Pull x86/asmlinkage changes from Ingo Molnar:
"As a preparation for Andi Kleen's LTO patchset (link time
optimizations using GCC's -flto which build time optimization has
steadily increased in quality over the past few years and might
eventually be usable for the kernel too) this tree includes a handful
of preparatory patches that make function calling convention
annotations consistent again:
- Mark every function without arguments (or 64bit only) that is used
by assembly code with asmlinkage()
- Mark every function with parameters or variables that is used by
assembly code as __visible.
For the vanilla kernel this has documentation, consistency and
debuggability advantages, for the time being"
* 'x86-asmlinkage-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asmlinkage: Fix warning in xen asmlinkage change
x86, asmlinkage, vdso: Mark vdso variables __visible
x86, asmlinkage, power: Make various symbols used by the suspend asm code visible
x86, asmlinkage: Make dump_stack visible
x86, asmlinkage: Make 64bit checksum functions visible
x86, asmlinkage, paravirt: Add __visible/asmlinkage to xen paravirt ops
x86, asmlinkage, apm: Make APM data structure used from assembler visible
x86, asmlinkage: Make syscall tables visible
x86, asmlinkage: Make several variables used from assembler/linker script visible
x86, asmlinkage: Make kprobes code visible and fix assembler code
x86, asmlinkage: Make various syscalls asmlinkage
x86, asmlinkage: Make 32bit/64bit __switch_to visible
x86, asmlinkage: Make _*_start_kernel visible
x86, asmlinkage: Make all interrupt handlers asmlinkage / __visible
x86, asmlinkage: Change dotraplinkage into __visible on 32bit
x86: Fix sys_call_table type in asm/syscall.h
cpu_has_amd_erratum() is buggy, because it uses the per-cpu cpu_info
before it is filled by smp_store_boot_cpu_info() / smp_store_cpu_info().
If early microcode loading is enabled its collect_cpu_info_amd_early()
will fill ->x86 and so the fallback to boot_cpu_data is not used. But
->x86_vendor was not filled and is still X86_VENDOR_INTEL resulting in
no errata fixes getting applied and my system hangs on boot.
Using cpu_info in cpu_has_amd_erratum() is wrong anyway: its only
caller init_amd() will have a struct cpuinfo_x86 as parameter and the
set_cpu_bug() that is controlled by cpu_has_amd_erratum() also only uses
that struct.
So pass the struct cpuinfo_x86 from init_amd() to cpu_has_amd_erratum()
and the broken fallback can be dropped.
[ Boris: Drop WARN_ON() since we're called only from init_amd() ]
Signed-off-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
The idea with those routines is to slowly phase them out and not call
them on anything else besides K8. They even have a check for that which,
when called too early, fails. Let me explain:
It gets the cpuinfo_x86 pointer from the per_cpu array and when this
happens for cpu0, before its boot_cpu_data has been copied back to the
per_cpu array in smp_store_boot_cpu_info(), we get an empty struct and
thus the check fails.
Use boot_cpu_data directly instead.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1365436666-9837-4-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Convert AMD erratum 400 to the bug infrastructure. Then, retract all
exports for modules since they're not needed now and make the AMD
erratum checking machinery local to amd.c. Use forward declarations to
avoid shuffling too much code around needlessly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-7-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Convert the AMD erratum 383 testing code to the bug infrastructure. This
allows keeping the AMD-specific erratum testing machinery private to
amd.c and not export symbols to modules needlessly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1363788448-31325-6-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
lockdep, but it's a mechanical change.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJRJAcuAAoJENkgDmzRrbjxsw0P/3eXb+LddYnx0V0uHYdKpCUf
4vdW7X0fX3Z+aUK69IWRL/6ahoO4TpaHYGHBDjEoivyQ0GDq14X7JNWsYYt3LdMf
3wmDgRc2cn/mZOJbFeVpNV8ox5l/xc0CUvV+iQ8tMjfQItXMXgWUFZKMECsXKSO6
eex3lrw9M2jAX2uL8LQPp9W8xtKu24nSZRC6tH5riE/8fCzi1cZPPAqfxP5c8Lee
ZXtbCRSyAFENZLpKyMe1PC7HvtJyi5NDn9xwOQiXULZV/VOlvP94DGBLIKCM/6dn
4QvZxpG0P0uOlpCgRAVLyh/z7g4XY4VF/fHopLCmEcqLsvgD+V2LQpQ9zWUalLPC
Z+pUpz2vu0gIddPU1nR8R6oGpEdJ8O12aJle62p/RSXWZGx12qUQ+Tamu0tgKcv1
AsiJfbUGNDYfxgU6sHsoQjl2f68LTVckCU1C1LqEbW/S104EIORtGx30CHM4LRiO
32kDC5TtgYDBKQAIqJ4bL48ZMh+9W3uX40p7xzOI5khHQjvswUKa3jcxupU0C1uv
lx8KXo7pn8WT33QGysWC782wJCgJuzSc2vRn+KQoqoynuHGM6agaEtR59gil3QWO
rQEcxH63BBRDgHlg4FM9IkJwwsnC3PWKL8gbX0uAWXAPMbgapJkuuGZAwt0WDGVK
+GszxsFkCjlW0mK0egTb
=tiSY
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module update from Rusty Russell:
"The sweeping change is to make add_taint() explicitly indicate whether
to disable lockdep, but it's a mechanical change."
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux:
MODSIGN: Add option to not sign modules during modules_install
MODSIGN: Add -s <signature> option to sign-file
MODSIGN: Specify the hash algorithm on sign-file command line
MODSIGN: Simplify Makefile with a Kconfig helper
module: clean up load_module a little more.
modpost: Ignore ARC specific non-alloc sections
module: constify within_module_*
taint: add explicit flag to show whether lock dep is still OK.
module: printk message when module signature fail taints kernel.
Pull x86 mm changes from Peter Anvin:
"This is a huge set of several partly interrelated (and concurrently
developed) changes, which is why the branch history is messier than
one would like.
