This patch adds a function for translating logical guest addresses into
physical guest addresses without touching the memory at the given location.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
The DR7 masking which is done on task switch emulation should be in hex format
(clearing the local breakpoints enable bits 0,2,4 and 6).
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I noticed on some of my systems that page fault tracing doesn't
work:
cd /sys/kernel/debug/tracing
echo 1 > events/exceptions/enable
cat trace;
# nothing shows up
I eventually traced it down to CONFIG_KVM_GUEST. At least in a
KVM VM, enabling that option breaks page fault tracing, and
disabling fixes it. I tried on some old kernels and this does
not appear to be a regression: it never worked.
There are two page-fault entry functions today. One when tracing
is on and another when it is off. The KVM code calls do_page_fault()
directly instead of calling the traced version:
> dotraplinkage void __kprobes
> do_async_page_fault(struct pt_regs *regs, unsigned long
> error_code)
> {
> enum ctx_state prev_state;
>
> switch (kvm_read_and_reset_pf_reason()) {
> default:
> do_page_fault(regs, error_code);
> break;
> case KVM_PV_REASON_PAGE_NOT_PRESENT:
I'm also having problems with the page fault tracing on bare
metal (same symptom of no trace output). I'm unsure if it's
related.
Steven had an alternative to this which has zero overhead when
tracing is off where this includes the standard noops even when
tracing is disabled. I'm unconvinced that the extra complexity
of his apporach:
http://lkml.kernel.org/r/20140508194508.561ed220@gandalf.local.home
is worth it, expecially considering that the KVM code is already
making page fault entry slower here. This solution is
dirt-simple.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CS.RPL is not equal to the CPL in the few instructions between
setting CR0.PE and reloading CS. And CS.DPL is also not equal
to the CPL for conforming code segments.
However, SS.DPL *is* always equal to the CPL except for the weird
case of SYSRET on AMD processors, which sets SS.DPL=SS.RPL from the
value in the STAR MSR, but force CPL=3 (Intel instead forces
SS.DPL=SS.RPL=CPL=3).
So this patch:
- modifies SVM to update the CPL from SS.DPL rather than CS.RPL;
the above case with SYSRET is not broken further, and the way
to fix it would be to pass the CPL to userspace and back
- modifies VMX to always return the CPL from SS.DPL (except
forcing it to 0 if we are emulating real mode via vm86 mode;
in vm86 mode all DPLs have to be 3, but real mode does allow
privileged instructions). It also removes the CPL cache,
which becomes a duplicate of the SS access rights cache.
This fixes doing KVM_IOCTL_SET_SREGS exactly after setting
CR0.PE=1 but before CS has been reloaded.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Table 7-1 of the SDM mentions a check that the code segment's
DPL must match the selector's RPL. This was not done by KVM,
fix it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
During task switch, all of CS.DPL, CS.RPL, SS.DPL must match (in addition
to all the other requirements) and will be the new CPL. So far this
worked by carefully setting the CS selector and flag before doing the
task switch; setting CS.selector will already change the CPL.
However, this will not work once we get the CPL from SS.DPL, because
then you will have to set the full segment descriptor cache to change
the CPL. ctxt->ops->cpl(ctxt) will then return the old CPL during the
task switch, and the check that SS.DPL == CPL will fail.
Temporarily assume that the CPL comes from CS.RPL during task switch
to a protected-mode task. This is the same approach used in QEMU's
emulation code, which (until version 2.0) manually tracks the CPL.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A test loop with multiple CPUs triggered a race in the lazy storage
key handling as introduced by commit 934bc131ef
(KVM: s390: Allow skeys to be enabled for the current process). This
race should not happen with Linux guests, but let's fix it anyway.
Patch touches !/kvm/ code, but is from the s390 maintainer.
2. Better handling of broken guests
If we detect a program check loop we stop the guest instead of
wasting CPU cycles.
3. Better handling on MVPG emulation
The move page handling is improved to be architecturally correct.
3. Trace point rework
Let's rework the kvm trace points to have a common header file (for
later perf usage) and provided a table based instruction decoder.
