Add an inline helper and use it in the code.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current use of VM_FAULT_* codes with ERR_PTR requires us to ensure
VM_FAULT_* values will not exceed MAX_ERRNO value. Decouple the
VM_FAULT_* values from MAX_ERRNO.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset implements a cgroup resource controller for HugeTLB pages.
The controller allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies that,
the application will get SIGBUS signal if it tries to access HugeTLB pages
beyond its limit. This requires the application to know beforehand how
much HugeTLB pages it would require for its use.
The goal is to control how many HugeTLB pages a group of task can
allocate. It can be looked at as an extension of the existing quota
interface which limits the number of HugeTLB pages per hugetlbfs
superblock. HPC job scheduler requires jobs to specify their resource
requirements in the job file. Once their requirements can be met, job
schedulers like (SLURM) will schedule the job. We need to make sure that
the jobs won't consume more resources than requested. If they do we
should either error out or kill the application.
This patch:
Rename max_hstate to hugetlb_max_hstate. We will be using this from other
subsystems like hugetlb controller in later patches.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb_reserve_pages() can be used for either normal file-backed
hugetlbfs mappings, or MAP_HUGETLB. In the MAP_HUGETLB, semi-anonymous
mode, there is not a VMA around. The new call to resv_map_put() assumed
that there was, and resulted in a NULL pointer dereference:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000030
IP: vma_resv_map+0x9/0x30
PGD 141453067 PUD 1421e1067 PMD 0
Oops: 0000 [#1] PREEMPT SMP
...
Pid: 14006, comm: trinity-child6 Not tainted 3.4.0+ #36
RIP: vma_resv_map+0x9/0x30
...
Process trinity-child6 (pid: 14006, threadinfo ffff8801414e0000, task ffff8801414f26b0)
Call Trace:
resv_map_put+0xe/0x40
hugetlb_reserve_pages+0xa6/0x1d0
hugetlb_file_setup+0x102/0x2c0
newseg+0x115/0x360
ipcget+0x1ce/0x310
sys_shmget+0x5a/0x60
system_call_fastpath+0x16/0x1b
This was reported by Dave Jones, but was reproducible with the
libhugetlbfs test cases, so shame on me for not running them in the
first place.
With this, the oops is gone, and the output of libhugetlbfs's
run_tests.py is identical to plain 3.4 again.
[ Marked for stable, since this was introduced by commit c50ac05081
("hugetlb: fix resv_map leak in error path") which was also marked for
stable ]
Reported-by: Dave Jones <davej@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org> [2.6.32+]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When called for anonymous (non-shared) mappings, hugetlb_reserve_pages()
does a resv_map_alloc(). It depends on code in hugetlbfs's
vm_ops->close() to release that allocation.
However, in the mmap() failure path, we do a plain unmap_region() without
the remove_vma() which actually calls vm_ops->close().
This is a decent fix. This leak could get reintroduced if new code (say,
after hugetlb_reserve_pages() in hugetlbfs_file_mmap()) decides to return
an error. But, I think it would have to unroll the reservation anyway.
Christoph's test case:
http://marc.info/?l=linux-mm&m=133728900729735
This patch applies to 3.4 and later. A version for earlier kernels is at
https://lkml.org/lkml/2012/5/22/418.
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reported-by: Christoph Lameter <cl@linux.com>
Tested-by: Christoph Lameter <cl@linux.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.32+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The arguments f & t and fields from & to of struct file_region are
defined as long. So use long instead of int to type the temp vars.
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The tile support for multiple-size huge pages requires tagging
the hugetlb PTE with a "super" bit for PTEs that are multiples of
the basic size of a pagetable span. To set that bit properly
we need to tweak the PTe in make_huge_pte() based on the vma.
This change provides the API for a subsequent tile-specific
change to use.
Reviewed-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Commit 66aebce747 ("hugetlb: fix race condition in hugetlb_fault()")
added code to avoid a race condition by elevating the page refcount in
hugetlb_fault() while calling hugetlb_cow().
However, one code path in hugetlb_cow() includes an assertion that the
page count is 1, whereas it may now also have the value 2 in this path.
The consensus is that this BUG_ON has served its purpose, so rather than
extending it to cover both cases, we just remove it.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [3.0.29+, 3.2.16+, 3.3.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a gcc warning (and bug?) introduced in cc9a6c877 ("cpuset: mm: reduce
large amounts of memory barrier related damage v3")
Local variable "page" can be uninitialized if the nodemask from vma policy
does not intersects with nodemask from cpuset. Even if it doesn't happens
it is better to initialize this variable explicitly than to introduce
a kernel oops in a weird corner case.
mm/hugetlb.c: In function `alloc_huge_page':
mm/hugetlb.c:1135:5: warning: `page' may be used uninitialized in this function
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The race is as follows:
Suppose a multi-threaded task forks a new process (on cpu A), thus
bumping up the ref count on all the pages. While the fork is occurring
(and thus we have marked all the PTEs as read-only), another thread in
the original process (on cpu B) tries to write to a huge page, taking an
access violation from the write-protect and calling hugetlb_cow(). Now,
suppose the fork() fails. It will undo the COW and decrement the ref
count on the pages, so the ref count on the huge page drops back to 1.
Meanwhile hugetlb_cow() also decrements the ref count by one on the
original page, since the original address space doesn't need it any
more, having copied a new page to replace the original page. This
leaves the ref count at zero, and when we call unlock_page(), we panic.
fork on CPU A fault on CPU B
============= ==============
...
down_write(&parent->mmap_sem);
down_write_nested(&child->mmap_sem);
...
while duplicating vmas
if error
break;
...
up_write(&child->mmap_sem);
up_write(&parent->mmap_sem); ...
down_read(&parent->mmap_sem);
...
lock_page(page);
handle COW
page_mapcount(old_page) == 2
alloc and prepare new_page
...
handle error
page_remove_rmap(page);
put_page(page);
...
fold new_page into pte
page_remove_rmap(page);
put_page(page);
...
oops ==> unlock_page(page);
up_read(&parent->mmap_sem);
The solution is to take an extra reference to the page while we are
holding the lock on it.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the
general quota handling code, and they don't much resemble its behaviour.
Rather than being about maintaining limits on on-disk block usage by
particular users, they are instead about maintaining limits on in-memory
page usage (including anonymous MAP_PRIVATE copied-on-write pages)
associated with a particular hugetlbfs filesystem instance.
Worse, they work by having callbacks to the hugetlbfs filesystem code from
the low-level page handling code, in particular from free_huge_page().
This is a layering violation of itself, but more importantly, if the
kernel does a get_user_pages() on hugepages (which can happen from KVM
amongst others), then the free_huge_page() can be delayed until after the
associated inode has already been freed. If an unmount occurs at the
wrong time, even the hugetlbfs superblock where the "quota" limits are
stored may have been freed.
Andrew Barry proposed a patch to fix this by having hugepages, instead of
storing a pointer to their address_space and reaching the superblock from
there, had the hugepages store pointers directly to the superblock,
bumping the reference count as appropriate to avoid it being freed.
Andrew Morton rejected that version, however, on the grounds that it made
the existing layering violation worse.
This is a reworked version of Andrew's patch, which removes the extra, and
some of the existing, layering violation. It works by introducing the
concept of a hugepage "subpool" at the lower hugepage mm layer - that is a
finite logical pool of hugepages to allocate from. hugetlbfs now creates
a subpool for each filesystem instance with a page limit set, and a
pointer to the subpool gets added to each allocated hugepage, instead of
the address_space pointer used now. The subpool has its own lifetime and
is only freed once all pages in it _and_ all other references to it (i.e.
superblocks) are gone.
subpools are optional - a NULL subpool pointer is taken by the code to
mean that no subpool limits are in effect.
Previous discussion of this bug found in: "Fix refcounting in hugetlbfs
quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or
http://marc.info/?l=linux-mm&m=126928970510627&w=1
v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to
alloc_huge_page() - since it already takes the vma, it is not necessary.
Signed-off-by: Andrew Barry <abarry@cray.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.
[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths. This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32. The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.
For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.
This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side. This is much cheaper on some architectures, including x86. The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.
While updating the nodemask, a check is made to see if a false failure
is a risk. If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.
In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The
actual results were
3.3.0-rc3 3.3.0-rc3
rc3-vanilla nobarrier-v2r1
Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%)
Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%)
Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%)
Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%)
Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%)
Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%)
Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%)
Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%)
Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%)
Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%)
Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%)
Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%)
Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%)
Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%)
Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%)
MMTests Statistics: duration
Sys Time Running Test (seconds) 135.68 132.17
User+Sys Time Running Test (seconds) 164.2 160.13
Total Elapsed Time (seconds) 123.46 120.87
The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected). The
actual number of page faults is noticeably improved.
For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.
To test the actual bug the commit fixed I opened two terminals. The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data. In a second window, the nodemask of the
cpuset was continually randomised in a loop.
Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When unmapping a given VM range, we could bail out if a reference page is
supplied and is unmapped, which is a minor optimization.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When gathering surplus pages, the number of needed pages is recomputed
after reacquiring hugetlb lock to catch changes in resv_huge_pages and
free_huge_pages. Plus it is recomputed with the number of newly allocated
pages involved.
Thus freeing pages can be deferred a bit to see if the final page request
is satisfied, though pages could be allocated less than needed.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All other callers already hold either ->mmap_sem (exclusive) or
->page_table_lock. And we need it because some page table flushing
instanced do work explicitly with ge tables.
See e.g. arch/powerpc/mm/tlb_hash32.c, flush_tlb_range() and
flush_range() in there. The same goes for uml, with a lot more
extensive playing with page tables.
Almost all callers are actually fine - flush_tlb_range() may have no
need to bother playing with page tables, but it can do so safely; again,
this caller is the sole exception - everything else either has exclusive
->mmap_sem on the mm in question, or mm->page_table_lock is held.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page mapcount should be updated only if we are sure that the page ends
up in the page table otherwise we would leak if we couldn't COW due to
reservations or if idx is out of bounds.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we have to hand back the newly allocated huge page to page allocator,
for any reason, the changed counter should be recovered.
This affects only s390 at present.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The computation for pgoff is incorrect, at least with
(vma->vm_pgoff >> PAGE_SHIFT)
involved. It is fixed with the available method if HPAGE_SIZE is
concerned in page cache lookup.
[akpm@linux-foundation.org: use vma_hugecache_offset() directly, per Michal]
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
handle_mm_fault() passes 'faulted' address to hugetlb_fault(). This
address is not aligned to a hugepage boundary.
Most of the functions for hugetlb pages are aware of that and calculate an
alignment themselves. However some functions such as
copy_user_huge_page() and clear_huge_page() don't handle alignment by
themselves.
This patch make hugeltb_fault() fix the alignment and pass an aligned
addresss (to address of a faulted hugepage) to functions.
[akpm@linux-foundation.org: use &=]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's make it clear that we cannot race with other fault handlers due to
hugetlb (global) mutex. Also make it clear that we want to keep pte_same
checks anayway to have a transition from the global mutex easier.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we are not rechecking pte_same in hugetlb_cow after we take ptl
lock again in the page allocation failure code path and simply retry
again. This is not an issue at the moment because hugetlb fault path is
protected by hugetlb_instantiation_mutex so we cannot race.
The original page is locked and so we cannot race even with the page
migration.
Let's add the pte_same check anyway as we want to be consistent with the
other check later in this function and be safe if we ever remove the
mutex.
[mhocko@suse.cz: reworded the changelog]
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This resolves the conflict in the arch/arm/mach-s3c64xx/s3c6400.c file,
and it fixes the build error in the arch/x86/kernel/microcode_core.c
file, that the merge did not catch.
The microcode_core.c patch was provided by Stephen Rothwell
<sfr@canb.auug.org.au> who was invaluable in the merge issues involved
with the large sysdev removal process in the driver-core tree.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
If a huge page is enqueued under the protection of hugetlb_lock, then the
operation is atomic and safe.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [2.6.37+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the 'memory sysdev_class' over to a regular 'memory' subsystem
and converts the devices to regular devices. The sysdev drivers are
implemented as subsystem interfaces now.