The *really* big items are two humonguous patchsets mostly developed
by Yinghai Lu at my request, which completely revamps the way we
create initial page tables. In particular, rather than estimating how
much memory we will need for page tables and then build them into that
memory -- a calculation that has shown to be incredibly fragile -- we
now build them (on 64 bits) with the aid of a "pseudo-linear mode" --
a #PF handler which creates temporary page tables on demand.
This has several advantages:
1. It makes it much easier to support things that need access to data
very early (a followon patchset uses this to load microcode way
early in the kernel startup).
2. It allows the kernel and all the kernel data objects to be invoked
from above the 4 GB limit. This allows kdump to work on very large
systems.
3. It greatly reduces the difference between Xen and native (Xen's
equivalent of the #PF handler are the temporary page tables created
by the domain builder), eliminating a bunch of fragile hooks.
The patch series also gets us a bit closer to W^X.
Additional work in this pull is the 64-bit get_user() work which you
were also involved with, and a bunch of cleanups/speedups to
__phys_addr()/__pa()."
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (105 commits)
x86, mm: Move reserving low memory later in initialization
x86, doc: Clarify the use of asm("%edx") in uaccess.h
x86, mm: Redesign get_user with a __builtin_choose_expr hack
x86: Be consistent with data size in getuser.S
x86, mm: Use a bitfield to mask nuisance get_user() warnings
x86/kvm: Fix compile warning in kvm_register_steal_time()
x86-32: Add support for 64bit get_user()
x86-32, mm: Remove reference to alloc_remap()
x86-32, mm: Remove reference to resume_map_numa_kva()
x86-32, mm: Rip out x86_32 NUMA remapping code
x86/numa: Use __pa_nodebug() instead
x86: Don't panic if can not alloc buffer for swiotlb
mm: Add alloc_bootmem_low_pages_nopanic()
x86, 64bit, mm: hibernate use generic mapping_init
x86, 64bit, mm: Mark data/bss/brk to nx
x86: Merge early kernel reserve for 32bit and 64bit
x86: Add Crash kernel low reservation
x86, kdump: Remove crashkernel range find limit for 64bit
memblock: Add memblock_mem_size()
x86, boot: Not need to check setup_header version for setup_data
...
Pull x86 cpu updates from Peter Anvin:
"This is a corrected attempt at the x86/cpu branch, this time with the
fixes in that makes it not break on KVM (current or past), or any
other virtualizer which traps on this configuration.
Again, the biggest change here is enabling the WC+ memory type on AMD
processors, if the BIOS doesn't."
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, kvm: Add MSR_AMD64_BU_CFG2 to the list of ignored MSRs
x86, cpu, amd: Fix WC+ workaround for older virtual hosts
x86, AMD: Enable WC+ memory type on family 10 processors
x86, AMD: Clean up init_amd()
x86/process: Change %8s to %s for pr_warn() in release_thread()
x86/cpu/hotplug: Remove CONFIG_EXPERIMENTAL dependency
The WC+ workaround for F10h introduces a new MSR and kvm host #GPs
on accesses to unknown MSRs if paravirt is not compiled in. Use the
exception-handling MSR accessors so as not to break 3.8 and later guests
booting on older hosts.
Remove a redundant family check while at it.
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1361298793-31834-1-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
In some cases BIOS may not enable WC+ memory type on family 10
processors, instead converting what would be WC+ memory to CD type.
On guests using nested pages this could result in performance
degradation. This patch enables WC+.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@amd.com>
Link: http://lkml.kernel.org/r/1359495169-23278-1-git-send-email-ostr@amd64.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Coming patches to x86/mm2 require the changes and advanced baseline in
x86/boot.
Resolved Conflicts:
arch/x86/kernel/setup.c
mm/nobootmem.c
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fix up all callers as they were before, with make one change: an
unsigned module taints the kernel, but doesn't turn off lockdep.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Pull "Nuke 386-DX/SX support" from Ingo Molnar:
"This tree removes ancient-386-CPUs support and thus zaps quite a bit
of complexity:
24 files changed, 56 insertions(+), 425 deletions(-)
... which complexity has plagued us with extra work whenever we wanted
to change SMP primitives, for years.
Unfortunately there's a nostalgic cost: your old original 386 DX33
system from early 1991 won't be able to boot modern Linux kernels
anymore. Sniff."
I'm not sentimental. Good riddance.
* 'x86-nuke386-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, 386 removal: Document Nx586 as a 386 and thus unsupported
x86, cleanups: Simplify sync_core() in the case of no CPUID
x86, 386 removal: Remove CONFIG_X86_POPAD_OK
x86, 386 removal: Remove CONFIG_X86_WP_WORKS_OK
x86, 386 removal: Remove CONFIG_INVLPG
x86, 386 removal: Remove CONFIG_BSWAP
x86, 386 removal: Remove CONFIG_XADD
x86, 386 removal: Remove CONFIG_CMPXCHG
x86, 386 removal: Remove CONFIG_M386 from Kconfig
Pull x86 topology discovery improvements from Ingo Molnar:
"These changes improve topology discovery on AMD CPUs.
Right now this feeds information displayed in
/sys/devices/system/cpu/cpuX/cache/indexY/* - but in the future we
could use this to set up a better scheduling topology."
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, cacheinfo: Base cache sharing info on CPUID 0x8000001d on AMD
x86, cacheinfo: Make use of CPUID 0x8000001d for cache information on AMD
x86, cacheinfo: Determine number of cache leafs using CPUID 0x8000001d on AMD
x86: Add cpu_has_topoext
Update code that previously assumed pfns [ 0 - max_low_pfn_mapped ) and
[ 4GB - max_pfn_mapped ) were always direct mapped, to now look up
pfn_mapped ranges instead.
