Commit Graph

3010 Commits

Author SHA1 Message Date
Thomas Gleixner
8933a52534 sched: Reenable interrupts in do_sched_yield()
[ Upstream commit 345a957fcc95630bf5535d7668a59ed983eb49a7 ]

do_sched_yield() invokes schedule() with interrupts disabled which is
not allowed. This goes back to the pre git era to commit a6efb709806c
("[PATCH] irqlock patch 2.5.27-H6") in the history tree.

Reenable interrupts and remove the misleading comment which "explains" it.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/87r1pt7y5c.fsf@nanos.tec.linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-12-30 11:52:59 +01:00
Peng Liu
6d4250fe7d sched/deadline: Fix sched_dl_global_validate()
[ Upstream commit a57415f5d1e43c3a5c5d412cd85e2792d7ed9b11 ]

When change sched_rt_{runtime, period}_us, we validate that the new
settings should at least accommodate the currently allocated -dl
bandwidth:

  sched_rt_handler()
    -->	sched_dl_bandwidth_validate()
	{
		new_bw = global_rt_runtime()/global_rt_period();

		for_each_possible_cpu(cpu) {
			dl_b = dl_bw_of(cpu);
			if (new_bw < dl_b->total_bw)    <-------
				ret = -EBUSY;
		}
	}

But under CONFIG_SMP, dl_bw is per root domain , but not per CPU,
dl_b->total_bw is the allocated bandwidth of the whole root domain.
Instead, we should compare dl_b->total_bw against "cpus*new_bw",
where 'cpus' is the number of CPUs of the root domain.

Also, below annotation(in kernel/sched/sched.h) implied implementation
only appeared in SCHED_DEADLINE v2[1], then deadline scheduler kept
evolving till got merged(v9), but the annotation remains unchanged,
meaningless and misleading, update it.

* With respect to SMP, the bandwidth is given on a per-CPU basis,
* meaning that:
*  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
*  - dl_total_bw array contains, in the i-eth element, the currently
*    allocated bandwidth on the i-eth CPU.

[1]: https://lore.kernel.org/lkml/1267385230.13676.101.camel@Palantir/

Fixes: 332ac17ef5 ("sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks")
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/db6bbda316048cda7a1bbc9571defde193a8d67e.1602171061.git.iwtbavbm@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-12-30 11:52:59 +01:00
Andy Lutomirski
e45cdc71d1 membarrier: Execute SYNC_CORE on the calling thread
membarrier()'s MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE is documented as
syncing the core on all sibling threads but not necessarily the calling
thread.  This behavior is fundamentally buggy and cannot be used safely.

Suppose a user program has two threads.  Thread A is on CPU 0 and thread B
is on CPU 1.  Thread A modifies some text and calls
membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE).

Then thread B executes the modified code.  If, at any point after
membarrier() decides which CPUs to target, thread A could be preempted and
replaced by thread B on CPU 0.  This could even happen on exit from the
membarrier() syscall.  If this happens, thread B will end up running on CPU
0 without having synced.

In principle, this could be fixed by arranging for the scheduler to issue
sync_core_before_usermode() whenever switching between two threads in the
same mm if there is any possibility of a concurrent membarrier() call, but
this would have considerable overhead.  Instead, make membarrier() sync the
calling CPU as well.

As an optimization, this avoids an extra smp_mb() in the default
barrier-only mode and an extra rseq preempt on the caller.

Fixes: 70216e18e5 ("membarrier: Provide core serializing command, *_SYNC_CORE")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/250ded637696d490c69bef1877148db86066881c.1607058304.git.luto@kernel.org
2020-12-09 09:37:43 +01:00
Andy Lutomirski
758c9373d8 membarrier: Explicitly sync remote cores when SYNC_CORE is requested
membarrier() does not explicitly sync_core() remote CPUs; instead, it
relies on the assumption that an IPI will result in a core sync.  On x86,
this may be true in practice, but it's not architecturally reliable.  In
particular, the SDM and APM do not appear to guarantee that interrupt
delivery is serializing.  While IRET does serialize, IPI return can
schedule, thereby switching to another task in the same mm that was
sleeping in a syscall.  The new task could then SYSRET back to usermode
without ever executing IRET.

Make this more robust by explicitly calling sync_core_before_usermode()
on remote cores.  (This also helps people who search the kernel tree for
instances of sync_core() and sync_core_before_usermode() -- one might be
surprised that the core membarrier code doesn't currently show up in a
such a search.)

Fixes: 70216e18e5 ("membarrier: Provide core serializing command, *_SYNC_CORE")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/776b448d5f7bd6b12690707f5ed67bcda7f1d427.1607058304.git.luto@kernel.org
2020-12-09 09:37:43 +01:00
Andy Lutomirski
2ecedd7569 membarrier: Add an actual barrier before rseq_preempt()
It seems that most RSEQ membarrier users will expect any stores done before
the membarrier() syscall to be visible to the target task(s).  While this
is extremely likely to be true in practice, nothing actually guarantees it
by a strict reading of the x86 manuals.  Rather than providing this
guarantee by accident and potentially causing a problem down the road, just
add an explicit barrier.

Fixes: 70216e18e5 ("membarrier: Provide core serializing command, *_SYNC_CORE")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/d3e7197e034fa4852afcf370ca49c30496e58e40.1607058304.git.luto@kernel.org
2020-12-09 09:37:43 +01:00
Linus Torvalds
f91a3aa6bc Yet two more places which invoke tracing from RCU disabled regions in the
idle path. Similar to the entry path the low level idle functions have to
 be non-instrumentable.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/DpAUTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoXSLD/9klc0YimnEnROW6Q5Svb2IcyIutmXF
 bOIY1bYYoKILOBj3wyvDUhmdMuq5zh7H9yG11hO8MaVVWVQcLcOMLdHTYm9dcdmF
 xQk33+xqjuhRShB+nEmC9ayYtWogtH6W6uZ6WDtF9ZltMKU85n5ddGJ/Fvo+HoCb
 NbOdHGJdJ3/3ZCeHnxOnxM+5/GwjkBuccTV/tXmb3yXrfU9DBySyQ4/UchcpF43w
 LcEb0kiQbpZsBTByKJOQV8+RR654S0sILlvRwVXpmj94vrgGwhlVk1/9rz7tkOhF
 ksoo1mTVu75LMt22G/hXxE63787yRvFdHjapf0+kCOAuhl992NK+xlGDH8o9DXcu
 9y73D4bI0HnDFs20w6vs20iLvxECJiYHJqlgR5ZwFUToceaNgtiYr8kzuD7Zbae1
 KG2E7BuNSwHWMtf97fGn44GZknPEOaKdDn4Wv6/bvKHxLm77qe11RKF70Stcz2AI
 am13KmQzzsHGF5qNWwpElRUxSdxfJMR66RnOdTQULGrRedaZTFol/y2pnVzTSe3k
 SZnlpL5kE7y92UYDogPb5wWA7b+YkJN0OdSkRFy1FH26ZG8E4M7ZJ2tql5Sw7pGM
 lsTjXpAUphnK5rz7QcYE8KAZWj//fIAcElIrvdklVcBnS3IqjfksYW27B64133vx
 cT1B/lA1PHXj6Q==
 =raED
 -----END PGP SIGNATURE-----

Merge tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking fixes from Thomas Gleixner:
 "Two more places which invoke tracing from RCU disabled regions in the
  idle path.

  Similar to the entry path the low level idle functions have to be
  non-instrumentable"

* tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  intel_idle: Fix intel_idle() vs tracing
  sched/idle: Fix arch_cpu_idle() vs tracing
2020-11-29 11:19:26 -08:00
Peter Zijlstra
58c644ba51 sched/idle: Fix arch_cpu_idle() vs tracing
We call arch_cpu_idle() with RCU disabled, but then use
local_irq_{en,dis}able(), which invokes tracing, which relies on RCU.

Switch all arch_cpu_idle() implementations to use
raw_local_irq_{en,dis}able() and carefully manage the
lockdep,rcu,tracing state like we do in entry.

(XXX: we really should change arch_cpu_idle() to not return with
interrupts enabled)

Reported-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/20201120114925.594122626@infradead.org
2020-11-24 16:47:35 +01:00
Linus Torvalds
f4b936f5d6 A couple of scheduler fixes:
- Make the conditional update of the overutilized state work correctly by
    caching the relevant flags state before overwriting them and checking
    them afterwards.
 
  - Fix a data race in the wakeup path which caused loadavg on ARM64
    platforms to become a random number generator.
 
  - Fix the ordering of the iowaiter accounting operations so it can't be
    decremented before it is incremented.
 
  - Fix a bug in the deadline scheduler vs. priority inheritance when a
    non-deadline task A has inherited the parameters of a deadline task B
    and then blocks on a non-deadline task C.
 
    The second inheritance step used the static deadline parameters of task
    A, which are usually 0, instead of further propagating task B's
    parameters. The zero initialized parameters trigger a bug in the
    deadline scheduler.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+6edsTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoaJCEAC7VGr9IlWRzCI/173tKAXkLRrGXHVb
 yOYc/YjLMCTcERNxqpf8uIURd/ATSHU/RMwfFcB558NedKZ/QKZDoKmLqeCXnVeM
 e20tXv/fmpqRS7lgtmbBfhQ8mSDhst960oD1mHifdEwEBCCm7mLEaipTuTWjnZ0x
 rOz70Hir1mSjsP0E7ZorsxCr1yExbrt+jZfKCe9D2kUSvlWHf1ipzAYNlqb/DsfG
 n81G7q9LYV8NUhX3lt8oSZDq0K44aO6G6fEaP4EkfwsIAOh37yPHwuEuqDZCBmXw
 rQ17XUU3jQ2MtubPvVEKG/6Z+hAUyOsAKynpq/RhzueXQm/9Ns6+qHX/xY8yh39y
 S5qPd5DLRlac8f7cFwz2zPxP5E+xTJLONgRkuN1XlitMJZBxru9AzDNa0/6on8TM
 OtvbvVR+bPUfHiHULk4fTz7fLcbgYgxbCgfGoFsVlfskOxnzgEG8WfuI2Up2rRJ0
 nr1MCER+5fprciqPPs+18rVEFiC4mQSrV01cnwrNbpW8pqibZSomMilQ0oQvcTGL
 VDEHkaDTa5YbR92Szq4rYbr7Sf0ihFU0EZUNVQnu7SujdVFxTdHb1yr8UYcYp09b
 LqGFhr1FHBNYKbw3rEPx2R/FGuCii21oQkhz94ujDo1Np8EGVZYwFGh+iwbsa2Xn
 K1u0HzqLTfTkMw==
 =HiGq
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fixes from Thomas Gleixner:
 "A couple of scheduler fixes:

   - Make the conditional update of the overutilized state work
     correctly by caching the relevant flags state before overwriting
     them and checking them afterwards.