After all sysdev classes are ported to regular driver core entities, the
sysdev implementation will be entirely removed from the kernel.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Commit 70b50f94f1 ("mm: thp: tail page refcounting fix") keeps all
page_tail->_count zero at all times. But the current kernel does not
set page_tail->_count to zero if a 1GB page is utilized. So when an
IOMMU 1GB page is used by KVM, it wil result in a kernel oops because a
tail page's _count does not equal zero.
kernel BUG at include/linux/mm.h:386!
invalid opcode: 0000 [#1] SMP
Call Trace:
gup_pud_range+0xb8/0x19d
get_user_pages_fast+0xcb/0x192
? trace_hardirqs_off+0xd/0xf
hva_to_pfn+0x119/0x2f2
gfn_to_pfn_memslot+0x2c/0x2e
kvm_iommu_map_pages+0xfd/0x1c1
kvm_iommu_map_memslots+0x7c/0xbd
kvm_iommu_map_guest+0xaa/0xbf
kvm_vm_ioctl_assigned_device+0x2ef/0xa47
kvm_vm_ioctl+0x36c/0x3a2
do_vfs_ioctl+0x49e/0x4e4
sys_ioctl+0x5a/0x7c
system_call_fastpath+0x16/0x1b
RIP gup_huge_pud+0xf2/0x159
Signed-off-by: Youquan Song <youquan.song@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we fail to prepare an anon_vma, the {new, old}_page should be released,
or they will leak.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix coding style issues flagged by checkpatch.pl
Signed-off-by: Chris Forbes <chrisf@ijw.co.nz>
Acked-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is needed on HIGHMEM systems - we don't always have a virtual
address so store the physical address and map it in as needed.
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When 1GB hugepages are allocated on a system, free(1) reports less
available memory than what really is installed in the box. Also, if the
total size of hugepages allocated on a system is over half of the total
memory size, CommitLimit becomes a negative number.
The problem is that gigantic hugepages (order > MAX_ORDER) can only be
allocated at boot with bootmem, thus its frames are not accounted to
'totalram_pages'. However, they are accounted to hugetlb_total_pages()
What happens to turn CommitLimit into a negative number is this
calculation, in fs/proc/meminfo.c:
allowed = ((totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100) + total_swap_pages;
A similar calculation occurs in __vm_enough_memory() in mm/mmap.c.
Also, every vm statistic which depends on 'totalram_pages' will render
confusing values, as if system were 'missing' some part of its memory.
Impact of this bug:
When gigantic hugepages are allocated and sysctl_overcommit_memory ==
OVERCOMMIT_NEVER. In a such situation, __vm_enough_memory() goes through
the mentioned 'allowed' calculation and might end up mistakenly returning
-ENOMEM, thus forcing the system to start reclaiming pages earlier than it
would be ususal, and this could cause detrimental impact to overall
system's performance, depending on the workload.
Besides the aforementioned scenario, I can only think of this causing
annoyances with memory reports from /proc/meminfo and free(1).
[akpm@linux-foundation.org: standardize comment layout]
Reported-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Rafael Aquini <aquini@linux.com>
Acked-by: Russ Anderson <rja@sgi.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Al Viro observes that in the hugetlb case, handle_mm_fault() may return
a value of the kind ENOSPC when its caller is expecting a value of the
kind VM_FAULT_SIGBUS: fix alloc_huge_page()'s failure returns.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The type of vma->vm_flags is 'unsigned long'. Neither 'int' nor
'unsigned int'. This patch fixes such misuse.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
[ Changed to use a typedef - we'll extend it to cover more cases
later, since there has been discussion about making it a 64-bit
type.. - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straightforward conversion of i_mmap_lock to a mutex.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the user inserts a negative value into /proc/sys/vm/nr_hugepages it
will cause the kernel to allocate as many hugepages as possible and to
then update /proc/meminfo to reflect this.
This changes the behavior so that the negative input will result in
nr_hugepages value being unchanged.
Signed-off-by: Petr Holasek <pholasek@redhat.com>
Signed-off-by: Anton Arapov <anton@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When parsing changes to the huge page pool sizes made from userspace via
the sysfs interface, bogus input values are being covered up by
nr_hugepages_store_common and nr_overcommit_hugepages_store returning 0
when strict_strtoul returns an error. This can cause an infinite loop in
the nr_hugepages_store code. This patch changes the return value for
these functions to -EINVAL when strict_strtoul returns an error.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Reported-by: CAI Qian <caiqian@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge pages with order >= MAX_ORDER must be allocated at boot via the
kernel command line, they cannot be allocated or freed once the kernel is
up and running. Currently we allow values to be written to the sysfs and
sysctl files controling pool size for these huge page sizes. This patch
makes the store functions for nr_hugepages and nr_overcommit_hugepages
return -EINVAL when the pool for a page size >= MAX_ORDER is changed.
[akpm@linux-foundation.org: avoid multiple return paths in nr_hugepages_store_common()]
[caiqian@redhat.com: add checking in hugetlb_overcommit_handler()]
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Reported-by: CAI Qian <caiqian@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
proc_doulongvec_minmax may fail if the given buffer doesn't represent a
valid number. If we provide something invalid we will initialize the
resulting value (nr_overcommit_huge_pages in this case) to a random value
from the stack.
The issue was introduced by a3d0c6aa when the default handler has been
replaced by the helper function where we do not check the return value.
Reproducer:
echo "" > /proc/sys/vm/nr_overcommit_hugepages
[akpm@linux-foundation.org: correctly propagate proc_doulongvec_minmax return code]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: CAI Qian <caiqian@redhat.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The NODEMASK_ALLOC macro may dynamically allocate memory for its second
argument ('nodes_allowed' in this context).
In nr_hugepages_store_common() we may abort early if strict_strtoul()
fails, but in that case we do not free the memory already allocated to
'nodes_allowed', causing a memory leak.
This patch closes the leak by freeing the memory in the error path.
[akpm@linux-foundation.org: use NODEMASK_FREE, per Minchan Kim]
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the copy/clear_huge_page functions to common code to share between
hugetlb.c and huge_memory.c.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Have hugetlb_fault() call unlock_page(page) only if it had previously
called lock_page(page).
Setting CONFIG_DEBUG_VM=y and then running the libhugetlbfs test suite,
resulted in the tripping of VM_BUG_ON(!PageLocked(page)) in
unlock_page() having been called by hugetlb_fault() when page ==
pagecache_page. This patch remedied the problem.
Signed-off-by: Dean Nelson <dnelson@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add missing spin_lock() of the page_table_lock before an error return in
hugetlb_cow(). Callers of hugtelb_cow() expect it to be held upon return.
Signed-off-by: Dean Nelson <dnelson@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes a problem introduced with the hugetlb hwpoison handling
The user space SIGBUS signalling wants to know the size of the hugepage
that caused a HWPOISON fault.
Unfortunately the architecture page fault handlers do not have easy
access to the struct page.
Pass the information out in the fault error code instead.
I added a separate VM_FAULT_HWPOISON_LARGE bit for this case and encode
the hpage index in some free upper bits of the fault code. The small
page hwpoison keeps stays with the VM_FAULT_HWPOISON name to minimize
changes.
Also add code to hugetlb.h to convert that index into a page shift.
Will be used in a further patch.
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: fengguang.wu@intel.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Fixes warning reported by Stephen Rothwell
mm/hugetlb.c:2950: warning: 'is_hugepage_on_freelist' defined but not used
for the !CONFIG_MEMORY_FAILURE case.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Currently error recovery for free hugepage works only for MF_COUNT_INCREASED.
This patch enables !MF_COUNT_INCREASED case.
Free hugepages can be handled directly by alloc_huge_page() and
dequeue_hwpoisoned_huge_page(), and both of them are protected
by hugetlb_lock, so there is no race between them.
Note that this patch defines the refcount of HWPoisoned hugepage
dequeued from freelist is 1, deviated from present 0, thereby we
can avoid race between unpoison and memory failure on free hugepage.
This is reasonable because unlikely to free buddy pages, free hugepage
is governed by hugetlbfs even after error handling finishes.
And it also makes unpoison code added in the later patch cleaner.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This check is necessary to avoid race between dequeue and allocation,
which can cause a free hugepage to be dequeued twice and get kernel unstable.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch extends page migration code to support hugepage migration.
One of the potential users of this feature is soft offlining which
is triggered by memory corrected errors (added by the next patch.)
Todo:
- there are other users of page migration such as memory policy,
memory hotplug and memocy compaction.
They are not ready for hugepage support for now.
ChangeLog since v4:
- define migrate_huge_pages()
- remove changes on isolation/putback_lru_page()
ChangeLog since v2:
- refactor isolate/putback_lru_page() to handle hugepage
- add comment about race on unmap_and_move_huge_page()
ChangeLog since v1:
- divide migration code path for hugepage
- define routine checking migration swap entry for hugetlb
- replace "goto" with "if/else" in remove_migration_pte()
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch modifies hugepage copy functions to have only destination
and source hugepages as arguments for later use.
The old ones are renamed from copy_{gigantic,huge}_page() to
copy_user_{gigantic,huge}_page().
This naming convention is consistent with that between copy_highpage()
and copy_user_highpage().
ChangeLog since v4:
- add blank line between local declaration and code
- remove unnecessary might_sleep()
ChangeLog since v2:
- change copy_huge_page() from macro to inline dummy function
to avoid compile warning when !CONFIG_HUGETLB_PAGE.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
We can't use existing hugepage allocation functions to allocate hugepage
for page migration, because page migration can happen asynchronously with
the running processes and page migration users should call the allocation
function with physical addresses (not virtual addresses) as arguments.
ChangeLog since v3:
- unify alloc_buddy_huge_page() and alloc_buddy_huge_page_node()
ChangeLog since v2:
- remove unnecessary get/put_mems_allowed() (thanks to David Rientjes)
ChangeLog since v1:
- add comment on top of alloc_huge_page_no_vma()
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Since the PageHWPoison() check is for avoiding hwpoisoned page remained
in pagecache mapping to the process, it should be done in "found in pagecache"
branch, not in the common path.
Otherwise, metadata corruption occurs if memory failure happens between
alloc_huge_page() and lock_page() because page fault fails with metadata
changes remained (such as refcount, mapcount, etc.)
This patch moves the check to "found in pagecache" branch and fix the problem.
ChangeLog since v2:
- remove retry check in "new allocation" path.
- make description more detailed
- change patch name from "HWPOISON, hugetlb: move PG_HWPoison bit check"
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
The "if (!trylock_page)" block in the avoidcopy path of hugetlb_cow()
looks confusing and is buggy. Originally this trylock_page() was
intended to make sure that old_page is locked even when old_page !=
pagecache_page, because then only pagecache_page is locked.
This patch fixes it by moving page locking into hugetlb_fault().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Obviously, setting anon_vma for COWed hugepage should be done
by hugepage_add_new_anon_rmap() to scan vmas faster.
This patch fixes it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes possible deadlock in hugepage lock_page()
by adding missing unlock_page().
libhugetlbfs test will hit this bug when the next patch in this
patchset ("hugetlb, HWPOISON: move PG_HWPoison bit check") is applied.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch enables hwpoison injection through debug/hwpoison interfaces,
with which we can test memory error handling for free or reserved
hugepages (which cannot be tested by madvise() injector).
[AK: Export PageHuge too for the injection module]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch enables to block access to hwpoisoned hugepage and
also enables to block unmapping for it.
Dependency:
"HWPOISON, hugetlb: enable error handling path for hugepage"
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
If error hugepage is not in-use, we can fully recovery from error
by dequeuing it from freelist, so return RECOVERY.
Otherwise whether or not we can recovery depends on user processes,
so return DELAYED.
Dependency:
"HWPOISON, hugetlb: enable error handling path for hugepage"
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch adds reverse mapping feature for hugepage by introducing
mapcount for shared/private-mapped hugepage and anon_vma for
private-mapped hugepage.
While hugepage is not currently swappable, reverse mapping can be useful
for memory error handler.
Without this patch, memory error handler cannot identify processes
using the bad hugepage nor unmap it from them. That is:
- for shared hugepage:
we can collect processes using a hugepage through pagecache,
but can not unmap the hugepage because of the lack of mapcount.
- for privately mapped hugepage:
we can neither collect processes nor unmap the hugepage.
This patch solves these problems.
This patch include the bug fix given by commit 23be7468e8, so reverts it.
Dependency:
"hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h"
ChangeLog since May 24.
- create hugetlb_inline.h and move is_vm_hugetlb_index() in it.
- move functions setting up anon_vma for hugepage into mm/rmap.c.
ChangeLog since May 13.
