As it turns out, the unwind code is slightly broken, and probably has
been for a while. The problem is in the dumping of the exception stack,
which is intended to dump the contents of the pt_regs struct at each
level in the call stack where an exception was taken and routed to a
routine marked as __exception (which means its stack frame is right
below the pt_regs struct on the stack).
'Right below the pt_regs struct' is ill defined, though: the unwind
code assigns 'frame pointer + 0x10' to the .sp member of the stackframe
struct at each level, and dump_backtrace() happily dereferences that as
the pt_regs pointer when encountering an __exception routine. However,
the actual size of the stack frame created by this routine (which could
be one of many __exception routines we have in the kernel) is not known,
and so frame.sp is pretty useless to figure out where struct pt_regs
really is.
So it seems the only way to ensure that we can find our struct pt_regs
when walking the stack frames is to put it at a known fixed offset of
the stack frame pointer that is passed to such __exception routines.
The simplest way to do that is to put it inside pt_regs itself, which is
the main change implemented by this patch. As a bonus, doing this allows
us to get rid of a fair amount of cruft related to walking from one stack
to the other, which is especially nice since we intend to introduce yet
another stack for overflow handling once we add support for vmapped
stacks. It also fixes an inconsistency where we only add a stack frame
pointing to ELR_EL1 if we are executing from the IRQ stack but not when
we are executing from the task stack.
To consistly identify exceptions regs even in the presence of exceptions
taken from entry code, we must check whether the next frame was created
by entry text, rather than whether the current frame was crated by
exception text.
To avoid backtracing using PCs that fall in the idmap, or are controlled
by userspace, we must explcitly zero the FP and LR in startup paths, and
must ensure that the frame embedded in pt_regs is zeroed upon entry from
EL0. To avoid these NULL entries showin in the backtrace, unwind_frame()
is updated to avoid them.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[Mark: compare current frame against .entry.text, avoid bogus PCs]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
The -1 "no syscall" value is written in various ways, shared with
the user ABI in some places, and generally obscure.
This patch attempts to make things a little more consistent and
readable by replacing all these uses with a single #define. A
couple of symbolic helpers are provided to clarify the intent
further.
Because the in-syscall check in do_signal() is changed from >= 0 to
!= NO_SYSCALL by this patch, different behaviour may be observable
if syscallno is set to values less than -1 by a tracer. However,
this is not different from the behaviour that is already observable
if a tracer sets syscallno to a value >= __NR_(compat_)syscalls.
It appears that this can cause spurious syscall restarting, but
that is not a new behaviour either, and does not appear harmful.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The upper 32 bits of the syscallno field in thread_struct are
handled inconsistently, being sometimes zero extended and sometimes
sign-extended. In fact, only the lower 32 bits seem to have any
real significance for the behaviour of the code: it's been OK to
handle the upper bits inconsistently because they don't matter.
Currently, the only place I can find where those bits are
significant is in calling trace_sys_enter(), which may be
unintentional: for example, if a compat tracer attempts to cancel a
syscall by passing -1 to (COMPAT_)PTRACE_SET_SYSCALL at the
syscall-enter-stop, it will be traced as syscall 4294967295
rather than -1 as might be expected (and as occurs for a native
tracer doing the same thing). Elsewhere, reads of syscallno cast
it to an int or truncate it.
There's also a conspicuous amount of code and casting to bodge
around the fact that although semantically an int, syscallno is
stored as a u64.
Let's not pretend any more.
In order to preserve the stp x instruction that stores the syscall
number in entry.S, this patch special-cases the layout of struct
pt_regs for big endian so that the newly 32-bit syscallno field
maps onto the low bits of the stored value. This is not beautiful,
but benchmarking of the getpid syscall on Juno suggests indicates a
minor slowdown if the stp is split into an stp x and stp w.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In A64, XZR and the SP share the same encoding (31), and whether an
instruction accesses XZR or SP for a particular register parameter
depends on the definition of the instruction.
We store the SP in pt_regs::regs[31], and thus when emulating
instructions, we must be careful to not erroneously read from or write
back to the saved SP. Unfortunately, we often fail to be this careful.