4. Interpretive execution of SIGP external call
Let the hardware handle most cases of SIGP external call (IPI) and
wire up the fixup code for the corner cases.
5. Initial preparations for the IBC facility
Prepare the code to handle instruction blocking
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJTdhD5AAoJEBF7vIC1phx80kcQAI4gpl1DR5GlIgbTmVCrX7qR
gljTqGRJv8w4nG+ecrXSJyeX+a6LxEeCzn1bDNTyBm75kInq+/vPYw+BoBHvk4vO
2NFi6jq4xwAmctGaysU1LgZetkiXoiEZ2TYW7450ZaGCFLSkNHPPBPutOa0t9154
e+NlDZ8sCF2b3BM54pOleiADLN9J6xzGQQsJaSXQyeKhheOec1PCXJ0WlZt8g8ud
EuhYVBC5QyiYI2kzvIMowx2Y62o8CKhGF9Q5t71GcVqGUsAi8aEg0eQ+5CBkLmXc
MF4lfUQamxbLWZDOAJu1pbRg0rZD9OR2qZIrqyu56f41HNAVRtQqL3qMb1LmMfEL
8vHonbdgCtfLIwtVq5z9uOyQ3q+DpEXeBvMlcKfJ6ms4Cs5aEFDQO+3SZwsTNjH0
JyyLY+xC8imorHe8h6/H+rYP66GPdCrG7RK2jufUUpejt2Zg3wbEJRCjr73JN6T3
iGMq1H7EEdSYOgQ8O1iJzqbWvlzZcNp2NyWlwcMBeXTCsqVtRDIBOnWqYpv/apFP
DMtZd8rw9g0L41TWxVf5zWJcoQNIvSfuN8keOHWq6FRGMDp+0uAC+kSYJuzRZ8ef
5K5Srp7+ykIElLKONzOpP4obo7WvfF9ZS7U+gX19ZRiWVoSm18oKdJEFOHOX1KDW
ZLqrtMui01c26h42+gsQ
=H1bu
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-20140516' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into kvm-next
1. Correct locking for lazy storage key handling
A test loop with multiple CPUs triggered a race in the lazy storage
key handling as introduced by commit 934bc131ef
(KVM: s390: Allow skeys to be enabled for the current process). This
race should not happen with Linux guests, but let's fix it anyway.
Patch touches !/kvm/ code, but is from the s390 maintainer.
2. Better handling of broken guests
If we detect a program check loop we stop the guest instead of
wasting CPU cycles.
3. Better handling on MVPG emulation
The move page handling is improved to be architecturally correct.
3. Trace point rework
Let's rework the kvm trace points to have a common header file (for
later perf usage) and provided a table based instruction decoder.
4. Interpretive execution of SIGP external call
Let the hardware handle most cases of SIGP external call (IPI) and
wire up the fixup code for the corner cases.
5. Initial preparations for the IBC facility
Prepare the code to handle instruction blocking
This patch splits the SIE state guest prefix at offset 4
into a prefix bit field. Additionally it provides the
access functions:
- kvm_s390_get_prefix()
- kvm_s390_set_prefix()
to access the prefix per vcpu.
Signed-off-by: Michael Mueller <mimu@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
The patch adds functionality to retrieve the IBC configuration
by means of function sclp_get_ibc().
Signed-off-by: Michael Mueller <mimu@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the sigp interpretation facility is installed, most SIGP EXTERNAL CALL
operations will be interpreted instead of intercepted. A partial execution
interception will occurr at the sending cpu only if the target cpu is in the
wait state ("W" bit in the cpuflags set). Instruction interception will only
happen in error cases (e.g. cpu addr invalid).
As a sending cpu might set the external call interrupt pending flags at the
target cpu at every point in time, we can't handle this kind of interrupt using
our kvm interrupt injection mechanism. The injection will be done automatically
by the SIE when preparing the start of the target cpu.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
CC: Thomas Huth <thuth@linux.vnet.ibm.com>
[Adopt external call injection to check for sigp interpretion]
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The current trace definition doesn't work very well with the perf tool.
Perf shows a "insn_to_mnemonic not found" message. Let's handle the
decoding completely in a parseable format.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch adds a new decoder of SIE intercepted instructions.