- rebased to 2.6.34
- fix logic error (in case that private mapping and shared mapping coexist)
- move is_vm_hugetlb_page() into include/linux/mm.h to use this function
from linear_page_index()
- define and use linear_hugepage_index() instead of compound_order()
- use page_move_anon_rmap() in hugetlb_cow()
- copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart.
- revert commit 24be7468 completely
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
When a copy-on-write occurs, we take one of two paths in handle_mm_fault:
through handle_pte_fault for normal pages, or through hugetlb_fault for
huge pages.
In the normal page case, we eventually get to do_wp_page and call mmu
notifiers via ptep_clear_flush_notify. There is no callout to the mmmu
notifiers in the huge page case. This patch fixes that.
Signed-off-by: Doug Doan <dougd@cray.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later. But in the way, the allocator may find that
there is no node to alloc memory.
The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:
(mpol: mempolicy)
task1 task1's mpol task2
alloc page 1
alloc on node0? NO 1
1 change mems from 1 to 0
1 rebind task1's mpol
0-1 set new bits
0 clear disallowed bits
alloc on node1? NO 0
...
can't alloc page
goto oom
This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits). So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.
[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ordinarily, application using hugetlbfs will create mappings with
reserves. For shared mappings, these pages are reserved before mmap()
returns success and for private mappings, the caller process is guaranteed
and a child process that cannot get the pages gets killed with sigbus.
An application that uses MAP_NORESERVE gets no reservations and mmap()
will always succeed at the risk the page will not be available at fault
time. This might be used for example on very large sparse mappings where
the developer is confident the necessary huge pages exist to satisfy all
faults even though the whole mapping cannot be backed by huge pages.
Unfortunately, if an allocation does fail, VM_FAULT_OOM is returned to the
fault handler which proceeds to trigger the OOM-killer. This is
unhelpful.
Even without hugetlbfs mounted, a user using mmap() can trivially trigger
the OOM-killer because VM_FAULT_OOM is returned (will provide example
program if desired - it's a whopping 24 lines long). It could be
considered a DOS available to an unprivileged user.
This patch alters hugetlbfs to kill a process that uses MAP_NORESERVE
where huge pages were not available with SIGBUS instead of triggering the
OOM killer.
This change affects hugetlb_cow() as well. I feel there is a failure case
in there, but I didn't create one. It would need a fairly specific target
in terms of the faulting application and the hugepage pool size. The
hugetlb_no_page() path is much easier to hit but both might as well be
closed.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a futex key happens to be located within a huge page mapped
MAP_PRIVATE, get_futex_key() can go into an infinite loop waiting for a
page->mapping that will never exist.
See https://bugzilla.redhat.com/show_bug.cgi?id=552257 for more details
about the problem.
This patch makes page->mapping a poisoned value that includes
PAGE_MAPPING_ANON mapped MAP_PRIVATE. This is enough for futex to
continue but because of PAGE_MAPPING_ANON, the poisoned value is not
dereferenced or used by futex. No other part of the VM should be
dereferencing the page->mapping of a hugetlbfs page as its page cache is
not on the LRU.
This patch fixes the problem with the test case described in the bugzilla.
[akpm@linux-foundation.org: mel cant spel]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Darren Hart <darren@dvhart.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
hugetlb_sysfs_add_hstate is called by hugetlb_register_node directly
during init and also indirectly via sysfs after init.
This patch removes the __init tag from hugetlb_sysfs_add_hstate.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sz is in bytes, MAX_ORDER_NR_PAGES is in pages.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: David Gibson <dwg@au1.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a user asks for a hugepage pool resize but specified a large number,
the machine can begin trashing. In response, they might hit ctrl-c but
signals are ignored and the pool resize continues until it fails an
allocation. This can take a considerable amount of time so this patch
aborts a pool resize if a signal is pending.
Suggested by Dave Hansen.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the owner of a mapping fails COW because a child process is holding a
reference, the children VMAs are walked and the page is unmapped. The
i_mmap_lock is taken for the unmapping of the page but not the walking of
the prio_tree. In theory, that tree could be changing if the lock is not
held. This patch takes the i_mmap_lock properly for the duration of the
prio_tree walk.
[hugh.dickins@tiscali.co.uk: Spotted the problem in the first place]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb_fault() takes the mm->page_table_lock spinlock then calls
hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an
insufficient huge page pool it calls unmap_ref_private() with the
mm->page_table_lock held. unmap_ref_private() then calls
unmap_hugepage_range() which tries to acquire the mm->page_table_lock.
[<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f
[<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8
[<ffffffff810935e0>] __lock_acquire+0x956/0xc0e
[<ffffffff81093986>] lock_acquire+0xee/0x12e
[<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
[<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
[<ffffffff814c348d>] _spin_lock+0x40/0x89
[<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
[<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318
[<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84
[<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4
[<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6
[<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6
[<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9
[<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c
[<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427
[<ffffffff81107d0f>] get_user_pages+0x3e/0x54
[<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5
[<ffffffff81160352>] dio_get_page+0x64/0x14a
[<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31
[<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e
[<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8
[<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528
[<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c
[<ffffffff81132842>] do_sync_read+0xf5/0x146
[<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a
[<ffffffff81211857>] ? security_file_permission+0x24/0x3a
[<ffffffff81132fd8>] vfs_read+0xb5/0x126
[<ffffffff81133f6b>] ? fget_light+0x5e/0xf8
[<ffffffff81133131>] sys_read+0x54/0x8c
[<ffffffff81011e42>] system_call_fastpath+0x16/0x1b
This can be fixed by dropping the mm->page_table_lock around the call to
unmap_ref_private() if alloc_huge_page() fails, its dropped right below in
the normal path anyway. However, earlier in the that function, it's also
possible to call into the page allocator with the same spinlock held.
What this patch does is drop the spinlock before the page allocator is
potentially entered. The check for page allocation failure can be made
without the page_table_lock as well as the copy of the huge page. Even if
the PTE changed while the spinlock was held, the consequence is that a
huge page is copied unnecessarily. This resolves both the double taking
of the lock and sleeping with the spinlock held.
[mel@csn.ul.ie: Cover also the case where process can sleep with spinlock]
Signed-off-by: Larry Woodman <lwooman@redhat.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Objects passed to NODEMASK_ALLOC() are relatively small in size and are
backed by slab caches that are not of large order, traditionally never
greater than PAGE_ALLOC_COSTLY_ORDER.
Thus, using GFP_KERNEL for these allocations on large machines when
CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in
the allocation attempt, each time invoking both direct reclaim or the oom
killer.
This is of particular interest when using NODEMASK_ALLOC() from a
mempolicy context (either directly in mm/mempolicy.c or the mempolicy
constrained hugetlb allocations) since the oom killer always kills current
when allocations are constrained by mempolicies. So for all present use
cases in the kernel, current would end up being oom killed when direct
reclaim fails. That would allow the NODEMASK_ALLOC() to succeed but
current would have sacrificed itself upon returning.
This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on
CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations.
All current use cases either directly from hugetlb code or indirectly via
NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom
killer when the slab allocator needs to allocate additional pages.
The side-effect of this change is that all current use cases of either
NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling
when the allocation fails (never for CONFIG_NODES_SHIFT <= 8). All
current use cases were audited and do have appropriate error handling at
this time.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Register per node hstate sysfs attributes only for nodes with memory.
Global replacement of 'all online nodes" with "all nodes with memory" in
mm/hugetlb.c. Suggested by David Rientjes.
A subsequent patch will handle adding/removing of per node hstate sysfs
attributes when nodes transition to/from memoryless state via memory
hotplug.
NOTE: this patch has not been tested with memoryless nodes.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for constraining huge page allocation and freeing by the
controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer
to the allocate, free and surplus adjustment functions. For now, pass
NULL to indicate default behavior--i.e., use node_online_map. A
subsqeuent patch will derive a non-default mask from the controlling
task's numa mempolicy.
Note that this method of updating the global hstate nr_hugepages under the
constraint of a nodemask simplifies keeping the global state
consistent--especially the number of persistent and surplus pages relative
to reservations and overcommit limits. There are undoubtedly other ways
to do this, but this works for both interfaces: mempolicy and per node
attributes.
[rientjes@google.com: fix HIGHMEM compile error]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify the hstate_next_node* functions to allow them to be called to
obtain the "start_nid". Then, whereas prior to this patch we
unconditionally called hstate_next_node_to_{alloc|free}(), whether or not
we successfully allocated/freed a huge page on the node, now we only call
these functions on failure to alloc/free to advance to next allowed node.
Factor out the next_node_allowed() function to handle wrap at end of
node_online_map. In this version, the allowed nodes include all of the
online nodes.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mark struct vm_area_struct::vm_ops as const
* mark vm_ops in AGP code
But leave TTM code alone, something is fishy there with global vm_ops
being used.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
follow_hugetlb_page() shouldn't be guessing about the coredump case
either: pass the foll_flags down to it, instead of just the write bit.
Remove that obscure huge_zeropage_ok() test. The decision is easy,
though unlike the non-huge case - here vm_ops->fault is always set.
But we know that a fault would serve up zeroes, unless there's
already a hugetlbfs pagecache page to back the range.
(Alternatively, since hugetlb pages aren't swapped out under pressure,
you could save more dump space by arguing that a page not yet faulted
into this process cannot be relevant to the dump; but that would be
more surprising.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I noticed that alloc_bootmem_huge_page() will only advance to the next
node on failure to allocate a huge page, potentially filling nodes with
huge-pages. I asked about this on linux-mm and linux-numa, cc'ing the
usual huge page suspects.
Mel Gorman responded:
I strongly suspect that the same node being used until allocation
failure instead of round-robin is an oversight and not deliberate
at all. It appears to be a side-effect of a fix made way back in
commit 63b4613c3f ["hugetlb: fix
hugepage allocation with memoryless nodes"]. Prior to that patch
it looked like allocations would always round-robin even when
allocation was successful.
This patch--factored out of my "hugetlb mempolicy" series--moves the
advance of the hstate next node from which to allocate up before the test
for success of the attempted allocation.
Note that alloc_bootmem_huge_page() is only used for order > MAX_ORDER
huge pages.
I'll post a separate patch for mainline/stable, as the above mentioned
"balance freeing" series renamed the next node to alloc function.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andy Whitcroft <apw@canonical.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the [modified] free_pool_huge_page() function to return unused
surplus pages. This will help keep huge pages balanced across nodes
between freeing of unused surplus pages and freeing of persistent huge
pages [from set_max_huge_pages] by using the same node id "cursor". It
also eliminates some code duplication.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Free huges pages from nodes in round robin fashion in an attempt to keep
[persistent a.k.a static] hugepages balanced across nodes
New function free_pool_huge_page() is modeled on and performs roughly the
inverse of alloc_fresh_huge_page(). Replaces dequeue_huge_page() which
now has no callers, so this patch removes it.
Helper function hstate_next_node_to_free() uses new hstate member
next_to_free_nid to distribute "frees" across all nodes with huge pages.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As reported in Red Hat bz #509671, i_blocks for files on hugetlbfs get
accounting wrong when doing something like:
$ > foo
$ date > foo
date: write error: Invalid argument
$ /usr/bin/stat foo
File: `foo'
Size: 0 Blocks: 18446744073709547520 IO Block: 2097152 regular
...
This is because hugetlb_unreserve_pages() is unconditionally removing
blocks_per_huge_page(h) on each call rather than using the freed amount.
If there were 0 blocks, it goes negative, resulting in the above.
This is a regression from commit a551643895
("hugetlb: modular state for hugetlb page size")
which did:
- inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
+ inode->i_blocks -= blocks_per_huge_page(h);
so just put back the freed multiplier, and it's all happy again.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Andi Kleen <andi@firstfloor.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
handle_mm_fault() is now passing fault flags rather than write_access
down to hugetlb_fault(), so better recognize that in hugetlb_fault(),
and in hugetlb_no_page().
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
num_online_nodes() is called in a number of places but most often by the
page allocator when deciding whether the zonelist needs to be filtered
based on cpusets or the zonelist cache. This is actually a heavy function
and touches a number of cache lines.
This patch stores the number of online nodes at boot time and updates the
value when nodes get onlined and offlined. The value is then used in a
number of important paths in place of num_online_nodes().