In all cases, instructions using a transfer register parameter Xt use
this to refer to XZR rather than SP. This patch adds helpers so that we
can more easily and consistently handle these cases.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds support for uprobe on ARM64 architecture.
Unit tests for following have been done so far and they have been found
working
1. Step-able instructions, like sub, ldr, add etc.
2. Simulation-able like ret, cbnz, cbz etc.
3. uretprobe
4. Reject-able instructions like sev, wfe etc.
5. trapped and abort xol path
6. probe at unaligned user address.
7. longjump test cases
Currently it does not support aarch32 instruction probing.
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping, EFI
run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmF/UAAoJEGvWsS0AyF7x+jwP/2fErtX6FTXmdG0c3HBkTpuy
gEuzN2ByWbP6Io+unLC6NvbQQb1q6c73PTqjsoeMHUx2o8YK3jgWEBcC+7AuepoZ
YGl3r08e75a/fGrgNwEQQC1lNlgjpog4kzVDh5ji6oRXNq+OkjJGUtRPe3gBoqxv
NAjviciID/MegQaq4SaMd26AmnjuUGKogo5vlIaXK0SemX9it+ytW7eLAXuVY+gW
EvO3Nxk0Y5oZKJF8qRw6oLSmw1bwn2dD26OgfXfCiI30QBookRyWIoXRedUOZmJq
D0+Tipd7muO4PbjlxS8aY/wd/alfnM5+TJ6HpGDo+Y1BDauXfiXMf3ktDFE5QvJB
KgtICmC0stWwbDT35dHvz8sETsrCMA2Q/IMrnyxG+nj9BxVQU7rbNrxfCXesJy7Q
4EsQbcTyJwu+ECildBezfoei99XbFZyWk2vKSkTCFKzgwXpftGFaffgZ3DIzBAHH
IjecDqIFENC8ymrjyAgrGjeFG+2WB/DBgoSS3Baiz6xwQqC4wFMnI3jPECtJjb/U
6e13f+onXu5lF1YFKAiRjGmqa/G1ZMr+uKZFsembuGqsZdAPkzzUHyAE9g4JVO8p
t3gc3/M3T7oLSHuw4xi1/Ow5VGb2UvbslFrp7OpuFZ7CJAvhKlHL5rPe385utsFE
7++5WHXHAegeJCDNAKY2
=iJOY
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping,
EFI run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
arm64: arm: Fix-up the removal of the arm64 regs_query_register_name() prototype
arm64: Only select ARM64_MODULE_PLTS if MODULES=y
arm64: mm: run pgtable_page_ctor() on non-swapper translation table pages
arm64: mm: make create_mapping_late() non-allocating
arm64: Honor nosmp kernel command line option
arm64: Fix incorrect per-cpu usage for boot CPU
arm64: kprobes: Add KASAN instrumentation around stack accesses
arm64: kprobes: Cleanup jprobe_return
arm64: kprobes: Fix overflow when saving stack
arm64: kprobes: WARN if attempting to step with PSTATE.D=1
arm64: debug: remove unused local_dbg_{enable, disable} macros
arm64: debug: remove redundant spsr manipulation
arm64: debug: unmask PSTATE.D earlier
arm64: localise Image objcopy flags
arm64: ptrace: remove extra define for CPSR's E bit
kprobes: Add arm64 case in kprobe example module
arm64: Add kernel return probes support (kretprobes)
arm64: Add trampoline code for kretprobes
arm64: kprobes instruction simulation support
arm64: Treat all entry code as non-kprobe-able
...
Commit 0a8ea52c3e ("arm64: Add HAVE_REGS_AND_STACK_ACCESS_API
feature") inadvertently removed the arch/arm prototype instead of the
arm64 one introduced by the original patch. There should not be any
bisection issues since this function is not called from anywhere else
(it could as well be removed from arch/arm at some point).
