Some SPI master controllers always drive a native chip select when
performing a transfer. Hence when using both native and GPIO chip
selects, at least one native chip select must be left unused, to be
driven when performing transfers with slave devices using GPIO chip
selects.
Currently, to find an unused native chip select, SPI controller drivers
need to parse and process cs-gpios theirselves. This is not only
duplicated in each driver that needs it, but also duplicates part of the
work done later at SPI controller registration time. Note that this
cannot be done after spi_register_controller() returns, as at that time,
slave devices may have been probed already.
Hence add generic support to the SPI subsystem for finding an unused
native chip select. Optionally, this unused native chip select, and all
other in-use native chip selects, can be validated against the maximum
number of native chip selects available on the controller hardware.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20200102133822.29346-2-geert+renesas@glider.be
Signed-off-by: Mark Brown <broonie@kernel.org>
The API for PTP system timestamping (associating a SPI transaction with
the system time at which it was transferred) is flawed: it assumes that
the xfer->tx_buf pointer will always be present.
This is, of course, not always the case.
So introduce a "progress" variable that denotes how many word have been
transferred.
Fix the Freescale DSPI driver, the only user of the API so far, in the
same patch.
Fixes: b42faeee71 ("spi: Add a PTP system timestamp to the transfer structure")
Fixes: d6b71dfaee ("spi: spi-fsl-dspi: Implement the PTP system timestamping for TCFQ mode")
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20191227012417.1057-1-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Switch the OC Tiny driver over to handling CS GPIOs using
GPIO descriptors in the core.
This driver is entirely relying on GPIOs to be used for
chipselect, so let the core pick these out using either
device tree or machine descriptors.
There are no in-tree users of this driver so no board files
need to be patched, out-of-tree boardfiles can use machine
descriptor tables, c.f. commit 1dfbf334f1.
Cc: Thomas Chou <thomas@wytron.com.tw>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20191205092411.64341-1-linus.walleij@linaro.org
Signed-off-by: Mark Brown <broonie@kernel.org>
This change documents the CS setup, host & inactive times. They were
omitted when the fields were added, and were caught by one of the build
bots.
Fixes: 25093bdeb6 ("spi: implement SW control for CS times")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20191023070046.12478-1-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The way the max delay is computed for this controller, it looks like it is
searching for the max delay from an SPI message a using that.
No idea if this is valid. But this change should support both `delay_usecs`
and the new `delay` data which is of `spi_delay` type.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-17-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change implements CS control for setup, hold & inactive delays.
The `cs_setup` delay is completely new, and can help with cases where
asserting the CS, also brings the device out of power-sleep, where there
needs to be a longer (than usual), before transferring data.
The `cs_hold` time can overlap with the `delay` (or `delay_usecs`) from an
SPI transfer. The main difference is that `cs_hold` implies that CS will be
de-asserted.
The `cs_inactive` delay does not have a clear use-case yet. It has been
implemented mostly because the `spi_set_cs_timing()` function implements
it. To some degree, this could overlap or replace `cs_change_delay`, but
this will require more consideration/investigation in the future.
All these delays have been added to the `spi_controller` struct, as they
would typically be configured by calling `spi_set_cs_timing()` after an
`spi_setup()` call.
Software-mode for CS control, implies that the `set_cs_timing()` hook has
not been provided for the `spi_controller` object.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-16-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The initial version of `spi_set_cs_timing()` was implemented with
consideration only for clock-cycles as delay.
For cases like `CS setup` time, it's sometimes needed that micro-seconds
(or nano-seconds) are required, or sometimes even longer delays, for cases
where the device needs a little longer to start transferring that after CS
is asserted.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-15-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The change introduces the `delay` field to the `spi_transfer` struct as an
`struct spi_delay` type.
This intends to eventually replace `delay_usecs`.
But, since there are many users of `delay_usecs`, this needs some
intermediate work.