[rientjes@google.com: do not override definition of node_set_online() with macro]
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Callers of alloc_pages_node() can optionally specify -1 as a node to mean
"allocate from the current node". However, a number of the callers in
fast paths know for a fact their node is valid. To avoid a comparison and
branch, this patch adds alloc_pages_exact_node() that only checks the nid
with VM_BUG_ON(). Callers that know their node is valid are then
converted.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Paul Mundt <lethal@linux-sh.org> [for the SLOB NUMA bits]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302
hugetlbfs reserves huge pages but does not fault them at mmap() time to
ensure that future faults succeed. The reservation behaviour differs
depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE.
For MAP_SHARED mappings, hugepages are reserved when mmap() is first
called and are tracked based on information associated with the inode.
Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE
track the reservations based on the VMA created as part of the mmap()
operation. Each process mapping MAP_PRIVATE must make its own
reservation.
hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag
and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs,
VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened
read-write. If a shared memory mapping was mapped shared-read-write for
populating of data and mapped shared-read-only by other processes, then
hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This
causes processes to fail to map the file MAP_SHARED even though it should
succeed as the reservation is there.
This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE
when the intent of the code was to check whether the VMA was mapped
MAP_SHARED or MAP_PRIVATE.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: <stable@kernel.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <starlight@binnacle.cx>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
chg is unsigned, so it cannot be less than 0.
Also, since region_chg returns long, let vma_needs_reservation() forward
this to alloc_huge_page(). Store it as long as well. all callers cast it
to long anyway.
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 5a6fe12595 brought hugetlbfs more
in line with the core VM by obeying VM_NORESERVE and not reserving
hugepages for both shared and private mappings when [SHM|MAP]_NORESERVE
are specified. However, it is still taking filesystem quota
unconditionally.
At fault time, if there are no reserves and attempt is made to allocate
the page and account for filesystem quota. If either fail, the fault
fails. The impact is that quota is getting accounted for twice. This
patch partially reverts 5a6fe12595. To
help prevent this mistake happening again, it improves the documentation
of hugetlb_reserve_pages()
Reported-by: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When overcommit is disabled, the core VM accounts for pages used by anonymous
shared, private mappings and special mappings. It keeps track of VMAs that
should be accounted for with VM_ACCOUNT and VMAs that never had a reserve
with VM_NORESERVE.
Overcommit for hugetlbfs is much riskier than overcommit for base pages
due to contiguity requirements. It avoids overcommiting on both shared and
private mappings using reservation counters that are checked and updated
during mmap(). This ensures (within limits) that hugepages exist in the
future when faults occurs or it is too easy to applications to be SIGKILLed.
As hugetlbfs makes its own reservations of a different unit to the base page
size, VM_ACCOUNT should never be set. Even if the units were correct, we would
double account for the usage in the core VM and hugetlbfs. VM_NORESERVE may
be set because an application can request no reserves be made for hugetlbfs
at the risk of getting killed later.
With commit fc8744adc8, VM_NORESERVE and
VM_ACCOUNT are getting unconditionally set for hugetlbfs-backed mappings. This
breaks the accounting for both the core VM and hugetlbfs, can trigger an
OOM storm when hugepage pools are too small lockups and corrupted counters
otherwise are used. This patch brings hugetlbfs more in line with how the
core VM treats VM_NORESERVE but prevents VM_ACCOUNT being set.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At this point we already know that 'addr' is not NULL so get rid of
redundant 'if'. Probably gcc eliminate it by optimization pass.
[akpm@linux-foundation.org: use __weak, too]
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The KernelPageSize entry in /proc/pid/smaps is the pagesize used by the
kernel to back a VMA. This matches the size used by the MMU in the
majority of cases. However, one counter-example occurs on PPC64 kernels
whereby a kernel using 64K as a base pagesize may still use 4K pages for
the MMU on older processor. To distinguish, this patch reports
MMUPageSize as the pagesize used by the MMU in /proc/pid/smaps.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: "KOSAKI Motohiro" <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is useful to verify a hugepage-aware application is using the expected
pagesizes for its memory regions. This patch creates an entry called
KernelPageSize in /proc/pid/smaps that is the size of page used by the
kernel to back a VMA. The entry is not called PageSize as it is possible
the MMU uses a different size. This extension should not break any sensible
parser that skips lines containing unrecognised information.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: "KOSAKI Motohiro" <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oops. Part of the hugetlb private reservation code was not fully
converted to use hstates.
When a huge page must be unmapped from VMAs due to a failed COW,
HPAGE_SIZE is used in the call to unmap_hugepage_range() regardless of
the page size being used. This works if the VMA is using the default
huge page size. Otherwise we might unmap too much, too little, or
trigger a BUG_ON. Rare but serious -- fix it.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As we can determine exactly when a gigantic page is in use we can optimise
the common regular page cases by pulling out gigantic page initialisation
into its own function. As gigantic pages are never released to buddy we
do not need a destructor. This effectivly reverts the previous change to
the main buddy allocator. It also adds a paranoid check to ensure we
never release gigantic pages from hugetlbfs to the main buddy.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org> [2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When working with hugepages, hugetlbfs assumes that those hugepages are
smaller than MAX_ORDER. Specifically it assumes that the mem_map is
contigious and uses that to optimise access to the elements of the mem_map
that represent the hugepage. Gigantic pages (such as 16GB pages on
powerpc) by definition are of greater order than MAX_ORDER (larger than
MAX_ORDER_NR_PAGES in size). This means that we can no longer make use of
the buddy alloctor guarentees for the contiguity of the mem_map, which
ensures that the mem_map is at least contigious for maximmally aligned
areas of MAX_ORDER_NR_PAGES pages.
This patch adds new mem_map accessors and iterator helpers which handle
any discontiguity at MAX_ORDER_NR_PAGES boundaries. It then uses these to
implement gigantic page versions of copy_huge_page and clear_huge_page,
and to allow follow_hugetlb_page handle gigantic pages.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org> [2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently hugepage doesn't use zero page at all because zero page is only
used for coredumping and hugepage can't core dump.
However we have now implemented hugepage coredumping. Therefore we should
implement the zero page of hugepage.
Implementation note:
o Why do we only check VM_SHARED for zero page?
normal page checked as ..
static inline int use_zero_page(struct vm_area_struct *vma)
{
if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
return 0;
return !vma->vm_ops || !vma->vm_ops->fault;
}
First, hugepages are never mlock()ed. We aren't concerned with VM_LOCKED.
Second, hugetlbfs is a pseudo filesystem, not a real filesystem and it
doesn't have any file backing. Thus ops->fault checking is meaningless.
o Why don't we use zero page if !pte.
!pte indicate {pud, pmd} doesn't exist or some error happened. So we
shouldn't return zero page if any error occurred.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Kawai Hidehiro <hidehiro.kawai.ez@hitachi.com>
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/hugetlb.c:265:17: warning: symbol 'resv_map_alloc' was not declared. Should it be static?
mm/hugetlb.c:277:6: warning: symbol 'resv_map_release' was not declared. Should it be static?
mm/hugetlb.c:292:9: warning: Using plain integer as NULL pointer
mm/hugetlb.c:1750:5: warning: symbol 'unmap_ref_private' was not declared. Should it be static?
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon"). The latter includes tmpfs.
The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.
This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists. The big
policy changes are in separate patches.
[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page fault path for normal pages, if the fault is neither a no-page
fault nor a write-protect fault, will update the DIRTY and ACCESSED bits
in the page table appropriately.
The hugepage fault path, however, does not do this, handling only no-page
or write-protect type faults. It assumes that either the ACCESSED and
DIRTY bits are irrelevant for hugepages (usually true, since they are
never swapped) or that they are handled by the arch code.
This is inconvenient for some software-loaded TLB architectures, where the
_PAGE_ACCESSED (_PAGE_DIRTY) bits need to be set to enable read (write)
access to the page at the TLB miss. This could be worked around in the
arch TLB miss code, but the TLB miss fast path can be made simple more
easily if the hugetlb_fault() path handles this, as the normal page fault
path does.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Adam Litke <agl@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[Andrew this should replace the previous version which did not check
the returns from the region prepare for errors. This has been tested by
us and Gerald and it looks good.
Bah, while reviewing the locking based on your previous email I spotted
that we need to check the return from the vma_needs_reservation call for
allocation errors. Here is an updated patch to correct this. This passes
testing here.]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the normal case, hugetlbfs reserves hugepages at map time so that the
pages exist for future faults. A struct file_region is used to track when
reservations have been consumed and where. These file_regions are
allocated as necessary with kmalloc() which can sleep with the
mm->page_table_lock held. This is wrong and triggers may-sleep warning
when PREEMPT is enabled.
Updates to the underlying file_region are done in two phases. The first
phase prepares the region for the change, allocating any necessary memory,
without actually making the change. The second phase actually commits the
change. This patch makes use of this by checking the reservations before
the page_table_lock is taken; triggering any necessary allocations. This
may then be safely repeated within the locks without any allocations being
required.
Credit to Mel Gorman for diagnosing this failure and initial versions of
the patch.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The s390 software large page emulation implements shared page tables by
using page->index of the first tail page from a compound large page to
store page table information. This is set up in arch_prepare_hugepage(),
which is called from alloc_fresh_huge_page_node().
A similar call to arch_prepare_hugepage() is missing for surplus large
pages that are allocated in alloc_buddy_huge_page(), which breaks the
software emulation mode for (surplus) large pages on s390. This patch
adds the missing call to arch_prepare_hugepage(). It will have no effect
on other architectures where arch_prepare_hugepage() is a nop.
Also, use the correct order in the error path in alloc_fresh_huge_page_node().
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 7cb9318162, since we
did that patch twice, and the problem was already fixed earlier by
78a34ae29b.
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some platform decide whether they support huge pages at boot time. On
these, such as powerpc, HPAGE_SHIFT is a variable, not a constant, and is
set to 0 when there is no such support.
The patches to introduce multiple huge pages support broke that causing
the kernel to crash at boot time on machines such as POWER3 which lack
support for multiple page sizes.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6: (28 commits)
mm/hugetlb.c must #include <asm/io.h>
video: Fix up hp6xx driver build regressions.
sh: defconfig updates.
sh: Kill off stray mach-rsk7203 reference.
serial: sh-sci: Fix up SH7760/SH7780/SH7785 early printk regression.
sh: Move out individual boards without mach groups.
sh: Make sure AT_SYSINFO_EHDR is exposed to userspace in asm/auxvec.h.
sh: Allow SH-3 and SH-5 to use common headers.
sh: Provide common CPU headers, prune the SH-2 and SH-2A directories.
sh/maple: clean maple bus code
sh: More header path fixups for mach dir refactoring.
sh: Move out the solution engine headers to arch/sh/include/mach-se/
sh: I2C fix for AP325RXA and Migo-R
sh: Shuffle the board directories in to mach groups.
sh: dma-sh: Fix up dreamcast dma.h mach path.
sh: Switch KBUILD_DEFCONFIG to shx3_defconfig.
sh: Add ARCH_DEFCONFIG entries for sh and sh64.
sh: Fix compile error of Solution Engine
sh: Proper __put_user_asm() size mismatch fix.
sh: Stub in a dummy ENTRY_OFFSET for uImage offset calculation.
...
This patch fixes the following build error on sh caused by
commit aa888a7497
(hugetlb: support larger than MAX_ORDER):
<-- snip -->
...
CC mm/hugetlb.o
/home/bunk/linux/kernel-2.6/git/linux-2.6/mm/hugetlb.c: In function 'alloc_bootmem_huge_page':
/home/bunk/linux/kernel-2.6/git/linux-2.6/mm/hugetlb.c:958: error: implicit declaration of function 'virt_to_phys'
make[2]: *** [mm/hugetlb.o] Error 1
<-- snip -->
Reported-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch fixes the following build error on sh caused by commit
aa888a7497 ("hugetlb: support larger than
MAX_ORDER"):
mm/hugetlb.c: In function 'alloc_bootmem_huge_page':
mm/hugetlb.c:958: error: implicit declaration of function 'virt_to_phys'
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes a build failure reported by Alan Cox:
mm/hugetlb.c: In function `hugetlb_acct_memory': mm/hugetlb.c:1507:
error: implicit declaration of function `cpuset_mems_nr'
Also reverts Ingo's
commit e44d1b2998
Author: Ingo Molnar <mingo@elte.hu>
Date: Fri Jul 25 12:57:41 2008 +0200
mm/hugetlb.c: fix build failure with !CONFIG_SYSCTL
which fixed the build error but added some unused-static-function warnings.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
on !CONFIG_SYSCTL on x86 with latest -git i get:
mm/hugetlb.c: In function 'decrement_hugepage_resv_vma':
mm/hugetlb.c:83: error: 'reserve' undeclared (first use in this function)
mm/hugetlb.c:83: error: (Each undeclared identifier is reported only once
mm/hugetlb.c:83: error: for each function it appears in.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With shared reservations (and now also with private reservations), we reserve
huge pages at mmap time. We also account for the mapping against fs quota to
prevent a reservation from being preempted by quota exhaustion.