The decoder implemented as a macro and potentially can be used in
both kernelspace and userspace.
Note that this simplified instruction decoder is only intended to be
used with the subset of instructions that may cause a SIE intercept.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Use the symbolic translation tables from sie.h for decoding diag, sigp
and sie exit codes.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch defines tables of reasons for exiting from SIE mode
in a new sie.h header file. Tables contain SIE intercepted codes,
intercepted instructions and program interruptions codes.
Signed-off-by: Alexander Yarygin <yarygin@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Use the new helper function kvm_arch_fault_in_page() for faulting-in
the guest pages and only inject addressing errors when we've really
hit a bad address (and return other error codes to userspace instead).
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Rework the function kvm_arch_fault_in_sync() to become a proper helper
function for faulting-in a guest page. Now it takes the guest address as
a parameter and does not ignore the possible error code from gmap_fault()
anymore (which could cause undetected error conditions before).
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the new PSW for program interrupts is invalid, the VM ends up
in an endless loop of specification exceptions. Since there is not
much left we can do in this case, we should better drop to userspace
instead so that the crash can be reported to the user.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
As a program status word is also invalid (and thus generates an
specification exception) if the instruction address is not even,
we should test this in is_valid_psw(), too. This patch also exports
the function so that it becomes available for other parts of the
S390 KVM code as well.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Use the mm semaphore to serialize multiple invocations of s390_enable_skey.
The second CPU faulting on a storage key operation needs to wait for the
completion of the page table update. Taking the mm semaphore writable
has the positive side-effect that it prevents any host faults from
taking place which does have implications on keys vs PGSTE.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Regression of 346874c9: PAE is set in long mode, but that does not mean
we have valid PDPTRs.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat monitor and mwait instructions as nop, which is architecturally
correct (but inefficient) behavior. We do this to prevent misbehaving
guests (e.g. OS X <= 10.7) from crashing after they fail to check for
monitor/mwait availability via cpuid.
Since mwait-based idle loops relying on these nop-emulated instructions
would keep the host CPU pegged at 100%, do NOT advertise their presence
via cpuid, to prevent compliant guests from using them inadvertently.
Signed-off-by: Gabriel L. Somlo <somlo@cmu.edu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It seems that it's easy to implement the EOI assist
on top of the PV EOI feature: simply convert the
page address to the format expected by PV EOI.
Notes:
-"No EOI required" is set only if interrupt injected
is edge triggered; this is true because level interrupts are going
through IOAPIC which disables PV EOI.
In any case, if guest triggers EOI the bit will get cleared on exit.
-For migration, set of HV_X64_MSR_APIC_ASSIST_PAGE sets
KVM_PV_EOI_EN internally, so restoring HV_X64_MSR_APIC_ASSIST_PAGE
seems sufficient
In any case, bit is cleared on exit so worst case it's never re-enabled
-no handling of PV EOI data is performed at HV_X64_MSR_EOI write;
HV_X64_MSR_EOI is a separate optimization - it's an X2APIC
replacement that lets you do EOI with an MSR and not IO.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In long-mode, bit 7 in the PDPTE is not reserved only if 1GB pages are
supported by the CPU. Currently the bit is considered by KVM as always
reserved.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The RSP register is not automatically cached, causing mov DR instruction with
RSP to fail. Instead the regular register accessing interface should be used.
Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some checks are common to all, and moreover,
according to the spec, the check for whether any bits
beyond the physical address width are set are also
applicable to all of them
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The spec mandates that if the vmptrld or vmclear
address is equal to the vmxon region pointer, the
instruction should fail with error "VMPTRLD with
VMXON pointer" or "VMCLEAR with VMXON pointer"
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, the vmxon region isn't used in the nested case.
However, according to the spec, the vmxon instruction performs
additional sanity checks on this region and the associated
pointer. Modify emulated vmxon to better adhere to the spec
requirements
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Our common function for vmptr checks (in 2/4) needs to fetch
the memory address
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2. External interrupt fixes
2.1. Some interrupt conditions like cpu timer or clock comparator
stay pending even after the interrupt is injected. If the external
new PSW is enabled for interrupts this will result in an endless
loop. Usually this indicates a programming error in the guest OS.
