With large verifier speed improvement brought by the previous patch
mark_reg_read() becomes the hottest function during verification.
On a typical program it consumes 40% of cpu.
mark_reg_read() walks parentage chain of registers to mark parents as LIVE_READ.
Once the register is marked there is no need to remark it again in the future.
Hence stop walking the chain once first LIVE_READ is seen.
This optimization drops mark_reg_read() time from 40% of cpu to <1%
and overall 2x improvement of verification speed.
For some programs the longest_mark_read_walk counter improves from ~500 to ~5
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Branch instructions, branch targets and calls in a bpf program are
the places where the verifier remembers states that led to successful
verification of the program.
These states are used to prune brute force program analysis.
For unprivileged programs there is a limit of 64 states per such
'branching' instructions (maximum length is tracked by max_states_per_insn
counter introduced in the previous patch).
Simply reducing this threshold to 32 or lower increases insn_processed
metric to the point that small valid programs get rejected.
For root programs there is no limit and cilium programs can have
max_states_per_insn to be 100 or higher.
Walking 100+ states multiplied by number of 'branching' insns during
verification consumes significant amount of cpu time.
Turned out simple LRU-like mechanism can be used to remove states
that unlikely will be helpful in future search pruning.
This patch introduces hit_cnt and miss_cnt counters:
hit_cnt - this many times this state successfully pruned the search
miss_cnt - this many times this state was not equivalent to other states
(and that other states were added to state list)
The heuristic introduced in this patch is:
if (sl->miss_cnt > sl->hit_cnt * 3 + 3)
/* drop this state from future considerations */
Higher numbers increase max_states_per_insn (allow more states to be
considered for pruning) and slow verification speed, but do not meaningfully
reduce insn_processed metric.
Lower numbers drop too many states and insn_processed increases too much.
Many different formulas were considered.
This one is simple and works well enough in practice.
(the analysis was done on selftests/progs/* and on cilium programs)
The end result is this heuristic improves verification speed by 10 times.
Large synthetic programs that used to take a second more now take
1/10 of a second.
In cases where max_states_per_insn used to be 100 or more, now it's ~10.
There is a slight increase in insn_processed for cilium progs:
before after
bpf_lb-DLB_L3.o 1831 1838
bpf_lb-DLB_L4.o 3029 3218
bpf_lb-DUNKNOWN.o 1064 1064
bpf_lxc-DDROP_ALL.o 26309 26935
bpf_lxc-DUNKNOWN.o 33517 34439
bpf_netdev.o 9713 9721
bpf_overlay.o 6184 6184
bpf_lcx_jit.o 37335 39389
And 2-3 times improvement in the verification speed.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In order to understand the verifier bottlenecks add various stats
and extend log_level:
log_level 1 and 2 are kept as-is:
bit 0 - level=1 - print every insn and verifier state at branch points
bit 1 - level=2 - print every insn and verifier state at every insn
bit 2 - level=4 - print verifier error and stats at the end of verification
When verifier rejects the program the libbpf is trying to load the program twice.
Once with log_level=0 (no messages, only error code is reported to user space)
and second time with log_level=1 to tell the user why the verifier rejected it.
With introduction of bit 2 - level=4 the libbpf can choose to always use that
level and load programs once, since the verification speed is not affected and
in case of error the verbose message will be available.
Note that the verifier stats are not part of uapi just like all other
verbose messages. They're expected to change in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently there is a difference in how verifier checks memory access for
helper arguments for PTR_TO_MAP_VALUE and PTR_TO_STACK with regard to
variable part of offset.
check_map_access, that is used for PTR_TO_MAP_VALUE, can handle variable
offsets just fine, so that BPF program can call a helper like this:
some_helper(map_value_ptr + off, size);
, where offset is unknown at load time, but is checked by program to be
in a safe rage (off >= 0 && off + size < map_value_size).
But it's not the case for check_stack_boundary, that is used for
PTR_TO_STACK, and same code with pointer to stack is rejected by
verifier:
some_helper(stack_value_ptr + off, size);
For example:
0: (7a) *(u64 *)(r10 -16) = 0
1: (7a) *(u64 *)(r10 -8) = 0
2: (61) r2 = *(u32 *)(r1 +0)
3: (57) r2 &= 4
4: (17) r2 -= 16
5: (0f) r2 += r10
6: (18) r1 = 0xffff888111343a80
8: (85) call bpf_map_lookup_elem#1
invalid variable stack read R2 var_off=(0xfffffffffffffff0; 0x4)
Add support for variable offset access to check_stack_boundary so that
if offset is checked by program to be in a safe range it's accepted by
verifier.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The BPF verifier checks the maximum number of call stack frames twice,
first in the main CFG traversal (do_check) and then in a subsequent
traversal (check_max_stack_depth). If the second check fails, it logs a
'verifier bug' warning and errors out, as the number of call stack frames
should have been verified already.
However, the second check may fail without indicating a verifier bug: if
the excessive function calls reside in dead code, the main CFG traversal
may not visit them; the subsequent traversal visits all instructions,
including dead code.
This case raises the question of how invalid dead code should be treated.
This patch implements the conservative option and rejects such code.
Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Tested-by: Xiao Han <xiao.han@orange.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 7640ead939 ("bpf: verifier: make sure callees don't prune
with caller differences") connected up parentage chains of all
frames of the stack. It didn't, however, ensure propagate_liveness()
propagates all liveness information along those chains.
This means pruning happening in the callee may generate explored
states with incomplete liveness for the chains in lower frames
of the stack.
The included selftest is similar to the prior one from commit
7640ead939 ("bpf: verifier: make sure callees don't prune with
caller differences"), where callee would prune regardless of the
difference in r8 state.
Now we also initialize r9 to 0 or 1 based on a result from get_random().
r9 is never read so the walk with r9 = 0 gets pruned (correctly) after
the walk with r9 = 1 completes.
The selftest is so arranged that the pruning will happen in the
callee. Since callee does not propagate read marks of r8, the
explored state at the pruning point prior to the callee will
now ignore r8.
Propagate liveness on all frames of the stack when pruning.
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow looking up a sock_common. This gives eBPF programs
access to timewait and request sockets.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's currently not possible to access timewait or request sockets
from eBPF, since there is no way to return a PTR_TO_SOCK_COMMON
from a helper. Introduce RET_PTR_TO_SOCK_COMMON to enable this
behaviour.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
So far, the verifier only acquires reference tracking state for
RET_PTR_TO_SOCKET_OR_NULL. Instead of extending this for every
new return type which desires these semantics, acquire reference
tracking state iff the called helper is an acquire function.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Syzkaller hit 'KASAN: use-after-free Write in sanitize_ptr_alu' bug.
Call trace:
dump_stack+0xbf/0x12e
print_address_description+0x6a/0x280
kasan_report+0x237/0x360
sanitize_ptr_alu+0x85a/0x8d0
adjust_ptr_min_max_vals+0x8f2/0x1ca0
adjust_reg_min_max_vals+0x8ed/0x22e0
do_check+0x1ca6/0x5d00
bpf_check+0x9ca/0x2570
bpf_prog_load+0xc91/0x1030
__se_sys_bpf+0x61e/0x1f00
do_syscall_64+0xc8/0x550
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Fault injection trace:
kfree+0xea/0x290
free_func_state+0x4a/0x60
free_verifier_state+0x61/0xe0
push_stack+0x216/0x2f0 <- inject failslab
sanitize_ptr_alu+0x2b1/0x8d0
adjust_ptr_min_max_vals+0x8f2/0x1ca0
adjust_reg_min_max_vals+0x8ed/0x22e0
do_check+0x1ca6/0x5d00
bpf_check+0x9ca/0x2570
bpf_prog_load+0xc91/0x1030
__se_sys_bpf+0x61e/0x1f00
do_syscall_64+0xc8/0x550
entry_SYSCALL_64_after_hwframe+0x49/0xbe
When kzalloc() fails in push_stack(), free_verifier_state() will free
current verifier state. As push_stack() returns, dst_reg was restored
if ptr_is_dst_reg is false. However, as member of the cur_state,
dst_reg is also freed, and error occurs when dereferencing dst_reg.
Simply fix it by testing ret of push_stack() before restoring dst_reg.
Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Naresh reported that test_align fails because of the mismatch at the
verbose printout of the register states. The reason is due to the newly
added ref_obj_id.
ref_obj_id is only useful for refcounted reg. Thus, this patch fixes it
by only printing ref_obj_id for refcounted reg. While at it, it also uses
comma instead of space to separate between "id" and "ref_obj_id".
Fixes: 1b98658968 ("bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lorenz Bauer [thanks!] reported that a ptr returned by bpf_tcp_sock(sk)
can still be accessed after bpf_sk_release(sk).
Both bpf_tcp_sock() and bpf_sk_fullsock() have the same issue.
This patch addresses them together.
A simple reproducer looks like this:
sk = bpf_sk_lookup_tcp();
/* if (!sk) ... */
tp = bpf_tcp_sock(sk);
/* if (!tp) ... */
bpf_sk_release(sk);
snd_cwnd = tp->snd_cwnd; /* oops! The verifier does not complain. */
The problem is the verifier did not scrub the register's states of
the tcp_sock ptr (tp) after bpf_sk_release(sk).
[ Note that when calling bpf_tcp_sock(sk), the sk is not always
refcount-acquired. e.g. bpf_tcp_sock(skb->sk). The verifier works
fine for this case. ]
Currently, the verifier does not track if a helper's return ptr (in REG_0)
is "carry"-ing one of its argument's refcount status. To carry this info,
the reg1->id needs to be stored in reg0.
One approach was tried, like "reg0->id = reg1->id", when calling
"bpf_tcp_sock()". The main idea was to avoid adding another "ref_obj_id"
for the same reg. However, overlapping the NULL marking and ref
tracking purpose in one "id" does not work well:
ref_sk = bpf_sk_lookup_tcp();
fullsock = bpf_sk_fullsock(ref_sk);
tp = bpf_tcp_sock(ref_sk);
if (!fullsock) {
bpf_sk_release(ref_sk);
return 0;
}
/* fullsock_reg->id is marked for NOT-NULL.
* Same for tp_reg->id because they have the same id.
*/
/* oops. verifier did not complain about the missing !tp check */
snd_cwnd = tp->snd_cwnd;
Hence, a new "ref_obj_id" is needed in "struct bpf_reg_state".
With a new ref_obj_id, when bpf_sk_release(sk) is called, the verifier can
scrub all reg states which has a ref_obj_id match. It is done with the
changes in release_reg_references() in this patch.
While fixing it, sk_to_full_sk() is removed from bpf_tcp_sock() and
bpf_sk_fullsock() to avoid these helpers from returning
another ptr. It will make bpf_sk_release(tp) possible:
sk = bpf_sk_lookup_tcp();
/* if (!sk) ... */
tp = bpf_tcp_sock(sk);
/* if (!tp) ... */
bpf_sk_release(tp);
A separate helper "bpf_get_listener_sock()" will be added in a later
patch to do sk_to_full_sk().
Misc change notes:
- To allow bpf_sk_release(tp), the arg of bpf_sk_release() is changed
from ARG_PTR_TO_SOCKET to ARG_PTR_TO_SOCK_COMMON. ARG_PTR_TO_SOCKET
is removed from bpf.h since no helper is using it.
- arg_type_is_refcounted() is renamed to arg_type_may_be_refcounted()
because ARG_PTR_TO_SOCK_COMMON is the only one and skb->sk is not
refcounted. All bpf_sk_release(), bpf_sk_fullsock() and bpf_tcp_sock()
take ARG_PTR_TO_SOCK_COMMON.
- check_refcount_ok() ensures is_acquire_function() cannot take
arg_type_may_be_refcounted() as its argument.
- The check_func_arg() can only allow one refcount-ed arg. It is
guaranteed by check_refcount_ok() which ensures at most one arg can be
refcounted. Hence, it is a verifier internal error if >1 refcount arg
found in check_func_arg().
- In release_reference(), release_reference_state() is called
first to ensure a match on "reg->ref_obj_id" can be found before
scrubbing the reg states with release_reg_references().
- reg_is_refcounted() is no longer needed.
1. In mark_ptr_or_null_regs(), its usage is replaced by
"ref_obj_id && ref_obj_id == id" because,
when is_null == true, release_reference_state() should only be
called on the ref_obj_id obtained by a acquire helper (i.e.
is_acquire_function() == true). Otherwise, the following
would happen:
sk = bpf_sk_lookup_tcp();
/* if (!sk) { ... } */
fullsock = bpf_sk_fullsock(sk);
if (!fullsock) {
/*
* release_reference_state(fullsock_reg->ref_obj_id)
* where fullsock_reg->ref_obj_id == sk_reg->ref_obj_id.
*
* Hence, the following bpf_sk_release(sk) will fail
* because the ref state has already been released in the
* earlier release_reference_state(fullsock_reg->ref_obj_id).
*/
bpf_sk_release(sk);
}
2. In release_reg_references(), the current reg_is_refcounted() call
is unnecessary because the id check is enough.
- The type_is_refcounted() and type_is_refcounted_or_null()
are no longer needed also because reg_is_refcounted() is removed.
Fixes: 655a51e536 ("bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Non-zero imm value in the second part of the ldimm64 instruction for
BPF_PSEUDO_MAP_FD is invalid, and thus must be rejected. The map fd
only ever sits in the first instructions' imm field. None of the BPF
loaders known to us are using it, so risk of regression is minimal.
For clarity and consistency, the few insn->{src_reg,imm} occurrences
are rewritten into insn[0].{src_reg,imm}. Add a test case to the BPF
selftest suite as well.
Fixes: 0246e64d9a ("bpf: handle pseudo BPF_LD_IMM64 insn")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-03-04
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add AF_XDP support to libbpf. Rationale is to facilitate writing
AF_XDP applications by offering higher-level APIs that hide many
of the details of the AF_XDP uapi. Sample programs are converted
over to this new interface as well, from Magnus.
2) Introduce a new cant_sleep() macro for annotation of functions
that cannot sleep and use it in BPF_PROG_RUN() to assert that
BPF programs run under preemption disabled context, from Peter.
3) Introduce per BPF prog stats in order to monitor the usage
of BPF; this is controlled by kernel.bpf_stats_enabled sysctl
knob where monitoring tools can make use of this to efficiently
determine the average cost of programs, from Alexei.
4) Split up BPF selftest's test_progs similarly as we already
did with test_verifier. This allows to further reduce merge
conflicts in future and to get more structure into our
quickly growing BPF selftest suite, from Stanislav.
5) Fix a bug in BTF's dedup algorithm which can cause an infinite
loop in some circumstances; also various BPF doc fixes and
improvements, from Andrii.
6) Various BPF sample cleanups and migration to libbpf in order
to further isolate the old sample loader code (so we can get
rid of it at some point), from Jakub.
7) Add a new BPF helper for BPF cgroup skb progs that allows
to set ECN CE code point and a Host Bandwidth Manager (HBM)
sample program for limiting the bandwidth used by v2 cgroups,
from Lawrence.
8) Enable write access to skb->queue_mapping from tc BPF egress
programs in order to let BPF pick TX queue, from Jesper.
9) Fix a bug in BPF spinlock handling for map-in-map which did
not propagate spin_lock_off to the meta map, from Yonghong.
10) Fix a bug in the new per-CPU BPF prog counters to properly
initialize stats for each CPU, from Eric.
11) Add various BPF helper prototypes to selftest's bpf_helpers.h,
from Willem.
12) Fix various BPF samples bugs in XDP and tracing progs,
from Toke, Daniel and Yonghong.
13) Silence preemption splat in test_bpf after BPF_PROG_RUN()
enforces it now everywhere, from Anders.
14) Fix a signedness bug in libbpf's btf_dedup_ref_type() to
get error handling working, from Dan.
15) Fix bpftool documentation and auto-completion with regards
to stream_{verdict,parser} attach types, from Alban.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Marek reported that he saw an issue with the below snippet in that
timing measurements where off when loaded as unpriv while results
were reasonable when loaded as privileged:
[...]
uint64_t a = bpf_ktime_get_ns();
uint64_t b = bpf_ktime_get_ns();
uint64_t delta = b - a;
if ((int64_t)delta > 0) {
[...]
Turns out there is a bug where a corner case is missing in the fix
d3bd7413e0 ("bpf: fix sanitation of alu op with pointer / scalar
type from different paths"), namely fixup_bpf_calls() only checks
whether aux has a non-zero alu_state, but it also needs to test for
the case of BPF_ALU_NON_POINTER since in both occasions we need to
skip the masking rewrite (as there is nothing to mask).
Fixes: d3bd7413e0 ("bpf: fix sanitation of alu op with pointer / scalar type from different paths")
Reported-by: Marek Majkowski <marek@cloudflare.com>
Reported-by: Arthur Fabre <afabre@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/netdev/CAJPywTJqP34cK20iLM5YmUMz9KXQOdu1-+BZrGMAGgLuBWz7fg@mail.gmail.com/T/
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
JITed BPF programs are indistinguishable from kernel functions, but unlike
kernel code BPF code can be changed often.
Typical approach of "perf record" + "perf report" profiling and tuning of
kernel code works just as well for BPF programs, but kernel code doesn't
need to be monitored whereas BPF programs do.
Users load and run large amount of BPF programs.
These BPF stats allow tools monitor the usage of BPF on the server.
The monitoring tools will turn sysctl kernel.bpf_stats_enabled
on and off for few seconds to sample average cost of the programs.