When testing with the libhugetlbfs test suite, I found a problem with quota
accounting. FS quota for allocated pages is handled correctly but we are not
releasing quota for private pages that were reserved but never allocated. Do
this in hugetlb_vm_op_close() at the same time as unused page reservations are
released.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@saeurebad.de>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When removing a huge page from the hugepage pool for a fault the system checks
to see if the mapping requires additional pages to be reserved, and if it does
whether there are any unreserved pages remaining. If not, the allocation
fails without even attempting to get a page. In order to determine whether to
apply this check we call vma_has_private_reserves() which tells us if this vma
is MAP_PRIVATE and is the owner. This incorrectly triggers the remaining
reservation test for MAP_SHARED mappings which prevents allocation of the
final page in the pool even though it is reserved for this mapping.
In reality we only want to check this for MAP_PRIVATE mappings where the
process is not the original mapper. Replace vma_has_private_reserves() with
vma_has_reserves() which indicates whether further reserves are required, and
update the caller.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow alloc_bootmem_huge_page() to be overridden by architectures that
can't always use bootmem. This requires huge_boot_pages to be available
for use by this function.
This is required for powerpc 16G pages, which have to be reserved prior to
boot-time. The location of these pages are indicated in the device tree.
Acked-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow configurations with the default huge page size which is different to
the traditional HPAGE_SIZE size. The default huge page size is the one
represented in the legacy /proc ABIs, SHM, and which is defaulted to when
mounting hugetlbfs filesystems.
This is implemented with a new kernel option default_hugepagesz=, which
defaults to HPAGE_SIZE if not specified.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straight forward extensions for huge pages located in the PUD instead of
PMDs.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Reword sentence to clarify meaning with multiple options
- Add support for using GB prefixes for the page size
- Add extra printk to delayed > MAX_ORDER allocation code
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make some infrastructure changes to allow boot-time allocation of
different hugepage page sizes.
- move all basic hstate initialisation into hugetlb_add_hstate
- create a new function hugetlb_hstate_alloc_pages() to do the
actual initial page allocations. Call this function early in
order to allocate giant pages from bootmem.
- Check for multiple hugepages= parameters
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Andrew Hastings <abh@cray.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is needed on x86-64 to handle GB pages in hugetlbfs, because it is
not practical to enlarge MAX_ORDER to 1GB.
Instead the 1GB pages are only allocated at boot using the bootmem
allocator using the hugepages=... option.
These 1G bootmem pages are never freed. In theory it would be possible to
implement that with some complications, but since it would be a one-way
street (>= MAX_ORDER pages cannot be allocated later) I decided not to
currently.
The >= MAX_ORDER code is not ifdef'ed per architecture. It is not very
big and the ifdef uglyness seemed not be worth it.
Known problems: /proc/meminfo and "free" do not display the memory
allocated for gb pages in "Total". This is a little confusing for the
user.
Acked-by: Andrew Hastings <abh@cray.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Need this as a separate function for a future patch.
No behaviour change.
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide new hugepages user APIs that are more suited to multiple hstates
in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath
that directory there will be a directory per-supported hugepage size,
e.g.:
/sys/kernel/hugepages/hugepages-64kB
/sys/kernel/hugepages/hugepages-16384kB
/sys/kernel/hugepages/hugepages-16777216kB
corresponding to 64k, 16m and 16g respectively. Within each
hugepages-size directory there are a number of files, corresponding to the
tracked counters in the hstate, e.g.:
/sys/kernel/hugepages/hugepages-64/nr_hugepages
/sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages
/sys/kernel/hugepages/hugepages-64/free_hugepages
/sys/kernel/hugepages/hugepages-64/resv_hugepages
/sys/kernel/hugepages/hugepages-64/surplus_hugepages
Of these files, the first two are read-write and the latter three are
read-only. The size of the hugepage being manipulated is trivially
deducible from the enclosing directory and is always expressed in kB (to
match meminfo).
[dave@linux.vnet.ibm.com: fix build]
[nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel]
[nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency]
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the ability to configure the hugetlb hstate used on a per mount basis.
- Add a new pagesize= option to the hugetlbfs mount that allows setting
the page size
- This option causes the mount code to find the hstate corresponding to the
specified size, and sets up a pointer to the hstate in the mount's
superblock.
- Change the hstate accessors to use this information rather than the
global_hstate they were using (requires a slight change in mm/memory.c
so we don't NULL deref in the error-unmap path -- see comments).
[np: take hstate out of hugetlbfs inode and vma->vm_private_data]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add basic support for more than one hstate in hugetlbfs. This is the key
to supporting multiple hugetlbfs page sizes at once.
- Rather than a single hstate, we now have an array, with an iterator
- default_hstate continues to be the struct hstate which we use by default
- Add functions for architectures to register new hstates
[akpm@linux-foundation.org: coding-style fixes]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of this patchset is to support multiple hugetlb page sizes. This
is achieved by introducing a new struct hstate structure, which
encapsulates the important hugetlb state and constants (eg. huge page
size, number of huge pages currently allocated, etc).
The hstate structure is then passed around the code which requires these
fields, they will do the right thing regardless of the exact hstate they
are operating on.
This patch adds the hstate structure, with a single global instance of it
(default_hstate), and does the basic work of converting hugetlb to use the
hstate.
Future patches will add more hstate structures to allow for different
hugetlbfs mounts to have different page sizes.
[akpm@linux-foundation.org: coding-style fixes]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a hugetlb mapping with a reservation is split, a new VMA is cloned
from the original. This new VMA is a direct copy of the original
including the reservation count. When this pair of VMAs are unmapped we
will incorrect double account the unused reservation and the overall
reservation count will be incorrect, in extreme cases it will wrap.
The problem occurs when we split an existing VMA say to unmap a page in
the middle. split_vma() will create a new VMA copying all fields from the
original. As we are storing our reservation count in vm_private_data this
is also copies, endowing the new VMA with a duplicate of the original
VMA's reservation. Neither of the new VMAs can exhaust these reservations
as they are too small, but when we unmap and close these VMAs we will
incorrect credit the remainder twice and resv_huge_pages will become out
of sync. This can lead to allocation failures on mappings with
reservations and even to resv_huge_pages wrapping which prevents all
subsequent hugepage allocations.
The simple fix would be to correctly apportion the remaining reservation
count when the split is made. However the only hook we have vm_ops->open
only has the new VMA we do not know the identity of the preceeding VMA.
Also even if we did have that VMA to hand we do not know how much of the
reservation was consumed each side of the split.
This patch therefore takes a different tack. We know that the whole of
any private mapping (which has a reservation) has a reservation over its
whole size. Any present pages represent consumed reservation. Therefore
if we track the instantiated pages we can calculate the remaining
reservation.
This patch reuses the existing regions code to track the regions for which
we have consumed reservation (ie. the instantiated pages), as each page
is faulted in we record the consumption of reservation for the new page.
When we need to return unused reservations at unmap time we simply count
the consumed reservation region subtracting that from the whole of the
map. During a VMA split the newly opened VMA will point to the same
region map, as this map is offset oriented it remains valid for both of
the split VMAs. This map is referenced counted so that it is removed when
all VMAs which are part of the mmap are gone.
Thanks to Adam Litke and Mel Gorman for their review feedback.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Johannes Weiner <hannes@saeurebad.de>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By default all shared mappings and most private mappings now have
reservations associated with them. This improves semantics by providing
allocation guarentees to the mapper. However a small number of
applications may attempt to make very large sparse mappings, with these
strict reservations the system will never be able to honour the mapping.
This patch set brings MAP_NORESERVE support to hugetlb files. This allows
new mappings to be made to hugetlbfs files without an associated
reservation, for both shared and private mappings. This allows
applications which want to create very sparse mappings to opt-out of the
reservation system. Obviously as there is no reservation they are liable
to fault at runtime if the huge page pool becomes exhausted; buyer beware.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Johannes Weiner <hannes@saeurebad.de>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following patch will require use of the reservation regions support.
Move this earlier in the file. No changes have been made to this code.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Johannes Weiner <hannes@saeurebad.de>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create some new accessors for vma private data to cut down on and contain
the casts. Encapsulates the huge and small page offset calculations.
Also adds a couple of VM_BUG_ONs for consistency.
[akpm@linux-foundation.org: Make things static]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Johannes Weiner <hannes@saeurebad.de>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in
a similar manner to the reservations taken for MAP_SHARED mappings. The
reserve count is accounted both globally and on a per-VMA basis for
private mappings. This guarantees that a process that successfully calls
mmap() will successfully fault all pages in the future unless fork() is
called.
The characteristics of private mappings of hugetlbfs files behaviour after
this patch are;
1. The process calling mmap() is guaranteed to succeed all future faults until
it forks().
2. On fork(), the parent may die due to SIGKILL on writes to the private
mapping if enough pages are not available for the COW. For reasonably
reliable behaviour in the face of a small huge page pool, children of
hugepage-aware processes should not reference the mappings; such as
might occur when fork()ing to exec().
3. On fork(), the child VMAs inherit no reserves. Reads on pages already
faulted by the parent will succeed. Successful writes will depend on enough
huge pages being free in the pool.
4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper
and at fault time otherwise.
Before this patch, all reads or writes in the child potentially needs page
allocations that can later lead to the death of the parent. This applies
to reads and writes of uninstantiated pages as well as COW. After the
patch it is only a write to an instantiated page that causes problems.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a patchset to give reliable behaviour to a process that
successfully calls mmap(MAP_PRIVATE) on a hugetlbfs file. Currently, it
is possible for the process to be killed due to a small hugepage pool size
even if it calls mlock().
MAP_SHARED mappings on hugetlbfs reserve huge pages at mmap() time. This
guarantees all future faults against the mapping will succeed. This
allows local allocations at first use improving NUMA locality whilst
retaining reliability.
MAP_PRIVATE mappings do not reserve pages. This can result in an
application being SIGKILLed later if a huge page is not available at fault
time. This makes huge pages usage very ill-advised in some cases as the
unexpected application failure cannot be detected and handled as it is
immediately fatal. Although an application may force instantiation of the
pages using mlock(), this may lead to poor memory placement and the
process may still be killed when performing COW.
This patchset introduces a reliability guarantee for the process which
creates a private mapping, i.e. the process that calls mmap() on a
hugetlbfs file successfully. The first patch of the set is purely
mechanical code move to make later diffs easier to read. The second patch
will guarantee faults up until the process calls fork(). After patch two,
as long as the child keeps the mappings, the parent is no longer
guaranteed to be reliable. Patch 3 guarantees that the parent will always
successfully COW by unmapping the pages from the child in the event there
are insufficient pages in the hugepage pool in allocate a new page, be it
via a static or dynamic pool.
Existing hugepage-aware applications are unlikely to be affected by this
change. For much of hugetlbfs's history, pages were pre-faulted at mmap()
time or mmap() failed which acts in a reserve-like manner. If the pool is
sized correctly already so that parent and child can fault reliably, the
application will not even notice the reserves. It's only when the pool is
too small for the application to function perfectly reliably that the
reserves come into play.
Credit goes to Andy Whitcroft for cleaning up a number of mistakes during
review before the patches were released.
This patch:
A later patch in this set needs to call hugetlb_acct_memory() before it is
defined. This patch moves the function without modification. This makes
later diffs easier to read.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's confusing that set_max_huge_pages() contained two different
variables named "ret", and although the code works correctly this should
be fixed.
The inner of the two variables can simply be removed.
Spotted by sparse.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: "KOSAKI Motohiro" <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add __GFP_REPEAT to hugepage allocations. Do so to not necessitate userspace
putting pressure on the VM by repeated echo's into /proc/sys/vm/nr_hugepages
to grow the pool. With the previous patch to allow for large-order
__GFP_REPEAT attempts to loop for a bit (as opposed to indefinitely), this
increases the likelihood of getting hugepages when the system experiences (or
recently experienced) load.