-v2: change applying sequence to keep git bisecting working.
so add dummy pfn_range_is_mapped(). - Yinghai Lu
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/1353123563-3103-12-git-send-email-yinghai@kernel.org
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
CPUID 0x8000001d works quite similar to Intels' CPUID function 4.
Use it to determine number of cache leafs.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/20121019085933.GE26718@alberich
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Introduce cpu_has_topoext to check for AMD's CPUID topology extensions
support. It indicates support for
CPUID Fn8000_001D_EAX_x[N:0]-CPUID Fn8000_001E_EDX
See AMD's CPUID Specification, Publication # 25481
(as of Rev. 2.34 September 2010)
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/20121019085813.GD26718@alberich
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The Way Access Filter in recent AMD CPUs may hurt the performance of
some workloads, caused by aliasing issues in the L1 cache.
This patch disables it on the affected CPUs.
The issue is similar to that one of last year:
http://lkml.indiana.edu/hypermail/linux/kernel/1107.3/00041.html
This new patch does not replace the old one, we just need another
quirk for newer CPUs.
The performance penalty without the patch depends on the
circumstances, but is a bit less than the last year's 3%.
The workloads affected would be those that access code from the same
physical page under different virtual addresses, so different
processes using the same libraries with ASLR or multiple instances of
PIE-binaries. The code needs to be accessed simultaneously from both
cores of the same compute unit.
More details can be found here:
http://developer.amd.com/Assets/SharedL1InstructionCacheonAMD15hCPU.pdf
CPUs affected are anything with the core known as Piledriver.
That includes the new parts of the AMD A-Series (aka Trinity) and the
just released new CPUs of the FX-Series (aka Vishera).
The model numbering is a bit odd here: FX CPUs have model 2,
A-Series has model 10h, with possible extensions to 1Fh. Hence the
range of model ids.
Signed-off-by: Andre Przywara <osp@andrep.de>
Link: http://lkml.kernel.org/r/1351700450-9277-1-git-send-email-osp@andrep.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Run the mprotect.c microbenchmark on all our families >= K8 and preset
the flushall shift variable accordingly.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1344272439-29080-5-git-send-email-bp@amd64.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Rename checking_wrmsrl() to wrmsrl_safe(), to match the naming
convention used by all the other MSR access functions/macros.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Now that all users of {rd,wr}msr_amd_safe have been fixed, deprecate its
use by making them private to amd.c and adding warnings when used on
anything else beside K8.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1338562358-28182-5-git-send-email-bp@amd64.org
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
f7f286a910 ("x86/amd: Re-enable CPU topology extensions in case BIOS
has disabled it") wrongfully added code which used the AMD-specific
{rd,wr}msr variants for no real reason.
This caused boot panics on xen which wasn't initializing the
{rd,wr}msr_safe_regs pv_ops members properly.
This, in turn, caused a heated discussion leading to us reviewing all
uses of the AMD-specific variants and removing them where unneeded
(almost everywhere except an obscure K8 BIOS fix, see 6b0f43ddfa).
Finally, this patch switches to the standard {rd,wr}msr*_safe* variants
which should've been used in the first place anyway and avoided unneeded
excitation with xen.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Link: http://lkml.kernel.org/r/1338562358-28182-4-git-send-email-bp@amd64.org
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: <http://lkml.kernel.org/r/1338383402-3838-1-git-send-email-andre.przywara@amd.com>
[Boris: correct and expand commit message]
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
BIOS will switch off the corresponding feature flag on family
15h models 10h-1fh non-desktop CPUs.
The topology extension CPUID leafs are required to detect which
cores belong to the same compute unit. (thread siblings mask is
set accordingly and also correct information about L1i and L2
cache sharing depends on this).
W/o this patch we wouldn't see which cores belong to the same
compute unit and also cache sharing information for L1i and L2
would be incorrect on such systems.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's only called from amd.c:srat_detect_node(). The introduced
condition for calling the fixup code is true for all AMD
multi-node processors, e.g. Magny-Cours and Interlagos. There we
have 2 NUMA nodes on one socket. Thus there are cores having
different numa-node-id but with equal phys_proc_id.
There is no point to print error messages in such a situation.
The confusing/misleading error message was introduced with
commit 64be4c1c24 ("x86: Add
x86_init platform override to fix up NUMA core numbering").
Remove the default fixup function (especially the error message)
and replace it by a NULL pointer check, move the
Numascale-specific condition for calling the fixup into the
fixup-function itself and slightly adapt the comment.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: <stable@kernel.org>
Cc: <sp@numascale.com>
Cc: <bp@amd64.org>
Cc: <daniel@numascale-asia.com>
Link: http://lkml.kernel.org/r/20120402160648.GR27684@alberich.amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephane Eranian reported that doing a scheduler latency
measurements with perf on AMD doesn't work out as expected due
to the fact that the sched_clock() granularity is too coarse,
i.e. done in jiffies due to the sched_clock_stable not set,
which, if set, would mean that we get to use the TSC as sample
source which would give us much higher precision.
However, there's no reason not to set sched_clock_stable on AMD
because all families from F10h and upwards do have an invariant
TSC and have the CPUID flag to prove (CPUID_8000_0007_EDX[8]).
Make it so, #1.
Signed-off-by: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@amd64.org>
Cc: Venki Pallipadi <venki@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/20120206132546.GA30854@quad
[ Should any non-standard system break the TSC, we should
mark them so explicitly, in their platform init handler, or
in a DMI quirk. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Several fields in struct cpuinfo_x86 were not defined for the
!SMP case, likely to save space. However, those fields still
have some meaning for UP, and keeping them allows some #ifdef
removal from other files. The additional size of the UP kernel
from this change is not significant enough to worry about
keeping up the distinction:
text data bss dec hex filename
4737168 506459 972040 6215667 5ed7f3 vmlinux.o.before
4737444 506459 972040 6215943 5ed907 vmlinux.o.after
for a difference of 276 bytes for an example UP config.