Aggregated data over hours and days will provide an insight into cost of BPF
and alarms can trigger in case given program suddenly gets more expensive.
The cost of two sched_clock() per program invocation adds ~20 nsec.
Fast BPF progs (like selftests/bpf/progs/test_pkt_access.c) will slow down
from ~10 nsec to ~30 nsec.
static_key minimizes the cost of the stats collection.
There is no measurable difference before/after this patch
with kernel.bpf_stats_enabled=0
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch adds a helper function BPF_FUNC_tcp_sock and it
is currently available for cg_skb and sched_(cls|act):
struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk);
int cg_skb_foo(struct __sk_buff *skb) {
struct bpf_tcp_sock *tp;
struct bpf_sock *sk;
__u32 snd_cwnd;
sk = skb->sk;
if (!sk)
return 1;
tp = bpf_tcp_sock(sk);
if (!tp)
return 1;
snd_cwnd = tp->snd_cwnd;
/* ... */
return 1;
}
A 'struct bpf_tcp_sock' is also added to the uapi bpf.h to provide
read-only access. bpf_tcp_sock has all the existing tcp_sock's fields
that has already been exposed by the bpf_sock_ops.
i.e. no new tcp_sock's fields are exposed in bpf.h.
This helper returns a pointer to the tcp_sock. If it is not a tcp_sock
or it cannot be traced back to a tcp_sock by sk_to_full_sk(), it
returns NULL. Hence, the caller needs to check for NULL before
accessing it.
The current use case is to expose members from tcp_sock
to allow a cg_skb_bpf_prog to provide per cgroup traffic
policing/shaping.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In kernel, it is common to check "skb->sk && sk_fullsock(skb->sk)"
before accessing the fields in sock. For example, in __netdev_pick_tx:
static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
/* ... */
struct sock *sk = skb->sk;
if (queue_index != new_index && sk &&
sk_fullsock(sk) &&
rcu_access_pointer(sk->sk_dst_cache))
sk_tx_queue_set(sk, new_index);
/* ... */
return queue_index;
}
This patch adds a "struct bpf_sock *sk" pointer to the "struct __sk_buff"
where a few of the convert_ctx_access() in filter.c has already been
accessing the skb->sk sock_common's fields,
e.g. sock_ops_convert_ctx_access().
"__sk_buff->sk" is a PTR_TO_SOCK_COMMON_OR_NULL in the verifier.
Some of the fileds in "bpf_sock" will not be directly
accessible through the "__sk_buff->sk" pointer. It is limited
by the new "bpf_sock_common_is_valid_access()".
e.g. The existing "type", "protocol", "mark" and "priority" in bpf_sock
are not allowed.
The newly added "struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)"
can be used to get a sk with all accessible fields in "bpf_sock".
This helper is added to both cg_skb and sched_(cls|act).
int cg_skb_foo(struct __sk_buff *skb) {
struct bpf_sock *sk;
sk = skb->sk;
if (!sk)
return 1;
sk = bpf_sk_fullsock(sk);
if (!sk)
return 1;
if (sk->family != AF_INET6 || sk->protocol != IPPROTO_TCP)
return 1;
/* some_traffic_shaping(); */
return 1;
}
(1) The sk is read only
(2) There is no new "struct bpf_sock_common" introduced.
(3) Future kernel sock's members could be added to bpf_sock only
instead of repeatedly adding at multiple places like currently
in bpf_sock_ops_md, bpf_sock_addr_md, sk_reuseport_md...etc.
(4) After "sk = skb->sk", the reg holding sk is in type
PTR_TO_SOCK_COMMON_OR_NULL.
(5) After bpf_sk_fullsock(), the return type will be in type
PTR_TO_SOCKET_OR_NULL which is the same as the return type of
bpf_sk_lookup_xxx().
However, bpf_sk_fullsock() does not take refcnt. The
acquire_reference_state() is only depending on the return type now.
To avoid it, a new is_acquire_function() is checked before calling
acquire_reference_state().
(6) The WARN_ON in "release_reference_state()" is no longer an
internal verifier bug.
When reg->id is not found in state->refs[], it means the
bpf_prog does something wrong like
"bpf_sk_release(bpf_sk_fullsock(skb->sk))" where reference has
never been acquired by calling "bpf_sk_fullsock(skb->sk)".
A -EINVAL and a verbose are done instead of WARN_ON. A test is
added to the test_verifier in a later patch.
Since the WARN_ON in "release_reference_state()" is no longer
needed, "__release_reference_state()" is folded into
"release_reference_state()" also.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let
bpf program serialize access to other variables.
Example:
struct hash_elem {
int cnt;
struct bpf_spin_lock lock;
};
struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key);
if (val) {
bpf_spin_lock(&val->lock);
val->cnt++;
bpf_spin_unlock(&val->lock);
}
Restrictions and safety checks:
- bpf_spin_lock is only allowed inside HASH and ARRAY maps.
- BTF description of the map is mandatory for safety analysis.
- bpf program can take one bpf_spin_lock at a time, since two or more can
cause dead locks.
- only one 'struct bpf_spin_lock' is allowed per map element.
It drastically simplifies implementation yet allows bpf program to use
any number of bpf_spin_locks.
- when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed.
- bpf program must bpf_spin_unlock() before return.
- bpf program can access 'struct bpf_spin_lock' only via
bpf_spin_lock()/bpf_spin_unlock() helpers.
- load/store into 'struct bpf_spin_lock lock;' field is not allowed.
- to use bpf_spin_lock() helper the BTF description of map value must be
a struct and have 'struct bpf_spin_lock anyname;' field at the top level.
Nested lock inside another struct is not allowed.
- syscall map_lookup doesn't copy bpf_spin_lock field to user space.
- syscall map_update and program map_update do not update bpf_spin_lock field.
- bpf_spin_lock cannot be on the stack or inside networking packet.
bpf_spin_lock can only be inside HASH or ARRAY map value.
- bpf_spin_lock is available to root only and to all program types.
- bpf_spin_lock is not allowed in inner maps of map-in-map.
- ld_abs is not allowed inside spin_lock-ed region.
- tracing progs and socket filter progs cannot use bpf_spin_lock due to
insufficient preemption checks
Implementation details:
- cgroup-bpf class of programs can nest with xdp/tc programs.
Hence bpf_spin_lock is equivalent to spin_lock_irqsave.
Other solutions to avoid nested bpf_spin_lock are possible.
Like making sure that all networking progs run with softirq disabled.
spin_lock_irqsave is the simplest and doesn't add overhead to the
programs that don't use it.
- arch_spinlock_t is used when its implemented as queued_spin_lock
- archs can force their own arch_spinlock_t
- on architectures where queued_spin_lock is not available and
sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used.
- presence of bpf_spin_lock inside map value could have been indicated via
extra flag during map_create, but specifying it via BTF is cleaner.
It provides introspection for map key/value and reduces user mistakes.
Next steps:
- allow bpf_spin_lock in other map types (like cgroup local storage)
- introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper
to request kernel to grab bpf_spin_lock before rewriting the value.
That will serialize access to map elements.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch teach verifier about the new BPF_JMP32 instruction class.
Verifier need to treat it similar as the existing BPF_JMP class.
A BPF_JMP32 insn needs to go through all checks that have been done on
BPF_JMP.
Also, verifier is doing runtime optimizations based on the extra info
conditional jump instruction could offer, especially when the comparison is
between constant and register that the value range of the register could be
improved based on the comparison results. These code are updated
accordingly.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current min/max code does both signed and unsigned comparisons against
the input argument "val" which is "u64" and there is explicit type casting
when the comparison is signed.
As we will need slightly more complexer type casting when JMP32 introduced,
it is better to host the signed type casting. This makes the code more
clean with ignorable runtime overhead.
Also, code for J*GE/GT/LT/LE and JEQ/JNE are very similar, this patch
combine them.
The main purpose for this refactor is to make sure the min/max code will
still be readable and with minimum code duplication after JMP32 introduced.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Let offload JITs know when instructions are replaced and optimized
out, so they can update their state appropriately. The optimizations
are best effort, if JIT returns an error from any callback verifier
will stop notifying it as state may now be out of sync, but the
verifier continues making progress.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The communication between the verifier and advanced JITs is based
on instruction indexes. We have to keep them stable throughout
the optimizations otherwise referring to a particular instruction
gets messy quickly.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Unconditional branches by 0 instructions are basically noops
but they can result from earlier optimizations, e.g. a conditional
jumps which would never be taken or a conditional jump around
dead code.
Remove those branches.
v0.2:
- s/opt_remove_dead_branches/opt_remove_nops/ (Jiong).
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of overwriting dead code with jmp -1 instructions
remove it completely for root. Adjust verifier state and
line info appropriately.
v2:
- adjust func_info (Alexei);
- make sure first instruction retains line info (Alexei).
v4: (Yonghong)
- remove unnecessary if (!insn to remove) checks;
- always keep last line info if first live instruction lacks one.
v5: (Martin Lau)
- improve and clarify comments.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Loading programs with dead code becomes more and more
common, as people begin to patch constants at load time.
Turn conditional jumps to unconditional ones, to avoid
potential branch misprediction penalty.
This optimization is enabled for privileged users only.
For branches which just fall through we could just mark
them as not seen and have dead code removal take care of
them, but that seems less clean.
v0.2:
- don't call capable(CAP_SYS_ADMIN) twice (Jiong).
v3:
- fix GCC warning;
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
An older GCC compiler complains:
kernel/bpf/verifier.c: In function 'bpf_check':
kernel/bpf/verifier.c:4***:13: error: 'prev_offset' may be used uninitialized
in this function [-Werror=maybe-uninitialized]
} else if (krecord[i].insn_offset <= prev_offset) {
^
kernel/bpf/verifier.c:4***:38: note: 'prev_offset' was declared here
u32 i, nfuncs, urec_size, min_size, prev_offset;
Although the compiler is wrong here, the patch makes sure
that prev_offset is always initialized, just to silence the warning.
v2: fix a spelling error in the commit message.
Signed-off-by: Peter Oskolkov <posk@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
While 979d63d50c ("bpf: prevent out of bounds speculation on pointer
arithmetic") took care of rejecting alu op on pointer when e.g. pointer
came from two different map values with different map properties such as
value size, Jann reported that a case was not covered yet when a given
alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from
different branches where we would incorrectly try to sanitize based
on the pointer's limit. Catch this corner case and reject the program
instead.
Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Jann reported that the original commit back in b2157399cc
("bpf: prevent out-of-bounds speculation") was not sufficient
to stop CPU from speculating out of bounds memory access:
While b2157399cc only focussed on masking array map access
for unprivileged users for tail calls and data access such
that the user provided index gets sanitized from BPF program
and syscall side, there is still a more generic form affected
from BPF programs that applies to most maps that hold user
data in relation to dynamic map access when dealing with
unknown scalars or "slow" known scalars as access offset, for
example:
- Load a map value pointer into R6
- Load an index into R7
- Do a slow computation (e.g. with a memory dependency) that
loads a limit into R8 (e.g. load the limit from a map for
high latency, then mask it to make the verifier happy)
- Exit if R7 >= R8 (mispredicted branch)
- Load R0 = R6[R7]
- Load R0 = R6[R0]
For unknown scalars there are two options in the BPF verifier
where we could derive knowledge from in order to guarantee
safe access to the memory: i) While </>/<=/>= variants won't
allow to derive any lower or upper bounds from the unknown
scalar where it would be safe to add it to the map value
pointer, it is possible through ==/!= test however. ii) another
option is to transform the unknown scalar into a known scalar,
for example, through ALU ops combination such as R &= <imm>
followed by R |= <imm> or any similar combination where the
original information from the unknown scalar would be destroyed
entirely leaving R with a constant. The initial slow load still
precedes the latter ALU ops on that register, so the CPU
executes speculatively from that point. Once we have the known
scalar, any compare operation would work then. A third option
only involving registers with known scalars could be crafted
as described in [0] where a CPU port (e.g. Slow Int unit)
would be filled with many dependent computations such that
the subsequent condition depending on its outcome has to wait
for evaluation on its execution port and thereby executing
speculatively if the speculated code can be scheduled on a
different execution port, or any other form of mistraining
as described in [1], for example. Given this is not limited
to only unknown scalars, not only map but also stack access
is affected since both is accessible for unprivileged users
and could potentially be used for out of bounds access under
speculation.
In order to prevent any of these cases, the verifier is now
sanitizing pointer arithmetic on the offset such that any
out of bounds speculation would be masked in a way where the
pointer arithmetic result in the destination register will
stay unchanged, meaning offset masked into zero similar as
in array_index_nospec() case. With regards to implementation,
there are three options that were considered: i) new insn
for sanitation, ii) push/pop insn and sanitation as inlined
BPF, iii) reuse of ax register and sanitation as inlined BPF.
Option i) has the downside that we end up using from reserved
bits in the opcode space, but also that we would require
each JIT to emit masking as native arch opcodes meaning
mitigation would have slow adoption till everyone implements
it eventually which is counter-productive. Option ii) and iii)
have both in common that a temporary register is needed in
order to implement the sanitation as inlined BPF since we
are not allowed to modify the source register. While a push /
pop insn in ii) would be useful to have in any case, it
requires once again that every JIT needs to implement it
first. While possible, amount of changes needed would also
be unsuitable for a -stable patch. Therefore, the path which
has fewer changes, less BPF instructions for the mitigation
and does not require anything to be changed in the JITs is
option iii) which this work is pursuing. The ax register is
already mapped to a register in all JITs (modulo arm32 where
it's mapped to stack as various other BPF registers there)
and used in constant blinding for JITs-only so far. It can
be reused for verifier rewrites under certain constraints.
The interpreter's tmp "register" has therefore been remapped
into extending the register set with hidden ax register and
reusing that for a number of instructions that needed the
prior temporary variable internally (e.g. div, mod). This
allows for zero increase in stack space usage in the interpreter,
and enables (restricted) generic use in rewrites otherwise as
long as such a patchlet does not make use of these instructions.
The sanitation mask is dynamic and relative to the offset the
map value or stack pointer currently holds.
There are various cases that need to be taken under consideration
for the masking, e.g. such operation could look as follows:
ptr += val or val += ptr or ptr -= val. Thus, the value to be
sanitized could reside either in source or in destination
register, and the limit is different depending on whether
the ALU op is addition or subtraction and depending on the
current known and bounded offset. The limit is derived as
follows: limit := max_value_size - (smin_value + off). For
subtraction: limit := umax_value + off. This holds because
we do not allow any pointer arithmetic that would
temporarily go out of bounds or would have an unknown
value with mixed signed bounds where it is unclear at
verification time whether the actual runtime value would
be either negative or positive. For example, we have a
derived map pointer value with constant offset and bounded
one, so limit based on smin_value works because the verifier
requires that statically analyzed arithmetic on the pointer
must be in bounds, and thus it checks if resulting
smin_value + off and umax_value + off is still within map
value bounds at time of arithmetic in addition to time of
access. Similarly, for the case of stack access we derive
the limit as follows: MAX_BPF_STACK + off for subtraction
and -off for the case of addition where off := ptr_reg->off +
ptr_reg->var_off.value. Subtraction is a special case for
the masking which can be in form of ptr += -val, ptr -= -val,
or ptr -= val. In the first two cases where we know that
the value is negative, we need to temporarily negate the
value in order to do the sanitation on a positive value
where we later swap the ALU op, and restore original source
register if the value was in source.
The sanitation of pointer arithmetic alone is still not fully
sufficient as is, since a scenario like the following could
happen ...
PTR += 0x1000 (e.g. K-based imm)
PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
PTR += 0x1000
PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
[...]
... which under speculation could end up as ...
PTR += 0x1000
PTR -= 0 [ truncated by mitigation ]
PTR += 0x1000
PTR -= 0 [ truncated by mitigation ]
[...]
... and therefore still access out of bounds. To prevent such
case, the verifier is also analyzing safety for potential out
of bounds access under speculative execution. Meaning, it is
also simulating pointer access under truncation. We therefore
"branch off" and push the current verification state after the
ALU operation with known 0 to the verification stack for later
analysis. Given the current path analysis succeeded it is
likely that the one under speculation can be pruned. In any
case, it is also subject to existing complexity limits and
therefore anything beyond this point will be rejected. In
terms of pruning, it needs to be ensured that the verification
state from speculative execution simulation must never prune
a non-speculative execution path, therefore, we mark verifier
state accordingly at the time of push_stack(). If verifier
detects out of bounds access under speculative execution from
one of the possible paths that includes a truncation, it will
reject such program.
Given we mask every reg-based pointer arithmetic for
unprivileged programs, we've been looking into how it could
affect real-world programs in terms of size increase. As the
majority of programs are targeted for privileged-only use
case, we've unconditionally enabled masking (with its alu
restrictions on top of it) for privileged programs for the
sake of testing in order to check i) whether they get rejected
in its current form, and ii) by how much the number of
instructions and size will increase. We've tested this by
using Katran, Cilium and test_l4lb from the kernel selftests.