Lets detect such situations and go to userspace. We will provide
a QEMU patch that sets the guest in panicked/crashed state to avoid
wasting CPU cycles.
2.2 Resend external interrupts back to the guest if the HW could
not do it.
-
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJTaOGKAAoJEBF7vIC1phx8IqkP/0zQ3gWbYdGV20UEvIB+oHsO
u7OysZdyfXS3wx6rysTWepQJ6rtWJ/yQSyzTt+RnCTYxUnyhMVPKMJOmoztyhkD5
37I9ricqMS/Ob5A3pKGEW2p/TojPYL5o8svCRt+UWbyxz05AQiCEPteeD7MrcOK+
ASULR2z2h95EYfrMhZSeFjFoXHrPfeMoR5OVESP8gef7uGTlqIZO1mZ6QkAFqL/b
VtqCI74oTc+XpNj7jxnvxznilqnvjD31oaci2oK+AX+DQcwOnTIGuUlU1bS+XOwm
WFbDKUbksNC/QQ2hPqcCvZTtK+U7XlPZz7pRyEdvHYRckaNDzLbiLzYHvRGgCHoq
uy9u429L1pthoj1vQvUY2ZD4HyI4K/UusApie5x3hmYlePNSEcC7TNDt2SvdjrID
yX6X9zWC9ffHSmKLBI11PWNs5R1EUrUlBcZ7CFDDmJDCeKRmwmY1+nuYSm7x80iB
ctfpXTJG4Ajrbbki5LCdoLPU0piR/IkSEwxeEY0u/5XLcdEiY/Z3SEJzlWeuIPf6
bNuWQK8YP6ane8p3Vc/UwmtMgaCEsnAwYrcRfmjOEQfVDxmRzHARIxbIFs0EsM54
S+6SH6LN1HCeFsG3zvpwPrm9gK2GojvJ0tCwZ78UZZx5m4CrgtHVHHfbspygftv8
6L/YJ/Q0PQja0s3lx/Eh
=R95o
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-20140506' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into kvm-next
1. Fixes an error return code for the breakpoint setup
2. External interrupt fixes
2.1. Some interrupt conditions like cpu timer or clock comparator
stay pending even after the interrupt is injected. If the external
new PSW is enabled for interrupts this will result in an endless
loop. Usually this indicates a programming error in the guest OS.
Lets detect such situations and go to userspace. We will provide
a QEMU patch that sets the guest in panicked/crashed state to avoid
wasting CPU cycles.
2.2 Resend external interrupts back to the guest if the HW could
not do it.
-
The external interrupt interception can only occur in rare cases, e.g.
when the PSW of the interrupt handler has a bad value. The old handler
for this interception simply ignored these events (except for increasing
the exit_external_interrupt counter), but for proper operation we either
have to inject the interrupts manually or we should drop to userspace in
case of errors.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Add an interface to inject clock comparator and CPU timer interrupts
into the guest. This is needed for handling the external interrupt
interception.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When copy_from_user() fails, this code returns the number of bytes
remaining instead of a negative error code. The positive number is
returned to the user but otherwise it is harmless.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch moves the 'kvm_pio' tracepoint to emulator_pio_in_emulated()
and emulator_pio_out_emulated(), and it adds an argument (a pointer to
the 'pio_data'). A single 8-bit or 16-bit or 32-bit data item is fetched
from 'pio_data' (depending on 'size'), and the value is included in the
trace record ('val'). If 'count' is greater than one, this is indicated
by the string "(...)" in the trace output.
Signed-off-by: Ulrich Obergfell <uobergfe@redhat.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When starting lots of dataplane devices the bootup takes very long on
Christian's s390 with irqfd patches. With larger setups he is even
able to trigger some timeouts in some components. Turns out that the
KVM_SET_GSI_ROUTING ioctl takes very long (strace claims up to 0.1 sec)
when having multiple CPUs. This is caused by the synchronize_rcu and
the HZ=100 of s390. By changing the code to use a private srcu we can
speed things up. This patch reduces the boot time till mounting root
from 8 to 2 seconds on my s390 guest with 100 disks.