If someone wants those 276 bytes back badly then it should
be implemented in a cleaner way.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Cc: Steffen Persvold <sp@numascale.com>
Link: http://lkml.kernel.org/r/1324428742-12498-1-git-send-email-kjwinchester@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add an x86_init vector for handling inconsistent core numbering.
This is useful for multi-fabric platforms, such as Numascale
NumaConnect.
v2:
- use struct x86_cpuinit_ops
- provide default fall-back function to warn
Signed-off-by: Daniel J Blueman <daniel@numascale-asia.com>
Cc: Steffen Persvold <sp@numascale.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Link: http://lkml.kernel.org/r/1323073238-32686-2-git-send-email-daniel@numascale-asia.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
People with old AMD chips are getting hung boots, because commit
bcb80e5387 ("x86, microcode, AMD: Add microcode revision to
/proc/cpuinfo") moved the microcode detection too early into
"early_init_amd()".
At that point we are *so* early in the booth that the exception tables
haven't even been set up yet, so the whole
rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
doesn't actually work: if the rdmsr does a GP fault (due to non-existant
MSR register on older CPU's), we can't fix it up yet, and the boot fails.
Fix it by simply moving the code to a slightly later point in the boot
(init_amd() instead of early_init_amd()), since the kernel itself
doesn't even really care about the microcode patchlevel at this point
(or really ever: it's made available to user space in /proc/cpuinfo, and
updated if you do a microcode load).
Reported-tested-and-bisected-by: Larry Finger <Larry.Finger@lwfinger.net>
Tested-by: Bob Tracy <rct@gherkin.frus.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These files were implicitly getting EXPORT_SYMBOL via device.h
which was including module.h, but that will be fixed up shortly.
By fixing these now, we can avoid seeing things like:
arch/x86/kernel/rtc.c:29: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL’
arch/x86/kernel/pci-dma.c:20: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL’
arch/x86/kernel/e820.c:69: warning: type defaults to ‘int’ in declaration of ‘EXPORT_SYMBOL_GPL’
[ with input from Randy Dunlap <rdunlap@xenotime.net> and also
from Stephen Rothwell <sfr@canb.auug.org.au> ]
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, microcode, AMD: Add microcode revision to /proc/cpuinfo
x86, microcode: Correct microcode revision format
coretemp: Get microcode revision from cpu_data
x86, intel: Use c->microcode for Atom errata check
x86, intel: Output microcode revision in /proc/cpuinfo
x86, microcode: Don't request microcode from userspace unnecessarily
Fix up trivial conflicts in arch/x86/kernel/cpu/amd.c (conflict between
moving AMD BSP code to cpu_dev helper function and adding AMD microcode
revision to /proc/cpuinfo code)
Enable microcode revision output for AMD after 506ed6b53e ("x86,
intel: Output microcode revision in /proc/cpuinfo") did it for Intel.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
When the moduleu.h splitting tree is merged to the latest
tip:x86/cpu tree, the x86_64 allmodconfig build fails like this:
arch/x86/kernel/cpu/amd.c: In function 'bsp_init_amd':
arch/x86/kernel/cpu/amd.c:437:3: error: 'va_align' undeclared (first use in this function)
arch/x86/kernel/cpu/amd.c:438:23: error: 'ALIGN_VA_32' undeclared (first use in this function)
arch/x86/kernel/cpu/amd.c:438:37: error: 'ALIGN_VA_64' undeclared (first use in this function)
This is caused by the module.h split up intreacting with commit
dfb09f9b7a ("x86, amd: Avoid cache aliasing penalties on AMD
family 15h") from the tip:x86/cpu tree.
I have added the following patch for today (this, or something
similar, could be applied to the tip tree directly - the
export.h include below was added by the module.h splitup).
So include elf.h to use va_align and remove this implicit
dependency on module.h doing it for us.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Link: http://lkml.kernel.org/r/20110810114956.238d66772883636e3040d29f@canb.auug.org.au
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move code which is run once on the BSP during boot into the cpu_dev
helper.
[ hpa: removed bogus cpu_has -> static_cpu_has conversion ]
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/20110805180409.GC26217@aftab
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch provides performance tuning for the "Bulldozer" CPU. With its
shared instruction cache there is a chance of generating an excessive
number of cache cross-invalidates when running specific workloads on the
cores of a compute module.
This excessive amount of cross-invalidations can be observed if cache
lines backed by shared physical memory alias in bits [14:12] of their
virtual addresses, as those bits are used for the index generation.
This patch addresses the issue by clearing all the bits in the [14:12]
slice of the file mapping's virtual address at generation time, thus
forcing those bits the same for all mappings of a single shared library
across processes and, in doing so, avoids instruction cache aliases.
It also adds the command line option "align_va_addr=(32|64|on|off)" with
which virtual address alignment can be enabled for 32-bit or 64-bit x86
individually, or both, or be completely disabled.
This change leaves virtual region address allocation on other families
and/or vendors unaffected.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1312550110-24160-2-git-send-email-bp@amd64.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Commit b87cf80af3 added support for
ARAT (Always Running APIC timer) on AMD processors that are not
affected by erratum 400. This erratum is present on certain processor
families and prevents APIC timer from waking up the CPU when it
is in a deep C state, including C1E state.
Determining whether a processor is affected by this erratum may
have some corner cases and handling these cases is somewhat
complicated. In the interest of simplicity we won't claim ARAT
support on processor families below 0x12 and will go back to
broadcasting timer when going idle.
Signed-off-by: Boris Ostrovsky <ostr@amd64.org>
Link: http://lkml.kernel.org/r/1306423192-19774-1-git-send-email-ostr@amd64.org
Tested-by: Boris Petkov <borislav.petkov@amd.com>
Cc: Hans Rosenfeld <Hans.Rosenfeld@amd.com>
Cc: Andreas Herrmann <Andreas.Herrmann3@amd.com>
Cc: Chuck Ebbert <cebbert@redhat.com>
Cc: stable@kernel.org # 32.x, 38.x, 39.x
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The workaround for Bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=33012
introduced a read and a write to the MC4 mask msr.