For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o
and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb
we've used test_l4lb.o as well as test_l4lb_noinline.o. We
found that none of the programs got rejected by the verifier
with this change, and that impact is rather minimal to none.
balancer_kern.o had 13,904 bytes (1,738 insns) xlated and
7,797 bytes JITed before and after the change. Most complex
program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated
and 18,538 bytes JITed before and after and none of the other
tail call programs in bpf_lxc.o had any changes either. For
the older bpf_lxc_opt_-DUNKNOWN.o object we found a small
increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed
before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed
after the change. Other programs from that object file had
similar small increase. Both test_l4lb.o had no change and
remained at 6,544 bytes (817 insns) xlated and 3,401 bytes
JITed and for test_l4lb_noinline.o constant at 5,080 bytes
(634 insns) xlated and 3,313 bytes JITed. This can be explained
in that LLVM typically optimizes stack based pointer arithmetic
by using K-based operations and that use of dynamic map access
is not overly frequent. However, in future we may decide to
optimize the algorithm further under known guarantees from
branch and value speculation. Latter seems also unclear in
terms of prediction heuristics that today's CPUs apply as well
as whether there could be collisions in e.g. the predictor's
Value History/Pattern Table for triggering out of bounds access,
thus masking is performed unconditionally at this point but could
be subject to relaxation later on. We were generally also
brainstorming various other approaches for mitigation, but the
blocker was always lack of available registers at runtime and/or
overhead for runtime tracking of limits belonging to a specific
pointer. Thus, we found this to be minimally intrusive under
given constraints.
With that in place, a simple example with sanitized access on
unprivileged load at post-verification time looks as follows:
# bpftool prog dump xlated id 282
[...]
28: (79) r1 = *(u64 *)(r7 +0)
29: (79) r2 = *(u64 *)(r7 +8)
30: (57) r1 &= 15
31: (79) r3 = *(u64 *)(r0 +4608)
32: (57) r3 &= 1
33: (47) r3 |= 1
34: (2d) if r2 > r3 goto pc+19
35: (b4) (u32) r11 = (u32) 20479 |
36: (1f) r11 -= r2 | Dynamic sanitation for pointer
37: (4f) r11 |= r2 | arithmetic with registers
38: (87) r11 = -r11 | containing bounded or known
39: (c7) r11 s>>= 63 | scalars in order to prevent
40: (5f) r11 &= r2 | out of bounds speculation.
41: (0f) r4 += r11 |
42: (71) r4 = *(u8 *)(r4 +0)
43: (6f) r4 <<= r1
[...]
For the case where the scalar sits in the destination register
as opposed to the source register, the following code is emitted
for the above example:
[...]
16: (b4) (u32) r11 = (u32) 20479
17: (1f) r11 -= r2
18: (4f) r11 |= r2
19: (87) r11 = -r11
20: (c7) r11 s>>= 63
21: (5f) r2 &= r11
22: (0f) r2 += r0
23: (61) r0 = *(u32 *)(r2 +0)
[...]
JIT blinding example with non-conflicting use of r10:
[...]
d5: je 0x0000000000000106 _
d7: mov 0x0(%rax),%edi |
da: mov $0xf153246,%r10d | Index load from map value and
e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f.
e7: and %r10,%rdi |_
ea: mov $0x2f,%r10d |
f0: sub %rdi,%r10 | Sanitized addition. Both use r10
f3: or %rdi,%r10 | but do not interfere with each
f6: neg %r10 | other. (Neither do these instructions
f9: sar $0x3f,%r10 | interfere with the use of ax as temp
fd: and %r10,%rdi | in interpreter.)
100: add %rax,%rdi |_
103: mov 0x0(%rdi),%eax
[...]
Tested that it fixes Jann's reproducer, and also checked that test_verifier
and test_progs suite with interpreter, JIT and JIT with hardening enabled
on x86-64 and arm64 runs successfully.
[0] Speculose: Analyzing the Security Implications of Speculative
Execution in CPUs, Giorgi Maisuradze and Christian Rossow,
https://arxiv.org/pdf/1801.04084.pdf
[1] A Systematic Evaluation of Transient Execution Attacks and
Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, Daniel Gruss,
https://arxiv.org/pdf/1811.05441.pdf
Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In check_map_access() we probe actual bounds through __check_map_access()
with offset of reg->smin_value + off for lower bound and offset of
reg->umax_value + off for the upper bound. However, even though the
reg->smin_value could have a negative value, the final result of the
sum with off could be positive when pointer arithmetic with known and
unknown scalars is combined. In this case we reject the program with
an error such as "R<x> min value is negative, either use unsigned index
or do a if (index >=0) check." even though the access itself would be
fine. Therefore extend the check to probe whether the actual resulting
reg->smin_value + off is less than zero.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For unknown scalars of mixed signed bounds, meaning their smin_value is
negative and their smax_value is positive, we need to reject arithmetic
with pointer to map value. For unprivileged the goal is to mask every
map pointer arithmetic and this cannot reliably be done when it is
unknown at verification time whether the scalar value is negative or
positive. Given this is a corner case, the likelihood of breaking should
be very small.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Restrict stack pointer arithmetic for unprivileged users in that
arithmetic itself must not go out of bounds as opposed to the actual
access later on. Therefore after each adjust_ptr_min_max_vals() with
a stack pointer as a destination we simulate a check_stack_access()
of 1 byte on the destination and once that fails the program is
rejected for unprivileged program loads. This is analog to map
value pointer arithmetic and needed for masking later on.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Restrict map value pointer arithmetic for unprivileged users in that
arithmetic itself must not go out of bounds as opposed to the actual
access later on. Therefore after each adjust_ptr_min_max_vals() with a
map value pointer as a destination it will simulate a check_map_access()
of 1 byte on the destination and once that fails the program is rejected
for unprivileged program loads. We use this later on for masking any
pointer arithmetic with the remainder of the map value space. The
likelihood of breaking any existing real-world unprivileged eBPF
program is very small for this corner case.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move prev_insn_idx and insn_idx from the do_check() function into
the verifier environment, so they can be read inside the various
helper functions for handling the instructions. It's easier to put
this into the environment rather than changing all call-sites only
to pass it along. insn_idx is useful in particular since this later
on allows to hold state in env->insn_aux_data[env->insn_idx].
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-12-21
The following pull-request contains BPF updates for your *net-next* tree.
There is a merge conflict in test_verifier.c. Result looks as follows:
[...]
},
{
"calls: cross frame pruning",
.insns = {
[...]
.prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
.errstr_unpriv = "function calls to other bpf functions are allowed for root only",
.result_unpriv = REJECT,
.errstr = "!read_ok",
.result = REJECT,
},
{
"jset: functional",
.insns = {
[...]
{
"jset: unknown const compare not taken",
.insns = {
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_prandom_u32),
BPF_JMP_IMM(BPF_JSET, BPF_REG_0, 1, 1),
BPF_LDX_MEM(BPF_B, BPF_REG_8, BPF_REG_9, 0),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
.errstr_unpriv = "!read_ok",
.result_unpriv = REJECT,
.errstr = "!read_ok",
.result = REJECT,
},
[...]
{
"jset: range",
.insns = {
[...]
},
.prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
.result_unpriv = ACCEPT,
.result = ACCEPT,
},
The main changes are:
1) Various BTF related improvements in order to get line info
working. Meaning, verifier will now annotate the corresponding
BPF C code to the error log, from Martin and Yonghong.
2) Implement support for raw BPF tracepoints in modules, from Matt.
3) Add several improvements to verifier state logic, namely speeding
up stacksafe check, optimizations for stack state equivalence
test and safety checks for liveness analysis, from Alexei.
4) Teach verifier to make use of BPF_JSET instruction, add several
test cases to kselftests and remove nfp specific JSET optimization
now that verifier has awareness, from Jakub.
5) Improve BPF verifier's slot_type marking logic in order to
allow more stack slot sharing, from Jiong.
6) Add sk_msg->size member for context access and add set of fixes
and improvements to make sock_map with kTLS usable with openssl
based applications, from John.
7) Several cleanups and documentation updates in bpftool as well as
auto-mount of tracefs for "bpftool prog tracelog" command,
from Quentin.
8) Include sub-program tags from now on in bpf_prog_info in order to
have a reliable way for user space to get all tags of the program
e.g. needed for kallsyms correlation, from Song.
9) Add BTF annotations for cgroup_local_storage BPF maps and
implement bpf fs pretty print support, from Roman.
10) Fix bpftool in order to allow for cross-compilation, from Ivan.
11) Update of bpftool license to GPLv2-only + BSD-2-Clause in order
to be compatible with libbfd and allow for Debian packaging,
from Jakub.
12) Remove an obsolete prog->aux sanitation in dump and get rid of
version check for prog load, from Daniel.
13) Fix a memory leak in libbpf's line info handling, from Prashant.
14) Fix cpumap's frame alignment for build_skb() so that skb_shared_info
does not get unaligned, from Jesper.
15) Fix test_progs kselftest to work with older compilers which are less
smart in optimizing (and thus throwing build error), from Stanislav.
16) Cleanup and simplify AF_XDP socket teardown, from Björn.
17) Fix sk lookup in BPF kselftest's test_sock_addr with regards
to netns_id argument, from Andrey.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Lots of conflicts, by happily all cases of overlapping
changes, parallel adds, things of that nature.
Thanks to Stephen Rothwell, Saeed Mahameed, and others
for their guidance in these resolutions.
Signed-off-by: David S. Miller <davem@davemloft.net>
Reorder the calls to check_max_stack_depth() and sanitize_dead_code()
to separate functions which can rewrite instructions from pure checks.
No functional changes.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Some JITs (nfp) try to optimize code on their own. It could make
sense in case of BPF_JSET instruction which is currently not interpreted
by the verifier, meaning for instance that dead could would not be
detected if it was under BPF_JSET branch.
Teach the verifier basics of BPF_JSET, JIT optimizations will be
removed shortly.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch rejects a line_info if the bpf insn code referred by
line_info.insn_off is 0. F.e. a broken userspace tool might generate
a line_info.insn_off that points to the second 8 bytes of a BPF_LD_IMM64.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Verifier is supposed to support sharing stack slot allocated to ptr with
SCALAR_VALUE for privileged program. However this doesn't happen for some
cases.
The reason is verifier is not clearing slot_type STACK_SPILL for all bytes,
it only clears part of them, while verifier is using:
slot_type[0] == STACK_SPILL
as a convention to check one slot is ptr type.
So, the consequence of partial clearing slot_type is verifier could treat a
partially overridden ptr slot, which should now be a SCALAR_VALUE slot,
still as ptr slot, and rejects some valid programs.
Before this patch, test_xdp_noinline.o under bpf selftests, bpf_lxc.o and
bpf_netdev.o under Cilium bpf repo, when built with -mattr=+alu32 are
rejected due to this issue. After this patch, they all accepted.
There is no processed insn number change before and after this patch on
Cilium bpf programs.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce REG_LIVE_DONE to check the liveness propagation
and prepare the states for merging.
See algorithm description in clean_live_states().
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
"if (old->allocated_stack > cur->allocated_stack)" check is too conservative.
In some cases explored stack could have allocated more space,
but that stack space was not live.
The test case improves from 19 to 15 processed insns
and improvement on real programs is significant as well:
before after
bpf_lb-DLB_L3.o 1940 1831
bpf_lb-DLB_L4.o 3089 3029
bpf_lb-DUNKNOWN.o 1065 1064
bpf_lxc-DDROP_ALL.o 28052 26309
bpf_lxc-DUNKNOWN.o 35487 33517
bpf_netdev.o 10864 9713
bpf_overlay.o 6643 6184
bpf_lcx_jit.o 38437 37335
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree@solarflare.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Don't check the same stack liveness condition 8 times.
once is enough.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree@solarflare.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch adds bpf_line_info during the verifier's verbose.
It can give error context for debug purpose.
~~~~~~~~~~
Here is the verbose log for backedge:
while (a) {
a += bpf_get_smp_processor_id();
bpf_trace_printk(fmt, sizeof(fmt), a);
}
~> bpftool prog load ./test_loop.o /sys/fs/bpf/test_loop type tracepoint
13: while (a) {
3: a += bpf_get_smp_processor_id();
back-edge from insn 13 to 3
~~~~~~~~~~
Here is the verbose log for invalid pkt access:
Modification to test_xdp_noinline.c:
data = (void *)(long)xdp->data;
data_end = (void *)(long)xdp->data_end;
/*
if (data + 4 > data_end)
return XDP_DROP;
*/
*(u32 *)data = dst->dst;
~> bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
; data = (void *)(long)xdp->data;
224: (79) r2 = *(u64 *)(r10 -112)
225: (61) r2 = *(u32 *)(r2 +0)
; *(u32 *)data = dst->dst;
226: (63) *(u32 *)(r2 +0) = r1
invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
R2 offset is outside of the packet
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current btf_name_by_offset() is returning "(anon)" type name for
the offset == 0 case and "(invalid-name-offset)" for the out-of-bound
offset case.
It fits well for the internal BTF verbose log purpose which
is focusing on type. For example,
offset == 0 => "(anon)" => anonymous type/name.
Returning non-NULL for the bad offset case is needed
during the BTF verification process because the BTF verifier may
complain about another field first before discovering the name_off
is invalid.
However, it may not be ideal for the newer use case which does not
necessary mean type name. For example, when logging line_info
in the BPF verifier in the next patch, it is better to log an
empty src line instead of logging "(anon)".
The existing bpf_name_by_offset() is renamed to __bpf_name_by_offset()
and static to btf.c.
A new bpf_name_by_offset() is added for generic context usage. It
returns "\0" for name_off == 0 (note that btf->strings[0] is "\0")
and NULL for invalid offset. It allows the caller to decide
what is the best output in its context.
The new btf_name_by_offset() is overlapped with btf_name_offset_valid().
Hence, btf_name_offset_valid() is removed from btf.h to keep the btf.h API
minimal. The existing btf_name_offset_valid() usage in btf.c could also be
replaced later.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently for liveness and state pruning the register parentage
chains don't include states of the callee. This makes some sense
as the callee can't access those registers. However, this means
that READs done after the callee returns will not propagate into
the states of the callee. Callee will then perform pruning
disregarding differences in caller state.
Example:
0: (85) call bpf_user_rnd_u32
1: (b7) r8 = 0
2: (55) if r0 != 0x0 goto pc+1
3: (b7) r8 = 1
4: (bf) r1 = r8
5: (85) call pc+4
6: (15) if r8 == 0x1 goto pc+1
7: (05) *(u64 *)(r9 - 8) = r3
8: (b7) r0 = 0
9: (95) exit
10: (15) if r1 == 0x0 goto pc+0
11: (95) exit
Here we acquire unknown state with call to get_random() [1]. Then
we store this random state in r8 (either 0 or 1) [1 - 3], and make
a call on line 5. Callee does nothing but a trivial conditional
jump (to create a pruning point). Upon return caller checks the
state of r8 and either performs an unsafe read or not.
Verifier will first explore the path with r8 == 1, creating a pruning
point at [11]. The parentage chain for r8 will include only callers
states so once verifier reaches [6] it will mark liveness only on states
in the caller, and not [11]. Now when verifier walks the paths with
r8 == 0 it will reach [11] and since REG_LIVE_READ on r8 was not
propagated there it will prune the walk entirely (stop walking
the entire program, not just the callee). Since [6] was never walked
with r8 == 0, [7] will be considered dead and replaced with "goto -1"
causing hang at runtime.
This patch weaves the callee's explored states onto the callers
parentage chain. Rough parentage for r8 would have looked like this
before:
[0] [1] [2] [3] [4] [5] [10] [11] [6] [7]
| | ,---|----. | | |
sl0: sl0: / sl0: \ sl0: sl0: sl0:
fr0: r8 <-- fr0: r8<+--fr0: r8 `fr0: r8 ,fr0: r8<-fr0: r8
\ fr1: r8 <- fr1: r8 /
\__________________/
after:
[0] [1] [2] [3] [4] [5] [10] [11] [6] [7]
| | | | | |
sl0: sl0: sl0: sl0: sl0: sl0:
fr0: r8 <-- fr0: r8 <- fr0: r8 <- fr0: r8 <-fr0: r8<-fr0: r8
fr1: r8 <- fr1: r8
Now the mark from instruction 6 will travel through callees states.
Note that we don't have to connect r0 because its overwritten by
callees state on return and r1 - r5 because those are not alive
any more once a call is made.
v2:
- don't connect the callees registers twice (Alexei: suggestion & code)
- add more details to the comment (Ed & Alexei)
v1: don't unnecessarily link caller saved regs (Jiong)
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Reported-by: David Beckett <david.beckett@netronome.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-12-11
The following pull-request contains BPF updates for your *net-next* tree.
It has three minor merge conflicts, resolutions:
1) tools/testing/selftests/bpf/test_verifier.c
Take first chunk with alignment_prevented_execution.
2) net/core/filter.c
[...]
case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
case bpf_ctx_range(struct __sk_buff, wire_len):
return false;
[...]
3) include/uapi/linux/bpf.h
Take the second chunk for the two cases each.
The main changes are:
1) Add support for BPF line info via BTF and extend libbpf as well
as bpftool's program dump to annotate output with BPF C code to
facilitate debugging and introspection, from Martin.
2) Add support for BPF_ALU | BPF_ARSH | BPF_{K,X} in interpreter
and all JIT backends, from Jiong.
3) Improve BPF test coverage on archs with no efficient unaligned
access by adding an "any alignment" flag to the BPF program load
to forcefully disable verifier alignment checks, from David.
4) Add a new bpf_prog_test_run_xattr() API to libbpf which allows for
proper use of BPF_PROG_TEST_RUN with data_out, from Lorenz.
5) Extend tc BPF programs to use a new __sk_buff field called wire_len
for more accurate accounting of packets going to wire, from Petar.
6) Improve bpftool to allow dumping the trace pipe from it and add
several improvements in bash completion and map/prog dump,
from Quentin.