A helper called `spi_transfer_delay_exec()` is also added, which maintains
backwards compatibility with `delay_usecs`, by assigning the value to
`delay` if non-zero.
This should maintain backwards compatibility with current users of
`udelay_usecs`.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-9-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change does a conversion from the `word_delay_usecs` -> `word_delay`
for the `spi_device` struct.
This allows users to specify inter-word delays in other unit types
(nano-seconds or clock cycles), depending on how users want.
The Atmel SPI driver is the only current user of the `word_delay_usecs`
field (from the `spi_device` struct).
So, it needed a slight conversion to use the `word_delay` as an `spi_delay`
struct.
In SPI core, the only required mechanism is to update the `word_delay`
information per `spi_transfer`. This requires a bit more logic than before,
because it needs that both delays be converted to a common unit
(nano-seconds) for comparison.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-8-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The Spreadtrum SPI driver is the only user of the `word_delay` field in
the `spi_transfer` struct.
This change converts the field to use the `spi_delay` struct. This also
enforces the users to specify the delay unit to be `SPI_DELAY_UNIT_SCK`.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-5-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Since the logic for `spi_delay` struct + `spi_delay_exec()` has been copied
from the `cs_change_delay` logic, it's natural to make this delay, the
first user.
The `cs_change_delay` logic requires that the default remain 10 uS, in case
it is unspecified/unconfigured. So, there is some special handling needed
to do that.
The ADIS library is one of the few users of the new `cs_change_delay`
parameter for an spi_transfer.
The introduction of the `spi_delay` struct, requires that the users of of
`cs_change_delay` get an update. This change also updates the ADIS library.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-4-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
There are plenty of delays that have been introduced in SPI core. Most of
them are in micro-seconds, some need to be in nano-seconds, and some in
clock-cycles.
For some of these delays (related to transfers & CS timing) it may make
sense to have a `spi_delay` struct that abstracts these a bit.
The important element of these delays [for unification] seems to be the
`unit` of the delay.
It looks like micro-seconds is good enough for most people, but every-once
in a while, some delays seem to require other units of measurement.
This change adds the `spi_delay` struct & a `spi_delay_exec()` function
that processes a `spi_delay` object/struct to execute the delay.
It's a copy of the `cs_change_delay` mechanism, but without the default
for 10 uS.
The clock-cycle delay unit is a bit special, as it needs to be bound to an
`spi_transfer` object to execute.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-3-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
SPI is one of the interfaces used to access devices which have a POSIX
clock driver (real time clocks, 1588 timers etc). The fact that the SPI
bus is slow is not what the main problem is, but rather the fact that
drivers don't take a constant amount of time in transferring data over
SPI. When there is a high delay in the readout of time, there will be
uncertainty in the value that has been read out of the peripheral.
When that delay is constant, the uncertainty can at least be
approximated with a certain accuracy which is fine more often than not.
Timing jitter occurs all over in the kernel code, and is mainly caused
by having to let go of the CPU for various reasons such as preemption,
servicing interrupts, going to sleep, etc. Another major reason is CPU
dynamic frequency scaling.
It turns out that the problem of retrieving time from a SPI peripheral
with high accuracy can be solved by the use of "PTP system
timestamping" - a mechanism to correlate the time when the device has
snapshotted its internal time counter with the Linux system time at that
same moment. This is sufficient for having a precise time measurement -
it is not necessary for the whole SPI transfer to be transmitted "as
fast as possible", or "as low-jitter as possible". The system has to be
low-jitter for a very short amount of time to be effective.
This patch introduces a PTP system timestamping mechanism in struct
spi_transfer. This is to be used by SPI device drivers when they need to
know the exact time at which the underlying device's time was
snapshotted. More often than not, SPI peripherals have a very exact
timing for when their SPI-to-interconnect bridge issues a transaction
for snapshotting and reading the time register, and that will be
dependent on when the SPI-to-interconnect bridge figures out that this
is what it should do, aka as soon as it sees byte N of the SPI transfer.
