weight raising for Q. As a consequence, when the state of Q
is saved for a possible future restore, after a split of Q from the
other bfq_queue(s), such a state happens to be (unjustly)
non-weight-raised. Then the bfq_queue will not enjoy any weight
raising on the split, even if should still be in an interactive
weight-raising period when the split occurs.
This commit solves this problem as follows, for a just-created
bfq_queue that is being early-merged: it stores directly, in the saved
state of the bfq_queue, the weight-raising state that would have been
assigned to the bfq_queue if not early-merged.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Angelo Ruocco <angeloruocco90@gmail.com>
Tested-by: Mirko Montanari <mirkomontanari91@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
As already explained in the message of commit "block, bfq: fix
wrong init of saved start time for weight raising", if a soft
real-time weight-raising period happens to be nested in a larger
interactive weight-raising period, then BFQ restores the interactive
weight raising at the end of the soft real-time weight raising. In
particular, BFQ checks whether the latter has ended only on request
dispatches.
Unfortunately, the above scheme fails to restore interactive weight
raising in the following corner case: if a bfq_queue, say Q,
1) Is merged with another bfq_queue while it is in a nested soft
real-time weight-raising period. The weight-raising state of Q is
then saved, and not considered any longer until a split occurs.
2) Is split from the other bfq_queue(s) at a time instant when its
soft real-time weight raising is already finished.
On the split, while resuming the previous, soft real-time
weight-raised state of the bfq_queue Q, BFQ checks whether the
current soft real-time weight-raising period is actually over. If so,
BFQ switches weight raising off for Q, *without* checking whether the
soft real-time period was actually nested in a non-yet-finished
interactive weight-raising period.
This commit addresses this issue by adding the above missing check in
bfq_queue splits, and restoring interactive weight raising if needed.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Angelo Ruocco <angeloruocco90@gmail.com>
Tested-by: Mirko Montanari <mirkomontanari91@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This commit fixes a bug that causes bfq to fail to guarantee a high
responsiveness on some drives, if there is heavy random read+write I/O
in the background. More precisely, such a failure allowed this bug to
be found [1], but the bug may well cause other yet unreported
anomalies.
BFQ raises the weight of the bfq_queues associated with soft real-time
applications, to privilege the I/O, and thus reduce latency, for these
applications. This mechanism is named soft-real-time weight raising in
BFQ. A soft real-time period may happen to be nested into an
interactive weight raising period, i.e., it may happen that, when a
bfq_queue switches to a soft real-time weight-raised state, the
bfq_queue is already being weight-raised because deemed interactive
too. In this case, BFQ saves in a special variable
wr_start_at_switch_to_srt, the time instant when the interactive
weight-raising period started for the bfq_queue, i.e., the time
instant when BFQ started to deem the bfq_queue interactive. This value
is then used to check whether the interactive weight-raising period
would still be in progress when the soft real-time weight-raising
period ends. If so, interactive weight raising is restored for the
bfq_queue. This restore is useful, in particular, because it prevents
bfq_queues from losing their interactive weight raising prematurely,
as a consequence of spurious, short-lived soft real-time
weight-raising periods caused by wrong detections as soft real-time.
If, instead, a bfq_queue switches to soft-real-time weight raising
while it *is not* already in an interactive weight-raising period,
then the variable wr_start_at_switch_to_srt has no meaning during the
following soft real-time weight-raising period. Unfortunately the
handling of this case is wrong in BFQ: not only the variable is not
flagged somehow as meaningless, but it is also set to the time when
the switch to soft real-time weight-raising occurs. This may cause an
interactive weight-raising period to be considered mistakenly as still
in progress, and thus a spurious interactive weight-raising period to
start for the bfq_queue, at the end of the soft-real-time
weight-raising period. In particular the spurious interactive
weight-raising period will be considered as still in progress, if the
soft-real-time weight-raising period does not last very long. The
bfq_queue will then be wrongly privileged and, if I/O bound, will
unjustly steal bandwidth to truly interactive or soft real-time
bfq_queues, harming responsiveness and low latency.
This commit fixes this issue by just setting wr_start_at_switch_to_srt
to minus infinity (farthest past time instant according to jiffies
macros): when the soft-real-time weight-raising period ends, certainly
no interactive weight-raising period will be considered as still in
progress.
[1] Background I/O Type: Random - Background I/O mix: Reads and writes
- Application to start: LibreOffice Writer in
http://www.phoronix.com/scan.php?page=news_item&px=Linux-4.13-IO-Laptop
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Tested-by: Mirko Montanari <mirkomontanari91@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When someone calls wakeup_flusher_threads() or
wakeup_flusher_threads_bdi(), they schedule writeback of all dirty
pages in the system (or on that bdi). If we are tight on memory, we
can get tons of these queued from kswapd/vmscan. This causes (at
least) two problems:
1) We consume a ton of memory just allocating writeback work items.