   - Fix a data race in the wakeup path which caused loadavg on ARM64
     platforms to become a random number generator.

   - Fix the ordering of the iowaiter accounting operations so it can't
     be decremented before it is incremented.

   - Fix a bug in the deadline scheduler vs. priority inheritance when a
     non-deadline task A has inherited the parameters of a deadline task
     B and then blocks on a non-deadline task C.

     The second inheritance step used the static deadline parameters of
     task A, which are usually 0, instead of further propagating task
     B's parameters. The zero initialized parameters trigger a bug in
     the deadline scheduler"

* tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/deadline: Fix priority inheritance with multiple scheduling classes
  sched: Fix rq->nr_iowait ordering
  sched: Fix data-race in wakeup
  sched/fair: Fix overutilized update in enqueue_task_fair()
2020-11-22 13:26:07 -08:00
Juri Lelli
2279f540ea sched/deadline: Fix priority inheritance with multiple scheduling classes
Glenn reported that "an application [he developed produces] a BUG in
deadline.c when a SCHED_DEADLINE task contends with CFS tasks on nested
PTHREAD_PRIO_INHERIT mutexes.  I believe the bug is triggered when a CFS
task that was boosted by a SCHED_DEADLINE task boosts another CFS task
(nested priority inheritance).

 ------------[ cut here ]------------
 kernel BUG at kernel/sched/deadline.c:1462!
 invalid opcode: 0000 [#1] PREEMPT SMP
 CPU: 12 PID: 19171 Comm: dl_boost_bug Tainted: ...
 Hardware name: ...
 RIP: 0010:enqueue_task_dl+0x335/0x910
 Code: ...
 RSP: 0018:ffffc9000c2bbc68 EFLAGS: 00010002
 RAX: 0000000000000009 RBX: ffff888c0af94c00 RCX: ffffffff81e12500
 RDX: 000000000000002e RSI: ffff888c0af94c00 RDI: ffff888c10b22600
 RBP: ffffc9000c2bbd08 R08: 0000000000000009 R09: 0000000000000078
 R10: ffffffff81e12440 R11: ffffffff81e1236c R12: ffff888bc8932600
 R13: ffff888c0af94eb8 R14: ffff888c10b22600 R15: ffff888bc8932600
 FS:  00007fa58ac55700(0000) GS:ffff888c10b00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007fa58b523230 CR3: 0000000bf44ab003 CR4: 00000000007606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 PKRU: 55555554
 Call Trace:
  ? intel_pstate_update_util_hwp+0x13/0x170
  rt_mutex_setprio+0x1cc/0x4b0
  task_blocks_on_rt_mutex+0x225/0x260
  rt_spin_lock_slowlock_locked+0xab/0x2d0
  rt_spin_lock_slowlock+0x50/0x80
  hrtimer_grab_expiry_lock+0x20/0x30
  hrtimer_cancel+0x13/0x30
  do_nanosleep+0xa0/0x150
  hrtimer_nanosleep+0xe1/0x230
  ? __hrtimer_init_sleeper+0x60/0x60
  __x64_sys_nanosleep+0x8d/0xa0
  do_syscall_64+0x4a/0x100
  entry_SYSCALL_64_after_hwframe+0x49/0xbe
 RIP: 0033:0x7fa58b52330d
 ...
 ---[ end trace 0000000000000002 ]—

He also provided a simple reproducer creating the situation below:

 So the execution order of locking steps are the following
 (N1 and N2 are non-deadline tasks. D1 is a deadline task. M1 and M2
 are mutexes that are enabled * with priority inheritance.)

 Time moves forward as this timeline goes down:

 N1              N2               D1
 |               |                |
 |               |                |
 Lock(M1)        |                |
 |               |                |
 |             Lock(M2)           |
 |               |                |
 |               |              Lock(M2)
 |               |                |
 |             Lock(M1)           |
 |             (!!bug triggered!) |

Daniel reported a similar situation as well, by just letting ksoftirqd
run with DEADLINE (and eventually block on a mutex).

Problem is that boosted entities (Priority Inheritance) use static
DEADLINE parameters of the top priority waiter. However, there might be
cases where top waiter could be a non-DEADLINE entity that is currently
boosted by a DEADLINE entity from a different lock chain (i.e., nested
priority chains involving entities of non-DEADLINE classes). In this
case, top waiter static DEADLINE parameters could be null (initialized
to 0 at fork()) and replenish_dl_entity() would hit a BUG().

Fix this by keeping track of the original donor and using its parameters
when a task is boosted.

Reported-by: Glenn Elliott <glenn@aurora.tech>
Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201117061432.517340-1-juri.lelli@redhat.com
2020-11-17 13:15:28 +01:00
Peter Zijlstra
ec618b84f6 sched: Fix rq->nr_iowait ordering
schedule()				ttwu()
    deactivate_task();			  if (p->on_rq && ...) // false
					    atomic_dec(&task_rq(p)->nr_iowait);
    if (prev->in_iowait)
      atomic_inc(&rq->nr_iowait);

Allows nr_iowait to be decremented before it gets incremented,
resulting in more dodgy IO-wait numbers than usual.

Note that because we can now do ttwu_queue_wakelist() before
p->on_cpu==0, we lose the natural ordering and have to further delay
the decrement.

Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20201117093829.GD3121429@hirez.programming.kicks-ass.net
2020-11-17 13:15:28 +01:00
Quentin Perret
8e1ac4299a sched/fair: Fix overutilized update in enqueue_task_fair()
enqueue_task_fair() attempts to skip the overutilized update for new
tasks as their util_avg is not accurate yet. However, the flag we check
to do so is overwritten earlier on in the function, which makes the
condition pretty much a nop.

Fix this by saving the flag early on.

Fixes: 2802bf3cd9 ("sched/fair: Add over-utilization/tipping point indicator")
Reported-by: Rick Yiu <rickyiu@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20201112111201.2081902-1-qperret@google.com
2020-11-17 13:15:27 +01:00
Linus Torvalds
d0a37fd57f A set of scheduler fixes:
- Address a load balancer regression by making the load balancer use the
    same logic as the wakeup path to spread tasks in the LLC domain.
 
  - Prefer the CPU on which a task run last over the local CPU in the fast
    wakeup path for asymmetric CPU capacity systems to align with the
    symmetric case. This ensures more locality and prevents massive
    migration overhead on those asymetric systems
 
  - Fix a memory corruption bug in the scheduler debug code caused by
    handing a modified buffer pointer to kfree().
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xJIoTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYofyGD/9rUnLlC1h7jEufVa4yPG94DcEqiXT7
 8B/zNRKnOmqQePCYUm+DS8njSFqpF9VjR+5zpos3bgYqwn7DyfV+hpxbbgS9NDh/
 qRg5gxhTrR4uMyZN62Fex5JS4bP8mKO7oc0usgV2Ytsg3e4H+9DqYhuaA5GrJAxC
 J3d1Hv/YBW2Uo+RZpB20aaJr0srN7bswTtPMxeeqo8q3Qh4pFcI+rmA4WphVAgHF
 jQWaNP4YVTgNjqxy7nBp7zFHlSdRbLohldZFtueYmRo1mjmkyQ34Cg7etfBvN1Uf
 iVYZLaInr0YPr0qR4FrQ3yI8ln/HESxshs0ARzMReYVT71mV//o5wftE18uCULQB
 rRu9vYz+LBVhkdgx118jJdNJqyqk6Ca6h9ZLqyBKuckj9a39289bwWiS6D/6W51p
 gurq58YTb2lRzyCnOVEULXehYRJkDI8EToiWppRVm9gy43OFPNox7n6TvNLW6BLS
 I8msTVdqDYXXj4U1o4Mf9K5LBKlda+ARuBu87r7kH1BJLxXHnOHcEkmeN8O9k7eu
 jdWfeDzDDjBjt/TU+X4f4RNjudUZrSPQrrESE5+XhfM4CwqcPXa2M/dGtPekW/ED
 9IqxPvwkau+0Ym6gkuanfnmda+JVR/nLvZV0uFuUGd+2xMcRemZbZE6hTUiYvYPY
 CAHpOhmeakbr6w==
 =wFcU
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fixes from Thomas Gleixner:
 "A set of scheduler fixes:

   - Address a load balancer regression by making the load balancer use
     the same logic as the wakeup path to spread tasks in the LLC domain

   - Prefer the CPU on which a task run last over the local CPU in the
     fast wakeup path for asymmetric CPU capacity systems to align with
     the symmetric case. This ensures more locality and prevents massive
     migration overhead on those asymetric systems

   - Fix a memory corruption bug in the scheduler debug code caused by
     handing a modified buffer pointer to kfree()"

* tag 'sched-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/debug: Fix memory corruption caused by multiple small reads of flags
  sched/fair: Prefer prev cpu in asymmetric wakeup path
  sched/fair: Ensure tasks spreading in LLC during LB
2020-11-15 09:39:35 -08:00
Colin Ian King
8d4d9c7b43 sched/debug: Fix memory corruption caused by multiple small reads of flags
Reading /proc/sys/kernel/sched_domain/cpu*/domain0/flags mutliple times
with small reads causes oopses with slub corruption issues because the kfree is
free'ing an offset from a previous allocation. Fix this by adding in a new
pointer 'buf' for the allocation and kfree and use the temporary pointer tmp
to handle memory copies of the buf offsets.

Fixes: 5b9f8ff7b3 ("sched/debug: Output SD flag names rather than their values")
Reported-by: Jeff Bastian <jbastian@redhat.com>
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20201029151103.373410-1-colin.king@canonical.com
2020-11-10 18:38:49 +01:00
Vincent Guittot
b4c9c9f156 sched/fair: Prefer prev cpu in asymmetric wakeup path
During fast wakeup path, scheduler always check whether local or prev
cpus are good candidates for the task before looking for other cpus in
the domain. With commit b7a331615d ("sched/fair: Add asymmetric CPU
capacity wakeup scan") the heterogenous system gains a dedicated path
but doesn't try to reuse prev cpu whenever possible. If the previous
cpu is idle and belong to the LLC domain, we should check it 1st
before looking for another cpu because it stays one of the best
candidate and this also stabilizes task placement on the system.