Since spi_device drivers are the ones who'd know best how the peripheral
behaves in this regard, expose a mechanism in spi_transfer which allows
them to specify which word (or word range) from the transfer should be
timestamped.
Add a default implementation of the PTP system timestamping in the SPI
core. This is not going to be satisfactory performance-wise, but should
at least increase the likelihood that SPI device drivers will use PTP
system timestamping in the future.
There are 3 entry points from the core towards the SPI controller
drivers:
- transfer_one: The driver is passed individual spi_transfers to
execute. This is the easiest to timestamp.
- transfer_one_message: The core passes the driver an entire spi_message
(a potential batch of spi_transfers). The core puts the same pre and
post timestamp to all transfers within a message. This is not ideal,
but nothing better can be done by default anyway, since the core has
no insight into how the driver batches the transfers.
- transfer: Like transfer_one_message, but for unqueued drivers (i.e.
the driver implements its own queue scheduling).
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20190905010114.26718-3-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Compiler is not happy about spi_set_cs_timing() prototype.
drivers/spi/spi.c:3016:6: warning: no previous prototype for ‘spi_set_cs_timing’ [-Wmissing-prototypes]
void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
^~~~~~~~~~~~~~~~~
Let's add it to the header.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation version 2 of the license this program
is distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 100 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141900.918357685@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 655 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.575739538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 3 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [kishon] [vijay] [abraham]
[i] [kishon]@[ti] [com] this program is distributed in the hope that
it will be useful but without any warranty without even the implied
warranty of merchantability or fitness for a particular purpose see
the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [graeme] [gregory]
[gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
[kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
[hk] [hemahk]@[ti] [com] this program is distributed in the hope
that it will be useful but without any warranty without even the
implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1105 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Right now the only way to get the SPI pumping thread bumped up to
realtime priority is for the controller to request it. However it may
be that the controller works fine with the normal priority but
communication to a particular SPI device on the bus needs realtime
priority.
Let's add a way for devices to request realtime priority when they set
themselves up.
NOTE: this will just affect the priority of transfers that end up on
the SPI core's pumping thread. In many cases transfers happen in the
context of the caller so if you need realtime priority for all
transfers you should ensure the calling context is also realtime
priority.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Tested-by: Enric Balletbo i Serra <enric.balletbo@collabora.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Provide a means for the spi bus driver to report the effectively used
spi clock frequency used for each spi_transfer.
Signed-off-by: Martin Sperl <kernel@martin.sperl.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Support setting a delay between cs assert and deassert as
a multiple of spi clock length.
Signed-off-by: Martin Sperl <kernel@martin.sperl.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
For some SPI devices that support speed_hz > 1MHz the default 10 us delay
when cs_change = 1 is typically way to long and may result in poor spi bus
utilization.
This patch makes it possible to control the delay at micro or nano second
resolution on a per spi_transfer basis. It even allows an "as fast as
possible" mode with:
xfer.cs_change_delay_unit = SPI_DELAY_UNIT_NSECS;
xfer.cs_change_delay = 0;
The delay code is shared between delay_usecs and cs_change_delay for
consistency and reuse, so in the future this change_delay_unit could also
apply to delay_usec as well.
Note that on slower SOCs/CPU actually reaching ns deasserts on cs is not
realistic as the gpio overhead alone (without any delays added ) may
already leave cs deasserted for more than 1us - at least on a raspberry pi.
But at the very least this way we can keep it as short as possible.
Signed-off-by: Martin Sperl <kernel@martin.sperl.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
This patch changes mode and mode_bits from u16 to u32 to allow more
mode configurations.