Unfortunatly this MSR is not emulated by the KVM hypervisor
so that the kernel will get a #GP and crashes when applying
this workaround when running inside KVM.
This issue was reported as:
https://bugzilla.kernel.org/show_bug.cgi?id=35132
and is fixed with this patch. The change just let the kernel
ignore any #GP it gets while accessing this MSR by using the
_safe msr access methods.
Reported-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maciej Rutecki <maciej.rutecki@gmail.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org> # .39.x
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Trying to enable the local APIC timer on early K8 revisions
uncovers a number of other issues with it, in conjunction with
the C1E enter path on AMD. Fixing those causes much more churn
and troubles than the benefit of using that timer brings so
don't enable it on K8 at all, falling back to the original
functionality the kernel had wrt to that.
Reported-and-bisected-by: Nick Bowler <nbowler@elliptictech.com>
Cc: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Nick Bowler <nbowler@elliptictech.com>
Cc: Joerg-Volker-Peetz <jvpeetz@web.de>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1305636919-31165-3-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This reverts commit e20a2d205c, as it crashes
certain boxes with specific AMD CPU models.
Moving the lower endpoint of the Erratum 400 check to accomodate
earlier K8 revisions (A-E) opens a can of worms which is simply
not worth to fix properly by tweaking the errata checking
framework:
* missing IntPenging MSR on revisions < CG cause #GP:
http://marc.info/?l=linux-kernel&m=130541471818831
* makes earlier revisions use the LAPIC timer instead of the C1E
idle routine which switches to HPET, thus not waking up in
deeper C-states:
http://lkml.org/lkml/2011/4/24/20
Therefore, leave the original boundary starting with K8-revF.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Older AMD K8 processors (Revisions A-E) are affected by erratum
400 (APIC timer interrupts don't occur in C states greater than
C1). This, for example, means that X86_FEATURE_ARAT flag should
not be set for these parts.
This addresses regression introduced by commit
b87cf80af3 ("x86, AMD: Set ARAT
feature on AMD processors") where the system may become
unresponsive until external interrupt (such as keyboard input)
occurs. This results, for example, in time not being reported
correctly, lack of progress on the system and other lockups.
Reported-by: Joerg-Volker Peetz <jvpeetz@web.de>
Tested-by: Joerg-Volker Peetz <jvpeetz@web.de>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Boris Ostrovsky <Boris.Ostrovsky@amd.com>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1304113663-6586-1-git-send-email-ostr@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch disables GartTlbWlk errors on AMD Fam10h CPUs if
the BIOS forgets to do is (or is just too old). Letting
these errors enabled can cause a sync-flood on the CPU
causing a reboot.
The AMD BKDG recommends disabling GART TLB Wlk Error completely.
This patch is the fix for
https://bugzilla.kernel.org/show_bug.cgi?id=33012
on my machine.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/20110415131152.GJ18463@8bytes.org
Tested-by: Alexandre Demers <alexandre.f.demers@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Support for Always Running APIC timer (ARAT) was introduced in
commit db954b5898. This feature
allows us to avoid switching timers from LAPIC to something else
(e.g. HPET) and go into timer broadcasts when entering deep
C-states.
AMD processors don't provide a CPUID bit for that feature but
they also keep APIC timers running in deep C-states (except for
cases when the processor is affected by erratum 400). Therefore
we should set ARAT feature bit on AMD CPUs.
Tested-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@amd.com>
LKML-Reference: <1300205624-4813-1-git-send-email-ostr@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit d518573de6 ("x86, amd: Normalize compute unit IDs on
multi-node processors") introduced compute unit normalization
but causes a compiler warning:
arch/x86/kernel/cpu/amd.c: In function 'amd_detect_cmp':
arch/x86/kernel/cpu/amd.c:268: warning: 'cores_per_cu' may be used uninitialized in this function
arch/x86/kernel/cpu/amd.c:268: note: 'cores_per_cu' was declared here
The compiler is right - initialize it with a proper value.
Also, fix up a comment while at it.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20110214171451.GB10076@kryptos.osrc.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for
CPU -> NUMA node mapping. Replace it with early_percpu variable
x86_cpu_to_node_map and share the mapping code with 64bit.
* USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too.
* x86_cpu_to_node_map and numa_set/clear_node() are moved from
numa_64 to numa. For now, on 32bit, x86_cpu_to_node_map is initialized
with 0 instead of NUMA_NO_NODE. This is to avoid introducing unexpected
behavior change and will be updated once init path is unified.
* srat_detect_node() is now enabled for x86_32 too. It calls
numa_set_node() and initializes the mapping making explicit
cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
The mapping between cpu/apicid and node is done via
apicid_to_node[] on 64bit and apicid_2_node[] +
apic->x86_32_numa_cpu_node() on 32bit. This difference makes it
difficult to further unify 32 and 64bit NUMA handling.
This patch unifies it by replacing both apicid_to_node[] and
apicid_2_node[] with __apicid_to_node[] array, which is accessed
by two accessors - set_apicid_to_node() and numa_cpu_node(). On
64bit, numa_cpu_node() always consults __apicid_to_node[]
directly while 32bit goes through apic->numa_cpu_node() method
to allow apic implementations to override it.
srat_detect_node() for amd cpus contains workaround for broken
NUMA configuration which assumes relationship between APIC ID,
HT node ID and NUMA topology. Leave it to access
__apicid_to_node[] directly as mapping through CPU might result
in undesirable behavior change. The comment is reformatted and
updated to note the ugliness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
On multi-node CPUs we don't need the socket wide compute unit ID
but the node-wide compute unit ID. Thus we need to normalize the
value. This is similar to what we do with cpu_core_id.