7) Optimize arm64 BPF JIT to always emit movn/movk/movk sequence for
kernel addresses and add a dedicated BPF JIT backend allocator,
from Ard.
8) Add a BPF helper function for IR remotes to report mouse movements,
from Sean.
9) Various cleanups in BPF prog dump e.g. to make UAPI bpf_prog_info
member naming consistent with existing conventions, from Yonghong
and Song.
10) Misc cleanups and improvements in allowing to pass interface name
via cmdline for xdp1 BPF example, from Matteo.
11) Fix a potential segfault in BPF sample loader's kprobes handling,
from Daniel T.
12) Fix SPDX license in libbpf's README.rst, from Andrey.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, the destination register is marked as unknown for 32-bit
sub-register move (BPF_MOV | BPF_ALU) whenever the source register type is
SCALAR_VALUE.
This is too conservative that some valid cases will be rejected.
Especially, this may turn a constant scalar value into unknown value that
could break some assumptions of verifier.
For example, test_l4lb_noinline.c has the following C code:
struct real_definition *dst
1: if (!get_packet_dst(&dst, &pckt, vip_info, is_ipv6))
2: return TC_ACT_SHOT;
3:
4: if (dst->flags & F_IPV6) {
get_packet_dst is responsible for initializing "dst" into valid pointer and
return true (1), otherwise return false (0). The compiled instruction
sequence using alu32 will be:
412: (54) (u32) r7 &= (u32) 1
413: (bc) (u32) r0 = (u32) r7
414: (95) exit
insn 413, a BPF_MOV | BPF_ALU, however will turn r0 into unknown value even
r7 contains SCALAR_VALUE 1.
This causes trouble when verifier is walking the code path that hasn't
initialized "dst" inside get_packet_dst, for which case 0 is returned and
we would then expect verifier concluding line 1 in the above C code pass
the "if" check, therefore would skip fall through path starting at line 4.
Now, because r0 returned from callee has became unknown value, so verifier
won't skip analyzing path starting at line 4 and "dst->flags" requires
dereferencing the pointer "dst" which actually hasn't be initialized for
this path.
This patch relaxed the code marking sub-register move destination. For a
SCALAR_VALUE, it is safe to just copy the value from source then truncate
it into 32-bit.
A unit test also included to demonstrate this issue. This test will fail
before this patch.
This relaxation could let verifier skipping more paths for conditional
comparison against immediate. It also let verifier recording a more
accurate/strict value for one register at one state, if this state end up
with going through exit without rejection and it is used for state
comparison later, then it is possible an inaccurate/permissive value is
better. So the real impact on verifier processed insn number is complex.
But in all, without this fix, valid program could be rejected.
>From real benchmarking on kernel selftests and Cilium bpf tests, there is
no impact on processed instruction number when tests ares compiled with
default compilation options. There is slightly improvements when they are
compiled with -mattr=+alu32 after this patch.
Also, test_xdp_noinline/-mattr=+alu32 now passed verification. It is
rejected before this fix.
Insn processed before/after this patch:
default -mattr=+alu32
Kernel selftest
===
test_xdp.o 371/371 369/369
test_l4lb.o 6345/6345 5623/5623
test_xdp_noinline.o 2971/2971 rejected/2727
test_tcp_estates.o 429/429 430/430
Cilium bpf
===
bpf_lb-DLB_L3.o: 2085/2085 1685/1687
bpf_lb-DLB_L4.o: 2287/2287 1986/1982
bpf_lb-DUNKNOWN.o: 690/690 622/622
bpf_lxc.o: 95033/95033 N/A
bpf_netdev.o: 7245/7245 N/A
bpf_overlay.o: 2898/2898 3085/2947
NOTE:
- bpf_lxc.o and bpf_netdev.o compiled by -mattr=+alu32 are rejected by
verifier due to another issue inside verifier on supporting alu32
binary.
- Each cilium bpf program could generate several processed insn number,
above number is sum of them.
v1->v2:
- Restrict the change on SCALAR_VALUE.
- Update benchmark numbers on Cilium bpf tests.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Several conflicts, seemingly all over the place.
I used Stephen Rothwell's sample resolutions for many of these, if not
just to double check my own work, so definitely the credit largely
goes to him.
The NFP conflict consisted of a bug fix (moving operations
past the rhashtable operation) while chaning the initial
argument in the function call in the moved code.
The net/dsa/master.c conflict had to do with a bug fix intermixing of
making dsa_master_set_mtu() static with the fixing of the tagging
attribute location.
cls_flower had a conflict because the dup reject fix from Or
overlapped with the addition of port range classifiction.
__set_phy_supported()'s conflict was relatively easy to resolve
because Andrew fixed it in both trees, so it was just a matter
of taking the net-next copy. Or at least I think it was :-)
Joe Stringer's fix to the handling of netns id 0 in bpf_sk_lookup()
intermixed with changes on how the sdif and caller_net are calculated
in these code paths in net-next.
The remaining BPF conflicts were largely about the addition of the
__bpf_md_ptr stuff in 'net' overlapping with adjustments and additions
to the relevant data structure where the MD pointer macros are used.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds bpf_line_info support.
It accepts an array of bpf_line_info objects during BPF_PROG_LOAD.
The "line_info", "line_info_cnt" and "line_info_rec_size" are added
to the "union bpf_attr". The "line_info_rec_size" makes
bpf_line_info extensible in the future.
The new "check_btf_line()" ensures the userspace line_info is valid
for the kernel to use.
When the verifier is translating/patching the bpf_prog (through
"bpf_patch_insn_single()"), the line_infos' insn_off is also
adjusted by the newly added "bpf_adj_linfo()".
If the bpf_prog is jited, this patch also provides the jited addrs (in
aux->jited_linfo) for the corresponding line_info.insn_off.
"bpf_prog_fill_jited_linfo()" is added to fill the aux->jited_linfo.
It is currently called by the x86 jit. Other jits can also use
"bpf_prog_fill_jited_linfo()" and it will be done in the followup patches.
In the future, if it deemed necessary, a particular jit could also provide
its own "bpf_prog_fill_jited_linfo()" implementation.
A few "*line_info*" fields are added to the bpf_prog_info such
that the user can get the xlated line_info back (i.e. the line_info
with its insn_off reflecting the translated prog). The jited_line_info
is available if the prog is jited. It is an array of __u64.
If the prog is not jited, jited_line_info_cnt is 0.
The verifier's verbose log with line_info will be done in
a follow up patch.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch remove the rejection on BPF_ALU | BPF_ARSH as we have supported
them on interpreter and all JIT back-ends
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The later patch will introduce "struct bpf_line_info" which
has member "line_off" and "file_off" referring back to the
string section in btf. The line_"off" and file_"off"
are more consistent to the naming convention in btf.h that
means "offset" (e.g. name_off in "struct btf_type").
The to-be-added "struct bpf_line_info" also has another
member, "insn_off" which is the same as the "insn_offset"
in "struct bpf_func_info". Hence, this patch renames "insn_offset"
to "insn_off" for "struct bpf_func_info".
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
malicious bpf program may try to force the verifier to remember
a lot of distinct verifier states.
Put a limit to number of per-insn 'struct bpf_verifier_state'.
Note that hitting the limit doesn't reject the program.
It potentially makes the verifier do more steps to analyze the program.
It means that malicious programs will hit BPF_COMPLEXITY_LIMIT_INSNS sooner
instead of spending cpu time walking long link list.
The limit of BPF_COMPLEXITY_LIMIT_STATES==64 affects cilium progs
with slight increase in number of "steps" it takes to successfully verify
the programs:
before after
bpf_lb-DLB_L3.o 1940 1940
bpf_lb-DLB_L4.o 3089 3089
bpf_lb-DUNKNOWN.o 1065 1065
bpf_lxc-DDROP_ALL.o 28052 | 28162
bpf_lxc-DUNKNOWN.o 35487 | 35541
bpf_netdev.o 10864 10864
bpf_overlay.o 6643 6643
bpf_lcx_jit.o 38437 38437
But it also makes malicious program to be rejected in 0.4 seconds vs 6.5
Hence apply this limit to unprivileged programs only.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
pathological bpf programs may try to force verifier to explode in
the number of branch states:
20: (d5) if r1 s<= 0x24000028 goto pc+0
21: (b5) if r0 <= 0xe1fa20 goto pc+2
22: (d5) if r1 s<= 0x7e goto pc+0
23: (b5) if r0 <= 0xe880e000 goto pc+0
24: (c5) if r0 s< 0x2100ecf4 goto pc+0
25: (d5) if r1 s<= 0xe880e000 goto pc+1
26: (c5) if r0 s< 0xf4041810 goto pc+0
27: (d5) if r1 s<= 0x1e007e goto pc+0
28: (b5) if r0 <= 0xe86be000 goto pc+0
29: (07) r0 += 16614
30: (c5) if r0 s< 0x6d0020da goto pc+0
31: (35) if r0 >= 0x2100ecf4 goto pc+0
Teach verifier to recognize always taken and always not taken branches.
This analysis is already done for == and != comparison.
Expand it to all other branches.
It also helps real bpf programs to be verified faster:
before after
bpf_lb-DLB_L3.o 2003 1940
bpf_lb-DLB_L4.o 3173 3089
bpf_lb-DUNKNOWN.o 1080 1065
bpf_lxc-DDROP_ALL.o 29584 28052
bpf_lxc-DUNKNOWN.o 36916 35487
bpf_netdev.o 11188 10864
bpf_overlay.o 6679 6643
bpf_lcx_jit.o 39555 38437
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Malicious user space may try to force the verifier to use as much cpu
time and memory as possible. Hence check for pending signals
while verifying the program.
Note that suspend of sys_bpf(PROG_LOAD) syscall will lead to EAGAIN,
since the kernel has to release the resources used for program verification.
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Often we want to write tests cases that check things like bad context
offset accesses. And one way to do this is to use an odd offset on,
for example, a 32-bit load.
This unfortunately triggers the alignment checks first on platforms
that do not set CONFIG_EFFICIENT_UNALIGNED_ACCESS. So the test
case see the alignment failure rather than what it was testing for.
It is often not completely possible to respect the original intention
of the test, or even test the same exact thing, while solving the
alignment issue.
Another option could have been to check the alignment after the
context and other validations are performed by the verifier, but
that is a non-trivial change to the verifier.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
bpf-next 2018-11-30
The following pull-request contains BPF updates for your *net-next* tree.
(Getting out bit earlier this time to pull in a dependency from bpf.)
The main changes are:
1) Add libbpf ABI versioning and document API naming conventions
as well as ABI versioning process, from Andrey.
2) Add a new sk_msg_pop_data() helper for sk_msg based BPF
programs that is used in conjunction with sk_msg_push_data()
for adding / removing meta data to the msg data, from John.
3) Optimize convert_bpf_ld_abs() for 0 offset and fix various
lib and testsuite build failures on 32 bit, from David.
4) Make BPF prog dump for !JIT identical to how we dump subprogs
when JIT is in use, from Yonghong.
5) Rename btf_get_from_id() to make it more conform with libbpf
API naming conventions, from Martin.
6) Add a missing BPF kselftest config item, from Naresh.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Trivial conflict in net/core/filter.c, a locally computed
'sdif' is now an argument to the function.
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 838e96904f ("bpf: Introduce bpf_func_info")
added bpf func info support. The userspace is able
to get better ksym's for bpf programs with jit, and
is able to print out func prototypes.
For a program containing func-to-func calls, the existing
implementation returns user specified number of function
calls and BTF types if jit is enabled. If the jit is not
enabled, it only returns the type for the main function.
This is undesirable. Interpreter may still be used
and we should keep feature identical regardless of
whether jit is enabled or not.
This patch fixed this discrepancy.
Fixes: 838e96904f ("bpf: Introduce bpf_func_info")
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch added interface to load a program with the following
additional information:
. prog_btf_fd
. func_info, func_info_rec_size and func_info_cnt
where func_info will provide function range and type_id
corresponding to each function.
The func_info_rec_size is introduced in the UAPI to specify
struct bpf_func_info size passed from user space. This
intends to make bpf_func_info structure growable in the future.
If the kernel gets a different bpf_func_info size from userspace,
it will try to handle user request with part of bpf_func_info
it can understand. In this patch, kernel can understand
struct bpf_func_info {
__u32 insn_offset;
__u32 type_id;
};
If user passed a bpf func_info record size of 16 bytes, the
kernel can still handle part of records with the above definition.
If verifier agrees with function range provided by the user,
the bpf_prog ksym for each function will use the func name
provided in the type_id, which is supposed to provide better
encoding as it is not limited by 16 bytes program name
limitation and this is better for bpf program which contains
multiple subprograms.
The bpf_prog_info interface is also extended to
return btf_id, func_info, func_info_rec_size and func_info_cnt
to userspace, so userspace can print out the function prototype
for each xlated function. The insn_offset in the returned
func_info corresponds to the insn offset for xlated functions.
With other jit related fields in bpf_prog_info, userspace can also
print out function prototypes for each jited function.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When patching in a new sequence for the first insn of a subprog, the start
of that subprog does not change (it's the first insn of the sequence), so
adjust_subprog_starts should check start <= off (rather than < off).
Also added a test to test_verifier.c (it's essentially the syz reproducer).
Fixes: cc8b0b92a1 ("bpf: introduce function calls (function boundaries)")
Reported-by: syzbot+4fc427c7af994b0948be@syzkaller.appspotmail.com
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently BPF verifier allows narrow loads for a context field only with
offset zero. E.g. if there is a __u32 field then only the following
loads are permitted:
* off=0, size=1 (narrow);
* off=0, size=2 (narrow);
* off=0, size=4 (full).
On the other hand LLVM can generate a load with offset different than
zero that make sense from program logic point of view, but verifier
doesn't accept it.
E.g. tools/testing/selftests/bpf/sendmsg4_prog.c has code:
#define DST_IP4 0xC0A801FEU /* 192.168.1.254 */
...
if ((ctx->user_ip4 >> 24) == (bpf_htonl(DST_IP4) >> 24) &&
where ctx is struct bpf_sock_addr.
Some versions of LLVM can produce the following byte code for it:
8: 71 12 07 00 00 00 00 00 r2 = *(u8 *)(r1 + 7)
9: 67 02 00 00 18 00 00 00 r2 <<= 24
10: 18 03 00 00 00 00 00 fe 00 00 00 00 00 00 00 00 r3 = 4261412864 ll
12: 5d 32 07 00 00 00 00 00 if r2 != r3 goto +7 <LBB0_6>
where `*(u8 *)(r1 + 7)` means narrow load for ctx->user_ip4 with size=1
and offset=3 (7 - sizeof(ctx->user_family) = 3). This load is currently
rejected by verifier.
Verifier code that rejects such loads is in bpf_ctx_narrow_access_ok()
what means any is_valid_access implementation, that uses the function,
works this way, e.g. bpf_skb_is_valid_access() for __sk_buff or
sock_addr_is_valid_access() for bpf_sock_addr.
The patch makes such loads supported. Offset can be in [0; size_default)
but has to be multiple of load size. E.g. for __u32 field the following
loads are supported now:
* off=0, size=1 (narrow);
* off=1, size=1 (narrow);
* off=2, size=1 (narrow);
* off=3, size=1 (narrow);
* off=0, size=2 (narrow);
* off=2, size=2 (narrow);
* off=0, size=4 (full).
Reported-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Function bpf_prog_offload_verifier_prep(), called from the kernel BPF
verifier to run a driver-specific callback for preparing for the
verification step for offloaded programs, takes a pointer to a struct
bpf_verifier_env object. However, no driver callback needs the whole
structure at this time: the two drivers supporting this, nfp and
netdevsim, only need a pointer to the struct bpf_prog instance held by
env.
Update the callback accordingly, on kernel side and in these two
drivers.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In check_packet_access, update max_pkt_offset after the offset has passed
__check_packet_access.
It should be safe to use u32 for max_pkt_offset as explained in code
comment.
Also, when there is tail call, the max_pkt_offset of the called program is
unknown, so conservatively set max_pkt_offset to MAX_PACKET_OFF for such
case.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In the verifier there is no such semantics where registers with
PTR_TO_MAP_VALUE type have an id assigned to them. This is only
used in PTR_TO_MAP_VALUE_OR_NULL and later on nullified once the
test against NULL has been pattern matched and type transformed
into PTR_TO_MAP_VALUE.
Fixes: 3e6a4b3e02 ("bpf/verifier: introduce BPF_PTR_TO_MAP_VALUE")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Roman Gushchin <guro@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ALU operations on pointers such as scalar_reg += map_value_ptr are
handled in adjust_ptr_min_max_vals(). Problem is however that map_ptr
and range in the register state share a union, so transferring state
through dst_reg->range = ptr_reg->range is just buggy as any new
map_ptr in the dst_reg is then truncated (or null) for subsequent
checks. Fix this by adding a raw member and use it for copying state
over to dst_reg.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Given this seems to be quite fragile and can easily slip through the
cracks, lets make direct packet write more robust by requiring that
future program types which allow for such write must provide a prologue
callback. In case of XDP and sk_msg it's noop, thus add a generic noop
handler there. The latter starts out with NULL data/data_end unconditionally
when sg pages are shared.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit b39b5f411d ("bpf: add cg_skb_is_valid_access for
BPF_PROG_TYPE_CGROUP_SKB") added direct packet access for skbs in
cg_skb program types, however allowed access type was not added to
the may_access_direct_pkt_data() helper. Therefore the latter always
returns false. This is not directly an issue, it just means writes
are unconditionally disabled (which is correct) but also reads.