Mel tested the patchset on an x86_32 laptop. With the patches, it was easier
to use the proc interface to grow the hugepage pool. The following is the
output of a script that grows the pool as much as possible running on
2.6.25-rc9.
Allocating hugepages test
-------------------------
Disabling OOM Killer for current test process
Starting page count: 0
Attempt 1: 57 pages Progress made with 57 pages
Attempt 2: 73 pages Progress made with 16 pages
Attempt 3: 74 pages Progress made with 1 pages
Attempt 4: 75 pages Progress made with 1 pages
Attempt 5: 77 pages Progress made with 2 pages
77 pages was the most it allocated but it took 5 attempts from userspace
to get it. With the 3 patches in this series applied,
Allocating hugepages test
-------------------------
Disabling OOM Killer for current test process
Starting page count: 0
Attempt 1: 75 pages Progress made with 75 pages
Attempt 2: 76 pages Progress made with 1 pages
Attempt 3: 79 pages Progress made with 3 pages
And 79 pages was the most it got. Your patches were able to allocate the
bulk of possible pages on the first attempt.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Tested-by: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge ptes have a special type on s390 and cannot be handled with the standard
pte functions in certain cases, e.g. because of a different location of the
invalid bit. This patch adds some new architecture- specific functions to
hugetlb common code, as a prerequisite for the s390 large page support.
This won't affect other architectures in functionality, but I need to add some
new dummy inline functions to the headers.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A cow break on a hugetlbfs page with page_count > 1 will set a new pte with
set_huge_pte_at(), w/o any tlb flush operation. The old pte will remain in
the tlb and subsequent write access to the page will result in a page fault
loop, for as long as it may take until the tlb is flushed from somewhere else.
This patch introduces an architecture-specific huge_ptep_clear_flush()
function, which is called before the the set_huge_pte_at() in hugetlb_cow().
ATTENTION: This is just a nop on all architectures for now, the s390
implementation will come with our large page patch later. Other architectures
should define their own huge_ptep_clear_flush() if needed.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After further discussion with Christoph Lameter, it has become clear that my
earlier attempts to clean up the mempolicy reference counting were a bit of
overkill in some areas, resulting in superflous ref/unref in what are usually
fast paths. In other areas, further inspection reveals that I botched the
unref for interleave policies.
A separate patch, suitable for upstream/stable trees, fixes up the known
errors in the previous attempt to fix reference counting.
This patch reworks the memory policy referencing counting and, one hopes,
simplifies the code. Maybe I'll get it right this time.
See the update to the numa_memory_policy.txt document for a discussion of
memory policy reference counting that motivates this patch.
Summary:
Lookup of mempolicy, based on (vma, address) need only add a reference for
shared policy, and we need only unref the policy when finished for shared
policies. So, this patch backs out all of the unneeded extra reference
counting added by my previous attempt. It then unrefs only shared policies
when we're finished with them, using the mpol_cond_put() [conditional put]
helper function introduced by this patch.
Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma
containing just the policy. read_swap_cache_async() can call alloc_page_vma()
multiple times, so we can't let alloc_page_vma() unref the shared policy in
this case. To avoid this, we make a copy of any non-null shared policy and
remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading
a page [or multiple pages] from swap, so the overhead should not be an issue
here.
I introduced a new static inline function "mpol_cond_copy()" to copy the
shared policy to an on-stack policy and remove the flags that would require a
conditional free. The current implementation of mpol_cond_copy() assumes that
the struct mempolicy contains no pointers to dynamically allocated structures
that must be duplicated or reference counted during copy.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a change that was requested some time ago by Mel Gorman. Makes sense
to me, so here it is.
Note: I retain the name "mpol_free_shared_policy()" because it actually does
free the shared_policy, which is NOT a reference counted object. However, ...
The mempolicy object[s] referenced by the shared_policy are reference counted,
so mpol_put() is used to release the reference held by the shared_policy. The
mempolicy might not be freed at this time, because some task attached to the
shared object associated with the shared policy may be in the process of
allocating a page based on the mempolicy. In that case, the task performing
the allocation will hold a reference on the mempolicy, obtained via
mpol_shared_policy_lookup(). The mempolicy will be freed when all tasks
holding such a reference have called mpol_put() for the mempolicy.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocating huge pages directly from the buddy allocator is not guaranteed to
succeed. Success depends on several factors (such as the amount of physical
memory available and the level of fragmentation). With the addition of
dynamic hugetlb pool resizing, allocations can occur much more frequently.
For these reasons it is desirable to keep track of huge page allocation
successes and failures.
Add two new vmstat entries to track huge page allocations that succeed and
fail. The presence of the two entries is contingent upon CONFIG_HUGETLB_PAGE
being enabled.
[akpm@linux-foundation.org: reduced ifdeffery]
Signed-off-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Eric Munson <ebmunson@us.ibm.com>
Tested-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andy Whitcroft <apw@shadowen.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To reduce hugetlb_lock acquisitions and releases when freeing excess surplus
pages, scan the page list in two parts. First, transfer the needed pages to
the hugetlb pool. Then drop the lock and free the remaining pages back to the
buddy allocator.
In the common case there are zero excess pages and no lock operations are
required.
Thanks Mel Gorman for this improvement.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The MPOL_BIND policy creates a zonelist that is used for allocations
controlled by that mempolicy. As the per-node zonelist is already being
filtered based on a zone id, this patch adds a version of __alloc_pages() that
takes a nodemask for further filtering. This eliminates the need for
MPOL_BIND to create a custom zonelist.
A positive benefit of this is that allocations using MPOL_BIND now use the
local node's distance-ordered zonelist instead of a custom node-id-ordered
zonelist. I.e., pages will be allocated from the closest allowed node with
available memory.
[Lee.Schermerhorn@hp.com: Mempolicy: update stale documentation and comments]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask rework]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filtering zonelists requires very frequent use of zone_idx(). This is costly
as it involves a lookup of another structure and a substraction operation. As
the zone_idx is often required, it should be quickly accessible. The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.
This patch introduces a struct zoneref to store a zone pointer and a zone
index. The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary. Helpers are given for accessing the zone index as
well as the node index.
[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations. Based on the zones
allowed by a gfp mask, one of these zonelists is selected. All of these
zonelists consume memory and occupy cache lines.
This patch replaces the multiple zonelists per-node with two zonelists. The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages. The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.
An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Running the counters testcase from libhugetlbfs results in on 2.6.25-rc5
and 2.6.25-rc5-mm1:
BUG: soft lockup - CPU#3 stuck for 61s! [counters:10531]
NIP: c0000000000d1f3c LR: c0000000000d1f2c CTR: c0000000001b5088
REGS: c000005db12cb360 TRAP: 0901 Not tainted (2.6.25-rc5-autokern1)
MSR: 8000000000009032 <EE,ME,IR,DR> CR: 48008448 XER: 20000000
TASK = c000005dbf3d6000[10531] 'counters' THREAD: c000005db12c8000 CPU: 3
GPR00: 0000000000000004 c000005db12cb5e0 c000000000879228 0000000000000004
GPR04: 0000000000000010 0000000000000000 0000000000200200 0000000000100100
GPR08: c0000000008aba10 000000000000ffff 0000000000000004 0000000000000000
GPR12: 0000000028000442 c000000000770080
NIP [c0000000000d1f3c] .return_unused_surplus_pages+0x84/0x18c
LR [c0000000000d1f2c] .return_unused_surplus_pages+0x74/0x18c
Call Trace:
[c000005db12cb5e0] [c000005db12cb670] 0xc000005db12cb670 (unreliable)
[c000005db12cb670] [c0000000000d24c4] .hugetlb_acct_memory+0x2e0/0x354
[c000005db12cb740] [c0000000001b5048] .truncate_hugepages+0x1d4/0x214
[c000005db12cb890] [c0000000001b50a4] .hugetlbfs_delete_inode+0x1c/0x3c
[c000005db12cb920] [c000000000103fd8] .generic_delete_inode+0xf8/0x1c0
[c000005db12cb9b0] [c0000000001b5100] .hugetlbfs_drop_inode+0x3c/0x24c
[c000005db12cba50] [c00000000010287c] .iput+0xdc/0xf8
[c000005db12cbad0] [c0000000000fee54] .dentry_iput+0x12c/0x194
[c000005db12cbb60] [c0000000000ff050] .d_kill+0x6c/0xa4
[c000005db12cbbf0] [c0000000000ffb74] .dput+0x18c/0x1b0
[c000005db12cbc70] [c0000000000e9e98] .__fput+0x1a4/0x1e8
[c000005db12cbd10] [c0000000000e61ec] .filp_close+0xb8/0xe0
[c000005db12cbda0] [c0000000000e62d0] .sys_close+0xbc/0x134
[c000005db12cbe30] [c00000000000872c] syscall_exit+0x0/0x40
Instruction dump:
ebbe8038 38800010 e8bf0002 3bbd0008 7fa3eb78 38a50001 7ca507b4 4818df25
60000000 38800010 38a00000 7c601b78 <7fa3eb78> 2f800010 409d0008 38000010
This was tracked down to a potential livelock in
return_unused_surplus_hugepages(). In the case where we have surplus
pages on some node, but no free pages on the same node, we may never
break out of the loop. To avoid this livelock, terminate the search if
we iterate a number of times equal to the number of online nodes without
freeing a page.
Thanks to Andy Whitcroft and Adam Litke for helping with debugging and
the patch.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we show the surplus hugetlb pool state in /proc/meminfo, but
not in the per-node meminfo files, even though we track the information
on a per-node basis. Printing it there can help track down dynamic pool
bugs including the one in the follow-on patch.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Free pages in the hugetlb pool are free and as such have a reference count of
zero. Regular allocations into the pool from the buddy are "freed" into the
pool which results in their page_count dropping to zero. However, surplus
pages can be directly utilized by the caller without first being freed to the
pool. Therefore, a call to put_page_testzero() is in order so that such a
page will be handed to the caller with a correct count.
This has not affected end users because the bad page count is reset before the
page is handed off. However, under CONFIG_DEBUG_VM this triggers a BUG when
the page count is validated.
Thanks go to Mel for first spotting this issue and providing an initial fix.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adam Litke noticed that currently we grow the hugepage pool independent of any
cpuset the running process may be in, but when shrinking the pool, the cpuset
is checked. This leads to inconsistency when shrinking the pool in a
restricted cpuset -- an administrator may have been able to grow the pool on a
node restricted by a containing cpuset, but they cannot shrink it there.
There are two options: either prevent growing of the pool outside of the
cpuset or allow shrinking outside of the cpuset. >From previous discussions
on linux-mm, /proc/sys/vm/nr_hugepages is an administrative interface that
should not be restricted by cpusets. So allow shrinking the pool by removing
pages from nodes outside of current's cpuset.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Irwin <wli@holomorphy.com>
Cc: Lee Schermerhorn <Lee.Schermerhonr@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A hugetlb reservation may be inadequately backed in the event of racing
allocations and frees when utilizing surplus huge pages. Consider the
following series of events in processes A and B:
A) Allocates some surplus pages to satisfy a reservation
B) Frees some huge pages
A) A notices the extra free pages and drops hugetlb_lock to free some of
its surplus pages back to the buddy allocator.
B) Allocates some huge pages
A) Reacquires hugetlb_lock and returns from gather_surplus_huge_pages()
Avoid this by commiting the reservation after pages have been allocated but
before dropping the lock to free excess pages. For parity, release the
reservation in return_unused_surplus_pages().
This patch also corrects the cpuset_mems_nr() error path in
hugetlb_acct_memory(). If the cpuset check fails, uncommit the
reservation, but also be sure to return any surplus huge pages that may
have been allocated to back the failed reservation.
Thanks to Andy Whitcroft for discovering this.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we free a page via free_huge_page and we detect that we are in surplus
the page will be returned to the buddy. After this we no longer own the page.
However at the end free_huge_page we clear out our mapping pointer from
page private. Even where the page is not a surplus we free the page to
the hugepage pool, drop the pool locks and then clear page private. In
either case the page may have been reallocated. BAD.