A compute unit is then identified by physical_package_id,
node_id, and compute_unit_id.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <1295881543-572552-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace all uses of current_cpu_data with this_cpu operations on the
per cpu structure cpu_info. The scala accesses are replaced with the
matching this_cpu ops which results in smaller and more efficient
code.
In the long run, it might be a good idea to remove cpu_data() macro
too and use per_cpu macro directly.
tj: updated description
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Get compute unit information from CPUID Fn8000_001E_EBX.
(See AMD CPUID Specification - publication # 25481, revision 2.34,
September 2010.)
Note that each core on a compute unit still has a core_id of its own.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123857.GE20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Node information (ID, number of internal nodes) is provided via
CPUID Fn8000_001e_ECX.
See AMD CPUID Specification (Publication # 25481, Revision 2.34,
September 2010).
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100930123628.GD20545@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Old 32-bit AMD CPUs (all w/o L3 cache) should always return 0
for cpuid_edx(0x80000006).
For unknown reason the 32-bit implementation differed from the
64-bit implementation. See commit 67cddd9479 ("i386: Add L3 cache
support to AMD CPUID4 emulation"). The current check is the
result of the x86 merge.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Andi Kleen <andi@firstfloor.org>
LKML-Reference: <20100902133710.GA5449@loge.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
6b37f5a20c introduced the CPU frequency
calibration code for AMD CPUs whose TSCs didn't increment with the
core's P0 frequency. From F10h, revB onward, however, the TSC increment
rate is denoted by MSRC001_0015[24] and when this bit is set (which
should be done by the BIOS) the TSC increments with the P0 frequency
so the calibration is not needed and booting can be a couple of mcecs
faster on those machines.
Besides, there should be virtually no machines out there which don't
have this bit set, therefore this calibration can be safely removed. It
is a shaky hack anyway since it assumes implicitly that the core is in
P0 when BIOS hands off to the OS, which might not always be the case.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100825162823.GE26438@aftab>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
A bug in the family-model-stepping matching code caused the presence of
errata to go undetected when OSVW was not used. This causes hangs on
some K8 systems because the E400 workaround is not enabled.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1282141190-930137-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
boot_cpu_id is there for historical reasons and was renamed to
boot_cpu_physical_apicid in patch:
c70dcb7 x86: change boot_cpu_id to boot_cpu_physical_apicid
However, there are some remaining occurrences of boot_cpu_id that are
never touched in the kernel and thus its value is always 0.
This patch removes boot_cpu_id completely.
Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1279731838-1522-8-git-send-email-robert.richter@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Exprot the AMD errata definitions, since they are needed by kvm_amd.ko
if that is built as a module. Doing "make allmodconfig" during
testing would have caught this.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Use the AMD errata checking framework instead of open-coding the test.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-3-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Remove check_c1e_idle() and use the new AMD errata checking framework
instead.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-2-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Errata are defined using the AMD_LEGACY_ERRATUM() or AMD_OSVW_ERRATUM()
macros. The latter is intended for newer errata that have an OSVW id
assigned, which it takes as first argument. Both take a variable number
of family-specific model-stepping ranges created by AMD_MODEL_RANGE().
Iff an erratum has an OSVW id, OSVW is available on the CPU, and the
OSVW id is known to the hardware, it is used to determine whether an
erratum is present. Otherwise, the model-stepping ranges are matched
against the current CPU to find out whether the erratum applies.
For certain special errata, the code using this framework might have to
conduct further checks to make sure an erratum is really (not) present.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
LKML-Reference: <1280336972-865982-1-git-send-email-hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Extend support to future families, and in particular:
* extend direct mapping split of Tseg SMM area.
* extend K8 flavored alternatives (NOPS).
* rep movs* prefix is fast in ucode.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100602182921.GA21557@aftab>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use NodeId MSR to get NodeId and number of nodes per processor.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20091216144355.GB28798@alberich.amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
When there are a large number of processors in a system, there
is an excessive amount of messages sent to the system console.
It's estimated that with 4096 processors in a system, and the
console baudrate set to 56K, the startup messages will take
about 84 minutes to clear the serial port.
This set of patches limits the number of repetitious messages
which contain no additional information. Much of this information
is obtainable from the /proc and /sysfs. Some of the messages
are also sent to the kernel log buffer as KERN_DEBUG messages so
dmesg can be used to examine more closely any details specific to
a problem.
The new cpu bootup sequence for system_state == SYSTEM_BOOTING:
Booting Node 0, Processors #1#2#3#4#5#6#7 Ok.
Booting Node 1, Processors #8#9#10#11#12#13#14#15 Ok.
...
Booting Node 3, Processors #56#57#58#59#60#61#62#63 Ok.
Brought up 64 CPUs
After the system is running, a single line boot message is displayed
when CPU's are hotplugged on:
Booting Node %d Processor %d APIC 0x%x
Status of the following lines:
CPU: Physical Processor ID: printed once (for boot cpu)
CPU: Processor Core ID: printed once (for boot cpu)
CPU: Hyper-Threading is disabled printed once (for boot cpu)
CPU: Thermal monitoring enabled printed once (for boot cpu)
CPU %d/0x%x -> Node %d: removed
CPU %d is now offline: only if system_state == RUNNING
Initializing CPU#%d: KERN_DEBUG
Signed-off-by: Mike Travis <travis@sgi.com>
LKML-Reference: <4B219E28.8080601@sgi.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
display_cacheinfo() doesn't display anything anymore and it is used to
detect CPU cache sizes. Rename it accordingly.
Signed-off-by: Borislav Petkov <petkovbb@gmail.com>
LKML-Reference: <20091121130145.GA31357@liondog.tnic>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This trivial patch fixes one missing space in printk.
I already fixed it about half a year ago or more, but the change (in
arch/x86/kernel/cpu/smpboot.c at that time) didn't made into
mainline yet.