Latter is relevant in this function when BPF helpers may read direct
packet data which is unconditionally disabled then. Fix it by properly
adding BPF_PROG_TYPE_CGROUP_SKB to may_access_direct_pkt_data().
Fixes: b39b5f411d ("bpf: add cg_skb_is_valid_access for BPF_PROG_TYPE_CGROUP_SKB")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit d58e468b11 ("flow_dissector: implements flow dissector BPF
hook") added direct packet access for skbs in may_access_direct_pkt_data()
function where this enables read and write access to the skb->data. This
is buggy because without a prologue generator such as bpf_unclone_prologue()
we would allow for writing into cloned skbs. Original intention might have
been to only allow read access where this is not needed (similar as the
flow_dissector_func_proto() indicates which enables only bpf_skb_load_bytes()
as well), therefore this patch fixes it to restrict to read-only.
Fixes: d58e468b11 ("flow_dissector: implements flow dissector BPF hook")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Petar Penkov <ppenkov@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extend prior work from 09772d92cd ("bpf: avoid retpoline for
lookup/update/delete calls on maps") to also apply to the recently
added map helpers that perform push/pop/peek operations so that
the indirect call can be avoided.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
They PTR_TO_FLOW_KEYS is not used today to be passed into a helper
as memory, so it can be removed from check_helper_mem_access().
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We should not enable xadd operation for flow key memory if not
needed there anyway. There is no such issue as described in the
commit f37a8cb84c ("bpf: reject stores into ctx via st and xadd")
since there's no context rewriter for flow keys today, but it
also shouldn't become part of the user facing behavior to allow
for it. After patch:
0: (79) r7 = *(u64 *)(r1 +144)
1: (b7) r3 = 4096
2: (db) lock *(u64 *)(r7 +0) += r3
BPF_XADD stores into R7 flow_keys is not allowed
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Using reg_type_str[insn->dst_reg] is incorrect since insn->dst_reg
contains the register number but not the actual register type. Add
a small reg_state() helper and use it to get to the type. Also fix
up the test_verifier test cases that have an incorrect errstr.
Fixes: 9d2be44a7f ("bpf: Reuse canonical string formatter for ctx errs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Queue/stack maps implement a FIFO/LIFO data storage for ebpf programs.
These maps support peek, pop and push operations that are exposed to eBPF
programs through the new bpf_map[peek/pop/push] helpers. Those operations
are exposed to userspace applications through the already existing
syscalls in the following way:
BPF_MAP_LOOKUP_ELEM -> peek
BPF_MAP_LOOKUP_AND_DELETE_ELEM -> pop
BPF_MAP_UPDATE_ELEM -> push
Queue/stack maps are implemented using a buffer, tail and head indexes,
hence BPF_F_NO_PREALLOC is not supported.
As opposite to other maps, queue and stack do not use RCU for protecting
maps values, the bpf_map[peek/pop] have a ARG_PTR_TO_UNINIT_MAP_VALUE
argument that is a pointer to a memory zone where to save the value of a
map. Basically the same as ARG_PTR_TO_UNINIT_MEM, but the size has not
be passed as an extra argument.
Our main motivation for implementing queue/stack maps was to keep track
of a pool of elements, like network ports in a SNAT, however we forsee
other use cases, like for exampling saving last N kernel events in a map
and then analysing from userspace.
Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ARG_PTR_TO_UNINIT_MAP_VALUE argument is a pointer to a memory zone
used to save the value of a map. Basically the same as
ARG_PTR_TO_UNINIT_MEM, but the size has not be passed as an extra
argument.
This will be used in the following patch that implements some new
helpers that receive a pointer to be filled with a map value.
Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2018-10-08
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) sk_lookup_[tcp|udp] and sk_release helpers from Joe Stringer which allow
BPF programs to perform lookups for sockets in a network namespace. This would
allow programs to determine early on in processing whether the stack is
expecting to receive the packet, and perform some action (eg drop,
forward somewhere) based on this information.
2) per-cpu cgroup local storage from Roman Gushchin.
Per-cpu cgroup local storage is very similar to simple cgroup storage
except all the data is per-cpu. The main goal of per-cpu variant is to
implement super fast counters (e.g. packet counters), which don't require
neither lookups, neither atomic operations in a fast path.
The example of these hybrid counters is in selftests/bpf/netcnt_prog.c
3) allow HW offload of programs with BPF-to-BPF function calls from Quentin Monnet
4) support more than 64-byte key/value in HW offloaded BPF maps from Jakub Kicinski
5) rename of libbpf interfaces from Andrey Ignatov.
libbpf is maturing as a library and should follow good practices in
library design and implementation to play well with other libraries.
This patch set brings consistent naming convention to global symbols.
6) relicense libbpf as LGPL-2.1 OR BSD-2-Clause from Alexei Starovoitov
to let Apache2 projects use libbpf
7) various AF_XDP fixes from Björn and Magnus
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that there is at least one driver supporting BPF-to-BPF function
calls, lift the restriction, in the verifier, on hardware offload of
eBPF programs containing such calls. But prevent jit_subprogs(), still
in the verifier, from being run for offloaded programs.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In preparation for BPF-to-BPF calls in offloaded programs, add a new
function attribute to the struct bpf_prog_offload_ops so that drivers
supporting eBPF offload can hook at the end of program verification, and
potentially extract information collected by the verifier.
Implement a minimal callback (returning 0) in the drivers providing the
structs, namely netdevsim and nfp.
This will be useful in the nfp driver, in later commits, to extract the
number of subprograms as well as the stack depth for those subprograms.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When I wrote commit 468f6eafa6 ("bpf: fix 32-bit ALU op verification"), I
assumed that, in order to emulate 64-bit arithmetic with 32-bit logic, it
is sufficient to just truncate the output to 32 bits; and so I just moved
the register size coercion that used to be at the start of the function to
the end of the function.
That assumption is true for almost every op, but not for 32-bit right
shifts, because those can propagate information towards the least
significant bit. Fix it by always truncating inputs for 32-bit ops to 32
bits.
Also get rid of the coerce_reg_to_size() after the ALU op, since that has
no effect.
Fixes: 468f6eafa6 ("bpf: fix 32-bit ALU op verification")
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch adds new BPF helper functions, bpf_sk_lookup_tcp() and
bpf_sk_lookup_udp() which allows BPF programs to find out if there is a
socket listening on this host, and returns a socket pointer which the
BPF program can then access to determine, for instance, whether to
forward or drop traffic. bpf_sk_lookup_xxx() may take a reference on the
socket, so when a BPF program makes use of this function, it must
subsequently pass the returned pointer into the newly added sk_release()
to return the reference.
By way of example, the following pseudocode would filter inbound
connections at XDP if there is no corresponding service listening for
the traffic:
struct bpf_sock_tuple tuple;
struct bpf_sock_ops *sk;
populate_tuple(ctx, &tuple); // Extract the 5tuple from the packet
sk = bpf_sk_lookup_tcp(ctx, &tuple, sizeof tuple, netns, 0);
if (!sk) {
// Couldn't find a socket listening for this traffic. Drop.
return TC_ACT_SHOT;
}
bpf_sk_release(sk, 0);
return TC_ACT_OK;
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow helper functions to acquire a reference and return it into a
register. Specific pointer types such as the PTR_TO_SOCKET will
implicitly represent such a reference. The verifier must ensure that
these references are released exactly once in each path through the
program.
To achieve this, this commit assigns an id to the pointer and tracks it
in the 'bpf_func_state', then when the function or program exits,
verifies that all of the acquired references have been freed. When the
pointer is passed to a function that frees the reference, it is removed
from the 'bpf_func_state` and all existing copies of the pointer in
registers are marked invalid.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
An upcoming commit will need very similar copy/realloc boilerplate, so
refactor the existing stack copy/realloc functions into macros to
simplify it.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Teach the verifier a little bit about a new type of pointer, a
PTR_TO_SOCKET. This pointer type is accessed from BPF through the
'struct bpf_sock' structure.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This check will be reused by an upcoming commit for conditional jump
checks for sockets. Refactor it a bit to simplify the later commit.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The array "reg_type_str" provides canonical formatting of register
types, however a couple of places would previously check whether a
register represented the context and write the name "context" directly.
An upcoming commit will add another pointer type to these statements, so
to provide more accurate error messages in the verifier, update these
error messages to use "reg_type_str" instead.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
An upcoming commit will add another two pointer types that need very
similar behaviour, so generalise this function now.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add this iterator for spilled registers, it concentrates the details of
how to get the current frame's spilled registers into a single macro
while clarifying the intention of the code which is calling the macro.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This commit introduced per-cpu cgroup local storage.
Per-cpu cgroup local storage is very similar to simple cgroup storage
(let's call it shared), except all the data is per-cpu.
The main goal of per-cpu variant is to implement super fast
counters (e.g. packet counters), which don't require neither
lookups, neither atomic operations.
>From userspace's point of view, accessing a per-cpu cgroup storage
is similar to other per-cpu map types (e.g. per-cpu hashmaps and
arrays).
Writing to a per-cpu cgroup storage is not atomic, but is performed
by copying longs, so some minimal atomicity is here, exactly
as with other per-cpu maps.
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In order to introduce per-cpu cgroup storage, let's generalize
bpf cgroup core to support multiple cgroup storage types.
Potentially, per-node cgroup storage can be added later.
This commit is mostly a formal change that replaces
cgroup_storage pointer with a array of cgroup_storage pointers.
It doesn't actually introduce a new storage type,
it will be done later.
Each bpf program is now able to have one cgroup storage of each type.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-09-25
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Allow for RX stack hardening by implementing the kernel's flow
dissector in BPF. Idea was originally presented at netconf 2017 [0].
Quote from merge commit:
[...] Because of the rigorous checks of the BPF verifier, this
provides significant security guarantees. In particular, the BPF
flow dissector cannot get inside of an infinite loop, as with
CVE-2013-4348, because BPF programs are guaranteed to terminate.
It cannot read outside of packet bounds, because all memory accesses
are checked. Also, with BPF the administrator can decide which
protocols to support, reducing potential attack surface. Rarely
encountered protocols can be excluded from dissection and the
program can be updated without kernel recompile or reboot if a
bug is discovered. [...]
Also, a sample flow dissector has been implemented in BPF as part
of this work, from Petar and Willem.
[0] http://vger.kernel.org/netconf2017_files/rx_hardening_and_udp_gso.pdf
2) Add support for bpftool to list currently active attachment
points of BPF networking programs providing a quick overview
similar to bpftool's perf subcommand, from Yonghong.
3) Fix a verifier pruning instability bug where a union member
from the register state was not cleared properly leading to
branches not being pruned despite them being valid candidates,
from Alexei.
4) Various smaller fast-path optimizations in XDP's map redirect
code, from Jesper.
5) Enable to recognize BPF_MAP_TYPE_REUSEPORT_SOCKARRAY maps
in bpftool, from Roman.
6) Remove a duplicate check in libbpf that probes for function
storage, from Taeung.
7) Fix an issue in test_progs by avoid checking for errno since
on success its value should not be checked, from Mauricio.
8) Fix unused variable warning in bpf_getsockopt() helper when
CONFIG_INET is not configured, from Anders.
9) Fix a compilation failure in the BPF sample code's use of
bpf_flow_keys, from Prashant.
10) Minor cleanups in BPF code, from Yue and Zhong.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Two new tls tests added in parallel in both net and net-next.
Used Stephen Rothwell's linux-next resolution.
Signed-off-by: David S. Miller <davem@davemloft.net>
Adds a hook for programs of type BPF_PROG_TYPE_FLOW_DISSECTOR and
attach type BPF_FLOW_DISSECTOR that is executed in the flow dissector
path. The BPF program is per-network namespace.
Signed-off-by: Petar Penkov <ppenkov@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Subtraction of pointers was accidentally allowed for unpriv programs
by commit 82abbf8d2f. Revert that part of commit.
Fixes: 82abbf8d2f ("bpf: do not allow root to mangle valid pointers")
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Edward Cree says:
In check_mem_access(), for the PTR_TO_CTX case, after check_ctx_access()
has supplied a reg_type, the other members of the register state are set
appropriately. Previously reg.range was set to 0, but as it is in a
union with reg.map_ptr, which is larger, upper bytes of the latter were
left in place. This then caused the memcmp() in regsafe() to fail,
preventing some branches from being pruned (and occasionally causing the
same program to take a varying number of processed insns on repeated
verifier runs).
Fix the instability by clearing bpf_reg_state in __mark_reg_[un]known()
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Debugged-by: Edward Cree <ecree@solarflare.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
If a stack slot does not hold a spilled register (STACK_SPILL), then each
of its eight bytes could potentially have a different slot_type. This
information can be important for debugging, and previously we either did
not print anything for the stack slot, or just printed fp-X=0 in the case
where its first byte was STACK_ZERO.
Instead, print eight characters with either 0 (STACK_ZERO), m (STACK_MISC)
or ? (STACK_INVALID) for any stack slot which is neither STACK_SPILL nor
entirely STACK_INVALID.
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
By giving each register its own liveness chain, we elide the skip_callee()
logic. Instead, each register's parent is the state it inherits from;
both check_func_call() and prepare_func_exit() automatically connect
reg states to the correct chain since when they copy the reg state across
(r1-r5 into the callee as args, and r0 out as the return value) they also
copy the parent pointer.
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commits 109980b894 ("bpf: don't select potentially stale ri->map
from buggy xdp progs") and 7c30013133 ("bpf: fix ri->map_owner
pointer on bpf_prog_realloc") tried to mitigate that buggy programs
using bpf_redirect_map() helper call do not leave stale maps behind.
Idea was to add a map_owner cookie into the per CPU struct redirect_info
which was set to prog->aux by the prog making the helper call as a
proof that the map is not stale since the prog is implicitly holding
a reference to it. This owner cookie could later on get compared with
the program calling into BPF whether they match and therefore the
redirect could proceed with processing the map safely.
In (obvious) hindsight, this approach breaks down when tail calls are
involved since the original caller's prog->aux pointer does not have
to match the one from one of the progs out of the tail call chain,
and therefore the xdp buffer will be dropped instead of redirected.
A way around that would be to fix the issue differently (which also
allows to remove related work in fast path at the same time): once
the life-time of a redirect map has come to its end we use it's map
free callback where we need to wait on synchronize_rcu() for current
outstanding xdp buffers and remove such a map pointer from the
redirect info if found to be present. At that time no program is
using this map anymore so we simply invalidate the map pointers to
NULL iff they previously pointed to that instance while making sure
that the redirect path only reads out the map once.
Fixes: 97f91a7cf0 ("bpf: add bpf_redirect_map helper routine")
Fixes: 109980b894 ("bpf: don't select potentially stale ri->map from buggy xdp progs")
Reported-by: Sebastiano Miano <sebastiano.miano@polito.it>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds a BPF_PROG_TYPE_SK_REUSEPORT which can select
a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY. Like other
non SK_FILTER/CGROUP_SKB program, it requires CAP_SYS_ADMIN.
BPF_PROG_TYPE_SK_REUSEPORT introduces "struct sk_reuseport_kern"
to store the bpf context instead of using the skb->cb[48].
At the SO_REUSEPORT sk lookup time, it is in the middle of transiting
from a lower layer (ipv4/ipv6) to a upper layer (udp/tcp). At this
point, it is not always clear where the bpf context can be appended
in the skb->cb[48] to avoid saving-and-restoring cb[]. Even putting
aside the difference between ipv4-vs-ipv6 and udp-vs-tcp. It is not
clear if the lower layer is only ipv4 and ipv6 in the future and
will it not touch the cb[] again before transiting to the upper
layer.
For example, in udp_gro_receive(), it uses the 48 byte NAPI_GRO_CB
instead of IP[6]CB and it may still modify the cb[] after calling
the udp[46]_lib_lookup_skb(). Because of the above reason, if
sk->cb is used for the bpf ctx, saving-and-restoring is needed
and likely the whole 48 bytes cb[] has to be saved and restored.
Instead of saving, setting and restoring the cb[], this patch opts
to create a new "struct sk_reuseport_kern" and setting the needed
values in there.
The new BPF_PROG_TYPE_SK_REUSEPORT and "struct sk_reuseport_(kern|md)"
will serve all ipv4/ipv6 + udp/tcp combinations. There is no protocol
specific usage at this point and it is also inline with the current
sock_reuseport.c implementation (i.e. no protocol specific requirement).
In "struct sk_reuseport_md", this patch exposes data/data_end/len
with semantic similar to other existing usages. Together
with "bpf_skb_load_bytes()" and "bpf_skb_load_bytes_relative()",
the bpf prog can peek anywhere in the skb. The "bind_inany" tells
the bpf prog that the reuseport group is bind-ed to a local
INANY address which cannot be learned from skb.
The new "bind_inany" is added to "struct sock_reuseport" which will be
used when running the new "BPF_PROG_TYPE_SK_REUSEPORT" bpf prog in order
to avoid repeating the "bind INANY" test on
"sk_v6_rcv_saddr/sk->sk_rcv_saddr" every time a bpf prog is run. It can
only be properly initialized when a "sk->sk_reuseport" enabled sk is
adding to a hashtable (i.e. during "reuseport_alloc()" and
"reuseport_add_sock()").