This change aligns asymmetric path behavior with symmetric one and reduces
cases where the task migrates across all cpus of the sd_asym_cpucapacity
domains at wakeup.

This change does not impact normal EAS mode but only the overloaded case or
when EAS is not used.

- On hikey960 with performance governor (EAS disable)

./perf bench sched pipe -T -l 50000
             mainline           w/ patch
# migrations   999364                  0
ops/sec        149313(+/-0.28%)   182587(+/- 0.40) +22%

- On hikey with performance governor

./perf bench sched pipe -T -l 50000
             mainline           w/ patch
# migrations        0                  0
ops/sec         47721(+/-0.76%)    47899(+/- 0.56) +0.4%

According to test on hikey, the patch doesn't impact symmetric system
compared to current implementation (only tested on arm64)

Also read the uclamped value of task's utilization at most twice instead
instead each time we compare task's utilization with cpu's capacity.

Fixes: b7a331615d ("sched/fair: Add asymmetric CPU capacity wakeup scan")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20201029161824.26389-1-vincent.guittot@linaro.org
2020-11-10 18:38:48 +01:00
Vincent Guittot
16b0a7a1a0 sched/fair: Ensure tasks spreading in LLC during LB
schbench shows latency increase for 95 percentile above since:
  commit 0b0695f2b3 ("sched/fair: Rework load_balance()")

Align the behavior of the load balancer with the wake up path, which tries
to select an idle CPU which belongs to the LLC for a waking task.

calculate_imbalance() will use nr_running instead of the spare
capacity when CPUs share resources (ie cache) at the domain level. This
will ensure a better spread of tasks on idle CPUs.

Running schbench on a hikey (8cores arm64) shows the problem:

tip/sched/core :
schbench -m 2 -t 4 -s 10000 -c 1000000 -r 10
Latency percentiles (usec)
	50.0th: 33
	75.0th: 45
	90.0th: 51
	95.0th: 4152
	*99.0th: 14288
	99.5th: 14288
	99.9th: 14288
	min=0, max=14276

tip/sched/core + patch :
schbench -m 2 -t 4 -s 10000 -c 1000000 -r 10
Latency percentiles (usec)
	50.0th: 34
	75.0th: 47
	90.0th: 52
	95.0th: 78
	*99.0th: 94
	99.5th: 94
	99.9th: 94
	min=0, max=94

Fixes: 0b0695f2b3 ("sched/fair: Rework load_balance()")
Reported-by: Chris Mason <clm@fb.com>
Suggested-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Tested-by: Rik van Riel <riel@surriel.com>
Link: https://lkml.kernel.org/r/20201102102457.28808-1-vincent.guittot@linaro.org
2020-11-10 18:38:48 +01:00
Rafael J. Wysocki
9a2a9ebc0a cpufreq: Introduce governor flags
A new cpufreq governor flag will be added subsequently, so replace
the bool dynamic_switching fleid in struct cpufreq_governor with a
flags field and introduce CPUFREQ_GOV_DYNAMIC_SWITCHING to set for
the "dynamic switching" governors instead of it.

No intentional functional impact.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2020-11-10 18:31:17 +01:00
Viresh Kumar
23a881852f cpufreq: schedutil: Don't skip freq update if need_freq_update is set
The cpufreq policy's frequency limits (min/max) can get changed at any
point of time, while schedutil is trying to update the next frequency.
Though the schedutil governor has necessary locking and support in place
to make sure we don't miss any of those updates, there is a corner case
where the governor will find that the CPU is already running at the
desired frequency and so may skip an update.

For example, consider that the CPU can run at 1 GHz, 1.2 GHz and 1.4 GHz
and is running at 1 GHz currently. Schedutil tries to update the
frequency to 1.2 GHz, during this time the policy limits get changed as
policy->min = 1.4 GHz. As schedutil (and cpufreq core) does clamp the
frequency at various instances, we will eventually set the frequency to
1.4 GHz, while we will save 1.2 GHz in sg_policy->next_freq.

Now lets say the policy limits get changed back at this time with
policy->min as 1 GHz. The next time schedutil is invoked by the
scheduler, we will reevaluate the next frequency (because
need_freq_update will get set due to limits change event) and lets say
we want to set the frequency to 1.2 GHz again. At this point
sugov_update_next_freq() will find the next_freq == current_freq and
will abort the update, while the CPU actually runs at 1.4 GHz.

Until now need_freq_update was used as a flag to indicate that the
policy's frequency limits have changed, and that we should consider the
new limits while reevaluating the next frequency.

This patch fixes the above mentioned issue by extending the purpose of
the need_freq_update flag. If this flag is set now, the schedutil
governor will not try to abort a frequency change even if next_freq ==
current_freq.

As similar behavior is required in the case of
CPUFREQ_NEED_UPDATE_LIMITS flag as well, need_freq_update will never be
set to false if that flag is set for the driver.

We also don't need to consider the need_freq_update flag in
sugov_update_single() anymore to handle the special case of busy CPU, as
we won't abort a frequency update anymore.

Reported-by: zhuguangqing <zhuguangqing@xiaomi.com>
Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Rearrange code to avoid a branch ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-11-02 17:57:49 +01:00
Rafael J. Wysocki
d1e7c2996e cpufreq: schedutil: Always call driver if CPUFREQ_NEED_UPDATE_LIMITS is set
Because sugov_update_next_freq() may skip a frequency update even if
the need_freq_update flag has been set for the policy at hand, policy
limits updates may not take effect as expected.

For example, if the intel_pstate driver operates in the passive mode
with HWP enabled, it needs to update the HWP min and max limits when
the policy min and max limits change, respectively, but that may not
happen if the target frequency does not change along with the limit
at hand.  In particular, if the policy min is changed first, causing
the target frequency to be adjusted to it, and the policy max limit
is changed later to the same value, the HWP max limit will not be
updated to follow it as expected, because the target frequency is
still equal to the policy min limit and it will not change until
that limit is updated.

To address this issue, modify get_next_freq() to let the driver
callback run if the CPUFREQ_NEED_UPDATE_LIMITS cpufreq driver flag
is set regardless of whether or not the new frequency to set is
equal to the previous one.

Fixes: f6ebbcf08f ("cpufreq: intel_pstate: Implement passive mode with HWP enabled")
Reported-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: 1c534352f4 cpufreq: Introduce CPUFREQ_NEED_UPDATE_LIMITS ...
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: a62f68f5ca cpufreq: Introduce cpufreq_driver_test_flags()
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-10-29 14:12:18 +01:00
Joe Perches
33def8498f treewide: Convert macro and uses of __section(foo) to __section("foo")
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.

Remove the quote operator # from compiler_attributes.h __section macro.

Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.

Conversion done using the script at:

    https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl

Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-25 14:51:49 -07:00
Linus Torvalds
87702a337f Two scheduler fixes:
- A trivial build fix for sched_feat() to compile correctly with
     CONFIG_JUMP_LABEL=n
 
   - Replace a zero lenght array with a flexible array.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+VifUTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoW2FD/9u7iQw1QvvK6li6nW3QWr1j3E8Z5E2
 7cPq02AKQZmfsacEgRVe68Bn9NidW7d3PNO+IsomZJyoiov27PfFKqjPmvcFVQBI
 NIHkCUEc41wF0ZkWA0Z1VqixkzBMQ9al+iTHp6W20MDqe7lQFVbLHiKghN9+o2uL
 1b2YxbvTy4NbgN40bd23l5P2zTTCW9hnaZX0rhj35PHKD069brcdy1bSfONXoq4e
 b1VxwBhFXMRbhaifMf1yy1WaYYc+9dEePF28otXZQ5EiOwmf7bnIIU7mEV7NotkN
 XWB4iy4EFt+NKxUB8tWB8duzJ2x5T6tB4bVQoBsh4/hE4n3vO+LjsUEAArIabzi+
 wIbrAtPeScD4M7gsxlVgc6q0vbBXuR0ymh+TrDZvsE3wIXABYxgajTg6nGRlB1S5
 ZfKuCTNWT4JBnCJHtMChwInJ5+y/GHHd92TvUIN8+5kHbkTlp5GNQtw+B5eTwY9P
 XtUTTiSh4z2T9wQiRq0fjbyTqkGNL8wbo2lXbtHf0hA/XFa0OY3Gx/vJ9w+74Sy+
 X60eS8Ew2XkkdWm+litDQ+f8ulZvYqg3ejitvteYlOORoryX3mpNUOCeNoDQzegj
 PDKBE7SJSI5aqtpkO+bQoic0eC4A4CpJYES2ZH8a4nCu1a74OF0fiFh91AHjwqCI
 yyeJzYsLbMo3PQ==
 =RNOk
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2020-10-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fixes from Thomas Gleixner:
 "Two scheduler fixes:

   - A trivial build fix for sched_feat() to compile correctly with
     CONFIG_JUMP_LABEL=n

   - Replace a zero lenght array with a flexible array"

* tag 'sched-urgent-2020-10-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/features: Fix !CONFIG_JUMP_LABEL case
  sched: Replace zero-length array with flexible-array
2020-10-25 11:25:16 -07:00
Linus Torvalds
41f762a15a More power management updates for 5.10-rc1
- Move the AVS drivers to new platform-specific locations and get
    rid of the drivers/power/avs directory (Ulf Hansson).
 
  - Add on/off notifiers and idle state accounting support to the
    generic power domains (genpd) framework (Ulf Hansson, Lina Iyer).
 
  - Ulf will maintain the PM domain part of cpuidle-psci (Ulf Hansson).
 
  - Make intel_idle disregard ACPI _CST if it cannot use the data
    returned by that method (Mel Gorman).
 
  - Modify intel_pstate to avoid leaving useless sysfs directory
    structure behind if it cannot be registered (Chen Yu).
 
  - Fix domain detection in the RAPL power capping driver and prevent
    it from failing to enumerate the Psys RAPL domain (Zhang Rui).
 
