The config0 register in the Xburst CPUs with a processor ID of
PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
but they don't actually support this ISA.
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: od@zcrc.me
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
- A set of memblock initialization improvements thanks to Serge Semin,
tidying up after our conversion from bootmem to memblock back in
v4.20.
- Our eBPF JIT the previously supported only MIPS64r2 through MIPS64r5
is improved to also support MIPS64r6. Support for MIPS32 systems is
introduced, with the caveat that it only works for programs that don't
use 64 bit registers or operations - those will bail out & need to be
interpreted.
- Improvements to the allocation & configuration of our exception vector
that should fix issues seen on some platforms using recent versions of
U-Boot.
- Some minor improvements to code generated for jump labels, along with
enabling them by default for generic kernels.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXNNB2RUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN1zeAD/U/ScowcQE8ynoY97nA70d3UmbETH
YETUX5WcOfR65O8A/1hvMX8QJ1x87XUlNTkE6Gdh/itAZJpJWiSo3dnd1GoF
=L9IJ
-----END PGP SIGNATURE-----
Merge tag 'mips_5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS updates from Paul Burton:
- A set of memblock initialization improvements thanks to Serge Semin,
tidying up after our conversion from bootmem to memblock back in
v4.20.
- Our eBPF JIT the previously supported only MIPS64r2 through MIPS64r5
is improved to also support MIPS64r6. Support for MIPS32 systems is
introduced, with the caveat that it only works for programs that
don't use 64 bit registers or operations - those will bail out & need
to be interpreted.
- Improvements to the allocation & configuration of our exception
vector that should fix issues seen on some platforms using recent
versions of U-Boot.
- Some minor improvements to code generated for jump labels, along with
enabling them by default for generic kernels.
* tag 'mips_5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (27 commits)
mips: Manually call fdt_init_reserved_mem() method
mips: Make sure dt memory regions are valid
mips: Perform early low memory test
mips: Dump memblock regions for debugging
mips: Add reserve-nomap memory type support
mips: Use memblock to reserve the __nosave memory range
mips: Discard post-CMA-init foreach loop
mips: Reserve memory for the kernel image resources
MIPS: Remove duplicate EBase configuration
MIPS: Sync icache for whole exception vector
MIPS: Always allocate exception vector for MIPSr2+
MIPS: Use memblock_phys_alloc() for exception vector
mips: Combine memblock init and memory reservation loops
mips: Discard rudiments from bootmem_init
mips: Make sure kernel .bss exists in boot mem pool
mips: vdso: drop unnecessary cc-ldoption
Revert "MIPS: ralink: fix cpu clock of mt7621 and add dt clk devices"
MIPS: generic: Enable CONFIG_JUMP_LABEL
MIPS: jump_label: Use compact branches for >= r6
MIPS: jump_label: Remove redundant nops
...
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEES0KozwfymdVUl37v6iDy2pc3iXMFAlzRrzoUHHBhdWxAcGF1
bC1tb29yZS5jb20ACgkQ6iDy2pc3iXNc7hAApgsi+3Jf9i29mgrKdrTciZ35TegK
C8pTlOIndpBcmdwDakR50/PgfMHdHll8M9TReVNEjbe0S+Ww5GTE7eWtL3YqoPC2
MuXEqcriz6UNi5Xma6vCZrDznWLXkXnzMDoDoYGDSoKuUYxef0fuqxDBnERM60Ht
s52+0XvR5ZseBw7I1KIv/ix2fXuCGq6eCdqassm0rvLPQ7bq6nWzFAlNXOLud303
DjIWu6Op2EL0+fJSmG+9Z76zFjyEbhMIhw5OPDeH4eO3pxX29AIv0m0JlI7ZXxfc
/VVC3r5G4WrsWxwKMstOokbmsQxZ5pB3ZaceYpco7U+9N2e3SlpsNM9TV+Y/0ac/
ynhYa//GK195LpMXx1BmWmLpjBHNgL8MvQkVTIpDia0GT+5sX7+haDxNLGYbocmw
A/mR+KM2jAU3QzNseGh6c659j3K4tbMIFMNxt7pUBxVPLafcccNngFGTpzCwu5GU
b7y4d21g6g/3Irj14NYU/qS8dTjW0rYrCMDquTpxmMfZ2xYuSvQmnBw91NQzVBp2
98L2/fsUG3yOa5MApgv+ryJySsIM+SW+7leKS5tjy/IJINzyPEZ85l3o8ck8X4eT
nohpKc/ELmeyi3omFYq18ecvFf2YRS5jRnz89i9q65/3ESgGiC0wyGOhNTvjvsyv
k4jT0slIK614aGk=
=p8Fp
-----END PGP SIGNATURE-----
Merge tag 'audit-pr-20190507' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit
Pull audit updates from Paul Moore:
"We've got a reasonably broad set of audit patches for the v5.2 merge
window, the highlights are below:
- The biggest change, and the source of all the arch/* changes, is
the patchset from Dmitry to help enable some of the work he is
doing around PTRACE_GET_SYSCALL_INFO.
To be honest, including this in the audit tree is a bit of a
stretch, but it does help move audit a little further along towards
proper syscall auditing for all arches, and everyone else seemed to
agree that audit was a "good" spot for this to land (or maybe they
just didn't want to merge it? dunno.).
- We can now audit time/NTP adjustments.
- We continue the work to connect associated audit records into a
single event"
* tag 'audit-pr-20190507' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit: (21 commits)
audit: fix a memory leak bug
ntp: Audit NTP parameters adjustment
timekeeping: Audit clock adjustments
audit: purge unnecessary list_empty calls
audit: link integrity evm_write_xattrs record to syscall event
syscall_get_arch: add "struct task_struct *" argument
unicore32: define syscall_get_arch()
Move EM_UNICORE to uapi/linux/elf-em.h
nios2: define syscall_get_arch()
nds32: define syscall_get_arch()
Move EM_NDS32 to uapi/linux/elf-em.h
m68k: define syscall_get_arch()
hexagon: define syscall_get_arch()
Move EM_HEXAGON to uapi/linux/elf-em.h
h8300: define syscall_get_arch()
c6x: define syscall_get_arch()
arc: define syscall_get_arch()
Move EM_ARCOMPACT and EM_ARCV2 to uapi/linux/elf-em.h
audit: Make audit_log_cap and audit_copy_inode static
audit: connect LOGIN record to its syscall record
...
Since memblock-patchset was introduced the reserved-memory nodes are
supported being declared in dt-files. So these nodes are actually parsed
during the arch setup procedure when the early_init_fdt_scan_reserved_mem()
method is called. But due to the arch-specific boot mem_map container
utilization we need to manually call the fdt_init_reserved_mem() method
after all the available and reserved memory has been moved to memblock.
The first function call performed before bootmem_init() by the
early_init_fdt_scan_reserved_mem() routine fails due to the lack of any
memblock memory regions to allocate from at that stage.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Serge Semin <Sergey.Semin@t-platforms.ru>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
There are situations when memory regions coming from dts may be
too big for the platform physical address space. This especially
concerns XPA-capable systems. Bootloader may determine more than 4GB
memory available and pass it to the kernel over dts memory node, while
kernel is built without XPA/64BIT support. In this case the region
may either simply be truncated by add_memory_region() method
or by u64->phys_addr_t type casting. But in worst case the method
can even drop the memory region if it exceeds PHYS_ADDR_MAX size.
So lets make sure the retrieved from dts memory regions are valid,
and if some of them aren't, just manually truncate them with a warning
printed out.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Serge Semin <Sergey.Semin@t-platforms.ru>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
memblock subsystem provides a method to optionally test the passed
memory region in case if it was requested via special kernel boot
argument. Lets add the function at the bottom of the arch_mem_init()
method. Testing at this point in the boot sequence should be safe since all
critical areas are now reserved and a minimum of allocations have been
done.
Reviewed-by: Matt Redfearn <matt.redfearn@mips.com>
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Serge Semin <Sergey.Semin@t-platforms.ru>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
It is useful to have the whole memblock memory space printed to console
when basic memlock initializations are done. It can be performed by
ready-to-use method memblock_dump_all(), which prints the available
and reserved memory spaces if memblock=debug kernel parameter is
specified. Lets call it at the very end of arch_mem_init() function,
when all memblock memory and reserved regions are defined, but before
any serious allocation is performed.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Serge Semin <Sergey.Semin@t-platforms.ru>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
It might be necessary to prevent the virtual mapping creation for a
requested memory region. For instance there is a "no-map" property
indicating exactly this feature. In this case we need to not only
reserve the specified region by pretending it doesn't exist in the
memory space, but completely remove the range from system just by
removing it from memblock. The same way it's done in default
early_init_dt_reserve_memory_arch() method.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Matt Redfearn <matt.redfearn@mips.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Originally before legacy bootmem was removed, the memory for the range was
correctly reserved by reserve_bootmem_region(). But since memblock has been
selected for early memory allocation the function can be utilized only
after paging is fully initialized (as it is done by memblock_free_all()
function). So calling it from arch_mem_init() method is prone to errors,
and at this stage we need to reserve the memory in the memblock allocator.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Matt Redfearn <matt.redfearn@mips.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Really the loop is pointless, since it walks over memblock-reserved
memory regions and mark them as reserved in memblock. Before
bootmem was removed from the kernel, this loop had been
used to map the memory reserved by CMA into the legacy bootmem
allocator. But now the early memory allocator is memblock,
which is used by CMA for reservation, so we don't need any mapping
anymore.
Reviewed-by: Matt Redfearn <matt.redfearn@mips.com>
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
The reserved_end variable had been used by the bootmem_init() code
to find a lowest limit of memory available for memmap blob. The original
code just tried to find a free memory space higher than kernel was placed.
This limitation seems justified for the memmap ragion search process, but
I can't see any obvious reason to reserve the unused space below kernel
seeing some platforms place it much higher than standard 1MB. Moreover
the RELOCATION config enables it to be loaded at any memory address.
So lets reserve the memory occupied by the kernel only, leaving the region
below being free for allocations. After doing this we can now discard the
code freeing a space between kernel _text and VMLINUX_LOAD_ADDRESS symbols
since it's going to be free anyway (unless marked as reserved by
platforms).
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Matt Redfearn <matt.redfearn@mips.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Clean up our configuration of the EBase register by making
configure_exception_vector() write to it unconditionally on systems
implementing MIPSr2 or higher, and removing the duplicate code in
per_cpu_trap_init(). The latter would have duplicated work on systems
with vectored interrupts, and didn't set BEV for safety like the
configure_exception_vector() version of the code does.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Cc: linux-mips@vger.kernel.org
Rather than performing cache flushing for a fixed 0x400 bytes, use the
actual size of the vector in order to ensure we cover all emitted code
on systems that make use of vectored interrupts.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Cc: linux-mips@vger.kernel.org
Currently we allocate the exception vector on systems which use a
vectored interrupt mode, but otherwise attempt to reuse whatever
exception vector the bootloader uses.
This can be problematic for a number of reasons:
1) The memory isn't properly marked reserved in the memblock
allocator. We've relied on the fact that EBase is generally in the
memory below the kernel image which we don't free, but this is
about to change.
2) Recent versions of U-Boot place their exception vector high in
kseg0, in memory which isn't protected by being lower than the
kernel anyway & can end up being clobbered.
3) We are unnecessarily reliant upon there being memory at the address
EBase points to upon entry to the kernel. This is often the case,
but if the bootloader doesn't configure EBase & leaves it with its
default value then we rely upon there being memory at physical
address 0 for no good reason.
Improve this situation by allocating the exception vector in all cases
when running on MIPSr2 or higher, and reserving the memory for MIPSr1 or
lower. This ensures we don't clobber the exception vector in any
configuration, and for MIPSr2 & higher removes the need for memory at
physical address 0.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Cc: linux-mips@vger.kernel.org
Allocate the exception vector using memblock_phys_alloc() which gives us
a physical address, rather than the previous convoluted setup which
obtained a virtual address using memblock_alloc(), converted it to a
physical address & then back to a virtual address.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Cc: linux-mips@vger.kernel.org
Before bootmem was completely removed from the kernel, the last loop
in the bootmem_init() had been used to reserve the correspondingly
marked regions, initialize sparsemem sections and to free the low memory
pages, which then would be used for early memory allocations. After the
bootmem removing patchset had been merged the loop was left to do the first
two things only. But it didn't do them quite well.
First of all it leaves the BOOT_MEM_INIT_RAM memory types unreserved,
which is definitely bug (although it isn't noticeable due to being used
by the kernel region only, which is fully marked as reserved). Secondly
the reservation is supposed to be done for any memory including the
high one. (I couldn't figure out why the highmem was ignored in the first
place, since platforms and dts' may declare any memory region for
reservation) Thirdly the reserved_end variable had been used here to not
accidentally free memory occupied by kernel. Since we already reserved the
corresponding region higher in this method there is no need in using the
variable here anymore. Fourthly the sparsemem should be aware of all the
memory types in the system including the ROM_DATA even if it is going to
be reserved for the whole system uptime. Finally after all these notes are
fixed the loop of memory reservation can be freely merged into the memory
installation loop as it's done in this patch.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Matt Redfearn <matt.redfearn@mips.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
There is a pointless code left in the bootmem_init() method since
the bootmem allocator removal. First part resides the PFN ranges
calculation loop. The conditional expressions and continue operator
are useless there, since nothing is done after them. Second part is
in RAM ranges installation loop. We can simplify the conditions cascade
a bit without much of the logic redefinition, so to reduce the code
length. In particular the end boundary value can be verified after
the possible reduction to be below max_low_pfn.
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Matt Redfearn <matt.redfearn@mips.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Current MIPS platform code makes sure the kernel text, data and init
sections are added to the boot memory map pool right after the
arch-specific memory setup method has been executed. But for some reason
the MIPS platform code skipped the kernel .bss section, which definitely
should be in the boot mem pool as well in any case. Lets fix this just be
adding the space between __bss_start and __bss_stop.
Reviewed-by: Matt Redfearn <matt.redfearn@mips.com>
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
This comes a bit late, but should be in 5.1 anyway: we want the newly
added system calls to be synchronized across all architectures in
the release.
I hope that in the future, any newly added system calls can be added
to all architectures at the same time, and tested there while they
are in linux-next, avoiding dependencies between the architecture
maintainer trees and the tree that contains the new system call.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcv2aZAAoJEGCrR//JCVIncu4QALpTBqbjSu9u1/nXRGMLWo9J
uToSBohDvsKW7wMkHcr1dU75ERIX9gqIY5pJWDrwzBdGDt02/oiy6WofXZDv4WkR
Sp4YncdTeZENi0nNN+mrGDzNrcvBJd0FRc1MSLgPzfKXgf8P1oRzEsOaJVlGY5hS
A8rNNUYE37m6rhTS59tNxzGvQcq3J7Q9ZRc0xjbSqIFngYVfQQiVbQCqd8RI6s9W
+Hek+e5VF5HQnzhmTT9MQM4TsxMRMNfzrYpjhhayuLJ3CHROJPX7x9pZEGdyusQS
5rDZxKes9SKTFS9QqycSyJkoP0awxrVrjqD1zFkWOJht0c3UCQAmw6GD7rlJkGPB
vofuzmPzMq5XaZ8vpTucWNL+0ymzRXhhQ6esV39vRwxztRc4/DCy5MHDnrPK5yXb
olPbltMAlHMaY5KePI/3jwpkcmzZjz9SNOKQ9/9tFlB5+RVF2qQdUgRMPE+XYa4H
pRrZChrEAf6ZjINGeLlIVtpTlBFPl1LRF7UkOy7TYBvtRqukduXYpOFPb1XspQUl
flIdBLOY3iF33o0eQnz10BEMxlblFhTj0SQrt0684kili7TjsWDaT+hPZSd72hhi
Wey9l39kaexV2Sh7XZ6oUe205ay3R8sTn0Ic2+CnZaboeOuYlLYc8/w2HkTeTYmu
9f3HAlX4Qu6RuX8bxLO0
=Y7Kd
-----END PGP SIGNATURE-----
Merge tag 'syscalls-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull syscall numbering updates from Arnd Bergmann:
"arch: add pidfd and io_uring syscalls everywhere
This comes a bit late, but should be in 5.1 anyway: we want the newly
added system calls to be synchronized across all architectures in the
release.
I hope that in the future, any newly added system calls can be added
to all architectures at the same time, and tested there while they are
in linux-next, avoiding dependencies between the architecture
maintainer trees and the tree that contains the new system call"
* tag 'syscalls-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
arch: add pidfd and io_uring syscalls everywhere
- Fix indirect syscall tracing & seccomp filtering for big endian MIPS64
kernels, which previously loaded the syscall number incorrectly &
would always use zero.
- Fix performance counter IRQ setup for Atheros/ath79 SoCs, allowing
perf to function on those systems.
And not really a fix, but a useful addition:
- Add a Broadcom mailing list to the MAINTAINERS entry for BMIPS systems
to allow relevant engineers to track patch submissions.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXL4GhRUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN15CQEA6ZtDNid9bRuD3lEOqiJTHrgUIvjA
sxVB5MwckzQ7Ir4A+wS6P4oIjlMdJxO0MZ23QlNNP+XibRt/jAz8ItLoNpcJ
=Cl5u
-----END PGP SIGNATURE-----
Merge tag 'mips_fixes_5.1_3' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS fixes from Paul Burton:
"A couple more MIPS fixes:
- Fix indirect syscall tracing & seccomp filtering for big endian
MIPS64 kernels, which previously loaded the syscall number
incorrectly & would always use zero.
- Fix performance counter IRQ setup for Atheros/ath79 SoCs, allowing
perf to function on those systems.
And not really a fix, but a useful addition:
- Add a Broadcom mailing list to the MAINTAINERS entry for BMIPS
systems to allow relevant engineers to track patch submissions"
* tag 'mips_fixes_5.1_3' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux:
MIPS: perf: ath79: Fix perfcount IRQ assignment
MIPS: scall64-o32: Fix indirect syscall number load
MAINTAINERS: BMIPS: Add internal Broadcom mailing list
Commit 4c21b8fd8f (MIPS: seccomp: Handle indirect system calls (o32))
added indirect syscall detection for O32 processes running on MIPS64,
but it did not work correctly for big endian kernel/processes. The
reason is that the syscall number is loaded from ARG1 using the lw
instruction while this is a 64-bit value, so zero is loaded instead of
the syscall number.