Signed-off-by: Sowjanya Komatineni <skomatineni@nvidia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Stub helper spi_mem_default_supports_op() should
be set to static inline
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
When building with CONFIG_SPI_MEM is not set
gc warns this:
drivers/spi/spi-zynq-qspi.o: In function `zynq_qspi_supports_op':
spi-zynq-qspi.c:(.text+0x1da): undefined reference to `spi_mem_default_supports_op'
Fixes: 67dca5e580 ("spi: spi-mem: Add support for Zynq QSPI controller")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
This let SPI clients check if the controller supports a particular word
width. drivers/gpu/drm/tinydrm/mipi-dbi.c will use this to determine if
the controller supports 16-bit for RGB565 pixels. If it doesn't it will
swap the bytes before transfer on little endian machines.
Signed-off-by: Noralf Trønnes <noralf@tronnes.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
This patch creates set_cs_timing SPI master optional method for
SPI masters to implement configuring CS timing if applicable.
This patch also creates spi_cs_timing accessory for SPI clients to
use for requesting SPI master controllers to configure device requested
CS setup time, hold time and inactive delay.
Signed-off-by: Sowjanya Komatineni <skomatineni@nvidia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Move all of the code doing struct spi_bitbang initialization, so that
it can be paired with devm_spi_register_master() in order to avoid
having to call spi_bitbang_stop() explicitly.
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Healy <cphealy@gmail.com>
Cc: linux-spi@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Export spi_mem_default_supports_op(), so that controller drivers
can use this.
spi-mem driver already exports this using EXPORT_SYMBOL,
but not declared it in spi-mem.h.
This patch declares spi_mem_default_supports_op() in spi-mem.h and
also removes the static from the function prototype.
Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some masters may have different DMA burst size than hard coded default.
In such case respect the value given by DMA burst size provided via
platform data.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Tested-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Reviewed-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Geert points out that I confused the min/max arguments that are
reversed between SPI_BPW_RANGE_MASK() and GENMASK(). This time
I have verified the result of the macro after fixing the arguments.
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Fixes: eefffb42f6 ("spi: work around clang bug in SPI_BPW_RANGE_MASK()")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Mark Brown <broonie@kernel.org>
Clang-8 evaluates both sides of a ?: expression to check for
valid arithmetic even in the side that is never taken. This
results in a build warning:
drivers/spi/spi-sh-msiof.c:1052:24: error: shift count >= width of type [-Werror,-Wshift-count-overflow]
.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
^~~~~~~~~~~~~~~~~~~~~~~~~
Change the implementation to use the GENMASK() macro that does
what we want here but does not have a problem with the shift
count overflow.
Link: https://bugs.llvm.org/show_bug.cgi?id=38789
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some devices are slow and cannot keep up with the SPI bus and therefore
require a short delay between words of the SPI transfer.
The example of this that I'm looking at is a SAMA5D2 with a minimum SPI
clock of 400kHz talking to an AVR-based SPI slave. The AVR cannot put
bytes on the bus fast enough to keep up with the SoC's SPI controller
even at the lowest bus speed.
This patch introduces the ability to specify a required inter-word
delay for SPI devices. It is up to the controller driver to configure
itself accordingly in order to introduce the requested delay.
Note that, for spi_transfer, there is already a field word_delay that
provides similar functionality. This field, however, is specified in
clock cycles (and worse, SPI controller cycles, not SCK cycles); that
makes this value dependent on the master clock instead of the device
clock for which the delay is intended to provide some relief. This
patch leaves this old word_delay in place and provides a time-based
word_delay_us alongside it; the new field fits in the struct padding
so struct size is constant. There is only one in-kernel user of the
word_delay field and presumably that driver could be reworked to use
the time-based value instead.
The time-based delay is limited to 8 bits as these delays are intended
to be short. The SAMA5D2 that I've tested this on limits delays to a
maximum of ~100us, which is already many word-transfer periods even at
the minimum transfer speed supported by the controller.
Signed-off-by: Jonas Bonn <jonas@norrbonn.se>
CC: Mark Brown <broonie@kernel.org>
CC: Rob Herring <robh+dt@kernel.org>
CC: Mark Rutland <mark.rutland@arm.com>
CC: linux-spi@vger.kernel.org
CC: devicetree@vger.kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Commit 412e603732 ("spi: core: avoid waking pump thread from spi_sync
instead run teardown delayed") introduced regressions on some boards,
apparently connected to spi_mem not triggering shutdown properly any
more. Since we've thus far been unable to figure out exactly where the
breakage is revert the optimisation for now.