Uses of hlist_for_each_entry_rcu, hlist_add_head_rcu, hlist_del_init_rcu
are fine because they do not have lockdep checks (hlist_for_each_entry_rcu
uses rcu_dereference_raw rather than rcu_dereference, and write-sides
do not do rcu lockdep at all).
Note that we're hardly relying on the "sleepable" part of srcu. We just
want SRCU's faster detection of grace periods.
Testing was done by Andrew Theurer using netperf tests STREAM, MAERTS
and RR. The difference between results "before" and "after" the patch
has mean -0.2% and standard deviation 0.6%. Using a paired t-test on the
data points says that there is a 2.5% probability that the patch is the
cause of the performance difference (rather than a random fluctuation).
(Restricting the t-test to RR, which is the most likely to be affected,
changes the numbers to respectively -0.3% mean, 0.7% stdev, and 8%
probability that the numbers actually say something about the patch.
The probability increases mostly because there are fewer data points).
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The handling of MVPG, PFMF and Test Block is fixed to better follow
the architecture. None of these fixes is critical for any current
Linux guests, but let's play safe.
2. Optimization for single CPU guests
We can enable the IBS facility if only one VCPU is running (!STOPPED
state). We also enable this optimization for guest > 1 VCPU as soon
as all but one VCPU is in stopped state. Thus will help guests that
have tools like cpuplugd (from s390-utils) that do dynamic offline/
online of CPUs.
3. NOTES
There is one non-s390 change in include/linux/kvm_host.h that
introduces 2 defines for VCPU requests:
define KVM_REQ_ENABLE_IBS 23
define KVM_REQ_DISABLE_IBS 24
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJTX6eTAAoJEBF7vIC1phx8S8YQAKRQ1Oe75qLS+F1yipNHi905
7byi0K2nuGF/K4NSkQeWyv8mqjlWIEE+a8PR69mrgx6biae/Sn6l2ZZiV3Ml0flH
9FEIlu0PU/RvyPfERT9MxUsbY2Dbec4r3Q3U+RLftlAht6oA/AaiLaY6cKSzwXqa
vTqm7VORgTsM7JUkdoC/BdwNH6+94I7IM6CGaWMmWqELAhKq6SUCmc8g26bvEjBd
94bkUEBYgHuceEPYAmDA1r7QSStpnU+cgj0haHRI12g4y1PhuBuFkmAGPv/E60wT
iGOkhQ5XchR6dmZBLC/zRbjObi5NqqRojRYcI8RZfbdfvxtD8+xKg7G++KXw+VkK
lR2CyJfrXms9r90mo7Oi3oCEuy0gC5ToOtRbOb/Xo8CYjCd6pS8DJraaQQfUhsoX
koWiPVu87Gk6GMALZdJYCAdHgOhwC/dglKVGHThsFFVwLgsC7ZKsluWYA/Y0FRtA
B2A7DBIC5O1NNXs3CYIv+v0M3jNF+4tt7wxV4omNPiSZTb4IAhG+0ucvU+hIZFbm
i07a1sULAOSAX7qeizmHamomrC5NeEOUQeQ2ciQbSH9L+GEZQj10YaOXXKQh79C+
7LXTtXWzESzx+EXBuCPcFsNt84GH294YoFTitHzN0hAburkVqwQzIAEAby7ylgX2
WUC6UjhyheZr0rBqO2g9
=Lxxg
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-20140429' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into kvm-next
1. Guest handling fixes
The handling of MVPG, PFMF and Test Block is fixed to better follow
the architecture. None of these fixes is critical for any current
Linux guests, but let's play safe.
2. Optimization for single CPU guests
We can enable the IBS facility if only one VCPU is running (!STOPPED
state). We also enable this optimization for guest > 1 VCPU as soon
as all but one VCPU is in stopped state. Thus will help guests that
have tools like cpuplugd (from s390-utils) that do dynamic offline/
online of CPUs.