Fix the code by using the ld instruction instead. When running a 32-bit
processes on a 64 bit CPU, the values are properly sign-extended, so it
ensures the value passed to syscall_trace_enter is correct.
Recent systemd versions with seccomp enabled whitelist the getpid
syscall for their internal processes (e.g. systemd-journald), but call
it through syscall(SYS_getpid). This fix therefore allows O32 big endian
systems with a 64-bit kernel to run recent systemd versions.
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Cc: <stable@vger.kernel.org> # v3.15+
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Add the io_uring and pidfd_send_signal system calls to all architectures.
These system calls are designed to handle both native and compat tasks,
so all entries are the same across architectures, only arm-compat and
the generic tale still use an old format.
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> (s390)
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
- Provide struct pt_regs * from get_irq_regs() to kgdb_nmicallback()
when handling an IPI triggered by kgdb_roundup_cpus(), matching the
behavior of other architectures & resolving kgdb issues for SMP
systems.
- Defer a pointer dereference until after a NULL check in the
irq_shutdown callback for SGI IP27 HUB interrupts.
- A defconfig update for the MSCC Ocelot to enable some necessary
drivers.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXK0n2BUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN3rCAD/QLvPpE1YhmJ4Gd6MOEM2HHC15HHR
U0ROHAEO3+ZwZf4A/3aBKZMtEKrLJnxG+MEqhuDMtIu//J6kGSpOpMZ5y7YJ
=zRUT
-----END PGP SIGNATURE-----
Merge tag 'mips_fixes_5.1_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS fixes from Paul Burton:
"A few minor MIPS fixes:
- Provide struct pt_regs * from get_irq_regs() to kgdb_nmicallback()
when handling an IPI triggered by kgdb_roundup_cpus(), matching the
behavior of other architectures & resolving kgdb issues for SMP
systems.
- Defer a pointer dereference until after a NULL check in the
irq_shutdown callback for SGI IP27 HUB interrupts.
- A defconfig update for the MSCC Ocelot to enable some necessary
drivers"
* tag 'mips_fixes_5.1_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux:
MIPS: generic: Add switchdev, pinctrl and fit to ocelot_defconfig
MIPS: SGI-IP27: Fix use of unchecked pointer in shutdown_bridge_irq
MIPS: KGDB: fix kgdb support for SMP platforms.
MIPSr6 introduced compact branches which have no delay slots. Make use
of them for jump labels in order to avoid the need for a nop to fill the
branch or jump delay slot, saving 4 bytes of code for each static branch.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
- An interrupt masking fix for Loongson-based Lemote 2F systems (fixing
a regression from v3.19).
- A relocation fix for configurations in which the devicetree is stored
in an ELF section (fixing a regression from v4.7).
- Fix jump labels for MIPSr6 kernels where they previously could
inadvertently place a control transfer instruction in a forbidden slot
& take unexpected exceptions (fixing MIPSr6 support added in v4.0).
- Extend an existing USB power workaround for the Netgear WNDR3400 to v2
boards in addition to the v3 ones that already used it.
- Remove the custom MIPS32 definition of __kernel_fsid_t to make it
consistent with MIPS64 & every other architecture, in particular
resolving issues for code which tries to print the val field whose
type previously differed (though had identical memory layout).
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXJARJxUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN0qJAEAg6i9PnkuHZFXjlaUsvBWyVJRrpgR
Y9vLYXTGJZdb1BwA/i17C6xD7i41Ef2/TtOuPc5fJ6IfEbt74nKJEeBxNTUO
=V6Ds
-----END PGP SIGNATURE-----
gpgsig -----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXK0o6hUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN1r6QEAyfJVKxisnxwDGmP0QUoRkISv7Mi/
xhdiPmC5AaR8qjoBAPbGex4JdLRVVoti/lxYk2mJ38JEM/zxL3YTxcj/n7IF
=CJp2
-----END PGP SIGNATURE-----
Merge tag 'mips_fixes_5.1_1' into mips-next
A small batch of MIPS fixes for 5.1:
- An interrupt masking fix for Loongson-based Lemote 2F systems (fixing
a regression from v3.19).
- A relocation fix for configurations in which the devicetree is stored
in an ELF section (fixing a regression from v4.7).
- Fix jump labels for MIPSr6 kernels where they previously could
inadvertently place a control transfer instruction in a forbidden slot
& take unexpected exceptions (fixing MIPSr6 support added in v4.0).
- Extend an existing USB power workaround for the Netgear WNDR3400 to v2
boards in addition to the v3 ones that already used it.
- Remove the custom MIPS32 definition of __kernel_fsid_t to make it
consistent with MIPS64 & every other architecture, in particular
resolving issues for code which tries to print the val field whose
type previously differed (though had identical memory layout).
Merged into mips-next to gain the MIPSr6 jump label fix before enabling
jump labels by default for generic kernel builds.
Signed-off-by: Paul Burton <paul.burton@mips.com>
KGDB_call_nmi_hook is called by other cpu through smp call.
MIPS smp call is processed in ipi irq handler and regs is saved in
handle_int.
So kgdb_call_nmi_hook get regs by get_irq_regs and regs will be passed
to kgdb_cpu_enter.
Signed-off-by: Chong Qiao <qiaochong@loongson.cn>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: QiaoChong <qiaochong@loongson.cn>
Since the enabling and disabling of IRQs within preempt_schedule_irq()
is contained in a need_resched() loop, we don't need the outer arch
code loop.
Note that commit a18815abcd ("Use preempt_schedule_irq.") initially
removed the existing loop, but missed the final branch to restore_all.
Commit cdaed73afb ("Fix preemption bug.") missed that and reintroduced
the loop.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-kernel@vger.kernel.org
- An interrupt masking fix for Loongson-based Lemote 2F systems (fixing
a regression from v3.19).
- A relocation fix for configurations in which the devicetree is stored
in an ELF section (fixing a regression from v4.7).
- Fix jump labels for MIPSr6 kernels where they previously could
inadvertently place a control transfer instruction in a forbidden slot
& take unexpected exceptions (fixing MIPSr6 support added in v4.0).
- Extend an existing USB power workaround for the Netgear WNDR3400 to v2
boards in addition to the v3 ones that already used it.
- Remove the custom MIPS32 definition of __kernel_fsid_t to make it
consistent with MIPS64 & every other architecture, in particular
resolving issues for code which tries to print the val field whose
type previously differed (though had identical memory layout).
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXJARJxUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN0qJAEAg6i9PnkuHZFXjlaUsvBWyVJRrpgR
Y9vLYXTGJZdb1BwA/i17C6xD7i41Ef2/TtOuPc5fJ6IfEbt74nKJEeBxNTUO
=V6Ds
-----END PGP SIGNATURE-----
Merge tag 'mips_fixes_5.1_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS fixes from Paul Burton:
"A small batch of MIPS fixes for 5.1:
- An interrupt masking fix for Loongson-based Lemote 2F systems
(fixing a regression from v3.19)
- A relocation fix for configurations in which the devicetree is
stored in an ELF section (fixing a regression from v4.7)
- Fix jump labels for MIPSr6 kernels where they previously could
inadvertently place a control transfer instruction in a forbidden
slot & take unexpected exceptions (fixing MIPSr6 support added in
v4.0)
- Extend an existing USB power workaround for the Netgear WNDR3400 to
v2 boards in addition to the v3 ones that already used it
- Remove the custom MIPS32 definition of __kernel_fsid_t to make it
consistent with MIPS64 & every other architecture, in particular
resolving issues for code which tries to print the val field whose
type previously differed (though had identical memory layout)"
* tag 'mips_fixes_5.1_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux:
MIPS: Remove custom MIPS32 __kernel_fsid_t type
mips: bcm47xx: Enable USB power on Netgear WNDR3400v2
MIPS: Fix kernel crash for R6 in jump label branch function
MIPS: Ensure ELF appended dtb is relocated
mips: loongson64: lemote-2f: Add IRQF_NO_SUSPEND to "cascade" irqaction.
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The last parameter of memblock_alloc_from() is the lower limit for the
memory allocation. When it is 0, the call is equivalent to
memblock_alloc().
Link: http://lkml.kernel.org/r/1548057848-15136-13-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Paul Burton <paul.burton@mips.com> # MIPS part
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes booting with the combination of CONFIG_RELOCATABLE=y
and CONFIG_MIPS_ELF_APPENDED_DTB=y.
Sections that appear after the relocation table are not relocated
on system boot (except .bss, which has special handling).
With CONFIG_MIPS_ELF_APPENDED_DTB, the dtb is part of the
vmlinux ELF, so it must be relocated together with everything else.
Fixes: 069fd76627 ("MIPS: Reserve space for relocation table")
Signed-off-by: Yasha Cherikovsky <yasha.che3@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org # v4.7+
Pull year 2038 updates from Thomas Gleixner:
"Another round of changes to make the kernel ready for 2038. After lots
of preparatory work this is the first set of syscalls which are 2038
safe:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
The syscall numbers are identical all over the architectures"
* 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
riscv: Use latest system call ABI
checksyscalls: fix up mq_timedreceive and stat exceptions
unicore32: Fix __ARCH_WANT_STAT64 definition
asm-generic: Make time32 syscall numbers optional
asm-generic: Drop getrlimit and setrlimit syscalls from default list
32-bit userspace ABI: introduce ARCH_32BIT_OFF_T config option
compat ABI: use non-compat openat and open_by_handle_at variants
y2038: add 64-bit time_t syscalls to all 32-bit architectures
y2038: rename old time and utime syscalls
y2038: remove struct definition redirects
y2038: use time32 syscall names on 32-bit
syscalls: remove obsolete __IGNORE_ macros
y2038: syscalls: rename y2038 compat syscalls
x86/x32: use time64 versions of sigtimedwait and recvmmsg
timex: change syscalls to use struct __kernel_timex
timex: use __kernel_timex internally
sparc64: add custom adjtimex/clock_adjtime functions
time: fix sys_timer_settime prototype
time: Add struct __kernel_timex
time: make adjtime compat handling available for 32 bit
...
- Support for the MIPSr6 MemoryMapID register & Global INValidate TLB
(GINVT) instructions, allowing for more efficient TLB maintenance when
running on a CPU such as the I6500 that supports these.
- Enable huge page support for MIPS64r6.
- Optimize post-DMA cache sync by removing that code entirely for kernel
configurations in which we know it won't be needed.
- The number of pages allocated for interrupt stacks is now calculated
correctly, where before we would wastefully allocate too much memory
in some configurations.
- The ath79 platform migrates to devicetree.
- The bcm47xx platform sees fixes for the Buffalo WHR-G54S board.
- The ingenic/jz4740 platform gains support for appended devicetrees.
- The cavium_octeon, lantiq, loongson32 & sgi-ip27 platforms all see
cleanups as do various pieces of core architecture code.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXH3BQxUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN1+4wD+Oh4JTfZN/NEOQMlrSkXxjEHqjX3u
1Y6CiiPCs+q2UnYBANb+ic+ZH5MnvJxxmcvlYI2q3rIh4b8TDriip4KMUTUP
=Sw9X
-----END PGP SIGNATURE-----
Merge tag 'mips_5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS updates from Paul Burton:
- Support for the MIPSr6 MemoryMapID register & Global INValidate TLB
(GINVT) instructions, allowing for more efficient TLB maintenance
when running on a CPU such as the I6500 that supports these.
- Enable huge page support for MIPS64r6.
- Optimize post-DMA cache sync by removing that code entirely for
kernel configurations in which we know it won't be needed.
- The number of pages allocated for interrupt stacks is now calculated
correctly, where before we would wastefully allocate too much memory
in some configurations.
- The ath79 platform migrates to devicetree.
- The bcm47xx platform sees fixes for the Buffalo WHR-G54S board.
- The ingenic/jz4740 platform gains support for appended devicetrees.
- The cavium_octeon, lantiq, loongson32 & sgi-ip27 platforms all see
cleanups as do various pieces of core architecture code.
* tag 'mips_5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (66 commits)
MIPS: lantiq: Remove separate GPHY Firmware loader
MIPS: ingenic: Add support for appended devicetree
MIPS: SGI-IP27: rework HUB interrupts
MIPS: SGI-IP27: do boot CPU init later
MIPS: SGI-IP27: do xtalk scanning later
MIPS: SGI-IP27: use pr_info/pr_emerg and pr_cont to fix output
MIPS: SGI-IP27: clean up bridge access and header files
MIPS: SGI-IP27: get rid of volatile and hubreg_t
MIPS: irq: Allocate accurate order pages for irq stack
MIPS: dma-noncoherent: Remove bogus condition in dma_sync_phys()
MIPS: eBPF: Remove REG_32BIT_ZERO_EX
MIPS: eBPF: Always return sign extended 32b values
MIPS: CM: Fix indentation
MIPS: BCM47XX: Fix/improve Buffalo WHR-G54S support
MIPS: OCTEON: program rx/tx-delay always from DT
MIPS: OCTEON: delete board-specific link status
MIPS: OCTEON: don't lie about interface type of CN3005 board
MIPS: OCTEON: warn if deprecated link status is being used
MIPS: OCTEON: add fixed-link nodes to in-kernel device tree
MIPS: Delete unused flush_cache_sigtramp()
...
Every in-kernel use of this function defined it to KERNEL_DS (either as
an actual define, or as an inline function). It's an entirely
historical artifact, and long long long ago used to actually read the
segment selector valueof '%ds' on x86.
Which in the kernel is always KERNEL_DS.
Inspired by a patch from Jann Horn that just did this for a very small
subset of users (the ones in fs/), along with Al who suggested a script.
I then just took it to the logical extreme and removed all the remaining
gunk.
Roughly scripted with
git grep -l '(get_ds())' -- :^tools/ | xargs sed -i 's/(get_ds())/(KERNEL_DS)/'
git grep -lw 'get_ds' -- :^tools/ | xargs sed -i '/^#define get_ds()/d'
plus manual fixups to remove a few unusual usage patterns, the couple of
inline function cases and to fix up a comment that had become stale.
The 'get_ds()' function remains in an x86 kvm selftest, since in user
space it actually does something relevant.
Inspired-by: Jann Horn <jannh@google.com>
Inspired-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For platforms, which use a PHYS_OFFSET != 0, symbol _end also
contains that offset. So when calling memblock_reserve() for
reserving kernel the size argument needs to be adjusted.
Fixes: bcec54bf31 ("mips: switch to NO_BOOTMEM")
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org # v4.20+
To make use of per_cpu variables in interrupt code per_cpu_init() must
be done after setup_per_cpu_areas(). This is achieved by calling it
in smp_prepare_boot_cpu() via a new smp_ops method.
Signed-off-by: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
The irq_pages is the number of pages for irq stack, but not the
order which is needed by __get_free_pages().
We can use get_order() to calculate the accurate order.
Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: fe8bd18ffe ("MIPS: Introduce irq_stack")
Cc: linux-mips@vger.kernel.org
Cc: stable@vger.kernel.org # v4.11+
mips_cm_error_report() contains a function call that's incorrectly
indented a level further than it ought to be. Remove a tab from the
start of both affected lines.
Signed-off-by: Paul Burton <paul.burton@mips.com>
__cmpxchg_small erroneously uses u8 for load comparison which can
be either char or short. This patch changes the local variable to
u32 which is sufficiently sized, as the loaded value is already
masked and shifted appropriately. Using an integer size avoids
any unnecessary canonicalization from use of non native widths.
This patch is part of a series that adapts the MIPS small word
atomics code for xchg and cmpxchg on short and char to RISC-V.
Cc: RISC-V Patches <patches@groups.riscv.org>
Cc: Linux RISC-V <linux-riscv@lists.infradead.org>
Cc: Linux MIPS <linux-mips@linux-mips.org>
Signed-off-by: Michael Clark <michaeljclark@mac.com>
[paul.burton@mips.com:
- Fix varialble typo per Jonas Gorski.
- Consolidate load variable with other declarations.]
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: 3ba7f44d2b ("MIPS: cmpxchg: Implement 1 byte & 2 byte cmpxchg()")
Cc: stable@vger.kernel.org # v4.13+
Accordingly to the documentation
---cut---
The GCR_ERROR_CAUSE.ERR_TYPE field and the GCR_ERROR_MULT.ERR_TYPE
fields can be cleared by either a reset or by writing the current
value of GCR_ERROR_CAUSE.ERR_TYPE to the
GCR_ERROR_CAUSE.ERR_TYPE register.
---cut---
Do exactly this. Original value of cm_error may be safely written back;
it clears error cause and keeps other bits untouched.
Fixes: 3885c2b463 ("MIPS: CM: Add support for reporting CM cache errors")
Signed-off-by: Vladimir Kondratiev <vladimir.kondratiev@linux.intel.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org # v4.3+
This adds 21 new system calls on each ABI that has 32-bit time_t
today. All of these have the exact same semantics as their existing
counterparts, and the new ones all have macro names that end in 'time64'
for clarification.
This gets us to the point of being able to safely use a C library
that has 64-bit time_t in user space. There are still a couple of
loose ends to tie up in various areas of the code, but this is the
big one, and should be entirely uncontroversial at this point.
In particular, there are four system calls (getitimer, setitimer,
waitid, and getrusage) that don't have a 64-bit counterpart yet,
but these can all be safely implemented in the C library by wrapping
around the existing system calls because the 32-bit time_t they
pass only counts elapsed time, not time since the epoch. They
will be dealt with later.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
The time, stime, utime, utimes, and futimesat system calls are only
used on older architectures, and we do not provide y2038 safe variants
of them, as they are replaced by clock_gettime64, clock_settime64,
and utimensat_time64.
However, for consistency it seems better to have the 32-bit architectures
that still use them call the "time32" entry points (leaving the
traditional handlers for the 64-bit architectures), like we do for system
calls that now require two versions.
Note: We used to always define __ARCH_WANT_SYS_TIME and
__ARCH_WANT_SYS_UTIME and only set __ARCH_WANT_COMPAT_SYS_TIME and
__ARCH_WANT_SYS_UTIME32 for compat mode on 64-bit kernels. Now this is
reversed: only 64-bit architectures set __ARCH_WANT_SYS_TIME/UTIME, while
we need __ARCH_WANT_SYS_TIME32/UTIME32 for 32-bit architectures and compat
mode. The resulting asm/unistd.h changes look a bit counterintuitive.
