Commit Graph

254765 Commits

Author SHA1 Message Date
Paul Mackerras
a8606e20e4 KVM: PPC: Handle some PAPR hcalls in the kernel
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context.  The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest.  The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.

This also adds code to handle the following hcalls in real mode:

H_ENTER       Add an HPTE to the hashed page table
H_REMOVE      Remove an HPTE from the hashed page table
H_READ        Read HPTEs from the hashed page table
H_PROTECT     Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR    Set the data address breakpoint register

Plus code to handle the following hcalls in the kernel:

H_CEDE        Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD        Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)

The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module.  The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:55 +03:00
Paul Mackerras
de56a948b9 KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode.  Using hypervisor mode means
that the guest can use the processor's supervisor mode.  That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host.  This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.

This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses.  That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification.  In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.

Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.

This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.

With the guest running in supervisor mode, most exceptions go straight
to the guest.  We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest.  Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.

We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.

In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount.  Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.

The POWER7 processor has a restriction that all threads in a core have
to be in the same partition.  MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest.  At present we require the host and guest to run
in single-thread mode because of this hardware restriction.

This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA).  We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management.  This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.

This also adds a few new exports needed by the book3s_hv code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:54 +03:00
Paul Mackerras
3c42bf8a71 KVM: PPC: Split host-state fields out of kvmppc_book3s_shadow_vcpu
There are several fields in struct kvmppc_book3s_shadow_vcpu that
temporarily store bits of host state while a guest is running,
rather than anything relating to the particular guest or vcpu.
This splits them out into a new kvmppc_host_state structure and
modifies the definitions in asm-offsets.c to suit.

On 32-bit, we have a kvmppc_host_state structure inside the
kvmppc_book3s_shadow_vcpu since the assembly code needs to be able
to get to them both with one pointer.  On 64-bit they are separate
fields in the PACA.  This means that on 64-bit we don't need to
copy the kvmppc_host_state in and out on vcpu load/unload, and
in future will mean that the book3s_hv code doesn't need a
shadow_vcpu struct in the PACA at all.  That does mean that we
have to be careful not to rely on any values persisting in the
hstate field of the paca across any point where we could block
or get preempted.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:53 +03:00
Paul Mackerras
923c53caea powerpc: Set up LPCR for running guest partitions
In hypervisor mode, the LPCR controls several aspects of guest
partitions, including virtual partition memory mode, and also controls
whether the hypervisor decrementer interrupts are enabled.  This sets
up LPCR at boot time so that guest partitions will use a virtual real
memory area (VRMA) composed of 16MB large pages, and hypervisor
decrementer interrupts are disabled.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:52 +03:00
Paul Mackerras
df6909e5d5 KVM: PPC: Move guest enter/exit down into subarch-specific code
Instead of doing the kvm_guest_enter/exit() and local_irq_dis/enable()
calls in powerpc.c, this moves them down into the subarch-specific
book3s_pr.c and booke.c.  This eliminates an extra local_irq_enable()
call in book3s_pr.c, and will be needed for when we do SMT4 guest
support in the book3s hypervisor mode code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:51 +03:00
Paul Mackerras
f9e0554dec KVM: PPC: Pass init/destroy vm and prepare/commit memory region ops down
This arranges for the top-level arch/powerpc/kvm/powerpc.c file to
pass down some of the calls it gets to the lower-level subarchitecture
specific code.  The lower-level implementations (in booke.c and book3s.c)
are no-ops.  The coming book3s_hv.c will need this.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:50 +03:00
Paul Mackerras
3cf658b605 KVM: PPC: Deliver program interrupts right away instead of queueing them
Doing so means that we don't have to save the flags anywhere and gets
rid of the last reference to to_book3s(vcpu) in arch/powerpc/kvm/book3s.c.

Doing so is OK because a program interrupt won't be generated at the
same time as any other synchronous interrupt.  If a program interrupt
and an asynchronous interrupt (external or decrementer) are generated
at the same time, the program interrupt will be delivered, which is
correct because it has a higher priority, and then the asynchronous
interrupt will be masked.