  - Allow acpi-cpufreq to use ACPI _PSD information with Family 19 and
    later AMD chips (Wei Huang).
 
  - Update the driver assumptions comment in intel_idle and fix a
    kerneldoc comment in the runtime PM framework (Alexander Monakov,
    Bean Huo).
 
  - Avoid unnecessary resets of the cached frequency in the schedutil
    cpufreq governor to reduce overhead (Wei Wang).
 
  - Clean up the cpufreq core a bit (Viresh Kumar).
 
  - Make assorted minor janitorial changes (Daniel Lezcano, Geert
    Uytterhoeven, Hubert Jasudowicz, Tom Rix).
 
  - Clean up and optimize the cpupower utility somewhat (Colin Ian
    King, Martin Kaistra).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl+TD4gSHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRx3AgP/0Fpi50+Kggr7pIXKElwg7ECJA0nOLT6
 gp4Vc/J/3r6zqK0ANDgCRlEMckAT61ukll+eU+BlavBrI4ZYj/Homi0+u53t1GjM
 AOwj1SmQgSBcBavWsBOc8+12X6wYLzyQbyWc53oYH5os537n8s7zkSZuSBcGFUgb
 wWF4xOeuW/ETsxAzEYmY7LvtBeEmo3UjV0fZPPbo/ro5EHDaOpvO/4EUDjCQxR6b
 CvyjgLlxuAOFWG/B5lVTCx7S6MmBjHXUIFUizt+TA6YjyGd0mG0i0f7mgzs6hqUD
 gzERDSlehBC3zPh5O35HNGUG8ulvDi9+ugxuckFHu/j4wEeZswp8AuIpdLI6Mcnc
 LDb+LTeypAB5d1fzHeSziv8AL08cUAS6QT+q96whYibQs6WA1mE9yXECyg6ZGsLt
 1KPAc8KD4ojwjo9vtk9VU0ZaUcVBMnqyK+GK929l0nXohw2Fae6X/NlpQ0D7joZA
 NM+dWMXpHy6tuVOgdUmrmN+P6vWd8ApWBeufkUFsCzrh3zG57yVaLl2SAjEtpKh0
 Emr/kJ8Ox8cf++6mGKseR2ZbkGn0Tz2GD5l3hIAGnIv9Nda3YgCc6RyV7U9se7OW
 2xnQvrgXqQKyjjziptVFqDotcC/KXFACr3YZX6GlW675NOMXSGk1ZYI3FbrsM8yd
 0/zq7PyYmb0D
 =TFKg
 -----END PGP SIGNATURE-----

Merge tag 'pm-5.10-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management updates from Rafael Wysocki:
 "First of all, the adaptive voltage scaling (AVS) drivers go to new
  platform-specific locations as planned (this part was reported to have
  merge conflicts against the new arm-soc updates in linux-next).

  In addition to that, there are some fixes (intel_idle, intel_pstate,
  RAPL, acpi_cpufreq), the addition of on/off notifiers and idle state
  accounting support to the generic power domains (genpd) code and some
  janitorial changes all over.

  Specifics:

   - Move the AVS drivers to new platform-specific locations and get rid
     of the drivers/power/avs directory (Ulf Hansson).

   - Add on/off notifiers and idle state accounting support to the
     generic power domains (genpd) framework (Ulf Hansson, Lina Iyer).

   - Ulf will maintain the PM domain part of cpuidle-psci (Ulf Hansson).

   - Make intel_idle disregard ACPI _CST if it cannot use the data
     returned by that method (Mel Gorman).

   - Modify intel_pstate to avoid leaving useless sysfs directory
     structure behind if it cannot be registered (Chen Yu).

   - Fix domain detection in the RAPL power capping driver and prevent
     it from failing to enumerate the Psys RAPL domain (Zhang Rui).

   - Allow acpi-cpufreq to use ACPI _PSD information with Family 19 and
     later AMD chips (Wei Huang).

   - Update the driver assumptions comment in intel_idle and fix a
     kerneldoc comment in the runtime PM framework (Alexander Monakov,
     Bean Huo).

   - Avoid unnecessary resets of the cached frequency in the schedutil
     cpufreq governor to reduce overhead (Wei Wang).

   - Clean up the cpufreq core a bit (Viresh Kumar).

   - Make assorted minor janitorial changes (Daniel Lezcano, Geert
     Uytterhoeven, Hubert Jasudowicz, Tom Rix).

   - Clean up and optimize the cpupower utility somewhat (Colin Ian
     King, Martin Kaistra)"

* tag 'pm-5.10-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (23 commits)
  PM: sleep: remove unreachable break
  PM: AVS: Drop the avs directory and the corresponding Kconfig
  PM: AVS: qcom-cpr: Move the driver to the qcom specific drivers
  PM: runtime: Fix typo in pm_runtime_set_active() helper comment
  PM: domains: Fix build error for genpd notifiers
  powercap: Fix typo in Kconfig "Plance" -> "Plane"
  cpufreq: schedutil: restore cached freq when next_f is not changed
  acpi-cpufreq: Honor _PSD table setting on new AMD CPUs
  PM: AVS: smartreflex Move driver to soc specific drivers
  PM: AVS: rockchip-io: Move the driver to the rockchip specific drivers
  PM: domains: enable domain idle state accounting
  PM: domains: Add curly braces to delimit comment + statement block
  PM: domains: Add support for PM domain on/off notifiers for genpd
  powercap/intel_rapl: enumerate Psys RAPL domain together with package RAPL domain
  powercap/intel_rapl: Fix domain detection
  intel_idle: Ignore _CST if control cannot be taken from the platform
  cpuidle: Remove pointless stub
  intel_idle: mention assumption that WBINVD is not needed
  MAINTAINERS: Add section for cpuidle-psci PM domain
  cpufreq: intel_pstate: Delete intel_pstate sysfs if failed to register the driver
  ...
2020-10-23 16:27:03 -07:00
Wei Wang
0070ea2962 cpufreq: schedutil: restore cached freq when next_f is not changed
We have the raw cached freq to reduce the chance in calling cpufreq
driver where it could be costly in some arch/SoC.

Currently, the raw cached freq is reset in sugov_update_single() when
it avoids frequency reduction (which is not desirable sometimes), but
it is better to restore the previous value of it in that case,
because it may not change in the next cycle and it is not necessary
to change the CPU frequency then.

Adapted from https://android-review.googlesource.com/1352810/

Signed-off-by: Wei Wang <wvw@google.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Subject edit and changelog rewrite ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-10-19 17:38:16 +02:00
Jens Axboe
91989c7078 task_work: cleanup notification modes
A previous commit changed the notification mode from true/false to an
int, allowing notify-no, notify-yes, or signal-notify. This was
backwards compatible in the sense that any existing true/false user
would translate to either 0 (on notification sent) or 1, the latter
which mapped to TWA_RESUME. TWA_SIGNAL was assigned a value of 2.

Clean this up properly, and define a proper enum for the notification
mode. Now we have:

- TWA_NONE. This is 0, same as before the original change, meaning no
  notification requested.
- TWA_RESUME. This is 1, same as before the original change, meaning
  that we use TIF_NOTIFY_RESUME.
- TWA_SIGNAL. This uses TIF_SIGPENDING/JOBCTL_TASK_WORK for the
  notification.

Clean up all the callers, switching their 0/1/false/true to using the
appropriate TWA_* mode for notifications.

Fixes: e91b481623 ("task_work: teach task_work_add() to do signal_wake_up()")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-17 15:05:30 -06:00
Juri Lelli
a73f863af4 sched/features: Fix !CONFIG_JUMP_LABEL case
Commit:

  765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")

made sched features static for !CONFIG_SCHED_DEBUG configurations, but
overlooked the CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL cases.

For the latter echoing changes to /sys/kernel/debug/sched_features has
the nasty effect of effectively changing what sched_features reports,
but without actually changing the scheduler behaviour (since different
translation units get different sysctl_sched_features).

Fix CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL configurations by properly
restructuring ifdefs.

Fixes: 765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")
Co-developed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Patrick Bellasi <patrick.bellasi@matbug.net>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20201013053114.160628-1-juri.lelli@redhat.com
2020-10-14 19:55:46 +02:00
zhuguangqing
eba9f08293 sched: Replace zero-length array with flexible-array
In the following commit:

  04f5c362ec: ("sched/fair: Replace zero-length array with flexible-array")

a zero-length array cpumask[0] has been replaced with cpumask[].
But there is still a cpumask[0] in 'struct sched_group_capacity'
which was missed.

The point of using [] instead of [0] is that with [] the compiler will
generate a build warning if it isn't the last member of a struct.

[ mingo: Rewrote the changelog. ]

Signed-off-by: zhuguangqing <zhuguangqing@xiaomi.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20201014140220.11384-1-zhuguangqing83@gmail.com
2020-10-14 19:55:19 +02:00
Linus Torvalds
0b8417c141 Power management updates for 5.10-rc1
- Rework cpufreq statistics collection to allow it to take place
    when fast frequency switching is enabled in the governor (Viresh
    Kumar).
 
  - Make the cpufreq core set the frequency scale on behalf of the
    driver and update several cpufreq drivers accordingly (Ionela
    Voinescu, Valentin Schneider).
 
  - Add new hardware support to the STI and qcom cpufreq drivers and
    improve them (Alain Volmat, Manivannan Sadhasivam).
 
  - Fix multiple assorted issues in cpufreq drivers (Jon Hunter,
    Krzysztof Kozlowski, Matthias Kaehlcke, Pali Rohár, Stephan
    Gerhold, Viresh Kumar).
 
  - Fix several assorted issues in the operating performance points
    (OPP) framework (Stephan Gerhold, Viresh Kumar).
 
  - Allow devfreq drivers to fetch devfreq instances by DT enumeration
    instead of using explicit phandles and modify the devfreq core
    code to support driver-specific devfreq DT bindings (Leonard
    Crestez, Chanwoo Choi).
 
  - Improve initial hardware resetting in the tegra30 devfreq driver
    and clean up the tegra cpuidle driver (Dmitry Osipenko).
 
  - Update the cpuidle core to collect state entry rejection
    statistics and expose them via sysfs (Lina Iyer).
 
  - Improve the ACPI _CST code handling diagnostics (Chen Yu).
 
  - Update the PSCI cpuidle driver to allow the PM domain
    initialization to occur in the OSI mode as well as in the PC
    mode (Ulf Hansson).
 