The new "sk_select_reuseport()" is the main helper that the
bpf prog will use to select a SO_REUSEPORT sk. It is the only function
that can use the new BPF_MAP_TYPE_REUSEPORT_ARRAY. As mentioned in
the earlier patch, the validity of a selected sk is checked in
run time in "sk_select_reuseport()". Doing the check in
verification time is difficult and inflexible (consider the map-in-map
use case). The runtime check is to compare the selected sk's reuseport_id
with the reuseport_id that we want. This helper will return -EXXX if the
selected sk cannot serve the incoming request (e.g. reuseport_id
not match). The bpf prog can decide if it wants to do SK_DROP as its
discretion.
When the bpf prog returns SK_PASS, the kernel will check if a
valid sk has been selected (i.e. "reuse_kern->selected_sk != NULL").
If it does , it will use the selected sk. If not, the kernel
will select one from "reuse->socks[]" (as before this patch).
The SK_DROP and SK_PASS handling logic will be in the next patch.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The bpf_get_local_storage() helper function is used
to get a pointer to the bpf local storage from a bpf program.
It takes a pointer to a storage map and flags as arguments.
Right now it accepts only cgroup storage maps, and flags
argument has to be 0. Further it can be extended to support
other types of local storage: e.g. thread local storage etc.
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
BPF_MAP_TYPE_CGROUP_STORAGE maps are special in a way
that the access from the bpf program side is lookup-free.
That means the result is guaranteed to be a valid
pointer to the cgroup storage; no NULL-check is required.
This patch introduces BPF_PTR_TO_MAP_VALUE return type,
which is required to cause the verifier accept programs,
which are not checking the map value pointer for being NULL.
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This commit introduces BPF_MAP_TYPE_CGROUP_STORAGE maps:
a special type of maps which are implementing the cgroup storage.
>From the userspace point of view it's almost a generic
hash map with the (cgroup inode id, attachment type) pair
used as a key.
The only difference is that some operations are restricted:
1) a user can't create new entries,
2) a user can't remove existing entries.
The lookup from userspace is o(log(n)).
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When check_alu_op() handles a BPF_MOV64 between two registers,
it calls check_reg_arg(DST_OP) on the dst register, marking it
as unbounded. If the src and dst register are the same, this
marks the src as unbounded, which can lead to unexpected errors
for further checks that rely on bounds info. For example:
BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
Results in:
"math between ctx pointer and register with unbounded
min value is not allowed"
check_alu_op() now uses check_reg_arg(DST_OP_NO_MARK), and MOVs
that need to mark the dst register (MOVIMM, MOV32) do so.
Added a test case for MOV64 dst == src, and dst != src.
Signed-off-by: Arthur Fabre <afabre@cloudflare.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Daniel Borkmann says:
====================
pull-request: bpf-next 2018-07-20
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add sharing of BPF objects within one ASIC: this allows for reuse of
the same program on multiple ports of a device, and therefore gains
better code store utilization. On top of that, this now also enables
sharing of maps between programs attached to different ports of a
device, from Jakub.
2) Cleanup in libbpf and bpftool's Makefile to reduce unneeded feature
detections and unused variable exports, also from Jakub.
3) First batch of RCU annotation fixes in prog array handling, i.e.
there are several __rcu markers which are not correct as well as
some of the RCU handling, from Roman.
4) Two fixes in BPF sample files related to checking of the prog_cnt
upper limit from sample loader, from Dan.
5) Minor cleanup in sockmap to remove a set but not used variable,
from Colin.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
A set of new API functions exported for the drivers will soon use
'bpf_offload_dev_' as a prefix. Rename the bpf_offload_dev_match()
which is internal to the core (used by the verifier) to avoid any
confusion.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
syzkaller managed to trigger the following bug through fault injection:
[...]
[ 141.043668] verifier bug. No program starts at insn 3
[ 141.044648] WARNING: CPU: 3 PID: 4072 at kernel/bpf/verifier.c:1613
get_callee_stack_depth kernel/bpf/verifier.c:1612 [inline]
[ 141.044648] WARNING: CPU: 3 PID: 4072 at kernel/bpf/verifier.c:1613
fixup_call_args kernel/bpf/verifier.c:5587 [inline]
[ 141.044648] WARNING: CPU: 3 PID: 4072 at kernel/bpf/verifier.c:1613
bpf_check+0x525e/0x5e60 kernel/bpf/verifier.c:5952
[ 141.047355] CPU: 3 PID: 4072 Comm: a.out Not tainted 4.18.0-rc4+ #51
[ 141.048446] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),BIOS 1.10.2-1 04/01/2014
[ 141.049877] Call Trace:
[ 141.050324] __dump_stack lib/dump_stack.c:77 [inline]
[ 141.050324] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113
[ 141.050950] ? dump_stack_print_info.cold.2+0x52/0x52 lib/dump_stack.c:60
[ 141.051837] panic+0x238/0x4e7 kernel/panic.c:184
[ 141.052386] ? add_taint.cold.5+0x16/0x16 kernel/panic.c:385
[ 141.053101] ? __warn.cold.8+0x148/0x1ba kernel/panic.c:537
[ 141.053814] ? __warn.cold.8+0x117/0x1ba kernel/panic.c:530
[ 141.054506] ? get_callee_stack_depth kernel/bpf/verifier.c:1612 [inline]
[ 141.054506] ? fixup_call_args kernel/bpf/verifier.c:5587 [inline]
[ 141.054506] ? bpf_check+0x525e/0x5e60 kernel/bpf/verifier.c:5952
[ 141.055163] __warn.cold.8+0x163/0x1ba kernel/panic.c:538
[ 141.055820] ? get_callee_stack_depth kernel/bpf/verifier.c:1612 [inline]
[ 141.055820] ? fixup_call_args kernel/bpf/verifier.c:5587 [inline]
[ 141.055820] ? bpf_check+0x525e/0x5e60 kernel/bpf/verifier.c:5952
[...]
What happens in jit_subprogs() is that kcalloc() for the subprog func
buffer is failing with NULL where we then bail out. Latter is a plain
return -ENOMEM, and this is definitely not okay since earlier in the
loop we are walking all subprogs and temporarily rewrite insn->off to
remember the subprog id as well as insn->imm to temporarily point the
call to __bpf_call_base + 1 for the initial JIT pass. Thus, bailing
out in such state and handing this over to the interpreter is troublesome
since later/subsequent e.g. find_subprog() lookups are based on wrong
insn->imm.
Therefore, once we hit this point, we need to jump to out_free path
where we undo all changes from earlier loop, so that interpreter can
work on unmodified insn->{off,imm}.
Another point is that should find_subprog() fail in jit_subprogs() due
to a verifier bug, then we also should not simply defer the program to
the interpreter since also here we did partial modifications. Instead
we should just bail out entirely and return an error to the user who is
trying to load the program.
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Reported-by: syzbot+7d427828b2ea6e592804@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As commit 28e33f9d78 ("bpf: disallow arithmetic operations on
context pointer") already describes, f1174f77b5 ("bpf/verifier:
rework value tracking") removed the specific white-listed cases
we had previously where we would allow for pointer arithmetic in
order to further generalize it, and allow e.g. context access via
modified registers. While the dereferencing of modified context
pointers had been forbidden through 28e33f9d78, syzkaller did
recently manage to trigger several KASAN splats for slab out of
bounds access and use after frees by simply passing a modified
context pointer to a helper function which would then do the bad
access since verifier allowed it in adjust_ptr_min_max_vals().
Rejecting arithmetic on ctx pointer in adjust_ptr_min_max_vals()
generally could break existing programs as there's a valid use
case in tracing in combination with passing the ctx to helpers as
bpf_probe_read(), where the register then becomes unknown at
verification time due to adding a non-constant offset to it. An
access sequence may look like the following:
offset = args->filename; /* field __data_loc filename */
bpf_probe_read(&dst, len, (char *)args + offset); // args is ctx
There are two options: i) we could special case the ctx and as
soon as we add a constant or bounded offset to it (hence ctx type
wouldn't change) we could turn the ctx into an unknown scalar, or
ii) we generalize the sanity test for ctx member access into a
small helper and assert it on the ctx register that was passed
as a function argument. Fwiw, latter is more obvious and less
complex at the same time, and one case that may potentially be
legitimate in future for ctx member access at least would be for
ctx to carry a const offset. Therefore, fix follows approach
from ii) and adds test cases to BPF kselftests.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Reported-by: syzbot+3d0b2441dbb71751615e@syzkaller.appspotmail.com
Reported-by: syzbot+c8504affd4fdd0c1b626@syzkaller.appspotmail.com
Reported-by: syzbot+e5190cb881d8660fb1a3@syzkaller.appspotmail.com
Reported-by: syzbot+efae31b384d5badbd620@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Wang reported that all the testcases for BPF_PROG_TYPE_PERF_EVENT
program type in test_verifier report the following errors on x86_32:
172/p unpriv: spill/fill of different pointers ldx FAIL
Unexpected error message!
0: (bf) r6 = r10
1: (07) r6 += -8
2: (15) if r1 == 0x0 goto pc+3
R1=ctx(id=0,off=0,imm=0) R6=fp-8,call_-1 R10=fp0,call_-1
3: (bf) r2 = r10
4: (07) r2 += -76
5: (7b) *(u64 *)(r6 +0) = r2
6: (55) if r1 != 0x0 goto pc+1
R1=ctx(id=0,off=0,imm=0) R2=fp-76,call_-1 R6=fp-8,call_-1 R10=fp0,call_-1 fp-8=fp
7: (7b) *(u64 *)(r6 +0) = r1
8: (79) r1 = *(u64 *)(r6 +0)
9: (79) r1 = *(u64 *)(r1 +68)
invalid bpf_context access off=68 size=8
378/p check bpf_perf_event_data->sample_period byte load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (71) r0 = *(u8 *)(r1 +68)
invalid bpf_context access off=68 size=1
379/p check bpf_perf_event_data->sample_period half load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (69) r0 = *(u16 *)(r1 +68)
invalid bpf_context access off=68 size=2
380/p check bpf_perf_event_data->sample_period word load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (61) r0 = *(u32 *)(r1 +68)
invalid bpf_context access off=68 size=4
381/p check bpf_perf_event_data->sample_period dword load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (79) r0 = *(u64 *)(r1 +68)
invalid bpf_context access off=68 size=8
Reason is that struct pt_regs on x86_32 doesn't fully align to 8 byte
boundary due to its size of 68 bytes. Therefore, bpf_ctx_narrow_access_ok()
will then bail out saying that off & (size_default - 1) which is 68 & 7
doesn't cleanly align in the case of sample_period access from struct
bpf_perf_event_data, hence verifier wrongly thinks we might be doing an
unaligned access here though underlying arch can handle it just fine.
Therefore adjust this down to machine size and check and rewrite the
offset for narrow access on that basis. We also need to fix corresponding
pe_prog_is_valid_access(), since we hit the check for off % size != 0
(e.g. 68 % 8 -> 4) in the first and last test. With that in place, progs
for tracing work on x86_32.
Reported-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While some of the BPF map lookup helpers provide a ->map_gen_lookup()
callback for inlining the map lookup altogether it is not available
for every map, so the remaining ones have to call bpf_map_lookup_elem()
helper which does a dispatch to map->ops->map_lookup_elem(). In
times of retpolines, this will control and trap speculative execution
rather than letting it do its work for the indirect call and will
therefore cause a slowdown. Likewise, bpf_map_update_elem() and
bpf_map_delete_elem() do not have an inlined version and need to call
into their map->ops->map_update_elem() resp. map->ops->map_delete_elem()
handlers.
Before:
# bpftool prog dump xlated id 1
0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = map[id:1]
5: (85) call __htab_map_lookup_elem#232656
6: (15) if r0 == 0x0 goto pc+4
7: (71) r1 = *(u8 *)(r0 +35)
8: (55) if r1 != 0x0 goto pc+1
9: (72) *(u8 *)(r0 +35) = 1
10: (07) r0 += 56
11: (15) if r0 == 0x0 goto pc+4
12: (bf) r2 = r0
13: (18) r1 = map[id:1]
15: (85) call bpf_map_delete_elem#215008 <-- indirect call via
16: (95) exit helper
After:
# bpftool prog dump xlated id 1
0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = map[id:1]
5: (85) call __htab_map_lookup_elem#233328
6: (15) if r0 == 0x0 goto pc+4
7: (71) r1 = *(u8 *)(r0 +35)
8: (55) if r1 != 0x0 goto pc+1
9: (72) *(u8 *)(r0 +35) = 1
10: (07) r0 += 56
11: (15) if r0 == 0x0 goto pc+4
12: (bf) r2 = r0
13: (18) r1 = map[id:1]
15: (85) call htab_lru_map_delete_elem#238240 <-- direct call
16: (95) exit
In all three lookup/update/delete cases however we can use the actual
address of the map callback directly if we find that there's only a
single path with a map pointer leading to the helper call, meaning
when the map pointer has not been poisoned from verifier side.
Example code can be seen above for the delete case.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stating 'proprietary program' in the error is just silly since it
can also be a different open source license than that which is just
not compatible.
Reference: https://twitter.com/majek04/status/998531268039102465
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull networking fixes from David Miller:
"Let's begin the holiday weekend with some networking fixes:
1) Whoops need to restrict cfg80211 wiphy names even more to 64
bytes. From Eric Biggers.
2) Fix flags being ignored when using kernel_connect() with SCTP,
from Xin Long.
3) Use after free in DCCP, from Alexey Kodanev.
4) Need to check rhltable_init() return value in ipmr code, from Eric
Dumazet.
5) XDP handling fixes in virtio_net from Jason Wang.
6) Missing RTA_TABLE in rtm_ipv4_policy[], from Roopa Prabhu.
7) Need to use IRQ disabling spinlocks in mlx4_qp_lookup(), from Jack
Morgenstein.
8) Prevent out-of-bounds speculation using indexes in BPF, from
Daniel Borkmann.
9) Fix regression added by AF_PACKET link layer cure, from Willem de
Bruijn.
10) Correct ENIC dma mask, from Govindarajulu Varadarajan.
11) Missing config options for PMTU tests, from Stefano Brivio"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (48 commits)
ibmvnic: Fix partial success login retries
selftests/net: Add missing config options for PMTU tests
mlx4_core: allocate ICM memory in page size chunks
enic: set DMA mask to 47 bit
ppp: remove the PPPIOCDETACH ioctl
ipv4: remove warning in ip_recv_error
net : sched: cls_api: deal with egdev path only if needed
vhost: synchronize IOTLB message with dev cleanup
packet: fix reserve calculation
net/mlx5: IPSec, Fix a race between concurrent sandbox QP commands
net/mlx5e: When RXFCS is set, add FCS data into checksum calculation
bpf: properly enforce index mask to prevent out-of-bounds speculation
net/mlx4: Fix irq-unsafe spinlock usage
net: phy: broadcom: Fix bcm_write_exp()
net: phy: broadcom: Fix auxiliary control register reads
net: ipv4: add missing RTA_TABLE to rtm_ipv4_policy
net/mlx4: fix spelling mistake: "Inrerface" -> "Interface" and rephrase message
ibmvnic: Only do H_EOI for mobility events
tuntap: correctly set SOCKWQ_ASYNC_NOSPACE
virtio-net: fix leaking page for gso packet during mergeable XDP
...
While reviewing the verifier code, I recently noticed that the
following two program variants in relation to tail calls can be
loaded.
Variant 1:
# bpftool p d x i 15
0: (15) if r1 == 0x0 goto pc+3
1: (18) r2 = map[id:5]
3: (05) goto pc+2
4: (18) r2 = map[id:6]
6: (b7) r3 = 7
7: (35) if r3 >= 0xa0 goto pc+2
8: (54) (u32) r3 &= (u32) 255
9: (85) call bpf_tail_call#12
10: (b7) r0 = 1
11: (95) exit
# bpftool m s i 5
5: prog_array flags 0x0
key 4B value 4B max_entries 4 memlock 4096B
# bpftool m s i 6
6: prog_array flags 0x0
key 4B value 4B max_entries 160 memlock 4096B
Variant 2:
# bpftool p d x i 20
0: (15) if r1 == 0x0 goto pc+3
1: (18) r2 = map[id:8]
3: (05) goto pc+2
4: (18) r2 = map[id:7]
6: (b7) r3 = 7
7: (35) if r3 >= 0x4 goto pc+2
8: (54) (u32) r3 &= (u32) 3
9: (85) call bpf_tail_call#12
10: (b7) r0 = 1
11: (95) exit
# bpftool m s i 8
8: prog_array flags 0x0
key 4B value 4B max_entries 160 memlock 4096B
# bpftool m s i 7
7: prog_array flags 0x0
key 4B value 4B max_entries 4 memlock 4096B
In both cases the index masking inserted by the verifier in order
to control out of bounds speculation from a CPU via b2157399cc
("bpf: prevent out-of-bounds speculation") seems to be incorrect
in what it is enforcing. In the 1st variant, the mask is applied
from the map with the significantly larger number of entries where
we would allow to a certain degree out of bounds speculation for
the smaller map, and in the 2nd variant where the mask is applied
from the map with the smaller number of entries, we get buggy
behavior since we truncate the index of the larger map.
The original intent from commit b2157399cc is to reject such
occasions where two or more different tail call maps are used
in the same tail call helper invocation. However, the check on
the BPF_MAP_PTR_POISON is never hit since we never poisoned the
saved pointer in the first place! We do this explicitly for map
lookups but in case of tail calls we basically used the tail
call map in insn_aux_data that was processed in the most recent
path which the verifier walked. Thus any prior path that stored
a pointer in insn_aux_data at the helper location was always
overridden.