Fixes: 0a8ea52c3e ("arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* kprobes:
arm64: kprobes: Add KASAN instrumentation around stack accesses
arm64: kprobes: Cleanup jprobe_return
arm64: kprobes: Fix overflow when saving stack
arm64: kprobes: WARN if attempting to step with PSTATE.D=1
kprobes: Add arm64 case in kprobe example module
arm64: Add kernel return probes support (kretprobes)
arm64: Add trampoline code for kretprobes
arm64: kprobes instruction simulation support
arm64: Treat all entry code as non-kprobe-able
arm64: Blacklist non-kprobe-able symbol
arm64: Kprobes with single stepping support
arm64: add conditional instruction simulation support
arm64: Add more test functions to insn.c
arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature
...and do not confuse source navigation tools ;)
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for basic kernel probes(kprobes) and jump probes
(jprobes) for ARM64.
Kprobes utilizes software breakpoint and single step debug
exceptions supported on ARM v8.
A software breakpoint is placed at the probe address to trap the
kernel execution into the kprobe handler.
ARM v8 supports enabling single stepping before the break exception
return (ERET), with next PC in exception return address (ELR_EL1). The
kprobe handler prepares an executable memory slot for out-of-line
execution with a copy of the original instruction being probed, and
enables single stepping. The PC is set to the out-of-line slot address
before the ERET. With this scheme, the instruction is executed with the
exact same register context except for the PC (and DAIF) registers.
Debug mask (PSTATE.D) is enabled only when single stepping a recursive
kprobe, e.g.: during kprobes reenter so that probed instruction can be
single stepped within the kprobe handler -exception- context.
The recursion depth of kprobe is always 2, i.e. upon probe re-entry,
any further re-entry is prevented by not calling handlers and the case
counted as a missed kprobe).
Single stepping from the x-o-l slot has a drawback for PC-relative accesses
like branching and symbolic literals access as the offset from the new PC
(slot address) may not be ensured to fit in the immediate value of
the opcode. Such instructions need simulation, so reject
probing them.
Instructions generating exceptions or cpu mode change are rejected
for probing.
Exclusive load/store instructions are rejected too. Additionally, the
code is checked to see if it is inside an exclusive load/store sequence
(code from Pratyush).
System instructions are mostly enabled for stepping, except MSR/MRS
accesses to "DAIF" flags in PSTATE, which are not safe for
probing.
This also changes arch/arm64/include/asm/ptrace.h to use
include/asm-generic/ptrace.h.
Thanks to Steve Capper and Pratyush Anand for several suggested
Changes.
Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Signed-off-by: Pratyush Anand <panand@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add HAVE_REGS_AND_STACK_ACCESS_API feature for arm64, including supporting
functions and defines.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
[catalin.marinas@arm.com: Remove unused functions]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If we take an exception while at EL1, the exception handler inherits
the original context's addr_limit and PSTATE.UAO values. To be consistent
always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This
prevents accidental re-use of the original context's addr_limit.
Based on a similar patch for arm from Russell King.
Cc: <stable@vger.kernel.org> # 4.6-
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We validate pstate using PSR_MODE32_BIT, which is part of the
user-provided pstate (and cannot be trusted). Also, we conflate
validation of AArch32 and AArch64 pstate values, making the code
difficult to reason about.
Instead, validate the pstate value based on the associated task. The
task may or may not be current (e.g. when using ptrace), so this must be
passed explicitly by callers. To avoid circular header dependencies via
sched.h, is_compat_task is pulled out of asm/ptrace.h.
To make the code possible to reason about, the AArch64 and AArch32
validation is split into separate functions. Software must respect the
RES0 policy for SPSR bits, and thus the kernel mirrors the hardware
policy (RAZ/WI) for bits as-yet unallocated. When these acquire an
architected meaning writes may be permitted (potentially with additional
validation).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For reasons not entirely apparent, but now enshrined in history, the
architectural mapping of AArch32 banked registers to AArch64 registers
actually orders SP_<mode> and LR_<mode> backwards compared to the
intuitive r13/r14 order, for all modes except FIQ.
Fix the compat_<reg>_<mode> macros accordingly, in the hope of avoiding
subtle bugs with KVM and AArch32 guests.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Nobody seems to be producing !SMP systems anymore, so this is just
becoming a source of kernel bugs, particularly if people want to use
coherent DMA with non-shared pages.