We don't ever generate system reset or machine check interrupts to the
guest, but if we did, then we would need to make sure they got delivered
rather than the program interrupt.  The current code would be wrong in
this situation anyway since it would deliver the program interrupt as
well as the reset/machine check interrupt.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:49 +03:00
Paul Mackerras
b01c8b54a1 powerpc, KVM: Rework KVM checks in first-level interrupt handlers
Instead of branching out-of-line with the DO_KVM macro to check if we
are in a KVM guest at the time of an interrupt, this moves the KVM
check inline in the first-level interrupt handlers.  This speeds up
the non-KVM case and makes sure that none of the interrupt handlers
are missing the check.

Because the first-level interrupt handlers are now larger, some things
had to be move out of line in exceptions-64s.S.

This all necessitated some minor changes to the interrupt entry code
in KVM.  This also streamlines the book3s_32 KVM test.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:48 +03:00
Paul Mackerras
f05ed4d56e KVM: PPC: Split out code from book3s.c into book3s_pr.c
In preparation for adding code to enable KVM to use hypervisor mode
on 64-bit Book 3S processors, this splits book3s.c into two files,
book3s.c and book3s_pr.c, where book3s_pr.c contains the code that is
specific to running the guest in problem state (user mode) and book3s.c
contains code which should apply to all Book 3S processors.

In doing this, we abstract some details, namely the interrupt offset,
updating the interrupt pending flag, and detecting if the guest is
in a critical section.  These are all things that will be different
when we use hypervisor mode.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:47 +03:00
Paul Mackerras
c4befc58a0 KVM: PPC: Move fields between struct kvm_vcpu_arch and kvmppc_vcpu_book3s
This moves the slb field, which represents the state of the emulated
SLB, from the kvmppc_vcpu_book3s struct to the kvm_vcpu_arch, and the
hpte_hash_[v]pte[_long] fields from kvm_vcpu_arch to kvmppc_vcpu_book3s.
This is in accord with the principle that the kvm_vcpu_arch struct
represents the state of the emulated CPU, and the kvmppc_vcpu_book3s
struct holds the auxiliary data structures used in the emulation.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:46 +03:00
Paul Mackerras
149dbdb185 KVM: PPC: Fix machine checks on 32-bit Book3S
Commit 69acc0d3ba ("KVM: PPC: Resolve real-mode handlers through
function exports") resulted in vcpu->arch.trampoline_lowmem and
vcpu->arch.trampoline_enter ending up with kernel virtual addresses
rather than physical addresses.  This is OK on 64-bit Book3S machines,
which ignore the top 4 bits of the effective address in real mode,
but on 32-bit Book3S machines, accessing these addresses in real mode
causes machine check interrupts, as the hardware uses the whole
effective address as the physical address in real mode.

This fixes the problem by using __pa() to convert these addresses
to physical addresses.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:45 +03:00
Takuya Yoshikawa
3c8c652ae4 KVM: MMU: Introduce is_last_gpte() to clean up walk_addr_generic()
Suggested by Ingo and Avi.

Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:44 +03:00
Takuya Yoshikawa
92c1c1e85b KVM: MMU: Rename the walk label in walk_addr_generic()
The current name does not explain the meaning well.  So give it a better
name "retry_walk" to show that we are trying the walk again.

This was suggested by Ingo Molnar.

Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:43 +03:00
Takuya Yoshikawa
134291bf3c KVM: MMU: Clean up the error handling of walk_addr_generic()
Avoid two step jump to the error handling part.  This eliminates the use
of the variables present and rsvd_fault.

We also use the const type qualifier to show that write/user/fetch_fault
do not change in the function.

Both of these were suggested by Ingo Molnar.

Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:42 +03:00
Marcelo Tosatti
f8f7e5ee10 Revert "KVM: MMU: make kvm_mmu_reset_context() flush the guest TLB"
This reverts commit bee931d31e588b8eb86b7edee32fac2d16930cd7.

TLB flush should be done lazily during guest entry, in
kvm_mmu_load().