Make sure we clear out page private before we free the page.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
proc_doulongvec_minmax() calls copy_to_user()/copy_from_user(), so we can't
hold hugetlb_lock over the call. Use a dummy variable to store the sysctl
result, like in hugetlb_sysctl_handler(), then grab the lock to update
nr_overcommit_huge_pages.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Reported-by: Miles Lane <miles.lane@gmail.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I replaced hugetlb_dynamic_pool with nr_overcommit_hugepages I used
proc_doulongvec_minmax() directly. However, hugetlb.c's locking rules
require that all counter modifications occur under the hugetlb_lock. Add a
callback into the hugetlb code similar to the one for nr_hugepages. Grab
the lock around the manipulation of nr_overcommit_hugepages in
proc_doulongvec_minmax().
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The shared page table code for hugetlb memory on x86 and x86_64
is causing a leak. When a user of hugepages exits using this code
the system leaks some of the hugepages.
-------------------------------------------------------
Part of /proc/meminfo just before database startup:
HugePages_Total: 5500
HugePages_Free: 5500
HugePages_Rsvd: 0
Hugepagesize: 2048 kB
Just before shutdown:
HugePages_Total: 5500
HugePages_Free: 4475
HugePages_Rsvd: 0
Hugepagesize: 2048 kB
After shutdown:
HugePages_Total: 5500
HugePages_Free: 4988
HugePages_Rsvd:
0 Hugepagesize: 2048 kB
----------------------------------------------------------
The problem occurs durring a fork, in copy_hugetlb_page_range(). It
locates the dst_pte using huge_pte_alloc(). Since huge_pte_alloc() calls
huge_pmd_share() it will share the pmd page if can, yet the main loop in
copy_hugetlb_page_range() does a get_page() on every hugepage. This is a
violation of the shared hugepmd pagetable protocol and creates additional
referenced to the hugepages causing a leak when the unmap of the VMA
occurs. We can skip the entire replication of the ptes when the hugepage
pagetables are shared. The attached patch skips copying the ptes and the
get_page() calls if the hugetlbpage pagetable is shared.
[akpm@linux-foundation.org: coding-style cleanups]
Signed-off-by: Larry Woodman <lwoodman@redhat.com>
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the error path of both shared and private hugetlb page allocation,
the file system quota is never undone, leading to fs quota leak. Fix
them up.
[akpm@linux-foundation.org: cleanup, micro-optimise]
Signed-off-by: Ken Chen <kenchen@google.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 54f9f80d65 ("hugetlb:
Add hugetlb_dynamic_pool sysctl")
Given the new sysctl nr_overcommit_hugepages, the boolean dynamic pool
sysctl is not needed, as its semantics can be expressed by 0 in the
overcommit sysctl (no dynamic pool) and non-0 in the overcommit sysctl
(pool enabled).
(Needed in 2.6.24 since it reverts a post-2.6.23 userspace-visible change)
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb: introduce nr_overcommit_hugepages sysctl
While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I
became convinced that having a boolean sysctl was insufficient:
1) To support per-node control of hugepages, I have previously submitted
patches to add a sysfs attribute related to nr_hugepages. However, with
a boolean global value and per-mount quota enforcement constraining the
dynamic pool, adding corresponding control of the dynamic pool on a
per-node basis seems inconsistent to me.
2) Administration of the hugetlb dynamic pool with multiple hugetlbfs
mount points is, arguably, more arduous than it needs to be. Each quota
would need to be set separately, and the sum would need to be monitored.
To ease the administration, and to help make the way for per-node
control of the static & dynamic hugepage pool, I added a separate
sysctl, nr_overcommit_hugepages. This value serves as a high watermark
for the overall hugepage pool, while nr_hugepages serves as a low
watermark. The boolean sysctl can then be removed, as the condition
nr_overcommit_hugepages > 0
indicates the same administrative setting as
hugetlb_dynamic_pool == 1
Quotas still serve as local enforcement of the size of the pool on a
per-mount basis.
A few caveats:
1) There is a race whereby the global surplus huge page counter is
incremented before a hugepage has allocated. Another process could then
try grow the pool, and fail to convert a surplus huge page to a normal
huge page and instead allocate a fresh huge page. I believe this is
benign, as no memory is leaked (the actual pages are still tracked
correctly) and the counters won't go out of sync.
2) Shrinking the static pool while a surplus is in effect will allow the
number of surplus huge pages to exceed the overcommit value. As long as
this condition holds, however, no more surplus huge pages will be
allowed on the system until one of the two sysctls are increased
sufficiently, or the surplus huge pages go out of use and are freed.
Successfully tested on x86_64 with the current libhugetlbfs snapshot,
modified to use the new sysctl.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The follow_hugetlb_page() fix I posted (merged as git commit
5b23dbe817) missed one case. If the pte is
present, but not writable and write access is requested by the caller to
get_user_pages(), the code will do the wrong thing. Rather than calling
hugetlb_fault to make the pte writable, it notes the presence of the pte
and continues.
This simple one-liner makes sure we also fault on the pte for this case.
Please apply.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Dave Kleikamp <shaggy@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For administrative purpose, we want to query actual block usage for
hugetlbfs file via fstat. Currently, hugetlbfs always return 0. Fix that
up since kernel already has all the information to track it properly.
Signed-off-by: Ken Chen <kenchen@google.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
return_unused_surplus_pages() can become static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Acked-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a MAP_SHARED mmap of a hugetlbfs file succeeds, huge pages are reserved
to guarantee no problems will occur later when instantiating pages. If quotas
are in force, page instantiation could fail due to a race with another process
or an oversized (but approved) shared mapping.
To prevent these scenarios, debit the quota for the full reservation amount up
front and credit the unused quota when the reservation is released.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a second parameter 'delta' to hugetlb_get_quota and hugetlb_put_quota to
allow bulk updating of the sbinfo->free_blocks counter. This will be used by
the next patch in the series.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that quota is credited by free_huge_page(), calls to hugetlb_get_quota()
seem out of place. The alloc/free API is unbalanced because we handle the
hugetlb_put_quota() but expect the caller to open-code hugetlb_get_quota().
Move the get inside alloc_huge_page to clean up this disparity.
This patch has been kept apart from the previous patch because of the somewhat
dodgy ERR_PTR() use herein. Moving the quota logic means that
alloc_huge_page() has two failure modes. Quota failure must result in a
SIGBUS while a standard allocation failure is OOM. Unfortunately, ERR_PTR()
doesn't like the small positive errnos we have in VM_FAULT_* so they must be
negated before they are used.
Does anyone take issue with the way I am using PTR_ERR. If so, what are your
thoughts on how to clean this up (without needing an if,else if,else block at
each alloc_huge_page() callsite)?
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The hugetlbfs quota management system was never taught to handle MAP_PRIVATE
mappings when that support was added. Currently, quota is debited at page
instantiation and credited at file truncation. This approach works correctly
for shared pages but is incomplete for private pages. In addition to
hugetlb_no_page(), private pages can be instantiated by hugetlb_cow(); but
this function does not respect quotas.
Private huge pages are treated very much like normal, anonymous pages. They
are not "backed" by the hugetlbfs file and are not stored in the mapping's
radix tree. This means that private pages are invisible to
truncate_hugepages() so that function will not credit the quota.
This patch (based on a prototype provided by Ken Chen) moves quota crediting
for all pages into free_huge_page(). page->private is used to store a pointer
to the mapping to which this page belongs. This is used to credit quota on
the appropriate hugetlbfs instance.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugetlbfs implements a quota system which can limit the amount of memory that
can be used by the filesystem. Before allocating a new huge page for a file,
the quota is checked and debited. The quota is then credited when truncating
the file. I found a few bugs in the code for both MAP_PRIVATE and MAP_SHARED
mappings. Before detailing the problems and my proposed solutions, we should
agree on a definition of quotas that properly addresses both private and
shared pages. Since the purpose of quotas is to limit total memory
consumption on a per-filesystem basis, I argue that all pages allocated by the
fs (private and shared) should be charged against quota.
Private Mappings
================
The current code will debit quota for private pages sometimes, but will never
credit it. At a minimum, this causes a leak in the quota accounting which
renders the accounting essentially useless as it is. Shared pages have a one
to one mapping with a hugetlbfs file and are easy to account by debiting on
allocation and crediting on truncate. Private pages are anonymous in nature
and have a many to one relationship with their hugetlbfs files (due to copy on
write). Because private pages are not indexed by the mapping's radix tree,
thier quota cannot be credited at file truncation time. Crediting must be
done when the page is unmapped and freed.
Shared Pages
============
I discovered an issue concerning the interaction between the MAP_SHARED
reservation system and quotas. Since quota is not checked until page
instantiation, an over-quota mmap/reservation will initially succeed. When
instantiating the first over-quota page, the program will receive SIGBUS.
This is inconsistent since the reservation is supposed to be a guarantee. The
solution is to debit the full amount of quota at reservation time and credit
the unused portion when the reservation is released.
This patch series brings quotas back in line by making the following
modifications:
* Private pages
- Debit quota in alloc_huge_page()
- Credit quota in free_huge_page()
* Shared pages
- Debit quota for entire reservation at mmap time
- Credit quota for instantiated pages in free_huge_page()
- Credit quota for unused reservation at munmap time
This patch:
The shared page reservation and dynamic pool resizing features have made the
allocation of private vs. shared huge pages quite different. By splitting
out the private/shared-specific portions of the process into their own
functions, readability is greatly improved. alloc_huge_page now calls the
proper helper and performs common operations.
[akpm@linux-foundation.org: coding-style cleanups]
Signed-off-by: Adam Litke <agl@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When calling get_user_pages(), a write flag is passed in by the caller to
indicate if write access is required on the faulted-in pages. Currently,
follow_hugetlb_page() ignores this flag and always faults pages for
read-only access. This can cause data corruption because a device driver
that calls get_user_pages() with write set will not expect COW faults to
occur on the returned pages.
This patch passes the write flag down to follow_hugetlb_page() and makes
sure hugetlb_fault() is called with the right write_access parameter.
[ezk@cs.sunysb.edu: build fix]
Signed-off-by: Adam Litke <agl@us.ibm.com>
Reviewed-by: Ken Chen <kenchen@google.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Erez Zadok <ezk@cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Get rid of sparse related warnings from places that use integer as NULL
pointer.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Ian Kent <raven@themaw.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When gather_surplus_pages() fails to allocate enough huge pages to satisfy
the requested reservation, it frees what it did allocate back to the buddy
allocator. put_page() should be called instead of update_and_free_page()
to ensure that pool counters are updated as appropriate and the page's
refcount is decremented.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Dave Hansen <haveblue@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anton found a problem with the hugetlb pool allocation when some nodes have
no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked
on versions that tried to fix it, but none were accepted. Christoph has
created a set of patches which allow for GFP_THISNODE allocations to fail
if the node has no memory.
Currently, alloc_fresh_huge_page() returns NULL when it is not able to
allocate a huge page on the current node, as specified by its custom
interleave variable. The callers of this function, though, assume that a
failure in alloc_fresh_huge_page() indicates no hugepages can be allocated
on the system period. This might not be the case, for instance, if we have
an uneven NUMA system, and we happen to try to allocate a hugepage on a
node with less memory and fail, while there is still plenty of free memory
on the other nodes.
To correct this, make alloc_fresh_huge_page() search through all online
nodes before deciding no hugepages can be allocated. Add a helper function
for actually allocating the hugepage. Use a new global nid iterator to
control which nid to allocate on.
Note: we expect particular semantics for __GFP_THISNODE, which are now
enforced even for memoryless nodes. That is, there is should be no
fallback to other nodes. Therefore, we rely on the nid passed into
alloc_pages_node() to be the nid the page comes from. If this is
incorrect, accounting will break.
Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2
memoryless nodes).
Before on the ppc64 box:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 25
Node 1 HugePages_Free: 75
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 150
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
After:
Trying to clear the hugetlb pool
Done. 0 free
Trying to resize the pool to 100
Node 0 HugePages_Free: 50
Node 1 HugePages_Free: 50
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. Initially 100 free
Trying to resize the pool to 200
Node 0 HugePages_Free: 100
Node 1 HugePages_Free: 100
Node 2 HugePages_Free: 0
Node 3 HugePages_Free: 0
Done. 200 free
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Ken Chen <kenchen@google.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When shrinking the size of the hugetlb pool via the nr_hugepages sysctl, we
are careful to keep enough pages around to satisfy reservations. But the
calculation is flawed for the following scenario:
Action Pool Counters (Total, Free, Resv)
====== =============
Set pool to 1 page 1 1 0
Map 1 page MAP_PRIVATE 1 1 0
Touch the page to fault it in 1 0 0
Set pool to 3 pages 3 2 0
Map 2 pages MAP_SHARED 3 2 2
Set pool to 2 pages 2 1 2 <-- Mistake, should be 3 2 2
Touch the 2 shared pages 2 0 1 <-- Program crashes here
The last touch above will terminate the process due to lack of huge pages.