Reported-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: kernel@martin.sperl.org
It's also a slave controller driver now, calling it "master" is slightly
misleading.
Signed-off-by: Lubomir Rintel <lkundrak@v3.sk>
Acked-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Mark Brown <broonie@kernel.org>
Since direct mapping descriptors usually the same lifetime as the SPI
MEM device adding devm_ variants of the spi_mem_dirmap_{create,destroy}()
should greatly simplify error/remove path of spi-mem drivers making use
of the direct mapping API.
Signed-off-by: Boris Brezillon <bbrezillon@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
This augments the SPI core to optionally use GPIO descriptors
for chip select on a per-master-driver opt-in basis.
Drivers using this will rely on the SPI core to look up
GPIO descriptors associated with the device, such as
when using device tree or board files with GPIO descriptor
tables.
When getting descriptors from the device tree, this will in
turn activate the code in gpiolib that was
added in commit 6953c57ab1
("gpio: of: Handle SPI chipselect legacy bindings")
which means that these descriptors are aware of the active
low semantics that is the default for SPI CS GPIO lines
and we can assume that all of these are "active high" and
thus assign SPI_CS_HIGH to all CS lines on the DT path.
The previously used gpio_set_value() would call down into
gpiod_set_raw_value() and ignore the polarity inversion
semantics.
It seems like many drivers go to great lengths to set up the
CS GPIO line as non-asserted, respecting SPI_CS_HIGH. We pull
this out of the SPI drivers and into the core, and by simply
requesting the line as GPIOD_OUT_LOW when retrieveing it from
the device and relying on the gpiolib to handle any inversion
semantics. This way a lot of code can be simplified and
removed in each converted driver.
The end goal after dealing with each driver in turn, is to
delete the non-descriptor path (of_spi_register_master() for
example) and let the core deal with only descriptors.
The different SPI drivers have complex interactions with the
core so we cannot simply change them all over, we need to use
a stepwise, bisectable approach so that each driver can be
converted and fixed in isolation.
This patch has the intended side effect of adding support for
ACPI GPIOs as it starts relying on gpiod_get_*() to get
the GPIO handle associated with the device.
Cc: Linuxarm <linuxarm@huawei.com>
Acked-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Tested-by: Fangjian (Turing) <f.fangjian@huawei.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
- Cleanup BKOPS support
- Introduce MMC_CAP_SYNC_RUNTIME_PM
- slot-gpio: Delete legacy slot GPIO handling
MMC host:
- alcor: Add new mmc host driver for Alcor Micro PCI based cardreader