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:41 +03:00
Scott Wood
1aee47a027 KVM: PPC: e500: Don't search over the entire TLB0.
Only look in the 4 entries that could possibly contain the
entry we're looking for.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:40 +03:00
Liu Yu
dd9ebf1f94 KVM: PPC: e500: Add shadow PID support
Dynamically assign host PIDs to guest PIDs, splitting each guest PID into
multiple host (shadow) PIDs based on kernel/user and MSR[IS/DS].  Use
both PID0 and PID1 so that the shadow PIDs for the right mode can be
selected, that correspond both to guest TID = zero and guest TID = guest
PID.

This allows us to significantly reduce the frequency of needing to
invalidate the entire TLB.  When the guest mode or PID changes, we just
update the host PID0/PID1.  And since the allocation of shadow PIDs is
global, multiple guests can share the TLB without conflict.

Note that KVM does not yet support the guest setting PID1 or PID2 to
a value other than zero.  This will need to be fixed for nested KVM
to work.  Until then, we enforce the requirement for guest PID1/PID2
to stay zero by failing the emulation if the guest tries to set them
to something else.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:39 +03:00
Liu Yu
08b7fa92b9 KVM: PPC: e500: Stop keeping shadow TLB
Instead of a fully separate set of TLB entries, keep just the
pfn and dirty status.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:38 +03:00
Scott Wood
a4cd8b23ac KVM: PPC: e500: enable magic page
This is a shared page used for paravirtualization.  It is always present
in the guest kernel's effective address space at the address indicated
by the hypercall that enables it.

The physical address specified by the hypercall is not used, as
e500 does not have real mode.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:37 +03:00
Scott Wood
9973d54eea KVM: PPC: e500: Support large page mappings of PFNMAP vmas.
This allows large pages to be used on guest mappings backed by things like
/dev/mem, resulting in a significant speedup when guest memory
is mapped this way (it's useful for directly-assigned MMIO, too).

This is not a substitute for hugetlbfs integration, but is useful for
configurations where devices are directly assigned on chips without an
IOMMU -- in these cases, we need guest physical and true physical to
match, and be contiguous, so static reservation and mapping via /dev/mem
is the most straightforward way to set things up.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:36 +03:00
Scott Wood
59c1f4e35c KVM: PPC: e500: Eliminate shadow_pages[], and use pfns instead.
This is in line with what other architectures do, and will allow us to
map things other than ordinary, unreserved kernel pages -- such as
dedicated devices, or large contiguous reserved regions.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:35 +03:00
Scott Wood
0ef309956c KVM: PPC: e500: don't use MAS0 as intermediate storage.
This avoids races.  It also means that we use the shadow TLB way,
rather than the hardware hint -- if this is a problem, we could do
a tlbsx before inserting a TLB0 entry.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:34 +03:00
Scott Wood
6fc4d1eb91 KVM: PPC: e500: Disable preloading TLB1 in tlb_load().
Since TLB1 loading doesn't check the shadow TLB before allocating another
entry, you can get duplicates.

Once shadow PIDs are enabled in a later patch, we won't need to
invalidate the TLB on every switch, so this optimization won't be
needed anyway.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:33 +03:00
Scott Wood
4cd35f675b KVM: PPC: e500: Save/restore SPE state
This is done lazily.  The SPE save will be done only if the guest has
used SPE since the last preemption or heavyweight exit.  Restore will be
done only on demand, when enabling MSR_SPE in the shadow MSR, in response
to an SPE fault or mtmsr emulation.

For SPEFSCR, Linux already switches it on context switch (non-lazily), so
the only remaining bit is to save it between qemu and the guest.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:32 +03:00
Scott Wood
ecee273fc4 KVM: PPC: booke: use shadow_msr
Keep the guest MSR and the guest-mode true MSR separate, rather than
modifying the guest MSR on each guest entry to produce a true MSR.

Any bits which should be modified based on guest MSR must be explicitly
propagated from vcpu->arch.shared->msr to vcpu->arch.shadow_msr in
kvmppc_set_msr().