This is only a cleanup patch and it should not change any behavior.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME
and use the _time32 system calls from the former compat layer instead
of the system calls that take __kernel_timespec and similar arguments.
The temporary redirects for __kernel_timespec, __kernel_itimerspec
and __kernel_timex can get removed with this.
It would be easy to split this commit by architecture, but with the new
generated system call tables, it's easy enough to do it all at once,
which makes it a little easier to check that the changes are the same
in each table.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
A lot of system calls that pass a time_t somewhere have an implementation
using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have
been reworked so that this implementation can now be used on 32-bit
architectures as well.
The missing step is to redefine them using the regular SYSCALL_DEFINEx()
to get them out of the compat namespace and make it possible to build them
on 32-bit architectures.
Any system call that ends in 'time' gets a '32' suffix on its name for
that version, while the others get a '_time32' suffix, to distinguish
them from the normal version, which takes a 64-bit time argument in the
future.
In this step, only 64-bit architectures are changed, doing this rename
first lets us avoid touching the 32-bit architectures twice.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Patch (b6c7a324df "MIPS: Fix get_frame_info() handling of
microMIPS function size.") introduces additional function size
check for microMIPS by only checking insn between ip and ip + func_size.
However, func_size in get_frame_info() is always 0 if KALLSYMS is not
enabled. This causes get_frame_info() to return immediately without
calculating correct frame_size, which in turn causes "Can't analyze
schedule() prologue" warning messages at boot time.
This patch removes func_size check, and let the frame_size check run
up to 128 insns for both MIPS and microMIPS.
Signed-off-by: Jun-Ru Chang <jrjang@realtek.com>
Signed-off-by: Tony Wu <tonywu@realtek.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: b6c7a324df ("MIPS: Fix get_frame_info() handling of microMIPS function size.")
Cc: <ralf@linux-mips.org>
Cc: <jhogan@kernel.org>
Cc: <macro@mips.com>
Cc: <yamada.masahiro@socionext.com>
Cc: <peterz@infradead.org>
Cc: <mingo@kernel.org>
Cc: <linux-mips@vger.kernel.org>
Cc: <linux-kernel@vger.kernel.org>
Introduce support for using MemoryMapIDs (MMIDs) as an alternative to
Address Space IDs (ASIDs). The major difference between the two is that
MMIDs are global - ie. an MMID uniquely identifies an address space
across all coherent CPUs. In contrast ASIDs are non-global per-CPU IDs,
wherein each address space is allocated a separate ASID for each CPU
upon which it is used. This global namespace allows a new GINVT
instruction be used to globally invalidate TLB entries associated with a
particular MMID across all coherent CPUs in the system, removing the
need for IPIs to invalidate entries with separate ASIDs on each CPU.
The allocation scheme used here is largely borrowed from arm64 (see
arch/arm64/mm/context.c). In essence we maintain a bitmap to track
available MMIDs, and MMIDs in active use at the time of a rollover to a
new MMID version are preserved in the new version. The allocation scheme
requires efficient 64 bit atomics in order to perform reasonably, so
this support depends upon CONFIG_GENERIC_ATOMIC64=n (ie. currently it
will only be included in MIPS64 kernels).
The first, and currently only, available CPU with support for MMIDs is
the MIPS I6500. This CPU supports 16 bit MMIDs, and so for now we cap
our MMIDs to 16 bits wide in order to prevent the bitmap growing to
absurd sizes if any future CPU does implement 32 bit MMIDs as the
architecture manuals suggest is recommended.
When MMIDs are in use we also make use of GINVT instruction which is
available due to the global nature of MMIDs. By executing a sequence of
GINVT & SYNC 0x14 instructions we can avoid the overhead of an IPI to
each remote CPU in many cases. One complication is that GINVT will
invalidate wired entries (in all cases apart from type 0, which targets
the entire TLB). In order to avoid GINVT invalidating any wired TLB
entries we set up, we make sure to create those entries using a reserved
MMID (0) that we never associate with any address space.
Also of note is that KVM will require further work in order to support
MMIDs & GINVT, since KVM is involved in allocating IDs for guests & in
configuring the MMU. That work is not part of this patch, so for now
when MMIDs are in use KVM is disabled.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
When we gain MMID support we'll be storing MMIDs as atomic64_t values
and accessing them via atomic64_* functions. This necessitates that we
don't use cpu_context() as the left hand side of an assignment, ie. as a
modifiable lvalue. In preparation for this introduce a new
set_cpu_context() function & replace all assignments with cpu_context()
on their left hand side with an equivalent call to set_cpu_context().
To enforce that cpu_context() should not be used for assignments, we
rewrite it as a static inline function.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
All 3 variants of local_flush_tlb_mm() are now effectively simple calls
to drop_mmu_context(). Remove them and use drop_mmu_context() directly.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
The IPC system call handling is highly inconsistent across architectures,
some use sys_ipc, some use separate calls, and some use both. We also
have some architectures that require passing IPC_64 in the flags, and
others that set it implicitly.
For the addition of a y2038 safe semtimedop() system call, I chose to only
support the separate entry points, but that requires first supporting
the regular ones with their own syscall numbers.
The IPC_64 is now implied by the new semctl/shmctl/msgctl system
calls even on the architectures that require passing it with the ipc()
multiplexer.
I'm not adding the new semtimedop() or semop() on 32-bit architectures,
those will get implemented using the new semtimedop_time64() version
that gets added along with the other time64 calls.
Three 64-bit architectures (powerpc, s390 and sparc) get semtimedop().
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
The behavior of these system calls is slightly different between
architectures, as determined by the CONFIG_ARCH_WANT_IPC_PARSE_VERSION
symbol. Most architectures that implement the split IPC syscalls don't set
that symbol and only get the modern version, but alpha, arm, microblaze,
mips-n32, mips-n64 and xtensa expect the caller to pass the IPC_64 flag.
For the architectures that so far only implement sys_ipc(), i.e. m68k,
mips-o32, powerpc, s390, sh, sparc, and x86-32, we want the new behavior
when adding the split syscalls, so we need to distinguish between the
two groups of architectures.
The method I picked for this distinction is to have a separate system call
entry point: sys_old_*ctl() now uses ipc_parse_version, while sys_*ctl()
does not. The system call tables of the five architectures are changed
accordingly.
As an additional benefit, we no longer need the configuration specific
definition for ipc_parse_version(), it always does the same thing now,
but simply won't get called on architectures with the modern interface.
A small downside is that on architectures that do set
ARCH_WANT_IPC_PARSE_VERSION, we now have an extra set of entry points
that are never called. They only add a few bytes of bloat, so it seems
better to keep them compared to adding yet another Kconfig symbol.
I considered adding new syscall numbers for the IPC_64 variants for
consistency, but decided against that for now.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Yangtao Li <tiny.windzz@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Marcin Nowakowski <marcin.nowakowski@mips.com>
Cc: Yasha Cherikovsky <yasha.che3@gmail.com>
Cc: linux-mips@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mostly clean ups although whilst Doug's was chasing down a odd
lockdep warning he also did some work to improved debugger resilience
when some CPUs fail to respond to the round up request.
The main changes are:
* Fixing a lockdep warning on architectures that cannot use an NMI for
the round up plus related changes to make CPU round up and all CPU
backtrace more resilient.
* Constify the arch ops tables
* A couple of other small clean ups
Two of the three patchsets here include changes that spill over into
arch/. Changes in the arch space are relatively narrow in scope
(and directly related to kgdb). Didn't get comprehensive acks but
all impacted maintainers were Cc:ed in good time.
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
-----BEGIN PGP SIGNATURE-----
iQJPBAABCAA5FiEELzVBU1D3lWq6cKzwfOMlXTn3iKEFAlwonoUbHGRhbmllbC50
aG9tcHNvbkBsaW5hcm8ub3JnAAoJEHzjJV0594ihmooP/1uzSMGQIoQMB8XeU/jT
Da2iILybi6hGp7ILA27d0yN3tsJBxWGWs8wzNdzMo3NQ3J0o4foAUnS/R0Vjkg9w
uphe5EA4HDsIrH05OouNb984BeEgNaC9HSqtyr9fXuh024NboULFKIm7REYm+QHT
C5SrBtmonL1xE7FmAhudLWjl7ZlvxM6DJeoVViH4kKq0raTiILt6VJaGl9JfcAdL
m9GEf9r/nh0sCq3GNgyc0y4BvHed+Kxzy1fsIi3jE6t8elaYYR72gNRQ5LaFxcnQ
F04/UtH75qB4rqYsqqV1q0rFi+tj+p9wYTmxixaGWsVDX4Gb5KXuLWJhaRb5IvwC
bdq/0IAXRr4vUL3y0tFWfCj7pHGaVc/gfXi8aieRXLGAZG+tdfuu99NCiulIZTfc
QqZz12Z+99/qi6dK7dBQtaN8SyPeB1QXKWefeGo2Bt5QqiBmcKHxsQYMUo3nkf3J
UXHpj4LG6Ldsi/w8VZfvXmM0/vbO/jrus9m+X2v+4tJyisjrsyv0FRnREI4avfbC
l09P1ajv7RrAaxtab0smV9krqWZ/mSn0zcgcaD6RdKe0+SwsiP/CEx1z1Wb1MH9c
wjEiClXjdVB39YVT0YVfG2Ho7qH8WRErxVyNb/f4QKHMXL1Mu91hFWhBBpUOGUj2
7Jrq2zK1uWramtt7GBDpHYYH
=Aqlc
-----END PGP SIGNATURE-----
Merge tag 'kgdb-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/danielt/linux
Pull kgdb updates from Daniel Thompson:
"Mostly clean ups although while Doug's was chasing down a odd lockdep
warning he also did some work to improved debugger resilience when
some CPUs fail to respond to the round up request.
The main changes are:
- Fixing a lockdep warning on architectures that cannot use an NMI
for the round up plus related changes to make CPU round up and all
CPU backtrace more resilient.
- Constify the arch ops tables
- A couple of other small clean ups
Two of the three patchsets here include changes that spill over into
arch/. Changes in the arch space are relatively narrow in scope (and
directly related to kgdb). Didn't get comprehensive acks but all
impacted maintainers were Cc:ed in good time"
* tag 'kgdb-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/danielt/linux:
kgdb/treewide: constify struct kgdb_arch arch_kgdb_ops
mips/kgdb: prepare arch_kgdb_ops for constness
kdb: use bool for binary state indicators
kdb: Don't back trace on a cpu that didn't round up
kgdb: Don't round up a CPU that failed rounding up before
kgdb: Fix kgdb_roundup_cpus() for arches who used smp_call_function()
kgdb: Remove irq flags from roundup
checkpatch.pl reports the following:
WARNING: struct kgdb_arch should normally be const
#28: FILE: arch/mips/kernel/kgdb.c:397:
+struct kgdb_arch arch_kgdb_ops = {
This report makes sense, as all other ops struct, this
one should also be const. This patch does the change.
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Acked-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
MIPS is the only architecture modifying arch_kgdb_ops during init.
This patch makes the init static, so that it can be changed to
const in following patch, as recommended by checkpatch.pl
Suggested-by: Paul Burton <paul.burton@mips.com>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Acked-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
When I had lockdep turned on and dropped into kgdb I got a nice splat
on my system. Specifically it hit:
DEBUG_LOCKS_WARN_ON(current->hardirq_context)
Specifically it looked like this:
sysrq: SysRq : DEBUG
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(current->hardirq_context)
WARNING: CPU: 0 PID: 0 at .../kernel/locking/lockdep.c:2875 lockdep_hardirqs_on+0xf0/0x160
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.19.0 #27
pstate: 604003c9 (nZCv DAIF +PAN -UAO)
pc : lockdep_hardirqs_on+0xf0/0x160
...
Call trace:
lockdep_hardirqs_on+0xf0/0x160
trace_hardirqs_on+0x188/0x1ac
kgdb_roundup_cpus+0x14/0x3c
kgdb_cpu_enter+0x53c/0x5cc
kgdb_handle_exception+0x180/0x1d4
kgdb_compiled_brk_fn+0x30/0x3c
brk_handler+0x134/0x178
do_debug_exception+0xfc/0x178
el1_dbg+0x18/0x78
kgdb_breakpoint+0x34/0x58
sysrq_handle_dbg+0x54/0x5c
__handle_sysrq+0x114/0x21c
handle_sysrq+0x30/0x3c
qcom_geni_serial_isr+0x2dc/0x30c
...
...
irq event stamp: ...45
hardirqs last enabled at (...44): [...] __do_softirq+0xd8/0x4e4
hardirqs last disabled at (...45): [...] el1_irq+0x74/0x130
softirqs last enabled at (...42): [...] _local_bh_enable+0x2c/0x34
softirqs last disabled at (...43): [...] irq_exit+0xa8/0x100
---[ end trace adf21f830c46e638 ]---
Looking closely at it, it seems like a really bad idea to be calling
local_irq_enable() in kgdb_roundup_cpus(). If nothing else that seems
like it could violate spinlock semantics and cause a deadlock.
Instead, let's use a private csd alongside
smp_call_function_single_async() to round up the other CPUs. Using
smp_call_function_single_async() doesn't require interrupts to be
enabled so we can remove the offending bit of code.
In order to avoid duplicating this across all the architectures that
use the default kgdb_roundup_cpus(), we'll add a "weak" implementation
to debug_core.c.
Looking at all the people who previously had copies of this code,
there were a few variants. I've attempted to keep the variants
working like they used to. Specifically:
* For arch/arc we passed NULL to kgdb_nmicallback() instead of
get_irq_regs().
* For arch/mips there was a bit of extra code around
kgdb_nmicallback()
NOTE: In this patch we will still get into trouble if we try to round
up a CPU that failed to round up before. We'll try to round it up
again and potentially hang when we try to grab the csd lock. That's
not new behavior but we'll still try to do better in a future patch.
Suggested-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
The function kgdb_roundup_cpus() was passed a parameter that was
documented as:
> the flags that will be used when restoring the interrupts. There is
> local_irq_save() call before kgdb_roundup_cpus().
Nobody used those flags. Anyone who wanted to temporarily turn on
interrupts just did local_irq_enable() and local_irq_disable() without
looking at them. So we can definitely remove the flags.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
include:
- Syscall tables & definitions for unistd.h are now generated by
scripts, providing greater consistency with other architectures &
making it easier to add new syscalls.
- Support for building kernels with no floating point support, upon
which any userland attempting to use floating point instructions will
receive a SIGILL. Mostly useful to shrink the kernel & as preparation
for nanoMIPS support which does not yet include FP.
- MIPS SIMD Architecture (MSA) vector register context is now exposed
by ptrace via a new NT_MIPS_MSA regset.
- ASIDs are now stored as 64b values even for MIPS32 kernels, expanding
the ASID version field sufficiently that we don't need to worry about
overflow & avoiding rare issues with reused ASIDs that have been
observed in the wild.
- The branch delay slot "emulation" page is now mapped without write
permission for the user, preventing its use as a nice location for
attacks to execute malicious code from.
- Support for ioremap_prot(), primarily to allow gdb or other
ptrace users the ability to view their tracee's memory using the same
cache coherency attribute.
- Optimizations to more cpu_has_* macros, allowing more to be
compile-time constant where possible.
- Enable building the whole kernel with UBSAN instrumentation.
- Enable building the kernel with link-time dead code & data
elimination.
Platform specific changes include:
- The Boston board gains a workaround for DMA prefetching issues with
the EG20T Platform Controller Hub that it uses.
- Cleanups to Cavium Octeon code removing about 20k lines of redundant
code, mostly unused or duplicate register definitions in headers.
- defconfig updates for the DECstation machines, including new
defconfigs for r4k & 64b machines.
- Further work on Loongson 3 support.
- DMA fixes for SiByte machines.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCXB+vwBUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN3/EgD9Givei//X2oTd4w8HSe/uPeVkMnbA
93WMi1cS0EogAaUA/R7poLSnAE74mt+DT4PrGdQezUbXts9vUF/7VX0MvFIF
=hmtJ
-----END PGP SIGNATURE-----
Merge tag 'mips_4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS updates from Paul Burton:
"Here's the main MIPS pull for Linux 4.21. Core architecture changes
include:
- Syscall tables & definitions for unistd.h are now generated by
scripts, providing greater consistency with other architectures &
making it easier to add new syscalls.
- Support for building kernels with no floating point support, upon
which any userland attempting to use floating point instructions
will receive a SIGILL. Mostly useful to shrink the kernel & as
preparation for nanoMIPS support which does not yet include FP.
- MIPS SIMD Architecture (MSA) vector register context is now exposed
by ptrace via a new NT_MIPS_MSA regset.
- ASIDs are now stored as 64b values even for MIPS32 kernels,
expanding the ASID version field sufficiently that we don't need to
worry about overflow & avoiding rare issues with reused ASIDs that
have been observed in the wild.
- The branch delay slot "emulation" page is now mapped without write
permission for the user, preventing its use as a nice location for
attacks to execute malicious code from.
- Support for ioremap_prot(), primarily to allow gdb or other ptrace
users the ability to view their tracee's memory using the same
cache coherency attribute.
- Optimizations to more cpu_has_* macros, allowing more to be
compile-time constant where possible.
- Enable building the whole kernel with UBSAN instrumentation.
- Enable building the kernel with link-time dead code & data
elimination.
Platform specific changes include:
- The Boston board gains a workaround for DMA prefetching issues with
the EG20T Platform Controller Hub that it uses.
- Cleanups to Cavium Octeon code removing about 20k lines of
redundant code, mostly unused or duplicate register definitions in
headers.
- defconfig updates for the DECstation machines, including new
defconfigs for r4k & 64b machines.
- Further work on Loongson 3 support.
- DMA fixes for SiByte machines"
* tag 'mips_4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (95 commits)
MIPS: math-emu: Write-protect delay slot emulation pages
MIPS: Remove struct mm_context_t fp_mode_switching field
mips: generate uapi header and system call table files
mips: add system call table generation support
mips: remove syscall table entries
mips: add +1 to __NR_syscalls in uapi header
mips: rename scall64-64.S to scall64-n64.S
mips: remove unused macros
mips: add __NR_syscalls along with __NR_Linux_syscalls
MIPS: Expand MIPS32 ASIDs to 64 bits
MIPS: OCTEON: delete redundant register definitions
MIPS: OCTEON: cvmx_gmxx_inf_mode: use oldest forward compatible definition
MIPS: OCTEON: cvmx_mio_fus_dat3: use oldest forward compatible definition
MIPS: OCTEON: cvmx_pko_mem_debug8: use oldest forward compatible definition
MIPS: OCTEON: octeon-usb: use common gpio_bit definition
MIPS: OCTEON: enable all OCTEON drivers in defconfig
mips: annotate implicit fall throughs
MIPS: Hardcode cpu_has_mips* where target ISA allows
MIPS: MT: Remove norps command line parameter
MIPS: Only include mmzone.h when CONFIG_NEED_MULTIPLE_NODES=y
...