- bcm2835: Several improvements to better recover from errors
- jz4740: Rework and fixup pre|post_req support
- mediatek: Add support for SDIO IRQs
- meson-gx: Improve clock phase management
- meson-gx: Stop descriptor on errors
- mmci: Complete the sbc error path by sending a stop command
- renesas_sdhi/tmio: Fixup reset/resume operations
- renesas_sdhi: Add support for r8a774c0 and R7S9210
- renesas_sdhi: Whitelist R8A77990 SDHI
- renesas_sdhi: Fixup eMMC HS400 compatibility issues for H3 and M3-W
- rtsx_usb_sdmmc: Re-work card detection/removal support
- rtsx_usb_sdmmc: Re-work runtime PM support
- sdhci: Fix timeout loops for some variant drivers
- sdhci: Improve support for error handling due to failing commands
- sdhci-acpi/pci: Disable LED control for Intel BYT-based controllers
- sdhci_am654: Add new SDHCI variant driver to support TI's AM654 SOCs
- sdhci-of-esdhc: Add support for eMMC HS400 mode
- sdhci-omap: Fixup reset support
- sdhci-omap: Workaround errata regarding SDR104/HS200 tuning failures
- sdhci-msm: Fixup sporadic write transfers issues for SDR104/HS200
- sdhci-msm: Fixup dynamical clock gating issues
- various: Complete converting all hosts into using slot GPIO descriptors
Other:
- Move GPIO mmc platform data for mips/sh/arm to GPIO descriptors
- Add new Alcor Micro cardreader PCI driver
- Support runtime power management for memstick rtsx_usb_ms driver
- Use USB remote wakeups for card detection for rtsx_usb misc driver
-----BEGIN PGP SIGNATURE-----
iQJLBAABCgA1FiEEugLDXPmKSktSkQsV/iaEJXNYjCkFAlwk3CcXHHVsZi5oYW5z
c29uQGxpbmFyby5vcmcACgkQ/iaEJXNYjCn3ug/+Kra3JxvVcD9I6NZV5CEBWRdw
nlNN/hexyzpf+zJ6Gb/YS1PSNVQl3a/gND+7mQRHQxJobhkSzaJ3vkZqRMo2HN8p
D1Gh1j2qBfX2uKj87Svy8nygIulbDbeiBYWrNV070JQaOki9osWTv2JRGl2zufc8
zonoW1Aou9K6AkrFoFKiaiIZFG9+h5imGSdZTTZ17iOMvs/3DzhjV8UgIvye0Tzm
Pic/4m6C7YeU7cj+aWyJFRgVuR3AG041d1likIuufxKwwhMSPf16L/xK1q8P8CCQ
ErScSODqo0hGPmRLNQ7lBN+3A3NLBWOw2Ph5OabfNIPWz1kr6s2ixN9pxkPT7usE
YMnVQ0YA0fJ13SbtdZ/mjr2A2zMkHN+4PNQC6DRDiDt4WWdNC/1aedOk0CKxRPME
ppw8MnbSl3lranNoz+opU10spSXZ2m5sGI3t7gD032PJfM3dOcJgLNTpcES5NdTR
jxqD/RYrtlg4IwZoLZgNt6BPIHBIo+D7JobqcLbELC3MKSSrO9nTKGHF2HxF6Nes
YvCzKrUAsuxKSVAuNSq/f0ZP0Uk2Nic6iN7Kt2tmkpiMZ2CmynXNtyk/Ff1b1FF/
urqOSjKYvq2bvyej5fVMGg6cieEsPZr3CiHYNWq3vwpDK87HsraO3op/qj3ud0Y0
nAPkQbeHfKKhwPGtSQU=
=mB5P
-----END PGP SIGNATURE-----
Merge tag 'mmc-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
Pull MMC updates from Ulf Hansson:
"This time, this pull request contains changes crossing subsystems and
archs/platforms, which is mainly because of a bigger modernization of
moving from legacy GPIO to GPIO descriptors for MMC (by Linus
Walleij).
Additionally, once again, I am funneling changes to
drivers/misc/cardreader/* and drivers/memstick/* through my MMC tree,
mostly due to that we lack a maintainer for these.