This patch corrects the calculation so that it factors in pages being used
for private mappings. Andrew, this is a standalone fix suitable for
mainline. It is also now corrected in my latest dynamic pool resizing
patchset which I will send out soon.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Ken Chen <kenchen@google.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The maximum size of the huge page pool can be controlled using the overall
size of the hugetlb filesystem (via its 'size' mount option). However in the
common case the this will not be set as the pool is traditionally fixed in
size at boot time. In order to maintain the expected semantics, we need to
prevent the pool expanding by default.
This patch introduces a new sysctl controlling dynamic pool resizing. When
this is enabled the pool will expand beyond its base size up to the size of
the hugetlb filesystem. It is disabled by default.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Cc: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shared mappings require special handling because the huge pages needed to
fully populate the VMA must be reserved at mmap time. If not enough pages are
available when making the reservation, allocate all of the shortfall at once
from the buddy allocator and add the pages directly to the hugetlb pool. If
they cannot be allocated, then fail the mapping. The page surplus is
accounted for in the same way as for private mappings; faulted surplus pages
will be freed at unmap time. Reserved, surplus pages that have not been used
must be freed separately when their reservation has been released.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Cc: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because we overcommit hugepages for MAP_PRIVATE mappings, it is possible that
the hugetlb pool will be exhausted or completely reserved when a hugepage is
needed to satisfy a page fault. Before killing the process in this situation,
try to allocate a hugepage directly from the buddy allocator.
The explicitly configured pool size becomes a low watermark. When dynamically
grown, the allocated huge pages are accounted as a surplus over the watermark.
As huge pages are freed on a node, surplus pages are released to the buddy
allocator so that the pool will shrink back to the watermark.
Surplus accounting also allows for friendlier explicit pool resizing. When
shrinking a pool that is fully in-use, increase the surplus so pages will be
returned to the buddy allocator as soon as they are freed. When growing a
pool that has a surplus, consume the surplus first and then allocate new
pages.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Cc: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dynamic huge page pool resizing.
In most real-world scenarios, configuring the size of the hugetlb pool
correctly is a difficult task. If too few pages are allocated to the pool,
applications using MAP_SHARED may fail to mmap() a hugepage region and
applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory
in the hugetlb pool means it is not available for other uses, especially those
programs not using huge pages.
The obvious answer is to let the hugetlb pool grow and shrink in response to
the runtime demand for huge pages. The work Mel Gorman has been doing to
establish a memory zone for movable memory allocations makes dynamically
resizing the hugetlb pool reliable within the limits of that zone. This patch
series implements dynamic pool resizing for private and shared mappings while
being careful to maintain existing semantics. Please reply with your comments
and feedback; even just to say whether it would be a useful feature to you.
Thanks.
How it works
============
Upon depletion of the hugetlb pool, rather than reporting an error immediately,
first try and allocate the needed huge pages directly from the buddy allocator.
Care must be taken to avoid unbounded growth of the hugetlb pool, so the
hugetlb filesystem quota is used to limit overall pool size.
The real work begins when we decide there is a shortage of huge pages. What
happens next depends on whether the pages are for a private or shared mapping.
Private mappings are straightforward. At fault time, if alloc_huge_page()
fails, we allocate a page from the buddy allocator and increment the source
node's surplus_huge_pages counter. When free_huge_page() is called for a page
on a node with a surplus, the page is freed directly to the buddy allocator
instead of the hugetlb pool.
Because shared mappings require all of the pages to be reserved up front, some
additional work must be done at mmap() to support them. We determine the
reservation shortage and allocate the required number of pages all at once.
These pages are then added to the hugetlb pool and marked reserved. Where that
is not possible the mmap() will fail. As with private mappings, the
appropriate surplus counters are updated. Since reserved huge pages won't
necessarily be used by the process, we can't be sure that free_huge_page() will
always be called to return surplus pages to the buddy allocator. To prevent
the huge page pool from bloating, we must free unused surplus pages when their
reservation has ended.
Controlling it
==============
With the entire patch series applied, pool resizing is off by default so unless
specific action is taken, the semantics are unchanged.
To take advantage of the flexibility afforded by this patch series one must
tolerate a change in semantics. To control hugetlb pool growth, the following
techniques can be employed:
* A sysctl tunable to enable/disable the feature entirely
* The size= mount option for hugetlbfs filesystems to limit pool size
Performance
===========
When contiguous memory is readily available, it is expected that the cost of
dynamicly resizing the pool will be small. This series has been performance
tested with 'stream' to measure this cost.
Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to
enable remapping of the text and data/bss segments into huge pages.
Stream with small array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 5, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 4695.6266 5942.8371 5982.2287
Scale: 4451.5776 5017.1419 5658.7843
Add: 5815.8849 7927.7827 8119.3552
Triad: 5949.4144 8527.6492 8110.6903
Stream with large array
-----------------------
Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping
Preallocated: nr_hugepages = 67, Text and data/bss remapping
Dynamic: nr_hugepages = 0, Text and data/bss remapping
Rate (MB/s)
Function Baseline Preallocated Dynamic
Copy: 2227.8281 2544.2732 2546.4947
Scale: 2136.3208 2430.7294 2421.2074
Add: 2773.1449 4004.0021 3999.4331
Triad: 2748.4502 3777.0109 3773.4970
* All numbers are averages taken from 10 consecutive runs with a maximum
standard deviation of 1.3 percent noted.
This patch:
Simply move update_and_free_page() so that it can be reused later in this
patch series. The implementation is not changed.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current ia64 kernel flushes icache by lazy_mmu_prot_update() *after*
set_pte(). This is too late. This patch removes lazy_mmu_prot_update and
add modfied set_pte() for flushing if necessary.
This patch flush icache of a page when
new pte has exec bit.
&& new pte has present bit
&& new pte is user's page.
&& (old *ptep is not present
|| new pte's pfn is not same to old *ptep's ptn)
&& new pte's page has no Pg_arch_1 bit.
Pg_arch_1 is set when a page is cache consistent.
I think this condition checks are much easier to understand than considering
"Where sync_icache_dcache() should be inserted ?".
pte_user() for ia64 was removed by http://lkml.org/lkml/2007/6/12/67 as
clean-up. So, I added it again.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The virtual address space argument of clear_user_highpage is supposed to be
the virtual address where the page being cleared will eventually be mapped.
This allows architectures with virtually indexed caches a few clever
tricks. That sort of trick falls over in painful ways if the virtual
address argument is wrong.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch proposes fixes to the reference counting of memory policy in the
page allocation paths and in show_numa_map(). Extracted from my "Memory
Policy Cleanups and Enhancements" series as stand-alone.
Shared policy lookup [shmem] has always added a reference to the policy,
but this was never unrefed after page allocation or after formatting the
numa map data.
Default system policy should not require additional ref counting, nor
should the current task's task policy. However, show_numa_map() calls
get_vma_policy() to examine what may be [likely is] another task's policy.
The latter case needs protection against freeing of the policy.
This patch adds a reference count to a mempolicy returned by
get_vma_policy() when the policy is a vma policy or another task's
mempolicy. Again, shared policy is already reference counted on lookup. A
matching "unref" [__mpol_free()] is performed in alloc_page_vma() for
shared and vma policies, and in show_numa_map() for shared and another
task's mempolicy. We can call __mpol_free() directly, saving an admittedly
inexpensive inline NULL test, because we know we have a non-NULL policy.
Handling policy ref counts for hugepages is a bit trickier.
huge_zonelist() returns a zone list that might come from a shared or vma
'BIND policy. In this case, we should hold the reference until after the
huge page allocation in dequeue_hugepage(). The patch modifies
huge_zonelist() to return a pointer to the mempolicy if it needs to be
unref'd after allocation.
Kernel Build [16cpu, 32GB, ia64] - average of 10 runs:
w/o patch w/ refcount patch
Avg Std Devn Avg Std Devn
Real: 100.59 0.38 100.63 0.43
User: 1209.60 0.37 1209.91 0.31
System: 81.52 0.42 81.64 0.34
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It seems a simple mistake was made when converting follow_hugetlb_page()
over to the VM_FAULT flags bitmasks (in "mm: fault feedback #2", commit
83c54070ee).
By using the wrong bitmask, hugetlb_fault() failures are not being
recognized. This results in an infinite loop whenever follow_hugetlb_page
is involved in a failed fault.
Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dequeue_huge_page() has a serious memory leak upon hugetlb page
allocation. The for loop continues on allocating hugetlb pages out of
all allowable zone, where this function is supposedly only dequeue one
and only one pages.
Fixed it by breaking out of the for loop once a hugetlb page is found.
Signed-off-by: Ken Chen <kenchen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use appropriate accessor function to set compound page destructor
function.
Cc: William Irwin <wli@holomorphy.com>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fix to that race in alloc_fresh_huge_page() which could give an illegal
node ID did not need nid_lock at all: the fix was to replace static int nid
by static int prev_nid and do the work on local int nid. nid_lock did make
sure that racers strictly roundrobin the nodes, but that's not something we
need to enforce strictly. Kill nid_lock.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/hugetlb.c: In function `dequeue_huge_page':
mm/hugetlb.c:72: warning: 'nid' might be used uninitialized in this function
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch completes Linus's wish that the fault return codes be made into
bit flags, which I agree makes everything nicer. This requires requires
all handle_mm_fault callers to be modified (possibly the modifications
should go further and do things like fault accounting in handle_mm_fault --
however that would be for another patch).
[akpm@linux-foundation.org: fix alpha build]
[akpm@linux-foundation.org: fix s390 build]
[akpm@linux-foundation.org: fix sparc build]
[akpm@linux-foundation.org: fix sparc64 build]
[akpm@linux-foundation.org: fix ia64 build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Bryan Wu <bryan.wu@analog.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Still apparently needs some ARM and PPC loving - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change ->fault prototype. We now return an int, which contains
VM_FAULT_xxx code in the low byte, and FAULT_RET_xxx code in the next byte.
FAULT_RET_ code tells the VM whether a page was found, whether it has been
locked, and potentially other things. This is not quite the way he wanted
it yet, but that's changed in the next patch (which requires changes to
arch code).
This means we no longer set VM_CAN_INVALIDATE in the vma in order to say
that a page is locked which requires filemap_nopage to go away (because we
can no longer remain backward compatible without that flag), but we were
going to do that anyway.
struct fault_data is renamed to struct vm_fault as Linus asked. address
is now a void __user * that we should firmly encourage drivers not to use
without really good reason.
The page is now returned via a page pointer in the vm_fault struct.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge pages are not movable so are not allocated from ZONE_MOVABLE. However,
as ZONE_MOVABLE will always have pages that can be migrated or reclaimed, it
can be used to satisfy hugepage allocations even when the system has been
running a long time. This allows an administrator to resize the hugepage pool
at runtime depending on the size of ZONE_MOVABLE.
This patch adds a new sysctl called hugepages_treat_as_movable. When a
non-zero value is written to it, future allocations for the huge page pool
will use ZONE_MOVABLE. Despite huge pages being non-movable, we do not
introduce additional external fragmentation of note as huge pages are always
the largest contiguous block we care about.
[akpm@linux-foundation.org: various fixes]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
That static `nid' index needs locking. Without it we can end up calling
alloc_pages_node() with an illegal node ID and the kernel crashes.
Acked-by: gurudas pai <gurudas.pai@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nid is initialized to numa_node_id() but will either be overwritten in
the loop or not used in the conditional. So remove the initialization.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some changes done a while ago to avoid pounding on ptep_set_access_flags and
update_mmu_cache in some race situations break sun4c which requires
update_mmu_cache() to always be called on minor faults.
This patch reworks ptep_set_access_flags() semantics, implementations and
callers so that it's now responsible for returning whether an update is
necessary or not (basically whether the PTE actually changed). This allow
fixing the sparc implementation to always return 1 on sun4c.
[akpm@linux-foundation.org: fixes, cleanups]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: David Miller <davem@davemloft.net>
Cc: Mark Fortescue <mark@mtfhpc.demon.co.uk>
Acked-by: William Lee Irwin III <wli@holomorphy.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>