Mapping the delay slot emulation page as both writeable & executable
presents a security risk, in that if an exploit can write to & jump into
the page then it can be used as an easy way to execute arbitrary code.
Prevent this by mapping the page read-only for userland, and using
access_process_vm() with the FOLL_FORCE flag to write to it from
mips_dsemul().
This will likely be less efficient due to copy_to_user_page() performing
cache maintenance on a whole page, rather than a single line as in the
previous use of flush_cache_sigtramp(). However this delay slot
emulation code ought not to be running in any performance critical paths
anyway so this isn't really a problem, and we can probably do better in
copy_to_user_page() anyway in future.
A major advantage of this approach is that the fix is small & simple to
backport to stable kernels.
Reported-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: 432c6bacbd ("MIPS: Use per-mm page to execute branch delay slot instructions")
Cc: stable@vger.kernel.org # v4.8+
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Rich Felker <dalias@libc.org>
Cc: David Daney <david.daney@cavium.com>
The fp_mode_switching field in struct mm_context_t was left unused by
commit 8c8d953c28 ("MIPS: Schedule on CPUs we need to lose FPU for a
mode switch") in v4.19, with nothing modifying its value & nothing
waiting on it having any particular value after that commit. Remove the
unused field & the one remaining reference to it.
Signed-off-by: Paul Burton <paul.burton@mips.com>
System call table generation script must be run to gener-
ate unistd_(nr_)n64/n32/o32.h and syscall_table_32_o32/
64_n64/64_n32/64-o32.h files. This patch will have changes
which will invokes the script.
This patch will generate unistd_(nr_)n64/n32/o32.h and
syscall_table_32_o32/64_n64/64-n32/64-o32.h files by the
syscall table generation script invoked by parisc/Make-
file and the generated files against the removed files
must be identical.
The generated uapi header file will be included in uapi/-
asm/unistd.h and generated system call table header file
will be included by kernel/scall32-o32/64-n64/64-n32/-
64-o32.Sfile.
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: y2038@lists.linaro.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: arnd@arndb.de
Cc: deepa.kernel@gmail.com
Cc: marcin.juszkiewicz@linaro.org
The system call tables are in different format in all
architecture and it will be difficult to manually add,
modify or delete the syscall table entries in the res-
pective files. To make it easy by keeping a script and
which will generate the uapi header and syscall table
file. This change will also help to unify the implemen-
tation across all architectures.
The system call table generation script is added in
kernel/syscalls directory which contain the scripts to
generate both uapi header file and system call table
files. The syscall.tbl will be input for the scripts.
syscall.tbl contains the list of available system calls
along with system call number and corresponding entry
point. Add a new system call in this architecture will
be possible by adding new entry in the syscall.tbl file.
Adding a new table entry consisting of:
- System call number.
- ABI.
- System call name.
- Entry point name.
- Compat entry name, if required.
syscallhdr.sh, syscallnr.sh and syscalltbl.sh will gene-
rate uapi header unistd_n64/n32/o32.h, unistd_nr_n64/n32/-
o32.h and syscall_table_32_o32/64_n64/64-n32/64-o32.h files
respectively. All *.sh files will parse the content sys-
call.tbl to generate the header and table files. unistd-
_n64/n32/o32.h and unistd_nr_n64/n32/o32.h will be included
by uapi/asm/unistd.h and syscall_table_32_o32/64_n64/64-n32-
/64-o32.h is included by kernel/syscall_table32_o32/64-
_n64/64-n32/64-o32.S - the real system call table.
ARM, s390 and x86 architecuture does have similar support.
I leverage their implementation to come up with a generic
solution.
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
[paul.burton@mips.com:
- Change sysnr_pfx_unistd_nr_n64 to 64.]
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: y2038@lists.linaro.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: arnd@arndb.de
Cc: deepa.kernel@gmail.com
Cc: marcin.juszkiewicz@linaro.org
The config flag - CONFIG_MIPS_MT_FPAFF uses to check whether which
syscall entries need to be used in scall32-o32.S file.
One of the patch in this patch series will generate syscall table
file. But CONFIG_MIPS_MT_FPAFF flag will add more complexity in the
script to generate the syscall table file.
In order to come up with a common implementation across all archit-
ecture, we need to remove mipsmt_sys_sched_setaffinity and mipsmt-
_sys_sched_getaffinity from the table and define it in other way.
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: y2038@lists.linaro.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: arnd@arndb.de
Cc: deepa.kernel@gmail.com
Cc: marcin.juszkiewicz@linaro.org
All other architectures are hold a value for __NR_syscalls will
be equal to the last system call number +1.
But in mips architecture, __NR_syscalls hold the value equal to
total number of system exits in the architecture. One of the
patch in this patch series will genarate uapi header files.
In order to make the implementation common across all architect-
ures, add +1 to __NR_syscalls, which will be equal to the last
system call number +1.
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: y2038@lists.linaro.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: arnd@arndb.de
Cc: deepa.kernel@gmail.com
Cc: marcin.juszkiewicz@linaro.org
When we get nanoMIPS support we'll be introducing the p32
ABI, and there's a reasonable chance that the equivalent
p64 ABI may come along in the future. Using 'n64' now would
avoid confusion in that case where we may have 2 different
64-bit ABIs.
Suggested-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
[paul.burton@mips.com:
- Remove UAPI macro renaming, github code search shows at least the
chromium project uses __NR_64_Linux & __NR_64_Linux_syscalls.]
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: y2038@lists.linaro.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: arnd@arndb.de
Cc: deepa.kernel@gmail.com
Cc: marcin.juszkiewicz@linaro.org
Remove __NR_Linux_syscalls from uapi/asm/unistd.h as
there is no users to use NR_syscalls macro in mips
kernel.
MAX_SYSCALL_NO can also remove as there is commit
2957c9e61e ("[MIPS] IRIX: Goodbye and thanks for
all the fish"), eight years ago.
Signed-off-by: Firoz Khan <firoz.khan@linaro.org>
[paul.burton@mips.com:
- Drop the removal of NR_syscalls which is used by
kernel/trace/trace.h.]
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: y2038@lists.linaro.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: arnd@arndb.de
Cc: deepa.kernel@gmail.com
Cc: marcin.juszkiewicz@linaro.org
There is a plan to build the kernel with -Wimplicit-fallthrough and
these places in the code produced warnings. Fix them up.
This patch produces no change in behaviour, but should be reviewed in
case these are actually bugs not intentional fallthoughs.
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Kees Cook <keescook@google.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
was introduced by a patch that tried to fix one bug, but by doing so created
another bug. As both bugs corrupt the output (but they do not crash the
kernel), I decided to fix the design such that it could have both bugs
fixed. The original fix, fixed time reporting of the function graph tracer
when doing a max_depth of one. This was code that can test how much the
kernel interferes with userspace. But in doing so, it could corrupt the time
keeping of the function profiler.
The issue is that the curr_ret_stack variable was being used for two
different meanings. One was to keep track of the stack pointer on the
ret_stack (shadow stack used by the function graph tracer), and the other
use case was the graph call depth. Although, the two may be closely
related, where they got updated was the issue that lead to the two different
bugs that required the two use cases to be updated differently.
The big issue with this fix is that it requires changing each architecture.
The good news is, I was able to remove a lot of code that was duplicated
within the architectures and place it into a single location. Then I could
make the fix in one place.
I pushed this code into linux-next to let it settle over a week, and before
doing so, I cross compiled all the affected architectures to make sure that
they built fine.
In the mean time, I also pulled in a patch that fixes the sched_switch
previous tasks state output, that was not actually correct.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW/4NPhQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qnWAAQCyUIRLgYImr81eTl52lxNRsULk+aiI
U29kRFWWU0c40AEA1X9sDF0MgOItbRGfZtnHTZEousXRDaDf4Fge2kF7Egg=
=liQ0
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.20-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"While rewriting the function graph tracer, I discovered a design flaw
that was introduced by a patch that tried to fix one bug, but by doing
so created another bug.
As both bugs corrupt the output (but they do not crash the kernel), I
decided to fix the design such that it could have both bugs fixed. The
original fix, fixed time reporting of the function graph tracer when
doing a max_depth of one. This was code that can test how much the
kernel interferes with userspace. But in doing so, it could corrupt
the time keeping of the function profiler.
The issue is that the curr_ret_stack variable was being used for two
different meanings. One was to keep track of the stack pointer on the
ret_stack (shadow stack used by the function graph tracer), and the
other use case was the graph call depth. Although, the two may be
closely related, where they got updated was the issue that lead to the
two different bugs that required the two use cases to be updated
differently.
The big issue with this fix is that it requires changing each
architecture. The good news is, I was able to remove a lot of code
that was duplicated within the architectures and place it into a
single location. Then I could make the fix in one place.
I pushed this code into linux-next to let it settle over a week, and
before doing so, I cross compiled all the affected architectures to
make sure that they built fine.
In the mean time, I also pulled in a patch that fixes the sched_switch
previous tasks state output, that was not actually correct"
* tag 'trace-v4.20-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
sched, trace: Fix prev_state output in sched_switch tracepoint
function_graph: Have profiler use curr_ret_stack and not depth
function_graph: Reverse the order of pushing the ret_stack and the callback
function_graph: Move return callback before update of curr_ret_stack
function_graph: Use new curr_ret_depth to manage depth instead of curr_ret_stack
function_graph: Make ftrace_push_return_trace() static
sparc/function_graph: Simplify with function_graph_enter()
sh/function_graph: Simplify with function_graph_enter()
s390/function_graph: Simplify with function_graph_enter()
riscv/function_graph: Simplify with function_graph_enter()
powerpc/function_graph: Simplify with function_graph_enter()
parisc: function_graph: Simplify with function_graph_enter()
nds32: function_graph: Simplify with function_graph_enter()
MIPS: function_graph: Simplify with function_graph_enter()
microblaze: function_graph: Simplify with function_graph_enter()
arm64: function_graph: Simplify with function_graph_enter()
ARM: function_graph: Simplify with function_graph_enter()
x86/function_graph: Simplify with function_graph_enter()
function_graph: Create function_graph_enter() to consolidate architecture code
The function_graph_enter() function does the work of calling the function
graph hook function and the management of the shadow stack, simplifying the
work done in the architecture dependent prepare_ftrace_return().
Have MIPS use the new code, and remove the shadow stack management as well as
having to set up the trace structure.
This is needed to prepare for a fix of a design bug on how the curr_ret_stack
is used.
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: stable@kernel.org
Fixes: 03274a3ffb ("tracing/fgraph: Adjust fgraph depth before calling trace return callback")
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The "norps" kernel command line parameter has apparently been deprecated
ever since it was added to the kernel back in 2006 - all it does is
print a message telling the user to use something else.
Remove the long dead "norps" parameter.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21244/
Cc: linux-mips@linux-mips.org
Select CONFIG_HAVE_LD_DEAD_CODE_DATA_ELIMINATION for MIPS, allowing the
user to enable dead code elimination. In order for this to work, ensure
that we keep the data bus exception table & the machine list by
annotating them with KEEP.
This shrinks both 32r2el_defconfig & 64r6el_defconfig builds by ~6%, as
shown by numbers from scripts/bloat-o-meter:
| 32r2el_defconfig | 64r6el_defconfig
--------|------------------|------------------
No DCE | 8919864 | 8286307
DCE | 8338988 (-6.51%) | 7741808 (-6.57%)
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21187/
Cc: linux-mips@linux-mips.org
The current methods for obtaining FP context via ptrace only provide
either 32 or 64 bits per data register. With MSA, where vector registers
are aliased with scalar FP data registers, those registers are 128 bits
wide. Thus a new mechanism is required for userland to access those
registers via ptrace. This patch introduces an NT_MIPS_MSA regset which
provides, in this order:
- The full 128 bits value of each vector register, in native
endianness saved as though elements are doubles. That is, the format
of each vector register is as would be obtained by saving it to
memory using an st.d instruction.
- The 32 bit scalar FP implementation register (FIR).
- The 32 bit scalar FP control & status register (FCSR).
- The 32 bit MSA implementation register (MSAIR).
- The 32 bit MSA control & status register (MSACSR).
The provision of the FIR & FCSR registers in addition to the MSA
equivalents allows scalar FP context to be retrieved as a subset of
the context available via this regset. Along with the MSA equivalents
they also nicely form the final 128 bit "register" of the regset.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21180/
Cc: linux-mips@linux-mips.org
After switched to NO_BOOTMEM, there are several boot failures. Some of
them have been fixed and some of them haven't. I find that many of them
are because of memory allocations are top-down, while the old behavior
is bottom-up. This patch let early memblock_alloc*() allocate memories
bottom-up to avoid some potential problems.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: bcec54bf31 ("mips: switch to NO_BOOTMEM")
Patchwork: https://patchwork.linux-mips.org/patch/21069/
References: https://patchwork.linux-mips.org/patch/21031/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <james.hogan@mips.com>
Cc: Steven J . Hill <Steven.Hill@cavium.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
We currently have 2 commonly used methods for switching ISA within
assembly code, then restoring the original ISA.
1) Using a pair of .set push & .set pop directives. For example:
.set push
.set mips32r2
<some_insn>
.set pop
2) Using .set mips0 to restore the ISA originally specified on the
command line. For example:
.set mips32r2
<some_insn>
.set mips0
Unfortunately method 2 does not work with nanoMIPS toolchains, where the
assembler rejects the .set mips0 directive like so:
Error: cannot change ISA from nanoMIPS to mips0
In preparation for supporting nanoMIPS builds, switch all instances of
method 2 in generic non-platform-specific code to use push & pop as in
method 1 instead. The .set push & .set pop is arguably cleaner anyway,
and if nothing else it's good to consistently use one method.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21037/
Cc: linux-mips@linux-mips.org
When CONFIG_MIPS_FP_SUPPORT=n we don't support floating point & so don't
need to preserve floating point context for tasks. Remove that context
from struct task_struct.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21013/
Cc: linux-mips@linux-mips.org
When CONFIG_MIPS_FP_SUPPORT=n we don't support floating point, so we can
avoid needless checks of ELF headers specifying the FP ABI or NaN
encoding to use. Deselect CONFIG_ARCH_BINFMT_ELF_STATE in this case to
avoid the need for our arch_elf_pt_proc() & arch_check_elf() functions,
and stub out the mips_set_personality_nan() & mips_set_personality_fp()
functions such that SET_PERSONALITY() doesn't need to worry about any of
this.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21011/
Cc: linux-mips@linux-mips.org
When CONFIG_MIPS_FP_SUPPORT=n we don't support floating point, so
there's no need to save & restore floating point context around signals.
This prepares us for the removal of FP context from struct task_struct
later.
Since MSA context is a superset of FP context support for it similarly
needs to be removed when MSA/FP support is disabled.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21009/
Cc: linux-mips@linux-mips.org
When CONFIG_MIPS_FP_SUPPORT=n we don't support floating point, so remove
the related ptrace support. Besides removing code which should not be
needed, this prepares us for the removal of FPU state in struct
task_struct which this code requires.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21008/
Cc: linux-mips@linux-mips.org
When CONFIG_MIPS_FP_SUPPORT=n we don't support floating point, so remove
support for floating point instructions from emulate_load_store_insn() &
emulate_load_store_microMIPS(). This code should not be needed & relies
upon access to FPU state in struct task_struct which will later be
removed.
Similarly & for the same reasons, when CONFIG_CPU_HAS_MSA=n remove
support for MSA instructions. Since MSA support depends upon FP support
this is implied when CONFIG_MIPS_FP_SUPPORT=n.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21020/
Cc: linux-mips@linux-mips.org
When CONFIG_MIPS_FP_SUPPORT=n we don't support floating point, so remove
the floating point branch support from __compute_return_epc_for_insn() &
__mm_isBranchInstr(). This code should never be needed & more
importantly relies upon FPU state in struct task_struct which will later
be removed.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21017/
Cc: linux-mips@linux-mips.org
When CONFIG_MIPS_FP_SUPPORT=n we don't support floating point, so we'll
never need to enable the FPU. Avoid doing so on a Co-Processor Unusable
exception (do_cpu), and remove the Floating Point Exception handler
(do_fpe) which should never be executed when the FPU is disabled.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21007/
Cc: linux-mips@linux-mips.org
Introduce a CONFIG_CPU_R2300_FPU Kconfig symbol mirroring the existing
CONFIG_CPU_R4K_FPU, and use it to determine whether to build r4k_fpu.S.
This removes the duplicate R3000 & TX39XX cases in
arch/mips/kernel/Makefile and prepares us for the possibility of
disabling FP support later.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21004/
Cc: linux-mips@linux-mips.org
Emulated floating point instructions don't ensure that the PF_USED_MATH
flag is set for the task. This results in a couple of inconsistencies:
- ptrace will return the default initial state of FP registers rather
than the values actually stored in struct thread_struct, hiding
state that has been updated by emulated floating point instructions.
- If a task migrates to a CPU with an FPU after having emulated
floating point instructions then its floating point register state
will be reset to the default ~0 bit pattern, losing state from the
emulated instructions.
Fix this by calling init_fp_ctx() from fpu_emulator_cop1Handler() to
consistently initialize FP state if it was previously uninitialized,
setting the PF_USED_MATH flag in the process.
All callers of fpu_emulator_cop1Handler() either call lose_fpu(1) before
it in order to save any live FPU registers to struct thread_struct, or
in the case of do_cpu() already know that the task does not own an FPU
so lose_fpu(1) would be a no-op. Since we know that saving FP context
will be unnecessary in the case where FP context was just initialized we
move this call into fpu_emulator_cop1Handler() too, providing
consistency & avoiding needless duplication.
Calls to own_fpu(1) are common after return from
fpu_emulator_cop1Handler() too, but this would not be a no-op in the
do_cpu() case so these are left as-is. A potential future improvement
could be to have fpu_emulator_cop1Handler() restore FPU state
automatically only if it saved it, though this may not be optimal if
some callers are better off without their current calls to own_fpu(1).