We've seen as much as 600 million of these writeback work items
pending. That's a lot of memory to pointlessly hold hostage,
while the box is under memory pressure.
2) We spend so much time processing these work items, that we
introduce a softlockup in writeback processing. This is because
each of the writeback work items don't end up doing any work (it's
hard when you have millions of identical ones coming in to the
flush machinery), so we just sit in a tight loop pulling work
items and deleting/freeing them.
Fix this by adding a 'start_all' bit to the writeback structure, and
set that when someone attempts to flush all dirty pages. The bit is
cleared when we start writeback on that work item. If the bit is
already set when we attempt to queue !nr_pages writeback, then we
simply ignore it.
This provides us one full flush in flight, with one pending as well,
and makes for more efficient handling of this type of writeback.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Chris Mason <clm@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now that we have no external callers of wb_start_writeback(), we
can shuffle the passing in of 'nr_pages'. Everybody passes in 0
at this point, so just kill the argument and move the dirty
count retrieval to that function.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Chris Mason <clm@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We don't have any callers outside of fs-writeback.c anymore,
make it private.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Chris Mason <clm@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Laptop mode really wants to writeback the number of dirty
pages and inodes. Instead of calculating this in the caller,
just pass in 0 and let wakeup_flusher_threads() handle it.
Use the new wakeup_flusher_threads_bdi() instead of rolling
our own.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Chris Mason <clm@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Similar to wakeup_flusher_threads(), except that we only wake
up the flusher threads on the specified backing device.
No functional changes in this patch.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Chris Mason <clm@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We're writing back the full range of dirty pages on the devices,
there's no point in making this special and not do normal range
cyclic writeback.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Everybody is passing in 0 now, let's get rid of the argument.
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since the previous commit removed any case where grow_buffers()
would return failure due to memory allocations, we can safely
remove the case where we have to call free_more_memory() in
this function.
Since this is also the last user of free_more_memory(), kill
it off completely.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We currently use it for find_or_create_page(), which means that it
cannot fail. Ensure we also pass in 'retry == true' to
alloc_page_buffers(), which also ensure that it cannot fail.
After this, there are no failure cases in grow_dev_page() that
occur because of a failed memory allocation.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Instead of adding weird retry logic in that function, utilize
__GFP_NOFAIL to ensure that the vm takes care of handling any
potential retries appropriately. This means we don't have to
call free_more_memory() from here.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For some reason, the laptop mode IO completion notified was never wired
up for blk-mq. Ensure that we trigger the callback appropriately, to arm
the laptop mode flush timer.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Bart Van Assche <Bart.VanAssche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We don't have any notion of a tagging cache anymore, and haven't
for a long time. Kill off the unused enums.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
since 9bddeb2a5b "blk-mq: make per-sw-queue bio merge as default .bio_merge"
there is no caller for this function.
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: weiping zhang <zhangweiping@didichuxing.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The code is only for blkcg not for all cgroups
Fixes: d4478e92d6 ("block/loop: make loop cgroup aware")
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fix the following build warning:
drivers/block/cryptoloop.c:46:8: warning: variable 'cipher' set but not used [-Wunused-but-set-variable]
Signed-off-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
loop block device handles IO in a separate thread. The actual IO
dispatched isn't cloned from the IO loop device received, so the
dispatched IO loses the cgroup context.
I'm ignoring buffer IO case now, which is quite complicated. Making the
loop thread aware cgroup context doesn't really help. The loop device
only writes to a single file. In current writeback cgroup
implementation, the file can only belong to one cgroup.
For direct IO case, we could workaround the issue in theory. For
example, say we assign cgroup1 5M/s BW for loop device and cgroup2
10M/s. We can create a special cgroup for loop thread and assign at
least 15M/s for the underlayer disk. In this way, we correctly throttle
the two cgroups. But this is tricky to setup.
This patch tries to address the issue. We record bio's css in loop
command. When loop thread is handling the command, we then use the API
provided in patch 1 to set the css for current task. The bio layer will
use the css for new IO (from patch 3).
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bio_blkcg is the only API to get cgroup info for a bio right now. If
bio_blkcg finds current task is a kthread and has original blkcg
associated, it will use the css instead of associating the bio to
current task. This makes it possible that kthread dispatches bios on
behalf of other threads.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
kthread usually runs jobs on behalf of other threads. The jobs should be
charged to cgroup of original threads. But the jobs run in a kthread,
where we lose the cgroup context of original threads. The patch adds a
machanism to record cgroup info of original threads in kthread context.
Later we can retrieve the cgroup info and attach the cgroup info to jobs.
Since this mechanism is only required by kthread, we store the cgroup
info in kthread data instead of generic task_struct.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull compat fix from Al Viro:
"I really wish gcc warned about conversions from pointer to function
into void *..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fix a typo in put_compat_shm_info()
"uip" misspelled as "up"; unfortunately, the latter happens to be
a function and gcc is happy to convert it to void *...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>