3. NOTES
There is one non-s390 change in include/linux/kvm_host.h that
introduces 2 defines for VCPU requests:
define KVM_REQ_ENABLE_IBS 23
define KVM_REQ_DISABLE_IBS 24
Invariant TSC is a property of TSC, no additional
support code necessary.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch enables the IBS facility when a single VCPU is running.
The facility is dynamically turned on/off as soon as other VCPUs
enter/leave the stopped state.
When this facility is operating, some instructions can be executed
faster for single-cpu guests.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch introduces two new functions to set/clear the CPUSTAT_STOPPED bit and
makes use of it at all applicable places. These functions prepare the additional
execution of code when starting/stopping a vcpu.
The CPUSTAT_STOPPED bit should not be touched outside of these functions.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
TEST BLOCK is also subject to the low-address protection, so we need
to check the destination address in our handler.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Add a check for low-address protection to the PFMF handler and
convert real-addresses to absolute if necessary, as it is defined
in the Principles of Operations specification.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The s390 architecture has a special protection mechanism that can
be used to prevent write access to the vital data in the low-core
memory area. This patch adds a new helper function that can be used
to check for such write accesses and in case of protection, it also
sets up the exception data accordingly.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
When the guest executes the MVPG instruction with DAT disabled,
and the source or destination page is not mapped in the host,
the so-called partial execution interception occurs. We need to
handle this event by setting up a mapping for the corresponding
user pages.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
async_pf_execute() passes tsk == current to gup(), this is doesn't
hurt but unnecessary and misleading. "tsk" is only used to account
the number of faults and current is the random workqueue thread.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
async_pf_execute() has no reasons to adopt apf->mm, gup(current, mm)
should work just fine even if current has another or NULL ->mm.
Recently kvm_async_page_present_sync() was added insedie the "use_mm"
section, but it seems that it doesn't need current->mm too.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now we can flush all the TLBs out of the mmu lock without TLB corruption when
write-proect the sptes, it is because:
- we have marked large sptes readonly instead of dropping them that means we
just change the spte from writable to readonly so that we only need to care
the case of changing spte from present to present (changing the spte from
present to nonpresent will flush all the TLBs immediately), in other words,
the only case we need to care is mmu_spte_update()
- in mmu_spte_update(), we haved checked
SPTE_HOST_WRITEABLE | PTE_MMU_WRITEABLE instead of PT_WRITABLE_MASK, that
means it does not depend on PT_WRITABLE_MASK anymore
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Relax the tlb flush condition since we will write-protect the spte out of mmu
lock. Note lockless write-protection only marks the writable spte to readonly
and the spte can be writable only if both SPTE_HOST_WRITEABLE and
SPTE_MMU_WRITEABLE are set (that are tested by spte_is_locklessly_modifiable)
This patch is used to avoid this kind of race:
VCPU 0 VCPU 1
lockless wirte protection:
set spte.w = 0
lock mmu-lock
write protection the spte to sync shadow page,
see spte.w = 0, then without flush tlb
unlock mmu-lock
!!! At this point, the shadow page can still be
writable due to the corrupt tlb entry
Flush all TLB
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Currently, kvm zaps the large spte if write-protected is needed, the later
read can fault on that spte. Actually, we can make the large spte readonly
instead of making them un-present, the page fault caused by read access can
be avoided
The idea is from Avi:
| As I mentioned before, write-protecting a large spte is a good idea,
| since it moves some work from protect-time to fault-time, so it reduces
| jitter. This removes the need for the return value.
This version has fixed the issue reported in 6b73a9606, the reason of that
issue is that fast_page_fault() directly sets the readonly large spte to
writable but only dirty the first page into the dirty-bitmap that means
other pages are missed. Fixed it by only the normal sptes (on the
PT_PAGE_TABLE_LEVEL level) can be fast fixed
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Using sp->role.level instead of @level since @level is not got from the
page table hierarchy
There is no issue in current code since the fast page fault currently only
fixes the fault caused by dirty-log that is always on the last level
(level = 1)
This patch makes the code more readable and avoids potential issue in the
further development
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This reverts commit 5befdc385d.
Since we will allow flush tlb out of mmu-lock in the later
patch
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>