One potential example of this could be mipsr2_decoder() which as-is
could end up saving & restoring FP context repeatedly & unnecessarily if
emulating multiple FP instructions.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21003/
Cc: linux-mips@linux-mips.org
MIPS has up until now had 3 different ways for a task's floating point
context to be initialized:
- If the task's first use of FP involves it gaining ownership of an
FPU then _init_fpu() is used to initialize the FPU's registers such
that they all contain ~0, and the FPU registers will be stored to
struct thread_info later (eg. when context switching).
- If the task first uses FP on a CPU without an associated FPU then
fpu_emulator_init_fpu() initializes the task's floating point
register state in struct thread_info such that all floating point
register contain the bit pattern 0x7ff800007ff80000, different to
the _init_fpu() behaviour.
- If a task's floating point context is first accessed via ptrace then
init_fp_ctx() initializes the floating point register state in
struct thread_info to ~0, giving equivalent state to _init_fpu().
The _init_fpu() path has 2 separate implementations - one for r2k/r3k
style systems & one for r4k style systems. The _init_fpu() path also
requires that we be careful to clear & restore the value of the
Config5.FRE bit on modern systems in order to avoid inadvertently
triggering floating point exceptions.
None of this code is in a performance critical hot path - it runs only
the first time a task uses floating point. As such it doesn't seem to
warrant the complications of maintaining the _init_fpu() path.
Remove _init_fpu() & fpu_emulator_init_fpu(), instead using
init_fp_ctx() consistently to initialize floating point register state
in struct thread_info. Upon a task's first use of floating point this
will typically mean that we initialize state in memory & then load it
into FPU registers using _restore_fp() just as we would on a context
switch. For other paths such as __compute_return_epc_for_insn() or
mipsr2_decoder() this results in a significant simplification of the
work to be done.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21002/
Cc: linux-mips@linux-mips.org
The BMIPS5xxx core_init function contains a call to an init_fpu function
inside an #ifdef whose condition never evaluates true. Remove the dead
code. FPU initialization happens later, primarily when a userland
program attempts to use it.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21018/
Cc: linux-mips@linux-mips.org
asm/compiler.h defined GCC_IMM_ASM & GCC_REG_ACCUM macros, both of which
are defined differently for GCC pre-3.4 or GCC 3.4 & higher. We only
support building with GCC 4.6 & higher since commit cafa0010cd ("Raise
the minimum required gcc version to 4.6"), which makes the pre-3.4
definition dead code.
Rather than leave the macro definitions around, inline the GCC 3.4 &
higher definitions into the single file that uses them & remove the
macros entirely.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21000/
Cc: linux-mips@linux-mips.org
When a memblock allocation APIs are called with align = 0, the alignment
is implicitly set to SMP_CACHE_BYTES.
Implicit alignment is done deep in the memblock allocator and it can
come as a surprise. Not that such an alignment would be wrong even
when used incorrectly but it is better to be explicit for the sake of
clarity and the prinicple of the least surprise.
Replace all such uses of memblock APIs with the 'align' parameter
explicitly set to SMP_CACHE_BYTES and stop implicit alignment assignment
in the memblock internal allocation functions.
For the case when memblock APIs are used via helper functions, e.g. like
iommu_arena_new_node() in Alpha, the helper functions were detected with
Coccinelle's help and then manually examined and updated where
appropriate.
The direct memblock APIs users were updated using the semantic patch below:
@@
expression size, min_addr, max_addr, nid;
@@
(
|
- memblock_alloc_try_nid_raw(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_raw(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid_nopanic(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_nopanic(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid(size, SMP_CACHE_BYTES, min_addr, max_addr, nid)
|
- memblock_alloc(size, 0)
+ memblock_alloc(size, SMP_CACHE_BYTES)
|
- memblock_alloc_raw(size, 0)
+ memblock_alloc_raw(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from(size, 0, min_addr)
+ memblock_alloc_from(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_nopanic(size, 0)
+ memblock_alloc_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low(size, 0)
+ memblock_alloc_low(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low_nopanic(size, 0)
+ memblock_alloc_low_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from_nopanic(size, 0, min_addr)
+ memblock_alloc_from_nopanic(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_node(size, 0, nid)
+ memblock_alloc_node(size, SMP_CACHE_BYTES, nid)
)
[mhocko@suse.com: changelog update]
[akpm@linux-foundation.org: coding-style fixes]
[rppt@linux.ibm.com: fix missed uses of implicit alignment]
Link: http://lkml.kernel.org/r/20181016133656.GA10925@rapoport-lnx
Link: http://lkml.kernel.org/r/1538687224-17535-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The alloc_bootmem(size) is a shortcut for allocation of SMP_CACHE_BYTES
aligned memory. When the align parameter of memblock_alloc() is 0, the
alignment is implicitly set to SMP_CACHE_BYTES and thus alloc_bootmem(size)
and memblock_alloc(size, 0) are equivalent.
The conversion is done using the following semantic patch:
@@
expression size;
@@
- alloc_bootmem(size)
+ memblock_alloc(size, 0)
Link: http://lkml.kernel.org/r/1536927045-23536-22-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functions are equivalent, just the later does not require nobootmem
translation layer.
The conversion is done using the following semantic patch:
@@
expression size, align, goal;
@@
- __alloc_bootmem(size, align, goal)
+ memblock_alloc_from(size, align, goal)
Link: http://lkml.kernel.org/r/1536927045-23536-21-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- kexec support for the generic MIPS platform when running on a CPU
including the MIPS Coherence Manager & related hardware.
- Improvements to the definition of memory barriers used around MMIO
accesses, and fixes in their use.
- Switch to CONFIG_NO_BOOTMEM from Mike Rapoport, finally dropping
reliance on the old bootmem code.
- A number of fixes & improvements for Loongson 3 systems.
- DT & config updates for the Microsemi Ocelot platform.
- Workaround to enable USB power on the Netgear WNDR3400v3.
- Various cleanups & fixes.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCW9NfwRUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN1LNgD9Hy73DkYnnYeLNLcCe+5QMCr+NO2C
kwIs7kAI40X+/LQA/RgCcg6z4rUSH38hfNEobD6VXva7QiFhiYcJj5rCFH8O
=nDQg
-----END PGP SIGNATURE-----
Merge tag 'mips_4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS updates from Paul Burton:
- kexec support for the generic MIPS platform when running on a CPU
including the MIPS Coherence Manager & related hardware.
- Improvements to the definition of memory barriers used around MMIO
accesses, and fixes in their use.
- Switch to CONFIG_NO_BOOTMEM from Mike Rapoport, finally dropping
reliance on the old bootmem code.
- A number of fixes & improvements for Loongson 3 systems.
- DT & config updates for the Microsemi Ocelot platform.
- Workaround to enable USB power on the Netgear WNDR3400v3.
- Various cleanups & fixes.
* tag 'mips_4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (51 commits)
MIPS: Cleanup DSP ASE detection
MIPS: dts: Change upper case to lower case
MIPS: generic: Add Network, SPI and I2C to ocelot_defconfig
MIPS: Loongson-3: Fix BRIDGE irq delivery problem
MIPS: Loongson-3: Fix CPU UART irq delivery problem
MIPS: Remove unused PREF, PREFE & PREFX macros
MIPS: lib: Use kernel_pref & user_pref in memcpy()
MIPS: Remove unused CAT macro
MIPS: Add kernel_pref & user_pref helpers
MIPS: Remove unused TTABLE macro
MIPS: Remove unused PIC macros
MIPS: Remove unused MOVN & MOVZ macros
MIPS: Provide actually relaxed MMIO accessors
MIPS: Enforce strong ordering for MMIO accessors
MIPS: Correct `mmiowb' barrier for `wbflush' platforms
MIPS: Define MMIO ordering barriers
MIPS: mscc: add PCB120 to the ocelot fitImage
MIPS: mscc: add DT for Ocelot PCB120
MIPS: memset: Limit excessive `noreorder' assembly mode use
MIPS: memset: Fix CPU_DADDI_WORKAROUNDS `small_fixup' regression
...
Pull timekeeping updates from Thomas Gleixner:
"The timers and timekeeping departement provides:
- Another large y2038 update with further preparations for providing
the y2038 safe timespecs closer to the syscalls.
- An overhaul of the SHCMT clocksource driver
- SPDX license identifier updates
- Small cleanups and fixes all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
tick/sched : Remove redundant cpu_online() check
clocksource/drivers/dw_apb: Add reset control
clocksource: Remove obsolete CLOCKSOURCE_OF_DECLARE
clocksource/drivers: Unify the names to timer-* format
clocksource/drivers/sh_cmt: Add R-Car gen3 support
dt-bindings: timer: renesas: cmt: document R-Car gen3 support
clocksource/drivers/sh_cmt: Properly line-wrap sh_cmt_of_table[] initializer
clocksource/drivers/sh_cmt: Fix clocksource width for 32-bit machines
clocksource/drivers/sh_cmt: Fixup for 64-bit machines
clocksource/drivers/sh_tmu: Convert to SPDX identifiers
clocksource/drivers/sh_mtu2: Convert to SPDX identifiers
clocksource/drivers/sh_cmt: Convert to SPDX identifiers
clocksource/drivers/renesas-ostm: Convert to SPDX identifiers
clocksource: Convert to using %pOFn instead of device_node.name
tick/broadcast: Remove redundant check
RISC-V: Request newstat syscalls
y2038: signal: Change rt_sigtimedwait to use __kernel_timespec
y2038: socket: Change recvmmsg to use __kernel_timespec
y2038: sched: Change sched_rr_get_interval to use __kernel_timespec
y2038: utimes: Rework #ifdef guards for compat syscalls
...
- mostly more consolidation of the direct mapping code, including
converting over hexagon, and merging the coherent and non-coherent
code into a single dma_map_ops instance (me)
- cleanups for the dma_configure/dma_unconfigure callchains (me)
- better handling of dma_masks in odd setups (me, Alexander Duyck)
- better debugging of passing vmalloc address to the DMA API
(Stephen Boyd)
- CMA command line parsing fix (He Zhe)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlvNg6YLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMm/Q/9FFVOH73Nc3rT40N2HdaPbzV2hXmI1//hEJcImDP5
mLGq8XqieGuo8Pmu9+xp1tC2UnfUkhK4FjhQbWM+qKER/RNYES2BD50xVFmt6ICS
9d8IaRcs+ceggljfdwszkkucJspBsYNxpiKjjao0OsHn6UDatu6elZs/yvb2nXci
HCJUvs9vYm9MkAtVXEtOQtij3YRaJ/9xYY4h5Dy5vBtHPp+kjUMF0mWAwA2+Ec1V
8iqKjUY3c8nr8Kf6WE9tzJ0wrMFijc4HJlE3W1ud8YsKdfCkCf8XiIuS6PgTzOeK
0cn9h8dVrV1ZXJ/D/9JZDivmYvIsoKWAYVQHNzAiq7PI3uOJY1ggCxyZpWtTHZhM
ATHF0sJGpIenkSWybYpKee8e8RsS7L9dUgu6bYpK5pVkirNYnR9IOGVJNmS63L7Q
B0uUtqjBKDG2yNGZGY9zqBQFgxiPO0wxFLeKyHbIsC0b7FBti3rXGAimch5WiBuL
zlDV0zEfMH0BW6gNPrjfFur84duKtGZ/0DBSxQ0E1Mvk8B1LBr78MgZt8OfJEuoe
dx1FYU70u8PYi+hjmn386YnNNMTjd1GT5XW7AWedM2wCjRYmNy0yMGmm9cACMneN
5eBv/SYr7X1zKNL7w7H6KQVZilTJcBoj3f/lmjL7i22m9FXYQpcUP61L8wHNM8H2
iJo=
=AVSD
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.20' of git://git.infradead.org/users/hch/dma-mapping
Pull dma mapping updates from Christoph Hellwig:
"First batch of dma-mapping changes for 4.20.
There will be a second PR as some big changes were only applied just
before the end of the merge window, and I want to give them a few more
days in linux-next.
Summary:
- mostly more consolidation of the direct mapping code, including
converting over hexagon, and merging the coherent and non-coherent
code into a single dma_map_ops instance (me)
- cleanups for the dma_configure/dma_unconfigure callchains (me)
- better handling of dma_masks in odd setups (me, Alexander Duyck)
- better debugging of passing vmalloc address to the DMA API (Stephen
Boyd)
- CMA command line parsing fix (He Zhe)"
* tag 'dma-mapping-4.20' of git://git.infradead.org/users/hch/dma-mapping: (27 commits)
dma-direct: respect DMA_ATTR_NO_WARN
dma-mapping: translate __GFP_NOFAIL to DMA_ATTR_NO_WARN
dma-direct: document the zone selection logic
dma-debug: Check for drivers mapping invalid addresses in dma_map_single()
dma-direct: fix return value of dma_direct_supported
dma-mapping: move dma_default_get_required_mask under ifdef
dma-direct: always allow dma mask <= physiscal memory size
dma-direct: implement complete bus_dma_mask handling
dma-direct: refine dma_direct_alloc zone selection
dma-direct: add an explicit dma_direct_get_required_mask
dma-mapping: make the get_required_mask method available unconditionally
unicore32: remove swiotlb support
Revert "dma-mapping: clear dev->dma_ops in arch_teardown_dma_ops"
dma-mapping: support non-coherent devices in dma_common_get_sgtable
dma-mapping: consolidate the dma mmap implementations
dma-mapping: merge direct and noncoherent ops
dma-mapping: move the dma_coherent flag to struct device
MIPS: don't select DMA_MAYBE_COHERENT from DMA_PERDEV_COHERENT
dma-mapping: add the missing ARCH_HAS_SYNC_DMA_FOR_CPU_ALL declaration
dma-mapping: fix panic caused by passing empty cma command line argument
...
Currently we hardcode a list of files for which we specify that the
toolchain has DSP ASE support when building for MIPSr2 only. This has a
number of problems:
1) It doesn't actually ensure that the toolchain supports the DSP ASE
at all.
2) It's fragile if we try to use DSP ASE macros in other files.
3) It makes no provision for MIPSr6 & later systems which also support
the DSP ASE & end up using the .word directive implementation of
the DSP macros.
Fix this by detecting assembler support for the DSP ASE globally, not
just for a small set of files, and not just for MIPSr2. This now exposes
use of toolchain DSP support to kernel builds targeting MIPSr1 and
older, so we add .set MIPS_ISA_LEVEL directives prior to all .set dsp
directives in order to prevent the assembler from complaining that the
DSP ASE is only supported with MIPSr2 & higher.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20901/
Cc: linux-mips@linux-mips.org
Commit 8ce355cf2e ("MIPS: Setup boot_command_line before
plat_mem_setup") fixed a problem for systems which have
CONFIG_CMDLINE_BOOL=y & use a DT with a chosen node that has either no
bootargs property or an empty one. In this configuration
early_init_dt_scan_chosen() copies CONFIG_CMDLINE into
boot_command_line, but the MIPS code doesn't know this so it appends
CONFIG_CMDLINE (via builtin_cmdline) to boot_command_line again. The
result is that boot_command_line contains the arguments from
CONFIG_CMDLINE twice.
That commit took the approach of simply setting up boot_command_line
from the MIPS code before early_init_dt_scan_chosen() runs, causing it
not to copy CONFIG_CMDLINE to boot_command_line if a chosen node with no
bootargs property is found.
Unfortunately this is problematic for systems which do have a non-empty
bootargs property & CONFIG_CMDLINE_BOOL=y. There
early_init_dt_scan_chosen() will overwrite boot_command_line with the
arguments from DT, which means we lose those from CONFIG_CMDLINE
entirely. This breaks CONFIG_MIPS_CMDLINE_DTB_EXTEND. If we have
CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER or
CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND selected and the DT has a bootargs
property which we should ignore, it will instead be honoured breaking
those configurations too.
Fix this by reverting commit 8ce355cf2e ("MIPS: Setup
boot_command_line before plat_mem_setup") to restore the former
behaviour, and fixing the CONFIG_CMDLINE duplication issue by
initializing boot_command_line to a non-empty string that
early_init_dt_scan_chosen() will not overwrite with CONFIG_CMDLINE.
This is a little ugly, but cleanup in this area is on its way. In the
meantime this is at least easy to backport & contains the ugliness
within arch/mips/.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: 8ce355cf2e ("MIPS: Setup boot_command_line before plat_mem_setup")
References: https://patchwork.linux-mips.org/patch/18804/
Patchwork: https://patchwork.linux-mips.org/patch/20813/
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Jaedon Shin <jaedon.shin@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: devicetree@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org # v4.16+
When using the legacy mmap layout, for example triggered using ulimit -s
unlimited, get_unmapped_area() fills memory from bottom to top starting
from a fairly low address near TASK_UNMAPPED_BASE.
This placement is suboptimal if the user application wishes to allocate
large amounts of heap memory using the brk syscall. With the VDSO being
located low in the user's virtual address space, the amount of space
available for access using brk is limited much more than it was prior to
the introduction of the VDSO.
For example:
# ulimit -s unlimited; cat /proc/self/maps
00400000-004ec000 r-xp 00000000 08:00 71436 /usr/bin/coreutils
004fc000-004fd000 rwxp 000ec000 08:00 71436 /usr/bin/coreutils
004fd000-0050f000 rwxp 00000000 00:00 0
00cc3000-00ce4000 rwxp 00000000 00:00 0 [heap]
2ab96000-2ab98000 r--p 00000000 00:00 0 [vvar]
2ab98000-2ab99000 r-xp 00000000 00:00 0 [vdso]
2ab99000-2ab9d000 rwxp 00000000 00:00 0
...
Resolve this by adjusting STACK_TOP to reserve space for the VDSO &
providing an address hint to get_unmapped_area() causing it to use this
space even when using the legacy mmap layout.
We reserve enough space for the VDSO, plus 1MB or 256MB for 32 bit & 64
bit systems respectively within which we randomize the VDSO base
address. Previously this randomization was taken care of by the mmap
base address randomization performed by arch_mmap_rnd(). The 1MB & 256MB
sizes are somewhat arbitrary but chosen such that we have some
randomization without taking up too much of the user's virtual address
space, which is often in short supply for 32 bit systems.