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
index 28e5f59..6c139ed 100644
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (22 commits)
x86: Fix code patching for paravirt-alternatives on 486
x86, msr: change msr-reg.o to obj-y, and export its symbols
x86: Use hard_smp_processor_id() to get apic id for AMD K8 cpus
x86, sched: Workaround broken sched domain creation for AMD Magny-Cours
x86, mcheck: Use correct cpumask for shared bank4
x86, cacheinfo: Fixup L3 cache information for AMD multi-node processors
x86: Fix CPU llc_shared_map information for AMD Magny-Cours
x86, msr: Fix msr-reg.S compilation with gas 2.16.1, on 32-bit too
x86: Move kernel_fpu_using to irq_fpu_usable in asm/i387.h
x86, msr: fix msr-reg.S compilation with gas 2.16.1
x86, msr: Export the register-setting MSR functions via /dev/*/msr
x86, msr: Create _on_cpu helpers for {rw,wr}msr_safe_regs()
x86, msr: Have the _safe MSR functions return -EIO, not -EFAULT
x86, msr: CFI annotations, cleanups for msr-reg.S
x86, asm: Make _ASM_EXTABLE() usable from assembly code
x86, asm: Add 32-bit versions of the combined CFI macros
x86, AMD: Disable wrongly set X86_FEATURE_LAHF_LM CPUID bit
x86, msr: Rewrite AMD rd/wrmsr variants
x86, msr: Add rd/wrmsr interfaces with preset registers
x86: add specific support for Intel Atom architecture
...
Otherwise, system with apci id lifting will have wrong apicid in
/proc/cpuinfo.
and use that in srat_detect_node().
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
LKML-Reference: <4A998CCA.1040407@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Construct entire NodeID and use it as cpu_llc_id. Thus internal node
siblings are stored in llc_shared_map.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
fbd8b1819e turns off the bit for
/proc/cpuinfo. However, a proper/full fix would be to additionally
turn off the bit in the CPUID output so that future callers get
correct CPU features info.
Do that by basically reversing what the BIOS wrongfully does at boot.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1251705011-18636-3-git-send-email-petkovbb@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Due to an erratum with certain AMD Athlon 64 processors, the
BIOS may need to force enable the LAHF_LM capability.
Unfortunately, in at least one case, the BIOS does this even
for processors that do not support the functionality.
Add a specific check that will clear the feature bit for
processors known not to support the LAHF/SAHF instructions.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Acked-by: Borislav Petkov <petkovbb@googlemail.com>
LKML-Reference: <4A80A5AD.2000209@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If we've logically disabled apics, don't probe the PCI space for the
AMD extended APIC ID.
[ Impact: prevent boot crash under Xen. ]
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reported-by: Bastian Blank <bastian@waldi.eu.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
No code changes except printk levels (although some of the K6
mtrr code might be clearer if there were a few as would
splitting out some of the intel cache code).
Signed-off-by: Alan Cox <alan@linux.intel.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This counts when building sched domains in case NUMA information
is not available.
( See cpu_coregroup_mask() which uses llc_shared_map which in turn is
created based on cpu_llc_id. )
Currently Linux builds domains as follows:
(example from a dual socket quad-core system)
CPU0 attaching sched-domain:
domain 0: span 0-7 level CPU
groups: 0 1 2 3 4 5 6 7
...
CPU7 attaching sched-domain:
domain 0: span 0-7 level CPU
groups: 7 0 1 2 3 4 5 6
Ever since that is borked for multi-core AMD CPU systems.
This patch fixes that and now we get a proper:
CPU0 attaching sched-domain:
domain 0: span 0-3 level MC
groups: 0 1 2 3
domain 1: span 0-7 level CPU
groups: 0-3 4-7
...
CPU7 attaching sched-domain:
domain 0: span 4-7 level MC
groups: 7 4 5 6
domain 1: span 0-7 level CPU
groups: 4-7 0-3
This allows scheduler to assign tasks to cores on different sockets
(i.e. that don't share last level cache) for performance reasons.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20090619085909.GJ5218@alberich.amd.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Clear TS in irq_ts_save() when in an atomic section
x86: Detect use of extended APIC ID for AMD CPUs
x86: memtest: remove 64-bit division
x86, UV: Fix macros for multiple coherency domains
x86: Fix non-lazy GS handling in sys_vm86()
x86: Add quirk for reboot stalls on a Dell Optiplex 360
x86: Fix UV BAU activation descriptor init
Booting a 32-bit kernel on Magny-Cours results in the following panic:
...
Using APIC driver default
...
Overriding APIC driver with bigsmp
...
Getting VERSION: 80050010
Getting VERSION: 80050010
Getting ID: 10000000
Getting ID: ef000000
Getting LVT0: 700
Getting LVT1: 10000
Kernel panic - not syncing: Boot APIC ID in local APIC unexpected (16 vs 0)
Pid: 1, comm: swapper Not tainted 2.6.30-rcX #2
Call Trace:
[<c05194da>] ? panic+0x38/0xd3
[<c0743102>] ? native_smp_prepare_cpus+0x259/0x31f
[<c073b19d>] ? kernel_init+0x3e/0x141
[<c073b15f>] ? kernel_init+0x0/0x141
[<c020325f>] ? kernel_thread_helper+0x7/0x10
The reason is that default_get_apic_id handled extension of local APIC
ID field just in case of XAPIC.
Thus for this AMD CPU, default_get_apic_id() returns 0 and
bigsmp_get_apic_id() returns 16 which leads to the respective kernel
panic.
This patch introduces a Linux specific feature flag to indicate
support for extended APIC id (8 bits instead of 4 bits width) and sets
the flag on AMD CPUs if applicable.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: <stable@kernel.org>
LKML-Reference: <20090608135509.GA12431@alberich.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
should not call that if apic is disabled.
[ Impact: fix crash on certain UP configs ]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
LKML-Reference: <4A09CCBB.2000306@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: debuggability and micro-optimization
Putting whatever is possible into the (final) .rodata section increases
the likelihood of catching memory corruption bugs early, and reduces
false cache line sharing.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
LKML-Reference: <49B90961.76E4.0078.0@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup and code size reduction on 64-bit
This code is only applied to Intel Pentium and AMD K7 32-bit cpus.