Fix it by moving the map pointer poison logic into a small helper
that covers both BPF helpers with the same logic. After that in
fixup_bpf_calls() the poison check is then hit for tail calls
and the program rejected. Latter only happens in unprivileged
case since this is the *only* occasion where a rewrite needs to
happen, and where such rewrite is specific to the map (max_entries,
index_mask). In the privileged case the rewrite is generic for
the insn->imm / insn->code update so multiple maps from different
paths can be handled just fine since all the remaining logic
happens in the instruction processing itself. This is similar
to the case of map lookups: in case there is a collision of
maps in fixup_bpf_calls() we must skip the inlined rewrite since
this will turn the generic instruction sequence into a non-
generic one. Thus the patch_call_imm will simply update the
insn->imm location where the bpf_map_lookup_elem() will later
take care of the dispatch. Given we need this 'poison' state
as a check, the information of whether a map is an unpriv_array
gets lost, so enforcing it prior to that needs an additional
state. In general this check is needed since there are some
complex and tail call intensive BPF programs out there where
LLVM tends to generate such code occasionally. We therefore
convert the map_ptr rather into map_state to store all this
w/o extra memory overhead, and the bit whether one of the maps
involved in the collision was from an unpriv_array thus needs
to be retained as well there.
Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds the End.BPF action to the LWT seg6local infrastructure.
This action works like any other seg6local End action, meaning that an IPv6
header with SRH is needed, whose DA has to be equal to the SID of the
action. It will also advance the SRH to the next segment, the BPF program
does not have to take care of this.
Since the BPF program may not be a source of instability in the kernel, it
is important to ensure that the integrity of the packet is maintained
before yielding it back to the IPv6 layer. The hook hence keeps track if
the SRH has been altered through the helpers, and re-validates its
content if needed with seg6_validate_srh. The state kept for validation is
stored in a per-CPU buffer. The BPF program is not allowed to directly
write into the packet, and only some fields of the SRH can be altered
through the helper bpf_lwt_seg6_store_bytes.
Performances profiling has shown that the SRH re-validation does not induce
a significant overhead. If the altered SRH is deemed as invalid, the packet
is dropped.
This validation is also done before executing any action through
bpf_lwt_seg6_action, and will not be performed again if the SRH is not
modified after calling the action.
The BPF program may return 3 types of return codes:
- BPF_OK: the End.BPF action will look up the next destination through
seg6_lookup_nexthop.
- BPF_REDIRECT: if an action has been executed through the
bpf_lwt_seg6_action helper, the BPF program should return this
value, as the skb's destination is already set and the default
lookup should not be performed.
- BPF_DROP : the packet will be dropped.
Signed-off-by: Mathieu Xhonneux <m.xhonneux@gmail.com>
Acked-by: David Lebrun <dlebrun@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This adds new two new fields to struct bpf_prog_info. For
multi-function programs, these fields can be used to pass
a list of kernel symbol addresses for all functions in a
given program to userspace using the bpf system call with
the BPF_OBJ_GET_INFO_BY_FD command.
When bpf_jit_kallsyms is enabled, we can get the address
of the corresponding kernel symbol for a callee function
and resolve the symbol's name. The address is determined
by adding the value of the call instruction's imm field
to __bpf_call_base. This offset gets assigned to the imm
field by the verifier.
For some architectures, such as powerpc64, the imm field
is not large enough to hold this offset.
We resolve this by:
[1] Assigning the subprog id to the imm field of a call
instruction in the verifier instead of the offset of
the callee's symbol's address from __bpf_call_base.
[2] Determining the address of a callee's corresponding
symbol by using the imm field as an index for the
list of kernel symbol addresses now available from
the program info.
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sandipan Das <sandipan@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The imm field of a bpf instruction is a signed 32-bit integer.
For JITed bpf-to-bpf function calls, it holds the offset of the
start address of the callee's JITed image from __bpf_call_base.
For some architectures, such as powerpc64, this offset may be
as large as 64 bits and cannot be accomodated in the imm field
without truncation.
We resolve this by:
[1] Additionally using the auxiliary data of each function to
keep a list of start addresses of the JITed images for all
functions determined by the verifier.
[2] Retaining the subprog id inside the off field of the call
instructions and using it to index into the list mentioned
above and lookup the callee's address.
To make sure that the existing JIT compilers continue to work
without requiring changes, we keep the imm field as it is.
Signed-off-by: Sandipan Das <sandipan@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Sockmap is currently backed by an array and enforces keys to be
four bytes. This works well for many use cases and was originally
modeled after devmap which also uses four bytes keys. However,
this has become limiting in larger use cases where a hash would
be more appropriate. For example users may want to use the 5-tuple
of the socket as the lookup key.
To support this add hash support.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
It's fairly easy for offloaded XDP programs to select the RX queue
packets go to. We need a way of expressing this in the software.
Allow write to the rx_queue_index field of struct xdp_md for
device-bound programs.
Skip convert_ctx_access callback entirely for offloads.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Comments in the verifier refer to free_bpf_prog_info() which
seems to have never existed in tree. Replace it with
free_used_maps().
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Offloads may find host map pointers more useful than map fds.
Map pointers can be used to identify the map, while fds are
only valid within the context of loading process.
Jump to skip_full_check on error in case verifier log overflow
has to be handled (replace_map_fd_with_map_ptr() prints to the
log, driver prep may do that too in the future).
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
There are quite a few code snippet like the following in verifier:
subprog_start = 0;
if (env->subprog_cnt == cur_subprog + 1)
subprog_end = insn_cnt;
else
subprog_end = env->subprog_info[cur_subprog + 1].start;
The reason is there is no marker in subprog_info array to tell the end of
it.
We could resolve this issue by introducing a faked "ending" subprog.
The special "ending" subprog is with "insn_cnt" as start offset, so it is
serving as the end mark whenever we iterate over all subprogs.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
It is better to centre all subprog information fields into one structure.
This structure could later serve as function node in call graph.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently, verifier treat main prog and subprog differently. All subprogs
detected are kept in env->subprog_starts while main prog is not kept there.
Instead, main prog is implicitly defined as the prog start at 0.
There is actually no difference between main prog and subprog, it is better
to unify them, and register all progs detected into env->subprog_starts.
This could also help simplifying some code logic.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:
* fdfaf64e75 ("x86: bpf_jit: support negative offsets")
* 35607b02db ("sparc: bpf_jit: fix loads from negative offsets")
* e0ee9c1215 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
* 07aee94394 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
* 6d59b7dbf7 ("bpf, s390x: do not reload skb pointers in non-skb context")
* 87338c8e2c ("bpf, ppc64: do not reload skb pointers in non-skb context")
For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.
In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.
The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:
test_bpf tcpdump port 22 tcpdump complex
x64 - before 15 21 10 14 19 18
- after 7 10 10 7 10 15
arm64 - before 40 91 92 40 91 151
- after 51 64 73 51 62 113
For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The xskmap is yet another BPF map, very much inspired by
dev/cpu/sockmap, and is a holder of AF_XDP sockets. A user application
adds AF_XDP sockets into the map, and by using the bpf_redirect_map
helper, an XDP program can redirect XDP frames to an AF_XDP socket.
Note that a socket that is bound to certain ifindex/queue index will
*only* accept XDP frames from that netdev/queue index. If an XDP
program tries to redirect from a netdev/queue index other than what
the socket is bound to, the frame will not be received on the socket.
A socket can reside in multiple maps.
v3: Fixed race and simplified code.
v2: Removed one indirection in map lookup.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When helpers like bpf_get_stack returns an int value
and later on used for arithmetic computation, the LSH and ARSH
operations are often required to get proper sign extension into
64-bit. For example, without this patch:
54: R0=inv(id=0,umax_value=800)
54: (bf) r8 = r0
55: R0=inv(id=0,umax_value=800) R8_w=inv(id=0,umax_value=800)
55: (67) r8 <<= 32
56: R8_w=inv(id=0,umax_value=3435973836800,var_off=(0x0; 0x3ff00000000))
56: (c7) r8 s>>= 32
57: R8=inv(id=0)
With this patch:
54: R0=inv(id=0,umax_value=800)
54: (bf) r8 = r0
55: R0=inv(id=0,umax_value=800) R8_w=inv(id=0,umax_value=800)
55: (67) r8 <<= 32
56: R8_w=inv(id=0,umax_value=3435973836800,var_off=(0x0; 0x3ff00000000))
56: (c7) r8 s>>= 32
57: R8=inv(id=0, umax_value=800,var_off=(0x0; 0x3ff))
With better range of "R8", later on when "R8" is added to other register,
e.g., a map pointer or scalar-value register, the better register
range can be derived and verifier failure may be avoided.
In our later example,
......
usize = bpf_get_stack(ctx, raw_data, max_len, BPF_F_USER_STACK);
if (usize < 0)
return 0;
ksize = bpf_get_stack(ctx, raw_data + usize, max_len - usize, 0);
......
Without improving ARSH value range tracking, the register representing
"max_len - usize" will have smin_value equal to S64_MIN and will be
rejected by verifier.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In verifier function adjust_scalar_min_max_vals,
when src_known is false and the opcode is BPF_LSH/BPF_RSH,
early return will happen in the function. So remove
the branch in handling BPF_LSH/BPF_RSH when src_known is false.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The special property of return values for helpers bpf_get_stack
and bpf_probe_read_str are captured in verifier.
Both helpers return a negative error code or
a length, which is equal to or smaller than the buffer
size argument. This additional information in the
verifier can avoid the condition such as "retval > bufsize"
in the bpf program. For example, for the code blow,
usize = bpf_get_stack(ctx, raw_data, max_len, BPF_F_USER_STACK);
if (usize < 0 || usize > max_len)
return 0;
The verifier may have the following errors:
52: (85) call bpf_get_stack#65
R0=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R1_w=ctx(id=0,off=0,imm=0)
R2_w=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R3_w=inv800 R4_w=inv256
R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R9_w=inv800 R10=fp0,call_-1
53: (bf) r8 = r0
54: (bf) r1 = r8
55: (67) r1 <<= 32
56: (bf) r2 = r1
57: (77) r2 >>= 32
58: (25) if r2 > 0x31f goto pc+33
R0=inv(id=0) R1=inv(id=0,smax_value=9223372032559808512,
umax_value=18446744069414584320,
var_off=(0x0; 0xffffffff00000000))
R2=inv(id=0,umax_value=799,var_off=(0x0; 0x3ff))
R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R8=inv(id=0) R9=inv800 R10=fp0,call_-1
59: (1f) r9 -= r8
60: (c7) r1 s>>= 32
61: (bf) r2 = r7
62: (0f) r2 += r1
math between map_value pointer and register with unbounded
min value is not allowed
The failure is due to llvm compiler optimization where register "r2",
which is a copy of "r1", is tested for condition while later on "r1"
is used for map_ptr operation. The verifier is not able to track such
inst sequence effectively.
Without the "usize > max_len" condition, there is no llvm optimization
and the below generated code passed verifier:
52: (85) call bpf_get_stack#65
R0=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R1_w=ctx(id=0,off=0,imm=0)
R2_w=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R3_w=inv800 R4_w=inv256
R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R9_w=inv800 R10=fp0,call_-1
53: (b7) r1 = 0
54: (bf) r8 = r0
55: (67) r8 <<= 32
56: (c7) r8 s>>= 32
57: (6d) if r1 s> r8 goto pc+24
R0=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff))
R1=inv0 R6=ctx(id=0,off=0,imm=0)
R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R8=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff)) R9=inv800
R10=fp0,call_-1
58: (bf) r2 = r7
59: (0f) r2 += r8
60: (1f) r9 -= r8
61: (bf) r1 = r6
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, stackmap and bpf_get_stackid helper are provided
for bpf program to get the stack trace. This approach has
a limitation though. If two stack traces have the same hash,
only one will get stored in the stackmap table,
so some stack traces are missing from user perspective.
This patch implements a new helper, bpf_get_stack, will
send stack traces directly to bpf program. The bpf program
is able to see all stack traces, and then can do in-kernel
processing or send stack traces to user space through
shared map or bpf_perf_event_output.
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Helpers that expect ARG_PTR_TO_MAP_KEY and ARG_PTR_TO_MAP_VALUE can only
access stack and packet memory. Allow these helpers to directly access
map values by passing registers of type PTR_TO_MAP_VALUE.
This change removes the need for an extra copy to the stack when using a
map value to perform a second map lookup, as in the following:
struct bpf_map_def SEC("maps") infobyreq = {
.type = BPF_MAP_TYPE_HASHMAP,
.key_size = sizeof(struct request *),
.value_size = sizeof(struct info_t),
.max_entries = 1024,
};
struct bpf_map_def SEC("maps") counts = {
.type = BPF_MAP_TYPE_HASHMAP,
.key_size = sizeof(struct info_t),
.value_size = sizeof(u64),
.max_entries = 1024,
};
SEC("kprobe/blk_account_io_start")
int bpf_blk_account_io_start(struct pt_regs *ctx)
{
struct info_t *info = bpf_map_lookup_elem(&infobyreq, &ctx->di);
u64 *count = bpf_map_lookup_elem(&counts, info);
(*count)++;
}
Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
== The problem ==
There is a use-case when all processes inside a cgroup should use one
single IP address on a host that has multiple IP configured. Those
processes should use the IP for both ingress and egress, for TCP and UDP
traffic. So TCP/UDP servers should be bound to that IP to accept
incoming connections on it, and TCP/UDP clients should make outgoing
connections from that IP. It should not require changing application
code since it's often not possible.
Currently it's solved by intercepting glibc wrappers around syscalls
such as `bind(2)` and `connect(2)`. It's done by a shared library that
is preloaded for every process in a cgroup so that whenever TCP/UDP
server calls `bind(2)`, the library replaces IP in sockaddr before
passing arguments to syscall. When application calls `connect(2)` the
library transparently binds the local end of connection to that IP
(`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty).
Shared library approach is fragile though, e.g.:
* some applications clear env vars (incl. `LD_PRELOAD`);
* `/etc/ld.so.preload` doesn't help since some applications are linked
with option `-z nodefaultlib`;
* other applications don't use glibc and there is nothing to intercept.
== The solution ==
The patch provides much more reliable in-kernel solution for the 1st
part of the problem: binding TCP/UDP servers on desired IP. It does not
depend on application environment and implementation details (whether
glibc is used or not).
It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and
attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND`
(similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`).
The new program type is intended to be used with sockets (`struct sock`)
in a cgroup and provided by user `struct sockaddr`. Pointers to both of
them are parts of the context passed to programs of newly added types.
The new attach types provides hooks in `bind(2)` system call for both
IPv4 and IPv6 so that one can write a program to override IP addresses
and ports user program tries to bind to and apply such a program for
whole cgroup.
== Implementation notes ==
[1]
Separate attach types for `AF_INET` and `AF_INET6` are added
intentionally to prevent reading/writing to offsets that don't make
sense for corresponding socket family. E.g. if user passes `sockaddr_in`
it doesn't make sense to read from / write to `user_ip6[]` context
fields.
[2]
The write access to `struct bpf_sock_addr_kern` is implemented using
special field as an additional "register".
There are just two registers in `sock_addr_convert_ctx_access`: `src`
with value to write and `dst` with pointer to context that can't be
changed not to break later instructions. But the fields, allowed to
write to, are not available directly and to access them address of
corresponding pointer has to be loaded first. To get additional register
the 1st not used by `src` and `dst` one is taken, its content is saved
to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load
address of pointer field, and finally the register's content is restored
from the temporary field after writing `src` value.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
== The problem ==
There are use-cases when a program of some type can be attached to
multiple attach points and those attach points must have different
permissions to access context or to call helpers.
E.g. context structure may have fields for both IPv4 and IPv6 but it
doesn't make sense to read from / write to IPv6 field when attach point
is somewhere in IPv4 stack.
Same applies to BPF-helpers: it may make sense to call some helper from
some attach point, but not from other for same prog type.
== The solution ==
Introduce `expected_attach_type` field in in `struct bpf_attr` for
`BPF_PROG_LOAD` command. If scenario described in "The problem" section
is the case for some prog type, the field will be checked twice:
1) At load time prog type is checked to see if attach type for it must
be known to validate program permissions correctly. Prog will be
rejected with EINVAL if it's the case and `expected_attach_type` is
not specified or has invalid value.
2) At attach time `attach_type` is compared with `expected_attach_type`,
if prog type requires to have one, and, if they differ, attach will
be rejected with EINVAL.
The `expected_attach_type` is now available as part of `struct bpf_prog`
in both `bpf_verifier_ops->is_valid_access()` and
`bpf_verifier_ops->get_func_proto()` () and can be used to check context
accesses and calls to helpers correspondingly.
Initially the idea was discussed by Alexei Starovoitov <ast@fb.com> and
Daniel Borkmann <daniel@iogearbox.net> here:
https://marc.info/?l=linux-netdev&m=152107378717201&w=2
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The BTF (BPF Type Format) verifier needs to reuse the current
BPF verifier log. Hence, it requires the following changes:
(1) Expose log_write() in verifier.c for other users.
Its name is renamed to bpf_verifier_vlog().
(2) The BTF verifier also needs to check
'log->level && log->ubuf && !bpf_verifier_log_full(log);'
independently outside of the current log_write(). It is
because the BTF verifier will do one-check before
making multiple calls to btf_verifier_vlog to log
the details of a type.