With this the VDSO is always mapped at a high address, leaving lots of
space for statically linked programs to make use of brk:
# ulimit -s unlimited; cat /proc/self/maps
00400000-004ec000 r-xp 00000000 08:00 71436 /usr/bin/coreutils
004fc000-004fd000 rwxp 000ec000 08:00 71436 /usr/bin/coreutils
004fd000-0050f000 rwxp 00000000 00:00 0
00c28000-00c49000 rwxp 00000000 00:00 0 [heap]
...
7f67c000-7f69d000 rwxp 00000000 00:00 0 [stack]
7f7fc000-7f7fd000 rwxp 00000000 00:00 0
7fcf1000-7fcf3000 r--p 00000000 00:00 0 [vvar]
7fcf3000-7fcf4000 r-xp 00000000 00:00 0 [vdso]
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reported-by: Huacai Chen <chenhc@lemote.com>
Fixes: ebb5e78cc6 ("MIPS: Initial implementation of a VDSO")
Cc: Huacai Chen <chenhc@lemote.com>
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org # v4.4+
The crash utility initializes cpu state by reading the system kernel
memory, which is copied into vmcore.
It is also natural to preserve the online state for CPUs at crash.
Failing to do so could make the analysis tool present info for only 1 CPU
by default, and unable to find panic task.
Signed-off-by: Dengcheng Zhu <dzhu@wavecomp.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20809/
Cc: Paul Burton <pburton@wavecomp.com>
Cc: "ralf@linux-mips.org" <ralf@linux-mips.org>
Cc: "linux-mips@linux-mips.org" <linux-mips@linux-mips.org>
Cc: "rachel.mozes@intel.com" <rachel.mozes@intel.com>
In much the same vein as commit ac41f9c462 ("MIPS: Remove a temporary
hack for debugging cache flushes in SMTC configuration") and commit
eb75ecb113 ("MIPS: MT: Remove unused MT single-threaded cache flush
code"), remove the long obsolete ndflush & niflush command line
arguments which provided a hack that should not be useful outside of
debug sessions performed long ago.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Commit ac41f9c462 ("MIPS: Remove a temporary hack for debugging cache
flushes in SMTC configuration") removed an ugly hack that allowed cache
flushing to be performed single-threaded, something which should not be
necessary outside of debug sessions performed long ago.
Whilst the hack was removed from the cache flush code itself, the
mt_protdflush & mt_protiflush variables were left behind along with code
providing the protdflush & protiflush command line arguments. The
mt_cflush_lockdown() & mt_cflush_release() functions were also left
behind but are now entirely unused.
Remove all the unused code to complete the removal of the MT ASE
single-threaded cache flush hack.
Signed-off-by: Paul Burton <paul.burton@mips.com>
MIPSR6 CPUs do not support unaligned load/store instructions
(LWL, LWR, SWL, SWR and LDL, LDR, SDL, SDR for 64bit).
Currently the MIPS tree has some special cases to avoid these
instructions, and the code is testing for !CONFIG_CPU_MIPSR6.
This patch declares a new Kconfig variable:
CONFIG_CPU_HAS_LOAD_STORE_LR.
This variable indicates that the CPU supports these instructions.
Then, the patch does the following:
- Carefully selects this option on all CPUs except MIPSR6.
- Switches all the special cases to test for the new variable,
and inverts the logic:
'#ifndef CONFIG_CPU_MIPSR6' turns into
'#ifdef CONFIG_CPU_HAS_LOAD_STORE_LR'
and vice-versa.
Also, when this variable is NOT selected (e.g. MIPSR6),
CONFIG_GENERIC_CSUM will default to 'y', to compile generic
C checksum code (instead of special assembly code that uses the
unsupported instructions).
This commit should not affect any existing CPU, and is required
for future Lexra CPU support, that misses these instructions too.
Signed-off-by: Yasha Cherikovsky <yasha.che3@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20808/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Since commit 15f37e1588 ("MIPS: store the appended
dtb address in a variable"),
in kernels with MIPS_RAW_APPENDED_DTB=y, the early boot code detects
the dtb and stores it in the 'fw_passed_dtb' variable.
However, the dtb is not stored in 'fw_passed_dtb' in kernels with
MIPS_ELF_APPENDED_DTB=y.
Under MIPS_ELF_APPENDED_DTB=y, the dtb is also located in the
__appended_dtb section, so we just need to update the #ifdef.
This will allow to access the dtb in a more uniform way.
Fixes: 15f37e1588 ("MIPS: store the appended dtb address in a variable")
Signed-off-by: Yasha Cherikovsky <yasha.che3@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20803/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
It makes the code more readable, especially in the nested ifdefs.
Signed-off-by: Yasha Cherikovsky <yasha.che3@gmail.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20802/
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Out-of-tree platforms may not be based on Generic as shown in customer
communication. Share the prepare method with all using UHI boot protocol,
and put into machine_kexec.c.
The benefit is that, when having kexec_args related problems, developers
will naturally look into machine_kexec.c, where "CONFIG_UHI_BOOT" will be
found, prompting them to add "select UHI_BOOT" to the platform Kconfig. It
would otherwise require a lot debugging or online searching to be aware
that the solution is in Generic code.
Tested-by: Rachel Mozes <rachel.mozes@intel.com>
Reported-by: Rachel Mozes <rachel.mozes@intel.com>
Signed-off-by: Dengcheng Zhu <dzhu@wavecomp.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20569/
Cc: pburton@wavecomp.com
Cc: ralf@linux-mips.org
Cc: linux-mips@linux-mips.org
The existing implementation lets machine_kexec() CPU jump to reboot code
buffer, whereas other CPUs to relocated_kexec_smp_wait. The natural way to
bring up an SMP new kernel would be to let CPU0 do it while others being
halted. For those failing to do so, fall back to the jumping method.
Signed-off-by: Dengcheng Zhu <dzhu@wavecomp.com>
[paul.burton@mips.com: Guard kexec_nonboot_cpu_jump with CONFIG_SMP]
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20570/
Cc: pburton@wavecomp.com
Cc: ralf@linux-mips.org
Cc: linux-mips@linux-mips.org
Cc: rachel.mozes@intel.com
While both option select a form of conditional dma coherence they don't
actually share any code in the implementation, so untangle them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Paul Burton <paul.burton@mips.com>
MIPS already has memblock support and all the memory is already registered
with it.
This patch replaces bootmem memory reservations with memblock ones and
removes the bootmem initialization.
Since memblock allocates memory in top-down mode, we ensure that memblock
limit is max_low_pfn to prevent allocations from the high memory.
To have the exceptions base in the lower 512M of the physical memory, its
allocation in arch/mips/kernel/traps.c::traps_init() is using bottom-up
mode.
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20560/
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: linux-mm@kvack.org
Cc: linux-kernel@vger.kernel.org
The comment describing arch_mem_init() was separated from the definition
of arch_mem_init() by commit a09fc446fb ("[MIPS] setup.c: use
early_param() for early command line parsing"). Move the comment such
that it's next to the definition again for ease of reading.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Clean up instances of casts to the type that a value already has, since
they are effectively no-ops and only serve to complicate the code.
This is the result of the following semantic patch:
@identitycast@
type T;
T *A;
@@
- (T *)(A)
+ A
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19599/
When a system suffers from dcache aliasing a user program may observe
stale VDSO data from an aliased cache line. Notably this can break the
expectation that clock_gettime(CLOCK_MONOTONIC, ...) is, as its name
suggests, monotonic.
In order to ensure that users observe updates to the VDSO data page as
intended, align the user mappings of the VDSO data page such that their
cache colouring matches that of the virtual address range which the
kernel will use to update the data page - typically its unmapped address
within kseg0.
This ensures that we don't introduce aliasing cache lines for the VDSO
data page, and therefore that userland will observe updates without
requiring cache invalidation.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reported-by: Hauke Mehrtens <hauke@hauke-m.de>
Reported-by: Rene Nielsen <rene.nielsen@microsemi.com>
Reported-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Fixes: ebb5e78cc6 ("MIPS: Initial implementation of a VDSO")
Patchwork: https://patchwork.linux-mips.org/patch/20344/
Tested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Tested-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org # v4.4+
Christoph Hellwig suggested a slightly different path for handling
backwards compatibility with the 32-bit time_t based system calls:
Rather than simply reusing the compat_sys_* entry points on 32-bit
architectures unchanged, we get rid of those entry points and the
compat_time types by renaming them to something that makes more sense
on 32-bit architectures (which don't have a compat mode otherwise),
and then share the entry points under the new name with the 64-bit
architectures that use them for implementing the compatibility.
The following types and interfaces are renamed here, and moved
from linux/compat_time.h to linux/time32.h:
old new
--- ---
compat_time_t old_time32_t
struct compat_timeval struct old_timeval32
struct compat_timespec struct old_timespec32
struct compat_itimerspec struct old_itimerspec32
ns_to_compat_timeval() ns_to_old_timeval32()
get_compat_itimerspec64() get_old_itimerspec32()
put_compat_itimerspec64() put_old_itimerspec32()
compat_get_timespec64() get_old_timespec32()
compat_put_timespec64() put_old_timespec32()
As we already have aliases in place, this patch addresses only the
instances that are relevant to the system call interface in particular,
not those that occur in device drivers and other modules. Those
will get handled separately, while providing the 64-bit version
of the respective interfaces.
I'm not renaming the timex, rusage and itimerval structures, as we are
still debating what the new interface will look like, and whether we
will need a replacement at all.
This also doesn't change the names of the syscall entry points, which can
be done more easily when we actually switch over the 32-bit architectures
to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to
SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
- Fix microMIPS build failures by adding a .insn directive to the
barrier_before_unreachable() asm statement in order to convince the
toolchain that the asm statement is a valid branch target rather
than a bogus attempt to switch ISA.
- Clean up our declarations of TLB functions that we overwrite with
generated code in order to prevent the compiler making assumptions
about alignment that cause microMIPS kernels built with GCC 7 &
above to die early during boot.
- Fix up a regression for MIPS32 kernels which slipped into the main
MIPS pull for 4.19, causing CONFIG_32BIT=y kernels to contain
inappropriate MIPS64 instructions.
- Extend our existing workaround for MIPSr6 builds that end up using
the __multi3 intrinsic to GCC 7 & below, rather than just GCC 7.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCW37wVhUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN18iAD/ZO02rgkTgMG7NvZMtbOwflxe1aVz
YpAQzcOSz+CBxgUA/30ZwZm37hgMi3YWOJMSfmbuWKsYi+/vkcjwlfai7UUF
=oJFy
-----END PGP SIGNATURE-----
Merge tag 'mips_4.19_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS fixes from Paul Burton:
- Fix microMIPS build failures by adding a .insn directive to the
barrier_before_unreachable() asm statement in order to convince the
toolchain that the asm statement is a valid branch target rather
than a bogus attempt to switch ISA.
- Clean up our declarations of TLB functions that we overwrite with
generated code in order to prevent the compiler making assumptions
about alignment that cause microMIPS kernels built with GCC 7 &
above to die early during boot.
- Fix up a regression for MIPS32 kernels which slipped into the main
MIPS pull for 4.19, causing CONFIG_32BIT=y kernels to contain
inappropriate MIPS64 instructions.
- Extend our existing workaround for MIPSr6 builds that end up using
the __multi3 intrinsic to GCC 7 & below, rather than just GCC 7.
* tag 'mips_4.19_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux:
MIPS: lib: Provide MIPS64r6 __multi3() for GCC < 7
MIPS: Workaround GCC __builtin_unreachable reordering bug
compiler.h: Allow arch-specific asm/compiler.h
MIPS: Avoid move psuedo-instruction whilst using MIPS_ISA_LEVEL
MIPS: Consistently declare TLB functions
MIPS: Export tlbmiss_handler_setup_pgd near its definition
- Restructure of lockdep and latency tracers
This is the biggest change. Joel Fernandes restructured the hooks
from irqs and preemption disabling and enabling. He got rid of
a lot of the preprocessor #ifdef mess that they caused.
He turned both lockdep and the latency tracers to use trace events
inserted in the preempt/irqs disabling paths. But unfortunately,
these started to cause issues in corner cases. Thus, parts of the
code was reverted back to where lockde and the latency tracers
just get called directly (without using the trace events).
But because the original change cleaned up the code very nicely
we kept that, as well as the trace events for preempt and irqs
disabling, but they are limited to not being called in NMIs.
- Have trace events use SRCU for "rcu idle" calls. This was required
for the preempt/irqs off trace events. But it also had to not
allow them to be called in NMI context. Waiting till Paul makes
an NMI safe SRCU API.
- New notrace SRCU API to allow trace events to use SRCU.
- Addition of mcount-nop option support
- SPDX headers replacing GPL templates.
- Various other fixes and clean ups.
- Some fixes are marked for stable, but were not fully tested
before the merge window opened.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW3ruhRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qiM7AP47NhYdSnCFCRUJfrt6PovXmQtuCHt3
c3QMoGGdvzh9YAEAqcSXwh7uLhpHUp1LjMAPkXdZVwNddf4zJQ1zyxQ+EAU=
=vgEr
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
- Restructure of lockdep and latency tracers
This is the biggest change. Joel Fernandes restructured the hooks
from irqs and preemption disabling and enabling. He got rid of a lot
of the preprocessor #ifdef mess that they caused.
He turned both lockdep and the latency tracers to use trace events
inserted in the preempt/irqs disabling paths. But unfortunately,
these started to cause issues in corner cases. Thus, parts of the
code was reverted back to where lockdep and the latency tracers just
get called directly (without using the trace events). But because the
original change cleaned up the code very nicely we kept that, as well
as the trace events for preempt and irqs disabling, but they are
limited to not being called in NMIs.
- Have trace events use SRCU for "rcu idle" calls. This was required
for the preempt/irqs off trace events. But it also had to not allow
them to be called in NMI context. Waiting till Paul makes an NMI safe
SRCU API.
- New notrace SRCU API to allow trace events to use SRCU.
- Addition of mcount-nop option support
- SPDX headers replacing GPL templates.
- Various other fixes and clean ups.
- Some fixes are marked for stable, but were not fully tested before
the merge window opened.
* tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
tracing: Fix SPDX format headers to use C++ style comments
tracing: Add SPDX License format tags to tracing files
tracing: Add SPDX License format to bpf_trace.c
blktrace: Add SPDX License format header
s390/ftrace: Add -mfentry and -mnop-mcount support
tracing: Add -mcount-nop option support
tracing: Avoid calling cc-option -mrecord-mcount for every Makefile
tracing: Handle CC_FLAGS_FTRACE more accurately
Uprobe: Additional argument arch_uprobe to uprobe_write_opcode()
Uprobes: Simplify uprobe_register() body
tracepoints: Free early tracepoints after RCU is initialized
uprobes: Use synchronize_rcu() not synchronize_sched()
tracing: Fix synchronizing to event changes with tracepoint_synchronize_unregister()
ftrace: Remove unused pointer ftrace_swapper_pid
tracing: More reverting of "tracing: Centralize preemptirq tracepoints and unify their usage"
tracing/irqsoff: Handle preempt_count for different configs
tracing: Partial revert of "tracing: Centralize preemptirq tracepoints and unify their usage"
tracing: irqsoff: Account for additional preempt_disable
trace: Use rcu_dereference_raw for hooks from trace-event subsystem
tracing/kprobes: Fix within_notrace_func() to check only notrace functions
...
An overview of the general architecture changes:
- Massive DMA ops refactoring from Christoph Hellwig (huzzah for
deleting crufty code!).
- We introduce NT_MIPS_DSP & NT_MIPS_FP_MODE ELF notes & corresponding
regsets to expose DSP ASE & floating point mode state respectively,
both for live debugging & core dumps.
- We better optimize our code by hard-coding cpu_has_* macros at
compile time where their values are known due to the ISA revision
that the kernel build is targeting.
- The EJTAG exception handler now better handles SMP systems, where it
was previously possible for CPUs to clobber a register value saved
by another CPU.
- Our implementation of memset() gained a couple of fixes for MIPSr6
systems to return correct values in some cases where stores fault.
- We now implement ioremap_wc() using the uncached-accelerated cache
coherency attribute where supported, which is detected during boot,
and fall back to plain uncached access where necessary. The
MIPS-specific (and unused in tree) ioremap_uncached_accelerated() &
ioremap_cacheable_cow() are removed.
- The prctl(PR_SET_FP_MODE, ...) syscall is better supported for SMP
systems by reworking the way we ensure remote CPUs that may be
running threads within the affected process switch mode.
- Systems using the MIPS Coherence Manager will now set the
MIPS_IC_SNOOPS_REMOTE flag to avoid some unnecessary cache
maintenance overhead when flushing the icache.
- A few fixes were made for building with clang/LLVM, which
now sucessfully builds kernels for many of our platforms.
- Miscellaneous cleanups all over.
And some platform-specific changes:
- ar7 gained stubs for a few clock API functions to fix build failures
for some drivers.
- ath79 gained support for a few new SoCs, a few fixes & better
gpio-keys support.
- Ci20 now exposes its SPI bus using the spi-gpio driver.
- The generic platform can now auto-detect a suitable value for
PHYS_OFFSET based upon the memory map described by the device tree,
allowing us to avoid wasting memory on page book-keeping for systems
where RAM starts at a non-zero physical address.
- Ingenic systems using the jz4740 platform code now link their
vmlinuz higher to allow for kernels of a realistic size.
- Loongson32 now builds the kernel targeting MIPSr1 rather than MIPSr2
to avoid CPU errata.
- Loongson64 gains a couple of fixes, a workaround for a write
buffering issue & support for the Loongson 3A R3.1 CPU.
- Malta now uses the piix4-poweroff driver to handle powering down.
- Microsemi Ocelot gained support for its SPI bus & NOR flash, its
second MDIO bus and can now be supported by a FIT/.itb image.
- Octeon saw a bunch of header cleanups which remove a lot of
duplicate or unused code.
-----BEGIN PGP SIGNATURE-----
iIsEABYIADMWIQRgLjeFAZEXQzy86/s+p5+stXUA3QUCW3G6JxUccGF1bC5idXJ0
b25AbWlwcy5jb20ACgkQPqefrLV1AN0n/gD/Rpdgay31G/4eTTKBmBrcaju6Shjt
/2Iu6WC5Sj4hDHUBAJSbuI+B9YjcNsjekBYxB/LLD7ImcLBl6nLMIvKmXLAL
=cUiF
-----END PGP SIGNATURE-----
Merge tag 'mips_4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS updates from Paul Burton:
"Here are the main MIPS changes for 4.19.