This patch forces CONFIG_SMP=y for arm64, removing a modest amount of
code in the process.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Emulate deprecated 'setend' instruction for AArch32 bit tasks.
setend [le/be] - Sets the endianness of EL0
On systems with CPUs which support mixed endian at EL0, the hardware
support for the instruction can be enabled by setting the SCTLR_EL1.SED
bit. Like the other emulated instructions it is controlled by an entry in
/proc/sys/abi/. For more information see :
Documentation/arm64/legacy_instructions.txt
The instruction is emulated by setting/clearing the SPSR_EL1.E bit, which
will be reflected in the PSTATE.E in AArch32 context.
This patch also restores the native endianness for the execution of signal
handlers, since the process could have changed the endianness.
Note: All CPUs on the system must have mixed endian support at EL0. Once the
handler is registered, hotplugging a CPU which doesn't support mixed endian,
could lead to unexpected results/behavior in applications.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 5f888a1d33 (ARM64: perf: support dwarf unwinding in compat mode)
changes user_stack_pointer() to return the compat SP for 32-bit tasks
but without brackets around the whole definition, with possible issues
on the call sites (noticed with a subsequent fix for KSTK_ESP).
Fixes: 5f888a1d33 (ARM64: perf: support dwarf unwinding in compat mode)
Reported-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The CurrentEL system register reports the Current Exception Level
of the CPU. It doesn't say anything about the stack handling, and
yet we compare it to PSR_MODE_EL2t and PSR_MODE_EL2h.
It works by chance because PSR_MODE_EL2t happens to match the right
bits, but that's otherwise a very bad idea. Just check for the EL
value instead.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
[catalin.marinas@arm.com: fixed arch/arm64/kernel/efi-entry.S]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This macro, regs_return_value, is used mainly for audit to record system
call's results, but may also be used in test_kprobes.c.
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for unwinding using the dwarf information in compat
mode. Using the correct user stack pointer allows perf to record
the frames correctly in the native and compat modes.
Note that although the dwarf frame unwinding works ok using
libunwind in native mode (on ARMv7 & ARMv8), some changes are
required to the libunwind code for the compat mode. Those changes
are posted separately on the libunwind mailing list.
Tested on ARMv8 platform with v8 and compat v7 binaries, the latter
are statically built.
Signed-off-by: Jean Pihet <jean.pihet@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch implements the functions required for the perf registers API,
allowing the perf tool to interface kernel register dumps with libunwind
in order to provide userspace backtracing.
Compat mode is also supported.
Only the general purpose user space registers are exported, i.e.:
PERF_REG_ARM_X0,
...
PERF_REG_ARM_X28,
PERF_REG_ARM_FP,
PERF_REG_ARM_LR,
PERF_REG_ARM_SP,
PERF_REG_ARM_PC
and not the PERF_REG_ARM_V* registers.
Signed-off-by: Jean Pihet <jean.pihet@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
typecast instruction_pointer macro to unsigned long to
resolve following compiler warnings like
warning: format '%lx' expects argument of type 'long unsigned int',
but argument 2 has type 'u64' [-Wformat]
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@caviumnetworks.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds support for BE8 AArch32 tasks to the compat layer.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The software breakpoint handlers are hooked in directly from ptrace,
which makes it difficult to add additional handlers for things like
kprobes and kgdb.
This patch moves the handling code into debug-monitors.c, where we can
dispatch to different debug subsystems more easily.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to mess with the processor state when running 32bit
guests, define all the AArch32 PSR flags.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The general purpose registers in AArch32 are mapped in an
architecturally defined manner into the AArch64 registers.
It allows the AArch32 registers of an application or a virtual
machine to be inspected by the OS or an hypervisor.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
This patch adds #ifdef __KERNEL__ guards around the COMPAT_* definitions
to avoid exporting them to user. AArch32 user requiring the kernel
headers must use those generated with ARCH=arm.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
The use of regsets has removed the need for many private ptrace requests,
so remove the corresponding definitions from the user-visible ptrace.h
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The patch contains the exception entry code (kernel/entry.S), pt_regs
structure and related accessors, undefined instruction trapping and
stack tracing.
AArch64 Linux kernel (including kernel threads) runs in EL1 mode using
the SP1 stack. The vectors don't have a fixed address, only alignment
(2^11) requirements.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>