  - Rework the generic power domains (genpd) core code to allow
    domain power off transition to be aborted in the absence of the
    "power off" domain callback (Ulf Hansson).
 
  - Fix two suspend-to-idle issues in the ACPI EC driver (Rafael
    Wysocki).
 
  - Fix the handling of timer_expires in the PM-runtime framework on
    32-bit systems and the handling of device links in it (Grygorii
    Strashko, Xiang Chen).
 
  - Add IO requests batching support to the hibernate image saving and
    reading code and drop a bogus get_gendisk() from there (Xiaoyi
    Chen, Christoph Hellwig).
 
  - Allow PCIe ports to be put into the D3cold power state if they
    are power-manageable via ACPI (Lukas Wunner).
 
  - Add missing header file include to a power capping driver (Pujin
    Shi).
 
  - Clean up the qcom-cpr AVS driver a bit (Liu Shixin).
 
  - Kevin Hilman steps down as designated reviwer of adaptive voltage
    scaling (AVS) driverrs (Kevin Hilman).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl+F4A4SHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRxX6QP/iELq9/OsH0aJdDQlY9tnh2Oa13+HB/Y
 w1e6W+ZR/YjPgUpMVARwRLKf/gn7dUEwRDHVpGvDOyun+HACCPHB2hg8iktbxdVl
 NFAVGZCCRezXqz3opL1hl8C3Dh0CqUPUjWXGMr+Lw2TZQKT+hx9K1dm9Epe3ivyT
 RlVH/wifei80cFRcUUj7DI5KLCAyk+uKkZIFnZHAGKK6qOHMqRL5sDZsMUwWpd2i
 AdghABjePbaiLTAoZuUsJINAGY4DnIt6ASRdMJ4iksiD6pFITwFs0HSOPe7hZLlv
 zbwDPI5+TIkrOy9/aWoMaEIH1OQiFN/O++Slvdjn7gMsRgoW4d300ru4Jo1pOHxb
 5twxagCCqlOf4YAaSrMCH4HT+c6fOWoGj2AKzX3DMJyO3/WN+8XNvUxKtC5Px1u+
 pWRASjfQMO2j6nNjTCTwDJdYzggiKa54rYH2k7svX7XnTIAf+2E1gv8b4rMTgQrZ
 0rq9kULYlhgk3EYjd/DndkvxunRlmiqhzrYB4jc9eDSPNzB8FZEbw1ZMRQTFfjK0
 kp0vaEpTJ7JfKSCfluB4UmTuQoGogLl0xbzc+2NNIpwdNmrH2Srvq6wbj35jEDTU
 tqsTsBP+XZFOWyFOw/L2J47LTOp0TJnz8z4aycLfrmdNUVnXJoU1sXgFlDzETMgT
 0E6cTVwLF7Zi
 =rGhy
 -----END PGP SIGNATURE-----

Merge tag 'pm-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "These rework the collection of cpufreq statistics to allow it to take
  place if fast frequency switching is enabled in the governor, rework
  the frequency invariance handling in the cpufreq core and drivers, add
  new hardware support to a couple of cpufreq drivers, fix a number of
  assorted issues and clean up the code all over.

  Specifics:

   - Rework cpufreq statistics collection to allow it to take place when
     fast frequency switching is enabled in the governor (Viresh Kumar).

   - Make the cpufreq core set the frequency scale on behalf of the
     driver and update several cpufreq drivers accordingly (Ionela
     Voinescu, Valentin Schneider).

   - Add new hardware support to the STI and qcom cpufreq drivers and
     improve them (Alain Volmat, Manivannan Sadhasivam).

   - Fix multiple assorted issues in cpufreq drivers (Jon Hunter,
     Krzysztof Kozlowski, Matthias Kaehlcke, Pali Rohár, Stephan
     Gerhold, Viresh Kumar).

   - Fix several assorted issues in the operating performance points
     (OPP) framework (Stephan Gerhold, Viresh Kumar).

   - Allow devfreq drivers to fetch devfreq instances by DT enumeration
     instead of using explicit phandles and modify the devfreq core code
     to support driver-specific devfreq DT bindings (Leonard Crestez,
     Chanwoo Choi).

   - Improve initial hardware resetting in the tegra30 devfreq driver
     and clean up the tegra cpuidle driver (Dmitry Osipenko).

   - Update the cpuidle core to collect state entry rejection statistics
     and expose them via sysfs (Lina Iyer).

   - Improve the ACPI _CST code handling diagnostics (Chen Yu).

   - Update the PSCI cpuidle driver to allow the PM domain
     initialization to occur in the OSI mode as well as in the PC mode
     (Ulf Hansson).

   - Rework the generic power domains (genpd) core code to allow domain
     power off transition to be aborted in the absence of the "power
     off" domain callback (Ulf Hansson).

   - Fix two suspend-to-idle issues in the ACPI EC driver (Rafael
     Wysocki).

   - Fix the handling of timer_expires in the PM-runtime framework on
     32-bit systems and the handling of device links in it (Grygorii
     Strashko, Xiang Chen).

   - Add IO requests batching support to the hibernate image saving and
     reading code and drop a bogus get_gendisk() from there (Xiaoyi
     Chen, Christoph Hellwig).

   - Allow PCIe ports to be put into the D3cold power state if they are
     power-manageable via ACPI (Lukas Wunner).

   - Add missing header file include to a power capping driver (Pujin
     Shi).

   - Clean up the qcom-cpr AVS driver a bit (Liu Shixin).

   - Kevin Hilman steps down as designated reviwer of adaptive voltage
     scaling (AVS) drivers (Kevin Hilman)"

* tag 'pm-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (65 commits)
  cpufreq: stats: Fix string format specifier mismatch
  arm: disable frequency invariance for CONFIG_BL_SWITCHER
  cpufreq,arm,arm64: restructure definitions of arch_set_freq_scale()
  cpufreq: stats: Add memory barrier to store_reset()
  cpufreq: schedutil: Simplify sugov_fast_switch()
  ACPI: EC: PM: Drop ec_no_wakeup check from acpi_ec_dispatch_gpe()
  ACPI: EC: PM: Flush EC work unconditionally after wakeup
  PCI/ACPI: Whitelist hotplug ports for D3 if power managed by ACPI
  PM: hibernate: remove the bogus call to get_gendisk() in software_resume()
  cpufreq: Move traces and update to policy->cur to cpufreq core
  cpufreq: stats: Enable stats for fast-switch as well
  cpufreq: stats: Mark few conditionals with unlikely()
  cpufreq: stats: Remove locking
  cpufreq: stats: Defer stats update to cpufreq_stats_record_transition()
  PM: domains: Allow to abort power off when no ->power_off() callback
  PM: domains: Rename power state enums for genpd
  PM / devfreq: tegra30: Improve initial hardware resetting
  PM / devfreq: event: Change prototype of devfreq_event_get_edev_by_phandle function
  PM / devfreq: Change prototype of devfreq_get_devfreq_by_phandle function
  PM / devfreq: Add devfreq_get_devfreq_by_node function
  ...
2020-10-14 10:45:41 -07:00
Linus Torvalds
edaa5ddf38 Scheduler changes for v5.10:
- Reorganize & clean up the SD* flags definitions and add a bunch
    of sanity checks. These new checks caught quite a few bugs or at
    least inconsistencies, resulting in another set of patches.
 
  - Rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
 
  - Add a new tracepoint to improve CPU capacity tracking
 
  - Improve overloaded SMP system load-balancing behavior
 
  - Tweak SMT balancing
 
  - Energy-aware scheduling updates
 
  - NUMA balancing improvements
 
  - Deadline scheduler fixes and improvements
 
  - CPU isolation fixes
 
  - Misc cleanups, simplifications and smaller optimizations.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+EWRERHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hV8A/7BB0nt/zYVZ8Z3Di8V0b9hMtr0d1xtRM5
 ZAvg4hcZl/fVgobFndxBw6KdlK8lSce9Mcq+bTTWeD46CS13cK5Vrpiaf7x7Q00P
 m8YHeYEH13ME0pbBrhDoRCR4XzfXukzjkUl7LiyrTekAvRUtFikJ/uKl8MeJtYGZ
 gANEkadqforxUW0v45iUEGepmCWAl8hSlSMb2mDKsVhw4DFMD+px0EBmmA0VDqjE
 e0rkh6dEoUVNqlic2KoaXULld1rLg1xiaOcLUbTAXnucfhmuv5p/H11AC4ABuf+s
 7d0zLrLEfZrcLJkthYxfMHs7DYMtARiQM9Db/a5hAq9Af4Z2bvvVAaHt3gCGvkV1
 llB6BB2yWCki9Qv7oiGOAhANnyJHG/cU4r6WwMuHdlYi4dFT/iN5qkOMUL1IrDgi
 a6ZzvECChXBeisQXHSlMd8Y5O+j0gRvDR7E18z2q0/PlmO8PGJq4w34mEWveWIg3
 LaVF16bmvaARuNFJTQH/zaHhjqVQANSMx5OIv9swp0OkwvQkw21ICYHG0YxfzWCr
 oa/FESEpOL9XdYp8UwMPI0bmVIsEfx79pmDMF3zInYTpJpwMUhV2yjHE8uYVMqEf
 7U8rZv7gdbZ2us38Gjf2l73hY+recp/GrgZKnk0R98OUeMk1l/iVP6dwco6ITUV5
 czGmKlIB1ec=
 =bXy6
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - reorganize & clean up the SD* flags definitions and add a bunch of
   sanity checks. These new checks caught quite a few bugs or at least
   inconsistencies, resulting in another set of patches.

 - rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ

 - add a new tracepoint to improve CPU capacity tracking

 - improve overloaded SMP system load-balancing behavior

 - tweak SMT balancing

 - energy-aware scheduling updates

 - NUMA balancing improvements

 - deadline scheduler fixes and improvements

 - CPU isolation fixes

 - misc cleanups, simplifications and smaller optimizations

* tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
  sched/deadline: Unthrottle PI boosted threads while enqueuing
  sched/debug: Add new tracepoint to track cpu_capacity
  sched/fair: Tweak pick_next_entity()
  rseq/selftests: Test MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
  rseq/selftests,x86_64: Add rseq_offset_deref_addv()
  rseq/membarrier: Add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
  sched/fair: Use dst group while checking imbalance for NUMA balancer
  sched/fair: Reduce busy load balance interval
  sched/fair: Minimize concurrent LBs between domain level
  sched/fair: Reduce minimal imbalance threshold
  sched/fair: Relax constraint on task's load during load balance
  sched/fair: Remove the force parameter of update_tg_load_avg()
  sched/fair: Fix wrong cpu selecting from isolated domain
  sched: Remove unused inline function uclamp_bucket_base_value()
  sched/rt: Disable RT_RUNTIME_SHARE by default
  sched/deadline: Fix stale throttling on de-/boosted tasks
  sched/numa: Use runnable_avg to classify node
  sched/topology: Move sd_flag_debug out of #ifdef CONFIG_SYSCTL
  MAINTAINERS: Add myself as SCHED_DEADLINE reviewer
  sched/topology: Move SD_DEGENERATE_GROUPS_MASK out of linux/sched/topology.h
  ...
2020-10-12 12:56:01 -07:00
Rafael J. Wysocki
86836bac55 cpufreq: schedutil: Simplify sugov_fast_switch()
Drop a redundant local variable definition from sugov_fast_switch()
and rearrange the code in there to avoid the redundant logical
negation.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2020-10-07 17:11:37 +02:00
Viresh Kumar
08d8c65e84 cpufreq: Move traces and update to policy->cur to cpufreq core
The cpufreq core handles the updates to policy->cur and recording of
cpufreq trace events for all the governors except schedutil's fast
switch case.

Move that as well to cpufreq core for consistency and readability.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-10-05 15:13:43 +02:00
Daniel Bristot de Oliveira
feff2e65ef sched/deadline: Unthrottle PI boosted threads while enqueuing
stress-ng has a test (stress-ng --cyclic) that creates a set of threads
under SCHED_DEADLINE with the following parameters:

    dl_runtime   =  10000 (10 us)
    dl_deadline  = 100000 (100 us)
    dl_period    = 100000 (100 us)

These parameters are very aggressive. When using a system without HRTICK
set, these threads can easily execute longer than the dl_runtime because
the throttling happens with 1/HZ resolution.

During the main part of the test, the system works just fine because
the workload does not try to run over the 10 us. The problem happens at
the end of the test, on the exit() path. During exit(), the threads need
to do some cleanups that require real-time mutex locks, mainly those
related to memory management, resulting in this scenario:

Note: locks are rt_mutexes...
 ------------------------------------------------------------------------
    TASK A:		TASK B:				TASK C:
    activation
							activation
			activation

    lock(a): OK!	lock(b): OK!
    			<overrun runtime>
    			lock(a)
    			-> block (task A owns it)
			  -> self notice/set throttled
 +--<			  -> arm replenished timer
 |    			switch-out
 |    							lock(b)
 |    							-> <C prio > B prio>
 |    							-> boost TASK B
 |  unlock(a)						switch-out
 |  -> handle lock a to B
 |    -> wakeup(B)
 |      -> B is throttled:
 |        -> do not enqueue
 |     switch-out
 |
 |
 +---------------------> replenishment timer
			-> TASK B is boosted:
			  -> do not enqueue
 ------------------------------------------------------------------------

BOOM: TASK B is runnable but !enqueued, holding TASK C: the system
crashes with hung task C.

This problem is avoided by removing the throttle state from the boosted
thread while boosting it (by TASK A in the example above), allowing it to
be queued and run boosted.

The next replenishment will take care of the runtime overrun, pushing
the deadline further away. See the "while (dl_se->runtime <= 0)" on
replenish_dl_entity() for more information.

Reported-by: Mark Simmons <msimmons@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Tested-by: Mark Simmons <msimmons@redhat.com>
Link: https://lkml.kernel.org/r/5076e003450835ec74e6fa5917d02c4fa41687e6.1600170294.git.bristot@redhat.com
2020-10-03 16:30:53 +02:00
Vincent Donnefort
51cf18c90c sched/debug: Add new tracepoint to track cpu_capacity
rq->cpu_capacity is a key element in several scheduler parts, such as EAS
task placement and load balancing. Tracking this value enables testing
and/or debugging by a toolkit.

Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1598605249-72651-1-git-send-email-vincent.donnefort@arm.com
2020-10-03 16:30:52 +02:00
Peter Oskolkov
9abb897345 sched/fair: Tweak pick_next_entity()
Currently, pick_next_entity(...) has the following structure
(simplified):

  [...]
  if (last_buddy_ok())
    result = last_buddy;
  if (next_buddy_ok())
    result = next_buddy;
  [...]

The intended behavior is to prefer next buddy over last buddy;
the current code somewhat obfuscates this, and also wastes
cycles checking the last buddy when eventually the next buddy is
picked up.

So this patch refactors two 'ifs' above into

  [...]
  if (next_buddy_ok())
      result = next_buddy;
  else if (last_buddy_ok())
      result = last_buddy;
  [...]

Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guitttot@linaro.org>
Link: https://lkml.kernel.org/r/20200930173532.1069092-1-posk@google.com
2020-10-03 16:30:52 +02:00
Peter Oskolkov
2a36ab717e rseq/membarrier: Add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
This patchset is based on Google-internal RSEQ work done by Paul
Turner and Andrew Hunter.

When working with per-CPU RSEQ-based memory allocations, it is
sometimes important to make sure that a global memory location is no
longer accessed from RSEQ critical sections. For example, there can be
two per-CPU lists, one is "active" and accessed per-CPU, while another
one is inactive and worked on asynchronously "off CPU" (e.g.  garbage
collection is performed). Then at some point the two lists are
swapped, and a fast RCU-like mechanism is required to make sure that
the previously active list is no longer accessed.

This patch introduces such a mechanism: in short, membarrier() syscall
issues an IPI to a CPU, restarting a potentially active RSEQ critical
section on the CPU.

Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lkml.kernel.org/r/20200923233618.2572849-1-posk@google.com
2020-09-25 14:23:27 +02:00
Barry Song
233e7aca4c sched/fair: Use dst group while checking imbalance for NUMA balancer
Barry Song noted the following

	Something is wrong. In find_busiest_group(), we are checking if
	src has higher load, however, in task_numa_find_cpu(), we are
	checking if dst will have higher load after balancing. It seems
	it is not sensible to check src.

	It maybe cause wrong imbalance value, for example,

	if dst_running = env->dst_stats.nr_running + 1 results in 3 or
	above, and src_running = env->src_stats.nr_running - 1 results
	in 1;

	The current code is thinking imbalance as 0 since src_running is
	smaller than 2.  This is inconsistent with load balancer.

Basically, in find_busiest_group(), the NUMA imbalance is ignored if moving
a task "from an almost idle domain" to a "domain with spare capacity". This
patch forbids movement "from a misplaced domain" to "an almost idle domain"
as that is closer to what the CPU load balancer expects.

This patch is not a universal win. The old behaviour was intended to allow
a task from an almost idle NUMA node to migrate to its preferred node if
the destination had capacity but there are corner cases.  For example,
a NAS compute load could be parallelised to use 1/3rd of available CPUs
but not all those potential tasks are active at all times allowing this
logic to trigger. An obvious example is specjbb 2005 running various
numbers of warehouses on a 2 socket box with 80 cpus.