An overview of the general architecture changes:
- Massive DMA ops refactoring from Christoph Hellwig (huzzah for
deleting crufty code!).
- We introduce NT_MIPS_DSP & NT_MIPS_FP_MODE ELF notes &
corresponding regsets to expose DSP ASE & floating point mode state
respectively, both for live debugging & core dumps.
- We better optimize our code by hard-coding cpu_has_* macros at
compile time where their values are known due to the ISA revision
that the kernel build is targeting.
- The EJTAG exception handler now better handles SMP systems, where
it was previously possible for CPUs to clobber a register value
saved by another CPU.
- Our implementation of memset() gained a couple of fixes for MIPSr6
systems to return correct values in some cases where stores fault.
- We now implement ioremap_wc() using the uncached-accelerated cache
coherency attribute where supported, which is detected during boot,
and fall back to plain uncached access where necessary. The
MIPS-specific (and unused in tree) ioremap_uncached_accelerated() &
ioremap_cacheable_cow() are removed.
- The prctl(PR_SET_FP_MODE, ...) syscall is better supported for SMP
systems by reworking the way we ensure remote CPUs that may be
running threads within the affected process switch mode.
- Systems using the MIPS Coherence Manager will now set the
MIPS_IC_SNOOPS_REMOTE flag to avoid some unnecessary cache
maintenance overhead when flushing the icache.
- A few fixes were made for building with clang/LLVM, which now
sucessfully builds kernels for many of our platforms.
- Miscellaneous cleanups all over.
And some platform-specific changes:
- ar7 gained stubs for a few clock API functions to fix build
failures for some drivers.
- ath79 gained support for a few new SoCs, a few fixes & better
gpio-keys support.
- Ci20 now exposes its SPI bus using the spi-gpio driver.
- The generic platform can now auto-detect a suitable value for
PHYS_OFFSET based upon the memory map described by the device tree,
allowing us to avoid wasting memory on page book-keeping for
systems where RAM starts at a non-zero physical address.
- Ingenic systems using the jz4740 platform code now link their
vmlinuz higher to allow for kernels of a realistic size.
- Loongson32 now builds the kernel targeting MIPSr1 rather than
MIPSr2 to avoid CPU errata.
- Loongson64 gains a couple of fixes, a workaround for a write
buffering issue & support for the Loongson 3A R3.1 CPU.
- Malta now uses the piix4-poweroff driver to handle powering down.
- Microsemi Ocelot gained support for its SPI bus & NOR flash, its
second MDIO bus and can now be supported by a FIT/.itb image.
- Octeon saw a bunch of header cleanups which remove a lot of
duplicate or unused code"
* tag 'mips_4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (123 commits)
MIPS: Remove remnants of UASM_ISA
MIPS: netlogic: xlr: Remove erroneous check in nlm_fmn_send()
MIPS: VDSO: Force link endianness
MIPS: Always specify -EB or -EL when using clang
MIPS: Use dins to simplify __write_64bit_c0_split()
MIPS: Use read-write output operand in __write_64bit_c0_split()
MIPS: Avoid using array as parameter to write_c0_kpgd()
MIPS: vdso: Allow clang's --target flag in VDSO cflags
MIPS: genvdso: Remove GOT checks
MIPS: Remove obsolete MIPS checks for DST node "chosen@0"
MIPS: generic: Remove input symbols from defconfig
MIPS: Delete unused code in linux32.c
MIPS: Remove unused sys_32_mmap2
MIPS: Remove nabi_no_regargs
mips: dts: mscc: enable spi and NOR flash support on ocelot PCB123
mips: dts: mscc: Add spi on Ocelot
MIPS: Loongson: Merge load addresses
MIPS: Loongson: Set Loongson32 to MIPS32R1
MIPS: mscc: ocelot: add interrupt controller properties to GPIO controller
MIPS: generic: Select MIPS_AUTO_PFN_OFFSET
...
Add addition argument 'arch_uprobe' to uprobe_write_opcode().
We need this in later set of patches.
Link: http://lkml.kernel.org/r/20180809041856.1547-3-ravi.bangoria@linux.ibm.com
Reviewed-by: Song Liu <songliubraving@fb.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Since at least the beginning of the git era we've declared our TLB
exception handling functions inconsistently. They're actually functions,
but we declare them as arrays of u32 where each u32 is an encoded
instruction. This has always been the case for arch/mips/mm/tlbex.c, and
has also been true for arch/mips/kernel/traps.c since commit
86a1708a9d ("MIPS: Make tlb exception handler definitions and
declarations match.") which aimed for consistency but did so by
consistently making the our C code inconsistent with our assembly.
This is all usually harmless, but when using GCC 7 or newer to build a
kernel targeting microMIPS (ie. CONFIG_CPU_MICROMIPS=y) it becomes
problematic. With microMIPS bit 0 of the program counter indicates the
ISA mode. When bit 0 is zero instructions are decoded using the standard
MIPS32 or MIPS64 ISA. When bit 0 is one instructions are decoded using
microMIPS. This means that function pointers become odd - their least
significant bit is one for microMIPS code. We work around this in cases
where we need to access code using loads & stores with our
msk_isa16_mode() macro which simply clears bit 0 of the value it is
given:
#define msk_isa16_mode(x) ((x) & ~0x1)
For example we do this for our TLB load handler in
build_r4000_tlb_load_handler():
u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
We then write code to p, expecting it to be suitably aligned (our LEAF
macro aligns functions on 4 byte boundaries, so (ulong)handle_tlbl will
give a value one greater than a multiple of 4 - ie. the start of a
function on a 4 byte boundary, with the ISA mode bit 0 set).
This worked fine up to GCC 6, but GCC 7 & onwards is smart enough to
presume that handle_tlbl which we declared as an array of u32s must be
aligned sufficiently that bit 0 of its address will never be set, and as
a result optimize out msk_isa16_mode(). This leads to p having an
address with bit 0 set, and when we go on to attempt to store code at
that address we take an address error exception due to the unaligned
memory access.
This leads to an exception prior to the kernel having configured its own
exception handlers, so we jump to whatever handlers the bootloader
configured. In the case of QEMU this results in a silent hang, since it
has no useful general exception vector.
Fix this by consistently declaring our TLB-related functions as
functions. For handle_tlbl(), handle_tlbs() & handle_tlbm() we do this
in asm/tlbex.h & we make use of the existing declaration of
tlbmiss_handler_setup_pgd() in asm/mmu_context.h. Our TLB handler
generation code in arch/mips/mm/tlbex.c is adjusted to deal with these
definitions, in most cases simply by casting the function pointers to
u32 pointers.
This allows us to include asm/mmu_context.h in arch/mips/mm/tlbex.c to
get the definitions of tlbmiss_handler_setup_pgd & pgd_current, removing
some needless duplication. Consistently using msk_isa16_mode() on
function pointers means we no longer need the
tlbmiss_handler_setup_pgd_start symbol so that is removed entirely.
Now that we're declaring our functions as functions GCC stops optimizing
out msk_isa16_mode() & a microMIPS kernel built with either GCC 7.3.0 or
8.1.0 boots successfully.
Signed-off-by: Paul Burton <paul.burton@mips.com>
The A() & AA() macros have been unused since commit 05e4396651
("[MIPS] Use SYSVIPC_COMPAT to fix various problems on N32"), which
switched to the more standard compat_ptr().
RLIM_INFINITY32, RESOURCE32() & struct rlimit32 have been present but
unused since the beginning of the git era.
Remove the dead code.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20108/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
The sys_32_mmap2 function has been unused since we started using syscall
wrappers in commit dbda6ac089 ("MIPS: CVE-2009-0029: Enable syscall
wrappers."), and is indeed identical to the sys_mips_mmap2 function that
replaced it in sys32_call_table.
Remove the dead code.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20107/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Our sigreturn functions make use of a macro named nabi_no_regargs to
declare 8 dummy arguments to a function, forcing the compiler to expect
a pt_regs structure on the stack rather than in argument registers. This
is an ugly hack which unnecessarily causes these sigreturn functions to
need to care about the calling convention of the ABI the kernel is built
for. Although this is abstracted via nabi_no_regargs, it's still ugly &
unnecessary.
Remove nabi_no_regargs & the struct pt_regs argument from sigreturn
functions, and instead use current_pt_regs() to find the struct pt_regs
on the stack, which works cleanly regardless of ABI.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/20106/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
On systems where physical memory begins at a non-zero address, defining
PHYS_OFFSET (which influences ARCH_PFN_OFFSET) can save us time & memory
by avoiding book-keeping for pages from address zero to the start of
memory.
Some MIPS platforms already make use of this, but with the definition of
PHYS_OFFSET being compile-time constant it hasn't been possible to
enable this optimization for a kernel which may run on systems with
varying physical memory base addresses.
Introduce a new Kconfig option CONFIG_MIPS_AUTO_PFN_OFFSET which, when
enabled, makes ARCH_PFN_OFFSET a variable & detects it from the boot
memory map (which for example may have been populated from DT). The
relationship with PHYS_OFFSET is reversed, with PHYS_OFFSET now being
based on ARCH_PFN_OFFSET. This is because ARCH_PFN_OFFSET is used far
more often, so avoiding the need for runtime calculation gives us a
smaller impact on kernel text size (0.1% rather than 0.15% for
64r6el_defconfig).
Signed-off-by: Paul Burton <paul.burton@mips.com>
Suggested-by: Vladimir Kondratiev <vladimir.kondratiev@intel.com>
Patchwork: https://patchwork.linux-mips.org/patch/20048/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Define an NT_MIPS_FP_MODE core file note and implement a corresponding
regset holding the state handled by PR_SET_FP_MODE and PR_GET_FP_MODE
prctl(2) requests. This lets debug software correctly interpret the
contents of floating-point general registers both in live debugging and
in core files, and also switch floating-point modes of a live process.
[paul.burton@mips.com:
- Changed NT_MIPS_FP_MODE to 0x801 to match first nibble of
NT_MIPS_DSP, which was also changed to avoid a conflict.]
Signed-off-by: Maciej W. Rozycki <macro@mips.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19331/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Define an NT_MIPS_DSP core file note type and implement a corresponding
regset holding the DSP ASE register context, following the layout of the
`mips_dsp_state' structure, except for the DSPControl register stored as
a 64-bit rather than 32-bit quantity in a 64-bit note.
The lack of DSP ASE register saving to core files can be considered a
design flaw with commit e50c0a8fa6 ("Support the MIPS32 / MIPS64 DSP
ASE."), leading to an incomplete state being saved. Consequently no DSP
ASE regset has been created with commit 7aeb753b53 ("MIPS: Implement
task_user_regset_view."), when regset support was added to the MIPS
port.
Additionally there is no way for ptrace(2) to correctly access the DSP
accumulator registers in n32 processes with the existing interfaces.
This is due to 32-bit truncation of data passed with PTRACE_PEEKUSR and
PTRACE_POKEUSR requests, which cannot be avoided owing to how the data
types for ptrace(3) have been defined. This new NT_MIPS_DSP regset
fills the missing interface gap.
[paul.burton@mips.com:
- Change NT_MIPS_DSP to 0x800 to avoid conflict with NT_VMCOREDD
introduced by commit 2724273e8f ("vmcore: add API to collect
hardware dump in second kernel").
- Drop stable tag. Whilst I agree the lack of this functionality can
be considered a flaw in earlier DSP ASE support, it's still new
functionality which doesn't meet up to the requirements set out in
Documentation/process/stable-kernel-rules.rst.]
Signed-off-by: Maciej W. Rozycki <macro@mips.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
References: 7aeb753b53 ("MIPS: Implement task_user_regset_view.")
Patchwork: https://patchwork.linux-mips.org/patch/19330/
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Use the `unsigned long' rather than `__u32' type for DSP accumulator
registers, like with the regular MIPS multiply/divide accumulator and
general-purpose registers, as all are 64-bit in 64-bit implementations
and using a 32-bit data type leads to contents truncation on context
saving.
Update `arch_ptrace' and `compat_arch_ptrace' accordingly, removing
casts that are similarly not used with multiply/divide accumulator or
general-purpose register accesses.
Signed-off-by: Maciej W. Rozycki <macro@mips.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: e50c0a8fa6 ("Support the MIPS32 / MIPS64 DSP ASE.")
Patchwork: https://patchwork.linux-mips.org/patch/19329/
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org # 2.6.15+
prom_putchar() is used centrally in early printk infrastructure therefore
at least MIPS should agree on the function return type.
[paul.burton@mips.com:
- Include linux/types.h in asm/setup.h to gain the bool typedef before
we start include asm/setup.h elsewhere.
- Include asm/setup.h in all files that use or define prom_putchar().
- Also standardise on signed rather than unsigned char argument.]
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@nokia.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19842/
Cc: linux-mips@linux-mips.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jonas Gorski <jonas.gorski@gmail.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Annotate cpu_wait implementations using the __cpuidle macro which
places these functions in the .cpuidle.text section. This allows
cpu_in_idle() to return true for PC values which fall within these
functions, allowing nmi_backtrace() to produce cleaner output for CPUs
running idle functions. For example:
# echo l >/proc/sysrq-trigger
[ 38.587170] sysrq: SysRq : Show backtrace of all active CPUs
[ 38.593657] NMI backtrace for cpu 1
[ 38.597611] CPU: 1 PID: 161 Comm: sh Not tainted 4.18.0-rc1+ #27
[ 38.604306] Stack : 00000000 00000004 00000006 80486724 00000000 00000000 00000000 00000000
[ 38.613647] 80e17eda 00000034 00000000 00000000 80d20000 80b67e98 8e559c90 0ffe1e88
[ 38.622986] 00000000 00000000 80e70000 00000000 8f61db18 38312e34 722d302e 202b3163
[ 38.632324] 8e559d3c 8e559adc 00000001 6b636162 80d20000 80000000 00000000 80d1cfa4
[ 38.641664] 00000001 80d20000 80d19520 00000000 00000003 80836724 00000004 80e10004
[ 38.650993] ...
[ 38.653724] Call Trace:
[ 38.656499] [<8040cdd0>] show_stack+0xa0/0x144
[ 38.661475] [<80b67e98>] dump_stack+0xe8/0x120
[ 38.666455] [<80b6f6d4>] nmi_cpu_backtrace+0x1b4/0x1cc
[ 38.672189] [<80b6f81c>] nmi_trigger_cpumask_backtrace+0x130/0x1e4
[ 38.679081] [<808295d8>] __handle_sysrq+0xc0/0x180
[ 38.684421] [<80829b84>] write_sysrq_trigger+0x50/0x64
[ 38.690176] [<8061c984>] proc_reg_write+0xd0/0xfc
[ 38.695447] [<805aac1c>] __vfs_write+0x54/0x194
[ 38.700500] [<805aaf24>] vfs_write+0xe0/0x18c
[ 38.705360] [<805ab190>] ksys_write+0x7c/0xf0
[ 38.710238] [<80416018>] syscall_common+0x34/0x58
[ 38.715558] Sending NMI from CPU 1 to CPUs 0,2-3:
[ 38.720916] NMI backtrace for cpu 0 skipped: idling at r4k_wait_irqoff+0x2c/0x34
[ 38.729186] NMI backtrace for cpu 3 skipped: idling at r4k_wait_irqoff+0x2c/0x34
[ 38.737449] NMI backtrace for cpu 2 skipped: idling at r4k_wait_irqoff+0x2c/0x34
Without this we get register value & backtrace output from all CPUs,
which is generally useless for those running the idle function & serves
only to overwhelm & obfuscate the meaningful output from non-idle CPUs.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/19598/
The current MIPS implementation of arch_trigger_cpumask_backtrace() is
broken because it attempts to use synchronous IPIs despite the fact that
it may be run with interrupts disabled.
This means that when arch_trigger_cpumask_backtrace() is invoked, for
example by the RCU CPU stall watchdog, we may:
- Deadlock due to use of synchronous IPIs with interrupts disabled,
causing the CPU that's attempting to generate the backtrace output
to hang itself.
- Not succeed in generating the desired output from remote CPUs.
- Produce warnings about this from smp_call_function_many(), for
example:
[42760.526910] INFO: rcu_sched detected stalls on CPUs/tasks:
[42760.535755] 0-...!: (1 GPs behind) idle=ade/140000000000000/0 softirq=526944/526945 fqs=0
[42760.547874] 1-...!: (0 ticks this GP) idle=e4a/140000000000000/0 softirq=547885/547885 fqs=0
[42760.559869] (detected by 2, t=2162 jiffies, g=266689, c=266688, q=33)
[42760.568927] ------------[ cut here ]------------
[42760.576146] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:416 smp_call_function_many+0x88/0x20c
[42760.587839] Modules linked in:
[42760.593152] CPU: 2 PID: 1216 Comm: sh Not tainted 4.15.4-00373-gee058bb4d0c2 #2
[42760.603767] Stack : 8e09bd20 8e09bd20 8e09bd20 fffffff0 00000007 00000006 00000000 8e09bca8
[42760.616937] 95b2b379 95b2b379 807a0080 00000007 81944518 0000018a 00000032 00000000
[42760.630095] 00000000 00000030 80000000 00000000 806eca74 00000009 8017e2b8 000001a0
[42760.643169] 00000000 00000002 00000000 8e09baa4 00000008 808b8008 86d69080 8e09bca0
[42760.656282] 8e09ad50 805e20aa 00000000 00000000 00000000 8017e2b8 00000009 801070ca
[42760.669424] ...