While we're modifying the guest entry code, reorder a few instructions
to bury some load latencies.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:32 +03:00
Scott Wood
c51584d52e powerpc/e500: SPE register saving: take arbitrary struct offset
Previously, these macros hardcoded THREAD_EVR0 as the base of the save
area, relative to the base register passed.  This base offset is now
passed as a separate macro parameter, allowing reuse with other SPE
save areas, such as used by KVM.

Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:31 +03:00
yu liu
685659ee70 powerpc/e500: Save SPEFCSR in flush_spe_to_thread()
giveup_spe() saves the SPE state which is protected by MSR[SPE].
However, modifying SPEFSCR does not trap when MSR[SPE]=0.
And since SPEFSCR is already saved/restored in _switch(),
not all the callers want to save SPEFSCR again.
Thus, saving SPEFSCR should not belong to giveup_spe().

This patch moves SPEFSCR saving to flush_spe_to_thread(),
and cleans up the caller that needs to save SPEFSCR accordingly.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:30 +03:00
Alexander Graf
a22a2daccf KVM: PPC: Resolve real-mode handlers through function exports
Up until now, Book3S KVM had variables stored in the kernel that a kernel module
or the kvm code in the kernel could read from to figure out where some real mode
helper functions are located.

This is all unnecessary. The high bits of the EA get ignore in real mode, so we
can just use the pointer as is. Also, it's a lot easier on relocations when we
use the normal way of resolving the address to a function, instead of jumping
through hoops.

This patch fixes compilation with CONFIG_RELOCATABLE=y.

Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:29 +03:00
Stuart Yoder
24294b9a3f KVM: PPC: fix partial application of "exit timing in ticks"
When http://www.spinics.net/lists/kvm-ppc/msg02664.html
was applied to produce commit b51e7aa7ed6d8d134d02df78300ab0f91cfff4d2,
the removal of the conversion in add_exit_timing was left out.

Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:28 +03:00
Avi Kivity
45bd07b9d5 KVM: MMU: make kvm_mmu_reset_context() flush the guest TLB
kvm_set_cr0() and kvm_set_cr4(), and possible other functions,
assume that kvm_mmu_reset_context() flushes the guest TLB.  However,
it does not.

Fix by flushing the tlb (and syncing the new root as well).

Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:27 +03:00
Avi Kivity
411c588dfb KVM: MMU: Adjust shadow paging to work when SMEP=1 and CR0.WP=0
When CR0.WP=0, we sometimes map user pages as kernel pages (to allow
the kernel to write to them).  Unfortunately this also allows the kernel
to fetch from these pages, even if CR4.SMEP is set.

Adjust for this by also setting NX on the spte in these circumstances.

Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:26 +03:00
Yang, Wei
a01c8f9b4e KVM: Enable ERMS feature support for KVM
This patch exposes ERMS feature to KVM guests.

The REP MOVSB/STOSB instruction can enhance fast strings attempts to
move as much of the data with larger size load/stores as possible.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:25 +03:00
Yang, Wei
176f61da82 KVM: Expose RDWRGSFS bit to KVM guests
This patch exposes RDWRGSFS bit to KVM guests.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:24 +03:00
Yang, Wei
74dc2b4ffe KVM: Add RDWRGSFS support when setting CR4
This patch adds RDWRGSFS support when setting CR4.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:23 +03:00
Yang, Wei
d9c3476d8a KVM: Remove RDWRGSFS bit from CR4_RESERVED_BITS
This patch removes RDWRGSFS bit from CR4_RESERVED_BITS.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:22 +03:00
Yang, Wei Y
4a00efdf0c KVM: Enable DRNG feature support for KVM
This patch exposes DRNG feature to KVM guests.

The RDRAND instruction can provide software with sequences of
random numbers generated from white noise.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:21 +03:00
Andre Przywara
02668b061d KVM: fix XSAVE bit scanning (now properly)
commit 123108f1c1aafd51d6a5c79cc04d7999dd88a930 tried to fix KVMs
XSAVE valid feature scanning, but it was wrong. It was not considering
the sparse nature of this bitfield, instead reading values from
uninitialized members of the entries array.
This patch now separates subleaf indicies from KVM's array indicies
and fills the entry before querying it's value.
This fixes AVX support in KVM guests.

Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:20 +03:00
Jan Kiszka
58f0964ee4 KVM: Fix KVM_ASSIGN_SET_MSIX_ENTRY documentation
The documented behavior did not match the implemented one (which also
never changed).

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:19 +03:00
Jan Kiszka
9f3191aec5 KVM: Fix off-by-one in overflow check of KVM_ASSIGN_SET_MSIX_NR
KVM_MAX_MSIX_PER_DEV implies that up to that many MSI-X entries can be
requested. But the kernel so far rejected already the upper limit.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:18 +03:00
Alexander Graf
1dda606c5f KVM: Add compat ioctl for KVM_SET_SIGNAL_MASK
KVM has an ioctl to define which signal mask should be used while running
inside VCPU_RUN. At least for big endian systems, this mask is different
on 32-bit and 64-bit systems (though the size is identical).

Add a compat wrapper that converts the mask to whatever the kernel accepts,
allowing 32-bit kvm user space to set signal masks.

This patch fixes qemu with --enable-io-thread on ppc64 hosts when running
32-bit user land.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:17 +03:00
Jan Kiszka
91e3d71db2 KVM: Clarify KVM_ASSIGN_PCI_DEVICE documentation
Neither host_irq nor the guest_msi struct are used anymore today.
Tag the former, drop the latter to avoid confusion.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:16 +03:00
Yang, Wei Y
e57d4a356a KVM: Add instruction fetch checking when walking guest page table
This patch adds instruction fetch checking when walking guest page table,
to implement SMEP when emulating instead of executing natively.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Shan, Haitao <haitao.shan@intel.com>
Signed-off-by: Li, Xin <xin.li@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:15 +03:00
Yang, Wei Y
611c120f74 KVM: Mask function7 ebx against host capability word9
This patch masks CPUID leaf 7 ebx against host capability word9.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Shan, Haitao <haitao.shan@intel.com>
Signed-off-by: Li, Xin <xin.li@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:14 +03:00
Yang, Wei Y
c68b734fba KVM: Add SMEP support when setting CR4
This patch adds SMEP handling when setting CR4.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Shan, Haitao <haitao.shan@intel.com>
Signed-off-by: Li, Xin <xin.li@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:13 +03:00
Yang, Wei Y
8d9c975fc5 KVM: Remove SMEP bit from CR4_RESERVED_BITS
This patch removes SMEP bit from CR4_RESERVED_BITS.

Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Shan, Haitao <haitao.shan@intel.com>
Signed-off-by: Li, Xin <xin.li@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-07-12 13:16:12 +03:00
Nadav Har'El
509c75ea19 KVM: nVMX: Fix bug preventing more than two levels of nesting
The nested VMX feature is supposed to fully emulate VMX for the guest. This
(theoretically) not only allows it to run its own guests, but also also
to further emulate VMX for its own guests, and allow arbitrarily deep nesting.

This patch fixes a bug (discovered by Kevin Tian) in handling a VMLAUNCH
by L2, which prevented deeper nesting.

Deeper nesting now works (I only actually tested L3), but is currently
*absurdly* slow, to the point of being unusable.

Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:11 +03:00
Jan Kiszka
7f4382e8fd KVM: Fixup documentation section numbering
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:10 +03:00
Avi Kivity
9dac77fa40 KVM: x86 emulator: fold decode_cache into x86_emulate_ctxt
This saves a lot of pointless casts x86_emulate_ctxt and decode_cache.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:09 +03:00
Avi Kivity
36dd9bb5ce KVM: x86 emulator: rename decode_cache::eip to _eip
The name eip conflicts with a field of the same name in x86_emulate_ctxt,
which we plan to fold decode_cache into.

The name _eip is unfortunate, but what's really needed is a refactoring
here, not a better name.

Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:09 +03:00
Jan Kiszka
2e4ce7f574 KVM: VMX: Silence warning on 32-bit hosts
a is unused now on CONFIG_X86_32.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-07-12 13:16:08 +03:00