specjbb
                               5.9.0-rc4              5.9.0-rc4
                                 vanilla        dstbalance-v1r1
Hmean     tput-1     46425.00 (   0.00%)    43394.00 *  -6.53%*
Hmean     tput-2     98416.00 (   0.00%)    96031.00 *  -2.42%*
Hmean     tput-3    150184.00 (   0.00%)   148783.00 *  -0.93%*
Hmean     tput-4    200683.00 (   0.00%)   197906.00 *  -1.38%*
Hmean     tput-5    236305.00 (   0.00%)   245549.00 *   3.91%*
Hmean     tput-6    281559.00 (   0.00%)   285692.00 *   1.47%*
Hmean     tput-7    338558.00 (   0.00%)   334467.00 *  -1.21%*
Hmean     tput-8    340745.00 (   0.00%)   372501.00 *   9.32%*
Hmean     tput-9    424343.00 (   0.00%)   413006.00 *  -2.67%*
Hmean     tput-10   421854.00 (   0.00%)   434261.00 *   2.94%*
Hmean     tput-11   493256.00 (   0.00%)   485330.00 *  -1.61%*
Hmean     tput-12   549573.00 (   0.00%)   529959.00 *  -3.57%*
Hmean     tput-13   593183.00 (   0.00%)   555010.00 *  -6.44%*
Hmean     tput-14   588252.00 (   0.00%)   599166.00 *   1.86%*
Hmean     tput-15   623065.00 (   0.00%)   642713.00 *   3.15%*
Hmean     tput-16   703924.00 (   0.00%)   660758.00 *  -6.13%*
Hmean     tput-17   666023.00 (   0.00%)   697675.00 *   4.75%*
Hmean     tput-18   761502.00 (   0.00%)   758360.00 *  -0.41%*
Hmean     tput-19   796088.00 (   0.00%)   798368.00 *   0.29%*
Hmean     tput-20   733564.00 (   0.00%)   823086.00 *  12.20%*
Hmean     tput-21   840980.00 (   0.00%)   856711.00 *   1.87%*
Hmean     tput-22   804285.00 (   0.00%)   872238.00 *   8.45%*
Hmean     tput-23   795208.00 (   0.00%)   889374.00 *  11.84%*
Hmean     tput-24   848619.00 (   0.00%)   966783.00 *  13.92%*
Hmean     tput-25   750848.00 (   0.00%)   903790.00 *  20.37%*
Hmean     tput-26   780523.00 (   0.00%)   962254.00 *  23.28%*
Hmean     tput-27  1042245.00 (   0.00%)   991544.00 *  -4.86%*
Hmean     tput-28  1090580.00 (   0.00%)  1035926.00 *  -5.01%*
Hmean     tput-29   999483.00 (   0.00%)  1082948.00 *   8.35%*
Hmean     tput-30  1098663.00 (   0.00%)  1113427.00 *   1.34%*
Hmean     tput-31  1125671.00 (   0.00%)  1134175.00 *   0.76%*
Hmean     tput-32   968167.00 (   0.00%)  1250286.00 *  29.14%*
Hmean     tput-33  1077676.00 (   0.00%)  1060893.00 *  -1.56%*
Hmean     tput-34  1090538.00 (   0.00%)  1090933.00 *   0.04%*
Hmean     tput-35   967058.00 (   0.00%)  1107421.00 *  14.51%*
Hmean     tput-36  1051745.00 (   0.00%)  1210663.00 *  15.11%*
Hmean     tput-37  1019465.00 (   0.00%)  1351446.00 *  32.56%*
Hmean     tput-38  1083102.00 (   0.00%)  1064541.00 *  -1.71%*
Hmean     tput-39  1232990.00 (   0.00%)  1303623.00 *   5.73%*
Hmean     tput-40  1175542.00 (   0.00%)  1340943.00 *  14.07%*
Hmean     tput-41  1127826.00 (   0.00%)  1339492.00 *  18.77%*
Hmean     tput-42  1198313.00 (   0.00%)  1411023.00 *  17.75%*
Hmean     tput-43  1163733.00 (   0.00%)  1228253.00 *   5.54%*
Hmean     tput-44  1305562.00 (   0.00%)  1357886.00 *   4.01%*
Hmean     tput-45  1326752.00 (   0.00%)  1406061.00 *   5.98%*
Hmean     tput-46  1339424.00 (   0.00%)  1418451.00 *   5.90%*
Hmean     tput-47  1415057.00 (   0.00%)  1381570.00 *  -2.37%*
Hmean     tput-48  1392003.00 (   0.00%)  1421167.00 *   2.10%*
Hmean     tput-49  1408374.00 (   0.00%)  1418659.00 *   0.73%*
Hmean     tput-50  1359822.00 (   0.00%)  1391070.00 *   2.30%*
Hmean     tput-51  1414246.00 (   0.00%)  1392679.00 *  -1.52%*
Hmean     tput-52  1432352.00 (   0.00%)  1354020.00 *  -5.47%*
Hmean     tput-53  1387563.00 (   0.00%)  1409563.00 *   1.59%*
Hmean     tput-54  1406420.00 (   0.00%)  1388711.00 *  -1.26%*
Hmean     tput-55  1438804.00 (   0.00%)  1387472.00 *  -3.57%*
Hmean     tput-56  1399465.00 (   0.00%)  1400296.00 *   0.06%*
Hmean     tput-57  1428132.00 (   0.00%)  1396399.00 *  -2.22%*
Hmean     tput-58  1432385.00 (   0.00%)  1386253.00 *  -3.22%*
Hmean     tput-59  1421612.00 (   0.00%)  1371416.00 *  -3.53%*
Hmean     tput-60  1429423.00 (   0.00%)  1389412.00 *  -2.80%*
Hmean     tput-61  1396230.00 (   0.00%)  1351122.00 *  -3.23%*
Hmean     tput-62  1418396.00 (   0.00%)  1383098.00 *  -2.49%*
Hmean     tput-63  1409918.00 (   0.00%)  1374662.00 *  -2.50%*
Hmean     tput-64  1410236.00 (   0.00%)  1376216.00 *  -2.41%*
Hmean     tput-65  1396405.00 (   0.00%)  1364418.00 *  -2.29%*
Hmean     tput-66  1395975.00 (   0.00%)  1357326.00 *  -2.77%*
Hmean     tput-67  1392986.00 (   0.00%)  1349642.00 *  -3.11%*
Hmean     tput-68  1386541.00 (   0.00%)  1343261.00 *  -3.12%*
Hmean     tput-69  1374407.00 (   0.00%)  1342588.00 *  -2.32%*
Hmean     tput-70  1377513.00 (   0.00%)  1334654.00 *  -3.11%*
Hmean     tput-71  1369319.00 (   0.00%)  1334952.00 *  -2.51%*
Hmean     tput-72  1354635.00 (   0.00%)  1329005.00 *  -1.89%*
Hmean     tput-73  1350933.00 (   0.00%)  1318942.00 *  -2.37%*
Hmean     tput-74  1351714.00 (   0.00%)  1316347.00 *  -2.62%*
Hmean     tput-75  1352198.00 (   0.00%)  1309974.00 *  -3.12%*
Hmean     tput-76  1349490.00 (   0.00%)  1286064.00 *  -4.70%*
Hmean     tput-77  1336131.00 (   0.00%)  1303684.00 *  -2.43%*
Hmean     tput-78  1308896.00 (   0.00%)  1271024.00 *  -2.89%*
Hmean     tput-79  1326703.00 (   0.00%)  1290862.00 *  -2.70%*
Hmean     tput-80  1336199.00 (   0.00%)  1291629.00 *  -3.34%*

The performance at the mid-point is better but not universally better. The
patch is a mixed bag depending on the workload, machine and overall
levels of utilisation. Sometimes it's better (sometimes much better),
other times it is worse (sometimes much worse). Given that there isn't a
universally good decision in this section and more people seem to prefer
the patch then it may be best to keep the LB decisions consistent and
revisit imbalance handling when the load balancer code changes settle down.

Jirka Hladky added the following observation.

	Our results are mostly in line with what you see. We observe
	big gains (20-50%) when the system is loaded to 1/3 of the
	maximum capacity and mixed results at the full load - some
	workloads benefit from the patch at the full load, others not,
	but performance changes at the full load are mostly within the
	noise of results (+/-5%). Overall, we think this patch is helpful.

[mgorman@techsingularity.net: Rewrote changelog]
Fixes: fb86f5b211 ("sched/numa: Use similar logic to the load balancer for moving between domains with spare capacity")
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921221849.GI3179@techsingularity.net
2020-09-25 14:23:26 +02:00
Vincent Guittot
6e7499135d sched/fair: Reduce busy load balance interval
The busy_factor, which increases load balance interval when a cpu is busy,
is set to 32 by default. This value generates some huge LB interval on
large system like the THX2 made of 2 node x 28 cores x 4 threads.
For such system, the interval increases from 112ms to 3584ms at MC level.
And from 228ms to 7168ms at NUMA level.

Even on smaller system, a lower busy factor has shown improvement on the
fair distribution of the running time so let reduce it for all.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-5-vincent.guittot@linaro.org
2020-09-25 14:23:26 +02:00
Vincent Guittot
e4d32e4d54 sched/fair: Minimize concurrent LBs between domain level
sched domains tend to trigger simultaneously the load balance loop but
the larger domains often need more time to collect statistics. This
slowness makes the larger domain trying to detach tasks from a rq whereas
tasks already migrated somewhere else at a sub-domain level. This is not
a real problem for idle LB because the period of smaller domains will
increase with its CPUs being busy and this will let time for higher ones
to pulled tasks. But this becomes a problem when all CPUs are already busy
because all domains stay synced when they trigger their LB.

A simple way to minimize simultaneous LB of all domains is to decrement the
the busy interval by 1 jiffies. Because of the busy_factor, the interval of
larger domain will not be a multiple of smaller ones anymore.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-4-vincent.guittot@linaro.org
2020-09-25 14:23:26 +02:00
Vincent Guittot
2208cdaa56 sched/fair: Reduce minimal imbalance threshold
The 25% default imbalance threshold for DIE and NUMA domain is large
enough to generate significant unfairness between threads. A typical
example is the case of 11 threads running on 2x4 CPUs. The imbalance of
20% between the 2 groups of 4 cores is just low enough to not trigger
the load balance between the 2 groups. We will have always the same 6
threads on one group of 4 CPUs and the other 5 threads on the other
group of CPUS. With a fair time sharing in each group, we ends up with
+20% running time for the group of 5 threads.

Consider decreasing the imbalance threshold for overloaded case where we
use the load to balance task and to ensure fair time sharing.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: Hillf Danton <hdanton@sina.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-3-vincent.guittot@linaro.org
2020-09-25 14:23:26 +02:00
Vincent Guittot
5a7f555904 sched/fair: Relax constraint on task's load during load balance
Some UCs like 9 always running tasks on 8 CPUs can't be balanced and the
load balancer currently migrates the waiting task between the CPUs in an
almost random manner. The success of a rq pulling a task depends of the
value of nr_balance_failed of its domains and its ability to be faster
than others to detach it. This behavior results in an unfair distribution
of the running time between tasks because some CPUs will run most of the
time, if not always, the same task whereas others will share their time
between several tasks.

Instead of using nr_balance_failed as a boolean to relax the condition
for detaching task, the LB will use nr_balanced_failed to relax the
threshold between the tasks'load and the imbalance. This mecanism
prevents the same rq or domain to always win the load balance fight.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200921072424.14813-2-vincent.guittot@linaro.org
2020-09-25 14:23:25 +02:00
Xianting Tian
fe7491580d sched/fair: Remove the force parameter of update_tg_load_avg()
In the file fair.c, sometims update_tg_load_avg(cfs_rq, 0) is used,
sometimes update_tg_load_avg(cfs_rq, false) is used.
update_tg_load_avg() has the parameter force, but in current code,
it never set 1 or true to it, so remove the force parameter.

Signed-off-by: Xianting Tian <tian.xianting@h3c.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200924014755.36253-1-tian.xianting@h3c.com
2020-09-25 14:23:25 +02:00
Xunlei Pang
df3cb4ea1f sched/fair: Fix wrong cpu selecting from isolated domain
We've met problems that occasionally tasks with full cpumask
(e.g. by putting it into a cpuset or setting to full affinity)
were migrated to our isolated cpus in production environment.

After some analysis, we found that it is due to the current
select_idle_smt() not considering the sched_domain mask.

Steps to reproduce on my 31-CPU hyperthreads machine:
1. with boot parameter: "isolcpus=domain,2-31"
   (thread lists: 0,16 and 1,17)
2. cgcreate -g cpu:test; cgexec -g cpu:test "test_threads"
3. some threads will be migrated to the isolated cpu16~17.

Fix it by checking the valid domain mask in select_idle_smt().

Fixes: 10e2f1acd0 ("sched/core: Rewrite and improve select_idle_siblings())
Reported-by: Wetp Zhang <wetp.zy@linux.alibaba.com>
Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1600930127-76857-1-git-send-email-xlpang@linux.alibaba.com
2020-09-25 14:23:25 +02:00
YueHaibing
51bd5121c4 sched: Remove unused inline function uclamp_bucket_base_value()
There is no caller in tree, so can remove it.