[42760.673919] Call Trace:
[42760.678672] [<27fde568>] show_stack+0x70/0xf0
[42760.685417] [<84751641>] dump_stack+0xaa/0xd0
[42760.692188] [<699d671c>] __warn+0x80/0x92
[42760.698549] [<68915d41>] warn_slowpath_null+0x28/0x36
[42760.705912] [<f7c76c1c>] smp_call_function_many+0x88/0x20c
[42760.713696] [<6bbdfc2a>] arch_trigger_cpumask_backtrace+0x30/0x4a
[42760.722216] [<f845bd33>] rcu_dump_cpu_stacks+0x6a/0x98
[42760.729580] [<796e7629>] rcu_check_callbacks+0x672/0x6ac
[42760.737476] [<059b3b43>] update_process_times+0x18/0x34
[42760.744981] [<6eb94941>] tick_sched_handle.isra.5+0x26/0x38
[42760.752793] [<478d3d70>] tick_sched_timer+0x1c/0x50
[42760.759882] [<e56ea39f>] __hrtimer_run_queues+0xc6/0x226
[42760.767418] [<e88bbcae>] hrtimer_interrupt+0x88/0x19a
[42760.775031] [<6765a19e>] gic_compare_interrupt+0x2e/0x3a
[42760.782761] [<0558bf5f>] handle_percpu_devid_irq+0x78/0x168
[42760.790795] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
[42760.798117] [<1b6d462c>] gic_handle_local_int+0x38/0x86
[42760.805545] [<b2ada1c7>] gic_irq_dispatch+0xa/0x14
[42760.812534] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
[42760.820086] [<c7521934>] do_IRQ+0x16/0x20
[42760.826274] [<9aef3ce6>] plat_irq_dispatch+0x62/0x94
[42760.833458] [<6a94b53c>] except_vec_vi_end+0x70/0x78
[42760.840655] [<22284043>] smp_call_function_many+0x1ba/0x20c
[42760.848501] [<54022b58>] smp_call_function+0x1e/0x2c
[42760.855693] [<ab9fc705>] flush_tlb_mm+0x2a/0x98
[42760.862730] [<0844cdd0>] tlb_flush_mmu+0x1c/0x44
[42760.869628] [<cb259b74>] arch_tlb_finish_mmu+0x26/0x3e
[42760.877021] [<1aeaaf74>] tlb_finish_mmu+0x18/0x66
[42760.883907] [<b3fce717>] exit_mmap+0x76/0xea
[42760.890428] [<c4c8a2f6>] mmput+0x80/0x11a
[42760.896632] [<a41a08f4>] do_exit+0x1f4/0x80c
[42760.903158] [<ee01cef6>] do_group_exit+0x20/0x7e
[42760.909990] [<13fa8d54>] __wake_up_parent+0x0/0x1e
[42760.917045] [<46cf89d0>] smp_call_function_many+0x1a2/0x20c
[42760.924893] [<8c21a93b>] syscall_common+0x14/0x1c
[42760.931765] ---[ end trace 02aa09da9dc52a60 ]---
[42760.938342] ------------[ cut here ]------------
[42760.945311] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:291 smp_call_function_single+0xee/0xf8
...
This patch switches MIPS' arch_trigger_cpumask_backtrace() to use async
IPIs & smp_call_function_single_async() in order to resolve this
problem. We ensure use of the pre-allocated call_single_data_t
structures is serialized by maintaining a cpumask indicating that
they're busy, and refusing to attempt to send an IPI when a CPU's bit is
set in this mask. This should only happen if a CPU hasn't responded to a
previous backtrace IPI - ie. if it's hung - and we print a warning to
the console in this case.
I've marked this for stable branches as far back as v4.9, to which it
applies cleanly. Strictly speaking the faulty MIPS implementation can be
traced further back to commit 856839b768 ("MIPS: Add
arch_trigger_all_cpu_backtrace() function") in v3.19, but kernel
versions v3.19 through v4.8 will require further work to backport due to
the rework performed in commit 9a01c3ed5c ("nmi_backtrace: add more
trigger_*_cpu_backtrace() methods").
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19597/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org # v4.9+
Fixes: 856839b768 ("MIPS: Add arch_trigger_all_cpu_backtrace() function")
Fixes: 9a01c3ed5c ("nmi_backtrace: add more trigger_*_cpu_backtrace() methods")
The generic nmi_cpu_backtrace() function calls show_regs() when a struct
pt_regs is available, and dump_stack() otherwise. If we were to make use
of the generic nmi_cpu_backtrace() with MIPS' current implementation of
show_regs() this would mean that we see only register data with no
accompanying stack information, in contrast with our current
implementation which calls dump_stack() regardless of whether register
state is available.
In preparation for making use of the generic nmi_cpu_backtrace() to
implement arch_trigger_cpumask_backtrace(), have our implementation of
show_regs() call dump_stack() and drop the explicit dump_stack() call in
arch_dump_stack() which is invoked by arch_trigger_cpumask_backtrace().
This will allow the output we produce to remain the same after a later
patch switches to using nmi_cpu_backtrace(). It may mean that we produce
extra stack output in other uses of show_regs(), but this:
1) Seems harmless.
2) Is good for consistency between arch_trigger_cpumask_backtrace()
and other users of show_regs().
3) Matches the behaviour of the ARM & PowerPC architectures.
Marked for stable back to v4.9 as a prerequisite of the following patch
"MIPS: Call dump_stack() from show_regs()".
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/19596/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org # v4.9+
Commit 784e0300fe ("rseq: Avoid infinite recursion when delivering
SIGSEGV") added a new ksig argument to the rseq_signal_deliver() &
rseq_handle_notify_resume() functions, and was merged in v4.18-rc2.
Meanwhile MIPS support for restartable sequences was also merged in
v4.18-rc2 with commit 9ea141ad54 ("MIPS: Add support for restartable
sequences"), and therefore didn't get updated for the API change.
This results in build failures like the following:
CC arch/mips/kernel/signal.o
arch/mips/kernel/signal.c: In function 'handle_signal':
arch/mips/kernel/signal.c:804:22: error: passing argument 1 of
'rseq_signal_deliver' from incompatible pointer type
[-Werror=incompatible-pointer-types]
rseq_signal_deliver(regs);
^~~~
In file included from ./include/linux/context_tracking.h:5,
from arch/mips/kernel/signal.c:12:
./include/linux/sched.h:1811:56: note: expected 'struct ksignal *' but
argument is of type 'struct pt_regs *'
static inline void rseq_signal_deliver(struct ksignal *ksig,
~~~~~~~~~~~~~~~~^~~~
arch/mips/kernel/signal.c:804:2: error: too few arguments to function
'rseq_signal_deliver'
rseq_signal_deliver(regs);
^~~~~~~~~~~~~~~~~~~
Fix this by adding the ksig argument as was done for other architectures
in commit 784e0300fe ("rseq: Avoid infinite recursion when delivering
SIGSEGV").
Signed-off-by: Paul Burton <paul.burton@mips.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Patchwork: https://patchwork.linux-mips.org/patch/19603/
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Commit 6b8322576e ("MIPS: Force CPUs to lose FP context during mode
switches") ensures that we react to PR_SET_FP_MODE prctl syscalls
quickly by broadcasting an IPI in order to cause CPUs to lose FPU access
when necessary. Whilst it achieves that, unfortunately it causes all
sorts of strange race conditions because:
1) The IPI may arrive at a point where the FPU is in the process of
being enabled, but that process is not yet complete leading to a
state we aren't prepared to handle. For example:
[ 370.215903] do_cpu invoked from kernel context![#1]:
[ 370.221064] CPU: 0 PID: 963 Comm: fp-prctl Not tainted 4.9.0-rc5-00323-g210db32-dirty #226
[ 370.229420] task: a8000000fd672e00 task.stack: a8000000fd630000
[ 370.235399] $ 0 : 0000000000000000 0000000000000001 0000000000000001 a8000000fd630000
[ 370.243882] $ 4 : a8000000fd672e00 0000000000000000 0000000000000453 0000000000000000
[ 370.252317] $ 8 : 0000000000000000 a8000000fd637c28 1000000000000000 0000000000000010
[ 370.260753] $12 : 00000000140084e0 ffffffff80109c00 0000000000000000 0000000000000002
[ 370.269179] $16 : ffffffff8092f080 a8000000fd672e00 ffffffff80107fe8 a8000000fd485000
[ 370.277612] $20 : ffffffff8084d328 ffffffff80940000 0000000000000009 ffffffff80930000
[ 370.286038] $24 : 0000000000000000 900000001612048c
[ 370.294476] $28 : a8000000fd630000 a8000000fd637ac0 ffffffff80937300 ffffffff8010807c
[ 370.302909] Hi : 0000000000000000
[ 370.306595] Lo : 0000000000000200
[ 370.310376] epc : ffffffff80115d38 _save_fp+0x10/0xa0
[ 370.315784] ra : ffffffff8010807c prepare_for_fp_mode_switch+0x94/0x1b0
[ 370.322707] Status: 140084e2 KX SX UX KERNEL EXL
[ 370.327980] Cause : 1080002c (ExcCode 0b)
[ 370.332091] PrId : 0001a428 (MIPS P6600)
[ 370.336179] Modules linked in:
[ 370.339486] Process fp-prctl (pid: 963, threadinfo=a8000000fd630000, task=a8000000fd672e00, tls=00000000756e67d0)
[ 370.349724] Stack : 0000000000000000 a8000000fd557dc0 0000000000000000 ffffffff801ca8e0
[ 370.358161] 0000000000000000 a8000000fd637b9c 0000000000000009 ffffffff80923780
[ 370.366575] ffffffff80850000 ffffffff8011610c 00000000000000b8 ffffffff801a5084
[ 370.374989] ffffffff8084a370 ffffffff8084a388 ffffffff80923780 ffffffff80923828
[ 370.383395] 0000000000010000 ffffffff809237a8 0000000000020000 ffffffff80a40000
[ 370.391817] 000000000000007c 00000000004a0000 00000000756dedd0 ffffffff801a5188
[ 370.400230] a800000002014900 0000000000000001 ffffffff80923780 0000000080923828
[ 370.408644] ffffffff80923780 ffffffff80923780 ffffffff80923828 ffffffff801a521c
[ 370.417066] ffffffff80923780 ffffffff80923828 0000000000010000 ffffffff801a8f84
[ 370.425472] ffffffff80a40000 a8000000fd637c20 ffffffff80a39240 0000000000000001
[ 370.433885] ...
[ 370.436562] Call Trace:
[ 370.439222] [<ffffffff80115d38>] _save_fp+0x10/0xa0
[ 370.444305] [<ffffffff8010807c>] prepare_for_fp_mode_switch+0x94/0x1b0
[ 370.451035] [<ffffffff801ca8e0>] flush_smp_call_function_queue+0xf8/0x230
[ 370.457991] [<ffffffff8011610c>] ipi_call_interrupt+0xc/0x20
[ 370.463814] [<ffffffff801a5084>] __handle_irq_event_percpu+0xc4/0x1a8
[ 370.470404] [<ffffffff801a5188>] handle_irq_event_percpu+0x20/0x68
[ 370.476734] [<ffffffff801a521c>] handle_irq_event+0x4c/0x88
[ 370.482486] [<ffffffff801a8f84>] handle_edge_irq+0x12c/0x210
[ 370.488316] [<ffffffff801a47a0>] generic_handle_irq+0x38/0x48
[ 370.494280] [<ffffffff804a2dbc>] gic_handle_shared_int+0x194/0x268
[ 370.500616] [<ffffffff801a47a0>] generic_handle_irq+0x38/0x48
[ 370.506529] [<ffffffff80107e60>] do_IRQ+0x18/0x28
[ 370.511445] [<ffffffff804a1524>] plat_irq_dispatch+0xc4/0x140
[ 370.517339] [<ffffffff80106230>] ret_from_irq+0x0/0x4
[ 370.522583] [<ffffffff8010fad4>] do_ri+0x4fc/0x7e8
[ 370.527546] [<ffffffff80106220>] ret_from_exception+0x0/0x10
2) The IPI may arrive during kernel use of the FPU, since we generally
only disable preemption around use of the FPU & leave interrupts
enabled. This can lead to us unexpectedly losing access to the FPU
in places where it previously had not been possible. For example:
do_cpu invoked from kernel context![#2]:
CPU: 2 PID: 7338 Comm: fp-prctl Tainted: G D 4.7.0-00424-g49b0c82
#2
task: 838e4000 ti: 88d38000 task.ti: 88d38000
$ 0 : 00000000 00000001 ffffffff 88d3fef8
$ 4 : 838e4000 88d38004 00000000 00000001
$ 8 : 3400fc01 801f8020 808e9100 24000000
$12 : dbffffff 807b69d8 807b0000 00000000
$16 : 00000000 80786150 00400fc4 809c0398
$20 : 809c0338 0040273c 88d3ff28 808e9d30
$24 : 808e9d30 00400fb4
$28 : 88d38000 88d3fe88 00000000 8011a2ac
Hi : 0040273c
Lo : 88d3ff28
epc : 80114178 _restore_fp+0x10/0xa0
ra : 8011a2ac mipsr2_decoder+0xd5c/0x1660
Status: 1400fc03 KERNEL EXL IE
Cause : 1080002c (ExcCode 0b)
PrId : 0001a920 (MIPS I6400)
Modules linked in:
Process fp-prctl (pid: 7338, threadinfo=88d38000, task=838e4000, tls=766527d0)
Stack : 00000000 00000000 00000000 88d3fe98 00000000 00000000 809c0398 809c0338
808e9100 00000000 88d3ff28 00400fc4 00400fc4 0040273c 7fb69e18 004a0000
004a0000 004a0000 7664add0 8010de18 00000000 00000000 88d3fef8 88d3ff28
808e9100 00000000 766527d0 8010e534 000c0000 85755000 8181d580 00000000
00000000 00000000 004a0000 00000000 766527d0 7fb69e18 004a0000 80105c20
...
Call Trace:
[<80114178>] _restore_fp+0x10/0xa0
[<8011a2ac>] mipsr2_decoder+0xd5c/0x1660
[<8010de18>] do_ri+0x90/0x6b8
[<80105c20>] ret_from_exception+0x0/0x10
At first glance a simple fix may seem to be to disable interrupts around
kernel use of the FPU rather than merely preemption, however this would
introduce further overhead outside of the mode switch path & doesn't
solve the third problem:
3) The IPI may arrive whilst the kernel is running code that will lead
to a preempt_disable() call & FPU usage soon. If this happens then
the IPI will be serviced & we'll proceed to enable an FPU whilst the
mode switch is in progress, leading to strange & inconsistent
behaviour.
Further to all of this is a separate but related problem:
4) There are various paths through which we may enable the FPU without
the user having triggered a coprocessor 1 disabled exception. These
paths are those in which we emulate instructions & then enable the
FPU with the expectation that the user might execute an FP
instruction shortly afterwards. However these paths have not
previously checked whether an FP mode switch is underway for the
task, and therefore could enable the FPU whilst such a mode switch
is in progress leading to strange & inconsistent behaviour for user
code.
This patch fixes all of the above by taking a step back & re-examining
our approach to FP mode switches. Up until now we have taken these basic
steps:
a) Prevent any threads that are part of the affected process from being
able to obtain ownership of the FPU.
b) Cause any threads that are part of the affected process and already
have ownership of an FPU to lose it.
c) Set the thread flags for each thread that is part of the affected
process to reflect the new FP mode.
d) Allow threads to obtain ownership of the FPU again.
This approach is however more complex than necessary. All that we really
require is that the mode switch has occurred for all threads that are
part of the affected process before mips_set_process_fp_mode(), and thus
the PR_SET_FP_MODE prctl() syscall, returns. This doesn't require that
we stop threads from owning or using an FPU whilst a mode switch occurs,
only that we force them to relinquish it after the mode switch has
occurred such that they next own an FPU with the correct mode
configured. Our basic steps therefore simplify to:
A) Set the thread flags for each thread that is part of the affected
process to reflect the new FP mode.
B) Cause any threads that are part of the affected process and already
have ownership of an FPU to lose it.
We implement B) by forcing each CPU which might be running a thread
which is part of the affected process to schedule a no-op function,
which causes the affected thread to lose its FPU ownership when it is
descheduled.
The end result is simpler FP mode switching with less overhead in the
FPU enable path (ie. enable_restore_fp_context()) and fewer moving
parts.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: 9791554b45 ("MIPS,prctl: add PR_[GS]ET_FP_MODE prctl options for MIPS")
Fixes: 6b8322576e ("MIPS: Force CPUs to lose FP context during mode switches")
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: stable <stable@vger.kernel.org> # v4.0+
On SMP systems, the shared ejtag debug buffer may be overwritten by
other cores, because every cores can generate ejtag exception at
same time.
Unfortunately, in that context, it's difficult to relax more registers
to access per cpu buffers. so use ll/sc to serialize the access.
[paul.burton@mips.com:
This could in theory be backported at least as far back as the
beginning of the git era, however in general it's exceedingly rare
that anyone would hit this without further changes, so it doesn't seem
worthwhile marking for backport.]
Signed-off-by: Heiher <r@hev.cc>
Patchwork: https://patchwork.linux-mips.org/patch/19507/
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: jhogan@kernel.org
Cc: ralf@linux-mips.org
We want to be able to use it even when not building dma-default.c
in the near future.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Patchwork: https://patchwork.linux-mips.org/patch/19543/
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Kevin Cernekee <cernekee@gmail.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Tom Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: iommu@lists.linux-foundation.org
Cc: linux-mips@linux-mips.org
Correct a couple of typos within comments in
arch/mips/kernel/relocate_kernel.S.
[paul.burton@mips.com: Add a commit message.]
Signed-off-by: Yegor Yefremov <yegorslists@googlemail.com>
Patchwork: https://patchwork.linux-mips.org/patch/19218/
Signed-off-by: Paul Burton <paul.burton@mips.com>
Clear current_kprobe and enable preemption in kprobe
even if pre_handler returns !0.
This simplifies function override using kprobes.
Jprobe used to require to keep the preemption disabled and
keep current_kprobe until it returned to original function
entry. For this reason kprobe_int3_handler() and similar
arch dependent kprobe handers checks pre_handler result
and exit without enabling preemption if the result is !0.
After removing the jprobe, Kprobes does not need to
keep preempt disabled even if user handler returns !0
anymore.
But since the function override handler in error-inject
and bpf is also returns !0 if it overrides a function,
to balancing the preempt count, it enables preemption
and reset current kprobe by itself.
That is a bad design that is very buggy. This fixes
such unbalanced preempt-count and current_kprobes setting
in kprobes, bpf and error-inject.
Note: for powerpc and x86, this removes all preempt_disable
from kprobe_ftrace_handler because ftrace callbacks are
called under preempt disabled.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-snps-arc@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: sparclinux@vger.kernel.org
Link: https://lore.kernel.org/lkml/152942494574.15209.12323837825873032258.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Don't call the ->break_handler() from the MIPS kprobes code,
because it was only used by jprobes which got removed.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: linux-arch@vger.kernel.org
Cc: linux-mips@linux-mips.org
Link: https://lore.kernel.org/lkml/152942482953.15209.843924518200700137.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>