Summary:
MMC core:
- Cleanup BKOPS support
- Introduce MMC_CAP_SYNC_RUNTIME_PM
- slot-gpio: Delete legacy slot GPIO handling
MMC host:
- alcor: Add new mmc host driver for Alcor Micro PCI based cardreader
- bcm2835: Several improvements to better recover from errors
- jz4740: Rework and fixup pre|post_req support
- mediatek: Add support for SDIO IRQs
- meson-gx: Improve clock phase management
- meson-gx: Stop descriptor on errors
- mmci: Complete the sbc error path by sending a stop command
- renesas_sdhi/tmio: Fixup reset/resume operations
- renesas_sdhi: Add support for r8a774c0 and R7S9210
- renesas_sdhi: Whitelist R8A77990 SDHI
- renesas_sdhi: Fixup eMMC HS400 compatibility issues for H3 and M3-W
- rtsx_usb_sdmmc: Re-work card detection/removal support
- rtsx_usb_sdmmc: Re-work runtime PM support
- sdhci: Fix timeout loops for some variant drivers
- sdhci: Improve support for error handling due to failing commands
- sdhci-acpi/pci: Disable LED control for Intel BYT-based controllers
- sdhci_am654: Add new SDHCI variant driver to support TI's AM654 SOCs
- sdhci-of-esdhc: Add support for eMMC HS400 mode
- sdhci-omap: Fixup reset support
- sdhci-omap: Workaround errata regarding SDR104/HS200 tuning failures
- sdhci-msm: Fixup sporadic write transfers issues for SDR104/HS200
- sdhci-msm: Fixup dynamical clock gating issues
- various: Complete converting all hosts into using slot GPIO descriptors
Other:
- Move GPIO mmc platform data for mips/sh/arm to GPIO descriptors
- Add new Alcor Micro cardreader PCI driver
- Support runtime power management for memstick rtsx_usb_ms driver
- Use USB remote wakeups for card detection for rtsx_usb misc driver"
* tag 'mmc-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc: (99 commits)
mmc: mediatek: Add MMC_CAP_SDIO_IRQ support
mmc: renesas_sdhi_internal_dmac: Whitelist r8a774c0
dt-bindings: mmc: renesas_sdhi: Add r8a774c0 support
mmc: core: Cleanup BKOPS support
mmc: core: Drop redundant check in mmc_send_hpi_cmd()
mmc: sdhci-omap: Workaround errata regarding SDR104/HS200 tuning failures (i929)
dt-bindings: sdhci-omap: Add note for cpu_thermal
mmc: sdhci-acpi: Disable LED control for Intel BYT-based controllers
mmc: sdhci-pci: Disable LED control for Intel BYT-based controllers
mmc: sdhci: Add quirk to disable LED control
mmc: mmci: add variant property to set command stop bit
misc: alcor_pci: fix spelling mistake "invailid" -> "invalid"
mmc: meson-gx: add signal resampling
mmc: meson-gx: align default phase on soc vendor tree
mmc: meson-gx: remove useless lock
mmc: meson-gx: make sure the descriptor is stopped on errors
mmc: sdhci_am654: Add Initial Support for AM654 SDHCI driver
dt-bindings: mmc: sdhci-of-arasan: Add deprecated message for AM65
dt-bindings: mmc: sdhci-am654: Document bindings for the host controllers on TI's AM654 SOCs
mmc: sdhci-msm: avoid unused function warning
...
Switch the SPI MMC driver to use GPIO descriptors internally
and just look those up using the standard slot GPIO
functions mmc_gpiod_request_cd() and mmc_gpiod_request_ro().
Make sure to request index 0 and 1 in accordance with the
SPI MMC DT binding, and add the same GPIOs in machine
descriptor tables on all boards that use SPI MMC in
board files.
The lines are flagged as GPIO_ACTIVE_[LOW|HIGH] as that is
what they are, and since we can now rely on the descriptors
to have the right polarity, we set the
"override_active_level" to false in mmc_gpiod_request_cd()
and mmc_gpiod_request_ro().
Cc: Hartley Sweeten <hsweeten@visionengravers.com> # Vision EP9307
Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Add flags for Octal mode I/O data transfer
Required for the SPI controller which can do the data transfer (TX/RX)
on 8 data lines e.g. NXP FlexSPI controller.
SPI_TX_OCTAL: transmit with 8 wires
SPI_RX_OCTAL: receive with 8 wires
Signed-off-by: Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
Reviewed-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Most modern SPI controllers can directly map a SPI memory (or a portion
of the SPI memory) in the CPU address space. Most of the time this
brings significant performance improvements as it automates the whole
process of sending SPI memory operations every time a new region is
accessed.
This new API allows SPI memory drivers to create direct mappings and
then use them to access the memory instead of using spi_mem_exec_op().
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Mark Brown <broonie@kernel.org>