Move those checks to intel_init()/amd_init() for 32-bit
so 64-bit will not build this code.
Also change to use cpu_index check to see if we need to emit warning.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <49B377D2.8030108@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: reward non-stop TSCs with good TSC-based clocksources, etc.
Add support for CPUID_0x80000007_Bit8 on Intel CPUs as well. This bit means
that the TSC is invariant with C/P/T states and always runs at constant
frequency.
With Intel CPUs, we have 3 classes
* CPUs where TSC runs at constant rate and does not stop n C-states
* CPUs where TSC runs at constant rate, but will stop in deep C-states
* CPUs where TSC rate will vary based on P/T-states and TSC will stop in deep
C-states.
To cover these 3, one feature bit (CONSTANT_TSC) is not enough. So, add a
second bit (NONSTOP_TSC). CONSTANT_TSC indicates that the TSC runs at
constant frequency irrespective of P/T-states, and NONSTOP_TSC indicates
that TSC does not stop in deep C-states.
CPUID_0x8000000_Bit8 indicates both these feature bit can be set.
We still have CONSTANT_TSC _set_ and NONSTOP_TSC _not_set_ on some older Intel
CPUs, based on model checks. We can use TSC on such CPUs for time, as long as
those CPUs do not support/enter deep C-states.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
1. make 32bit have early_init_amd_mc and amd_detect_cmp
2. seperate init_amd_k5/k6/k7 ...
v2: fix compiling for !CONFIG_SMP
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
1. add c_x86_vendor into cpu_dev
2. change cpu_devs to static
3. check c_x86_vendor before put that cpu_dev into array
4. remove alignment for 64bit
5. order the sequence in cpu_devs according to link sequence...
so could put intel at first, then amd...
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Krzysztof Helt found MTRR is not detected on k6-2
root cause:
we moved mtrr_bp_init() early for mtrr trimming,
and in early_detect we only read the CPU capability from cpuid,
so some cpu doesn't have that bit in cpuid.
So we need to add early_init_xxxx to preset those bit before mtrr_bp_init
for those earlier cpus.
this patch is for v2.6.27
Reported-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's not used anywhere outside its single referencing file.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
"Form follows function". Code is now where it belongs to.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
C1E on AMD machines is like C3 but without control from the OS. Up to
now we disabled the local apic timer for those machines as it stops
when the CPU goes into C1E. This excludes those machines from high
resolution timers / dynamic ticks, which hurts especially X2 based
laptops.
The current boot time C1E detection has another, more serious flaw
as well: some BIOSes do not enable C1E until the ACPI processor module
is loaded. This causes systems to stop working after that point.
To work nicely with C1E enabled machines we use a separate idle
function, which checks on idle entry whether C1E was enabled in the
Interrupt Pending Message MSR. This allows us to do timer broadcasting
for C1E and covers the late enablement of C1E as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simplify code: no need to do a cpuid(1) again. The cpuinfo structure
has all necessary information already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rename the "MSR_K8_ENABLE_C1E" MSR to INT_PENDING_MSG, which is the
name in the data sheet as well. Move the C1E mask to the header file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch implements PCI extended configuration space access for
AMD's Barcelona CPUs. It extends the method using CF8/CFC IO
addresses. An x86 capability bit has been introduced that is set for
CPUs supporting PCI extended config space accesses.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are no users for the function amd_init_cpu() defined in
arch/x86/kernel/cpu/amd.c. This patch removes this routine.
This patch was build-tested using defconfigs for i386 and x86_64,
and a few randconfig instances. Runtime tests were performed by
booting 32- and 64-bit x86 boxen up to the shell prompt.
Signed-off-by: Dmitri Vorobiev <dmitri.vorobiev@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace the hardcoded list of initialization functions for each CPU
vendor by a list in an ELF section, which is read at initialization in
arch/x86/kernel/cpu/cpu.c to fill the cpu_devs[] array. The ELF
section, named .x86cpuvendor.init, is reclaimed after boot, and
contains entries of type "struct cpu_vendor_dev" which associates a
vendor number with a pointer to a "struct cpu_dev" structure.
This first modification allows to remove all the VENDOR_init_cpu()
functions.
This patch also removes the hardcoded calls to early_init_amd() and
early_init_intel(). Instead, we add a "c_early_init" member to the
cpu_dev structure, which is then called if not NULL by the generic CPU
initialization code. Unfortunately, in early_cpu_detect(), this_cpu is
not yet set, so we have to use the cpu_devs[] array directly.
This patch is part of the Linux Tiny project, and is needed for
further patch that will allow to disable compilation of unused CPU
support code.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
fix bootup crash in native_read_tsc() that was reported on an Athlon-XP
and bisected. The correct feature boundary for X86_FEATURE_MFENCE_RDTSC
is not XMM but XMM2.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously there was a AMD specific quirk to handle the case of
AMD Fam10h MWAIT not supporting any C states. But it turns out
that CPUID already has ways to detectly detect that without
using special quirks.
The new code simply checks if MWAIT supports at least C1 and doesn't
use it if it doesn't. No more vendor specific code.
Note this is does not simply clear MWAIT because MWAIT can be still
useful even without C states.
Credit goes to Ben Serebrin for pointing out the (nearly) obvious.
Cc: "Andreas Herrmann" <andreas.herrmann3@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Need this in the next patch in time_init and that happens early.
This includes a minor fix on i386 where early_intel_workarounds()
[which is now called early_init_intel] really executes early as
the comments say.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
According to AMD RDTSC can be synchronized through MFENCE.
Implement the necessary CPUID bit for that.
Cc: andreas.herrmann3@amd.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some BIOSes set the C1E flag only on the second core. Print a warning so
the Firmware Toolkit can check for it.
mingo: fix C1E build bug on 32-bit
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>