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20200922132410.48440-1-yuehaibing@huawei.com
2020-09-25 14:23:25 +02:00
Daniel Bristot de Oliveira
2586af1ac1 sched/rt: Disable RT_RUNTIME_SHARE by default
The RT_RUNTIME_SHARE sched feature enables the sharing of rt_runtime
between CPUs, allowing a CPU to run a real-time task up to 100% of the
time while leaving more space for non-real-time tasks to run on the CPU
that lend rt_runtime.

The problem is that a CPU can easily borrow enough rt_runtime to allow
a spinning rt-task to run forever, starving per-cpu tasks like kworkers,
which are non-real-time by design.

This patch disables RT_RUNTIME_SHARE by default, avoiding this problem.
The feature will still be present for users that want to enable it,
though.

Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Wei Wang <wvw@google.com>
Link: https://lkml.kernel.org/r/b776ab46817e3db5d8ef79175fa0d71073c051c7.1600697903.git.bristot@redhat.com
2020-09-25 14:23:24 +02:00
Lucas Stach
46fcc4b00c sched/deadline: Fix stale throttling on de-/boosted tasks
When a boosted task gets throttled, what normally happens is that it's
immediately enqueued again with ENQUEUE_REPLENISH, which replenishes the
runtime and clears the dl_throttled flag. There is a special case however:
if the throttling happened on sched-out and the task has been deboosted in
the meantime, the replenish is skipped as the task will return to its
normal scheduling class. This leaves the task with the dl_throttled flag
set.

Now if the task gets boosted up to the deadline scheduling class again
while it is sleeping, it's still in the throttled state. The normal wakeup
however will enqueue the task with ENQUEUE_REPLENISH not set, so we don't
actually place it on the rq. Thus we end up with a task that is runnable,
but not actually on the rq and neither a immediate replenishment happens,
nor is the replenishment timer set up, so the task is stuck in
forever-throttled limbo.

Clear the dl_throttled flag before dropping back to the normal scheduling
class to fix this issue.

Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200831110719.2126930-1-l.stach@pengutronix.de
2020-09-25 14:23:24 +02:00
Vincent Guittot
8e0e0eda6a sched/numa: Use runnable_avg to classify node
Use runnable_avg to classify numa node state similarly to what is done for
normal load balancer. This helps to ensure that numa and normal balancers
use the same view of the state of the system.

Large arm64system: 2 nodes / 224 CPUs:

  hackbench -l (256000/#grp) -g #grp

  grp    tip/sched/core         +patchset              improvement
  1      14,008(+/- 4,99 %)     13,800(+/- 3.88 %)     1,48 %
  4       4,340(+/- 5.35 %)      4.283(+/- 4.85 %)     1,33 %
  16      3,357(+/- 0.55 %)      3.359(+/- 0.54 %)    -0,06 %
  32      3,050(+/- 0.94 %)      3.039(+/- 1,06 %)     0,38 %
  64      2.968(+/- 1,85 %)      3.006(+/- 2.92 %)    -1.27 %
  128     3,290(+/-12.61 %)      3,108(+/- 5.97 %)     5.51 %
  256     3.235(+/- 3.95 %)      3,188(+/- 2.83 %)     1.45 %

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200921072959.16317-1-vincent.guittot@linaro.org
2020-09-25 14:23:24 +02:00
Valentin Schneider
848785df48 sched/topology: Move sd_flag_debug out of #ifdef CONFIG_SYSCTL
The last sd_flag_debug shuffle inadvertently moved its definition within
an #ifdef CONFIG_SYSCTL region. While CONFIG_SYSCTL is indeed required to
produce the sched domain ctl interface (which uses sd_flag_debug to output
flag names), it isn't required to run any assertion on the sched_domain
hierarchy itself.

Move the definition of sd_flag_debug to a CONFIG_SCHED_DEBUG region of
topology.c.

Now at long last we have:

- sd_flag_debug declared in include/linux/sched/topology.h iff
  CONFIG_SCHED_DEBUG=y
- sd_flag_debug defined in kernel/sched/topology.c, conditioned by:
  - CONFIG_SCHED_DEBUG, with an explicit #ifdef block
  - CONFIG_SMP, as a requirement to compile topology.c

With this change, all symbols pertaining to SD flag metadata (with the
exception of __SD_FLAG_CNT) are now defined exclusively within topology.c

Fixes: 8fca9494d4 ("sched/topology: Move sd_flag_debug out of linux/sched/topology.h")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200908184956.23369-1-valentin.schneider@arm.com
2020-09-09 10:09:03 +02:00
Linus Torvalds
b69bea8a65 A set of fixes for lockdep, tracing and RCU:
- Prevent recursion by using raw_cpu_* operations
 
   - Fixup the interrupt state in the cpu idle code to be consistent
 
   - Push rcu_idle_enter/exit() invocations deeper into the idle path so
     that the lock operations are inside the RCU watching sections
 
   - Move trace_cpu_idle() into generic code so it's called before RCU goes
     idle.
 
   - Handle raw_local_irq* vs. local_irq* operations correctly
 
   - Move the tracepoints out from under the lockdep recursion handling
     which turned out to be fragile and inconsistent.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl9L5qETHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoV/NEADG+h02tj2I4gP7IQ3nVodEzS1+odPI
 orabY5ggH0kn4YIhPB4UtOd5zKZjr3FJs9wEhyhQpV6ZhvFfgaIKiYqfg+Q81aMO
 /BXrfh6jBD2Hu7gaPBnVdkKeh1ehl+w0PhTeJhPBHEEvbGeLUYWwyPNlaKz//VQl
 XCWl7e7o/Uw2UyJ469SCx3z+M2DMNqwdMys/zcqvTLiBdLNCwp4TW5ACzEA0rfHh
 Pepu3eIKnMURyt82QanrOATvT2io9pOOaUh59zeKi2WM8ikwKd/Eho2kXYng6GvM
 GzX4Kn13MsNobZXf9BhqEGICdRkaJqLsXlmBNmbJdSTCn5W2lLZqu2wCEp5VZHCc
 XwMbey8ek+BRskJMqAV4oq2GA8Om9KEYWOOdixyOG0UJCiW5qDowuDYBXTLV7FWj
 XhzLGuHpUF9eKLKokJ7ideLaDcpzwYjHr58pFLQrqPwmjVKWguLeYMg5BhhTiEuV
 wNfiLIGdMNsCpYKhnce3o9paV8+hy1ZveWhNy+/4HaDLoEwI2T62i8R7xxbrcWMg
 sgdAiQG+kVLwSJ13bN+Cz79uLYTIbqGaZHtOXmeIT3jSxBjx5RlXfzocwTHSYrNk
 GuLYHd7+QaemN49Rrf4bPR16Db7ifL32QkUtLBTBLcnos9jM+fcl+BWyqYRxhgDv
 xzDS+vfK8DvRiA==
 =Hgt6
 -----END PGP SIGNATURE-----

Merge tag 'locking-urgent-2020-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking fixes from Thomas Gleixner:
 "A set of fixes for lockdep, tracing and RCU:

   - Prevent recursion by using raw_cpu_* operations

   - Fixup the interrupt state in the cpu idle code to be consistent

   - Push rcu_idle_enter/exit() invocations deeper into the idle path so
     that the lock operations are inside the RCU watching sections

   - Move trace_cpu_idle() into generic code so it's called before RCU
     goes idle.

   - Handle raw_local_irq* vs. local_irq* operations correctly

   - Move the tracepoints out from under the lockdep recursion handling
     which turned out to be fragile and inconsistent"

* tag 'locking-urgent-2020-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  lockdep,trace: Expose tracepoints
  lockdep: Only trace IRQ edges
  mips: Implement arch_irqs_disabled()
  arm64: Implement arch_irqs_disabled()
  nds32: Implement arch_irqs_disabled()
  locking/lockdep: Cleanup
  x86/entry: Remove unused THUNKs
  cpuidle: Move trace_cpu_idle() into generic code
  cpuidle: Make CPUIDLE_FLAG_TLB_FLUSHED generic
  sched,idle,rcu: Push rcu_idle deeper into the idle path
  cpuidle: Fixup IRQ state
  lockdep: Use raw_cpu_*() for per-cpu variables
2020-08-30 11:43:50 -07:00
Valentin Schneider
4fc472f121 sched/topology: Move SD_DEGENERATE_GROUPS_MASK out of linux/sched/topology.h
SD_DEGENERATE_GROUPS_MASK is only useful for sched/topology.c, but still
gets defined for anyone who imports topology.h, leading to a flurry of
unused variable warnings.

Move it out of the header and place it next to the SD degeneration
functions in sched/topology.c.

Fixes: 4ee4ea443a ("sched/topology: Introduce SD metaflag for flags needing > 1 groups")
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200825133216.9163-2-valentin.schneider@arm.com
2020-08-26 12:41:59 +02:00
Valentin Schneider
8fca9494d4 sched/topology: Move sd_flag_debug out of linux/sched/topology.h
Defining an array in a header imported all over the place clearly is a daft
idea, that still didn't stop me from doing it.

Leave a declaration of sd_flag_debug in topology.h and move its definition
to sched/debug.c.

Fixes: b6e862f386 ("sched/topology: Define and assign sched_domain flag metadata")
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200825133216.9163-1-valentin.schneider@arm.com
2020-08-26 12:41:59 +02:00
Sebastian Andrzej Siewior
c1cecf884a sched: Cache task_struct::flags in sched_submit_work()
sched_submit_work() is considered to be a hot path. The preempt_disable()
instruction is a compiler barrier and forces the compiler to load
task_struct::flags for the second comparison.
By using a local variable, the compiler can load the value once and keep it in
a register for the second comparison.

Verified on x86-64 with gcc-10.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200819200025.lqvmyefqnbok5i4f@linutronix.de
2020-08-26 12:41:58 +02:00
Jiang Biao
1724b95b92 sched/fair: Simplify the work when reweighting entity
The code in reweight_entity() can be simplified.

For a sched entity on the rq, the entity accounting can be replaced by
cfs_rq instantaneous load updates currently called from within the
entity accounting.

Even though an entity on the rq can't represent a task in
reweight_entity() (a task is always dequeued before calling this
function) and so the numa task accounting and the rq->cfs_tasks list
management of the entity accounting are never called, the redundant
cfs_rq->nr_running decrement/increment will be avoided.

Signed-off-by: Jiang Biao <benbjiang@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200811113209.34057-1-benbjiang@tencent.com
2020-08-26 12:41:58 +02:00