Hence, this check is also re-factored to a new function
bpf_verifier_log_needed(). Since it is re-factored,
we can check it before va_start() in the current
bpf_verifier_log_write() and verbose().
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We use print_bpf_insn in user space (bpftool and soon perf),
so it'd be nice to keep it generic and strip it off the kernel
struct bpf_verifier_env argument.
This argument can be safely removed, because its users can
use the struct bpf_insn_cbs::private_data to pass it.
By changing the argument type we can no longer have clean
'verbose' alias to 'bpf_verifier_log_write' in verifier.c.
Instead we're adding the 'verbose' cb_print callback and
removing the alias.
This way we have new cb_print callback in place, and all
the 'verbose(env, ...) calls in verifier.c will cleanly
cast to 'verbose(void *, ...)' so no other change is
needed.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This implements a BPF ULP layer to allow policy enforcement and
monitoring at the socket layer. In order to support this a new
program type BPF_PROG_TYPE_SK_MSG is used to run the policy at
the sendmsg/sendpage hook. To attach the policy to sockets a
sockmap is used with a new program attach type BPF_SK_MSG_VERDICT.
Similar to previous sockmap usages when a sock is added to a
sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT
program type attached then the BPF ULP layer is created on the
socket and the attached BPF_PROG_TYPE_SK_MSG program is run for
every msg in sendmsg case and page/offset in sendpage case.
BPF_PROG_TYPE_SK_MSG Semantics/API:
BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and
SK_DROP. Returning SK_DROP free's the copied data in the sendmsg
case and in the sendpage case leaves the data untouched. Both cases
return -EACESS to the user. Returning SK_PASS will allow the msg to
be sent.
In the sendmsg case data is copied into kernel space buffers before
running the BPF program. The kernel space buffers are stored in a
scatterlist object where each element is a kernel memory buffer.
Some effort is made to coalesce data from the sendmsg call here.
For example a sendmsg call with many one byte iov entries will
likely be pushed into a single entry. The BPF program is run with
data pointers (start/end) pointing to the first sg element.
In the sendpage case data is not copied. We opt not to copy the
data by default here, because the BPF infrastructure does not
know what bytes will be needed nor when they will be needed. So
copying all bytes may be wasteful. Because of this the initial
start/end data pointers are (0,0). Meaning no data can be read or
written. This avoids reading data that may be modified by the
user. A new helper is added later in this series if reading and
writing the data is needed. The helper call will do a copy by
default so that the page is exclusively owned by the BPF call.
The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg
in the sendmsg() case and the entire page/offset in the sendpage case.
This avoids ambiguity on how to handle mixed return codes in the
sendmsg case. Again a helper is added later in the series if
a verdict needs to apply to multiple system calls and/or only
a subpart of the currently being processed message.
The helper msg_redirect_map() can be used to select the socket to
send the data on. This is used similar to existing redirect use
cases. This allows policy to redirect msgs.
Pseudo code simple example:
The basic logic to attach a program to a socket is as follows,
// load the programs
bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG,
&obj, &msg_prog);
// lookup the sockmap
bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map");
// get fd for sockmap
map_fd_msg = bpf_map__fd(bpf_map_msg);
// attach program to sockmap
bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0);
Adding sockets to the map is done in the normal way,
// Add a socket 'fd' to sockmap at location 'i'
bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY);
After the above any socket attached to "my_sock_map", in this case
'fd', will run the BPF msg verdict program (msg_prog) on every
sendmsg and sendpage system call.
For a complete example see BPF selftests or sockmap samples.
Implementation notes:
It seemed the simplest, to me at least, to use a refcnt to ensure
psock is not lost across the sendmsg copy into the sg, the bpf program
running on the data in sg_data, and the final pass to the TCP stack.
Some performance testing may show a better method to do this and avoid
the refcnt cost, but for now use the simpler method.
Another item that will come after basic support is in place is
supporting MSG_MORE flag. At the moment we call sendpages even if
the MSG_MORE flag is set. An enhancement would be to collect the
pages into a larger scatterlist and pass down the stack. Notice that
bpf_tcp_sendmsg() could support this with some additional state saved
across sendmsg calls. I built the code to support this without having
to do refactoring work. Other features TBD include ZEROCOPY and the
TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series
shortly.
Future work could improve size limits on the scatterlist rings used
here. Currently, we use MAX_SKB_FRAGS simply because this was being
used already in the TLS case. Future work could extend the kernel sk
APIs to tune this depending on workload. This is a trade-off
between memory usage and throughput performance.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
All of the conflicts were cases of overlapping changes.
In net/core/devlink.c, we have to make care that the
resouce size_params have become a struct member rather
than a pointer to such an object.
Signed-off-by: David S. Miller <davem@davemloft.net>
The requirements around atomic_add() / atomic64_add() resp. their
JIT implementations differ across architectures. E.g. while x86_64
seems just fine with BPF's xadd on unaligned memory, on arm64 it
triggers via interpreter but also JIT the following crash:
[ 830.864985] Unable to handle kernel paging request at virtual address ffff8097d7ed6703
[...]
[ 830.916161] Internal error: Oops: 96000021 [#1] SMP
[ 830.984755] CPU: 37 PID: 2788 Comm: test_verifier Not tainted 4.16.0-rc2+ #8
[ 830.991790] Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.29 07/17/2017
[ 830.998998] pstate: 80400005 (Nzcv daif +PAN -UAO)
[ 831.003793] pc : __ll_sc_atomic_add+0x4/0x18
[ 831.008055] lr : ___bpf_prog_run+0x1198/0x1588
[ 831.012485] sp : ffff00001ccabc20
[ 831.015786] x29: ffff00001ccabc20 x28: ffff8017d56a0f00
[ 831.021087] x27: 0000000000000001 x26: 0000000000000000
[ 831.026387] x25: 000000c168d9db98 x24: 0000000000000000
[ 831.031686] x23: ffff000008203878 x22: ffff000009488000
[ 831.036986] x21: ffff000008b14e28 x20: ffff00001ccabcb0
[ 831.042286] x19: ffff0000097b5080 x18: 0000000000000a03
[ 831.047585] x17: 0000000000000000 x16: 0000000000000000
[ 831.052885] x15: 0000ffffaeca8000 x14: 0000000000000000
[ 831.058184] x13: 0000000000000000 x12: 0000000000000000
[ 831.063484] x11: 0000000000000001 x10: 0000000000000000
[ 831.068783] x9 : 0000000000000000 x8 : 0000000000000000
[ 831.074083] x7 : 0000000000000000 x6 : 000580d428000000
[ 831.079383] x5 : 0000000000000018 x4 : 0000000000000000
[ 831.084682] x3 : ffff00001ccabcb0 x2 : 0000000000000001
[ 831.089982] x1 : ffff8097d7ed6703 x0 : 0000000000000001
[ 831.095282] Process test_verifier (pid: 2788, stack limit = 0x0000000018370044)
[ 831.102577] Call trace:
[ 831.105012] __ll_sc_atomic_add+0x4/0x18
[ 831.108923] __bpf_prog_run32+0x4c/0x70
[ 831.112748] bpf_test_run+0x78/0xf8
[ 831.116224] bpf_prog_test_run_xdp+0xb4/0x120
[ 831.120567] SyS_bpf+0x77c/0x1110
[ 831.123873] el0_svc_naked+0x30/0x34
[ 831.127437] Code: 97fffe97 17ffffec 00000000 f9800031 (885f7c31)
Reason for this is because memory is required to be aligned. In
case of BPF, we always enforce alignment in terms of stack access,
but not when accessing map values or packet data when the underlying
arch (e.g. arm64) has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS set.
xadd on packet data that is local to us anyway is just wrong, so
forbid this case entirely. The only place where xadd makes sense in
fact are map values; xadd on stack is wrong as well, but it's been
around for much longer. Specifically enforce strict alignment in case
of xadd, so that we handle this case generically and avoid such crashes
in the first place.
Fixes: 17a5267067 ("bpf: verifier (add verifier core)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This array appears to be completely unused, remove it.
Signed-off-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
One of the ugly leftovers from the early eBPF days is that div/mod
operations based on registers have a hard-coded src_reg == 0 test
in the interpreter as well as in JIT code generators that would
return from the BPF program with exit code 0. This was basically
adopted from cBPF interpreter for historical reasons.
There are multiple reasons why this is very suboptimal and prone
to bugs. To name one: the return code mapping for such abnormal
program exit of 0 does not always match with a suitable program
type's exit code mapping. For example, '0' in tc means action 'ok'
where the packet gets passed further up the stack, which is just
undesirable for such cases (e.g. when implementing policy) and
also does not match with other program types.
While trying to work out an exception handling scheme, I also
noticed that programs crafted like the following will currently
pass the verifier:
0: (bf) r6 = r1
1: (85) call pc+8
caller:
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
callee:
frame1: R1=ctx(id=0,off=0,imm=0) R10=fp0,call_1
10: (b4) (u32) r2 = (u32) 0
11: (b4) (u32) r3 = (u32) 1
12: (3c) (u32) r3 /= (u32) r2
13: (61) r0 = *(u32 *)(r1 +76)
14: (95) exit
returning from callee:
frame1: R0_w=pkt(id=0,off=0,r=0,imm=0)
R1=ctx(id=0,off=0,imm=0) R2_w=inv0
R3_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
R10=fp0,call_1
to caller at 2:
R0_w=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1
from 14 to 2: R0=pkt(id=0,off=0,r=0,imm=0)
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
2: (bf) r1 = r6
3: (61) r1 = *(u32 *)(r1 +80)
4: (bf) r2 = r0
5: (07) r2 += 8
6: (2d) if r2 > r1 goto pc+1
R0=pkt(id=0,off=0,r=8,imm=0) R1=pkt_end(id=0,off=0,imm=0)
R2=pkt(id=0,off=8,r=8,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1
7: (71) r0 = *(u8 *)(r0 +0)
8: (b7) r0 = 1
9: (95) exit
from 6 to 8: safe
processed 16 insns (limit 131072), stack depth 0+0
Basically what happens is that in the subprog we make use of a
div/mod by 0 exception and in the 'normal' subprog's exit path
we just return skb->data back to the main prog. This has the
implication that the verifier thinks we always get a pkt pointer
in R0 while we still have the implicit 'return 0' from the div
as an alternative unconditional return path earlier. Thus, R0
then contains 0, meaning back in the parent prog we get the
address range of [0x0, skb->data_end] as read and writeable.
Similar can be crafted with other pointer register types.
Since i) BPF_ABS/IND is not allowed in programs that contain
BPF to BPF calls (and generally it's also disadvised to use in
native eBPF context), ii) unknown opcodes don't return zero
anymore, iii) we don't return an exception code in dead branches,
the only last missing case affected and to fix is the div/mod
handling.
What we would really need is some infrastructure to propagate
exceptions all the way to the original prog unwinding the
current stack and returning that code to the caller of the
BPF program. In user space such exception handling for similar
runtimes is typically implemented with setjmp(3) and longjmp(3)
as one possibility which is not available in the kernel,
though (kgdb used to implement it in kernel long time ago). I
implemented a PoC exception handling mechanism into the BPF
interpreter with porting setjmp()/longjmp() into x86_64 and
adding a new internal BPF_ABRT opcode that can use a program
specific exception code for all exception cases we have (e.g.
div/mod by 0, unknown opcodes, etc). While this seems to work
in the constrained BPF environment (meaning, here, we don't
need to deal with state e.g. from memory allocations that we
would need to undo before going into exception state), it still
has various drawbacks: i) we would need to implement the
setjmp()/longjmp() for every arch supported in the kernel and
for x86_64, arm64, sparc64 JITs currently supporting calls,
ii) it has unconditional additional cost on main program
entry to store CPU register state in initial setjmp() call,
and we would need some way to pass the jmp_buf down into
___bpf_prog_run() for main prog and all subprogs, but also
storing on stack is not really nice (other option would be
per-cpu storage for this, but it also has the drawback that
we need to disable preemption for every BPF program types).
All in all this approach would add a lot of complexity.
Another poor-man's solution would be to have some sort of
additional shared register or scratch buffer to hold state
for exceptions, and test that after every call return to
chain returns and pass R0 all the way down to BPF prog caller.
This is also problematic in various ways: i) an additional
register doesn't map well into JITs, and some other scratch
space could only be on per-cpu storage, which, again has the
side-effect that this only works when we disable preemption,
or somewhere in the input context which is not available
everywhere either, and ii) this adds significant runtime
overhead by putting conditionals after each and every call,
as well as implementation complexity.
Yet another option is to teach verifier that div/mod can
return an integer, which however is also complex to implement
as verifier would need to walk such fake 'mov r0,<code>; exit;'
sequeuence and there would still be no guarantee for having
propagation of this further down to the BPF caller as proper
exception code. For parent prog, it is also is not distinguishable
from a normal return of a constant scalar value.
The approach taken here is a completely different one with
little complexity and no additional overhead involved in
that we make use of the fact that a div/mod by 0 is undefined
behavior. Instead of bailing out, we adapt the same behavior
as on some major archs like ARMv8 [0] into eBPF as well:
X div 0 results in 0, and X mod 0 results in X. aarch64 and
aarch32 ISA do not generate any traps or otherwise aborts
of program execution for unsigned divides. I verified this
also with a test program compiled by gcc and clang, and the
behavior matches with the spec. Going forward we adapt the
eBPF verifier to emit such rewrites once div/mod by register
was seen. cBPF is not touched and will keep existing 'return 0'
semantics. Given the options, it seems the most suitable from
all of them, also since major archs have similar schemes in
place. Given this is all in the realm of undefined behavior,
we still have the option to adapt if deemed necessary and
this way we would also have the option of more flexibility
from LLVM code generation side (which is then fully visible
to verifier). Thus, this patch i) fixes the panic seen in
above program and ii) doesn't bypass the verifier observations.
[0] ARM Architecture Reference Manual, ARMv8 [ARM DDI 0487B.b]
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/DDI0487B_b_armv8_arm.pdf
1) aarch64 instruction set: section C3.4.7 and C6.2.279 (UDIV)
"A division by zero results in a zero being written to
the destination register, without any indication that
the division by zero occurred."
2) aarch32 instruction set: section F1.4.8 and F5.1.263 (UDIV)
"For the SDIV and UDIV instructions, division by zero
always returns a zero result."
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recent findings by syzcaller fixed in 7891a87efc ("bpf: arsh is
not supported in 32 bit alu thus reject it") triggered a warning
in the interpreter due to unknown opcode not being rejected by
the verifier. The 'return 0' for an unknown opcode is really not
optimal, since with BPF to BPF calls, this would go untracked by
the verifier.
Do two things here to improve the situation: i) perform basic insn
sanity check early on in the verification phase and reject every
non-uapi insn right there. The bpf_opcode_in_insntable() table
reuses the same mapping as the jumptable in ___bpf_prog_run() sans
the non-public mappings. And ii) in ___bpf_prog_run() we do need
to BUG in the case where the verifier would ever create an unknown
opcode due to some rewrites.
Note that JITs do not have such issues since they would punt to
interpreter in these situations. Moreover, the BPF_JIT_ALWAYS_ON
would also help to avoid such unknown opcodes in the first place.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Given we recently had c131187db2 ("bpf: fix branch pruning
logic") and 95a762e2c8 ("bpf: fix incorrect sign extension in
check_alu_op()") in particular where before verifier skipped
verification of the wrongly assumed dead branch, we should not
just replace the dead code parts with nops (mov r0,r0). If there
is a bug such as fixed in 95a762e2c8 in future again, where
runtime could execute those insns, then one of the potential
issues with the current setting would be that given the nops
would be at the end of the program, we could execute out of
bounds at some point.
The best in such case would be to just exit the BPF program
altogether and return an exception code. However, given this
would require two instructions, and such a dead code gap could
just be a single insn long, we would need to place 'r0 = X; ret'
snippet at the very end after the user program or at the start
before the program (where we'd skip that region on prog entry),
and then place unconditional ja's into the dead code gap.
While more complex but possible, there's still another block
in the road that currently prevents from this, namely BPF to
BPF calls. The issue here is that such exception could be
returned from a callee, but the caller would not know that
it's an exception that needs to be propagated further down.
Alternative that has little complexity is to just use a ja-1
code for now which will trap the execution here instead of
silently doing bad things if we ever get there due to bugs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2018-01-19
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) bpf array map HW offload, from Jakub.
2) support for bpf_get_next_key() for LPM map, from Yonghong.
3) test_verifier now runs loaded programs, from Alexei.
4) xdp cpumap monitoring, from Jesper.
5) variety of tests, cleanups and small x64 JIT optimization, from Daniel.
6) user space can now retrieve HW JITed program, from Jiong.
Note there is a minor conflict between Russell's arm32 JIT fixes
and removal of bpf_jit_enable variable by Daniel which should
be resolved by keeping Russell's comment and removing that variable.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The BPF verifier conflict was some minor contextual issue.
The TUN conflict was less trivial. Cong Wang fixed a memory leak of
tfile->tx_array in 'net'. This is an skb_array. But meanwhile in
net-next tun changed tfile->tx_arry into tfile->tx_ring which is a
ptr_ring.
Signed-off-by: David S. Miller <davem@davemloft.net>
Given the limit could potentially get further adjustments in the
future, add it to the log so it becomes obvious what the current
limit is w/o having to check the source first. This may also be
helpful for debugging complexity related issues on kernels that
backport from upstream.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
I've seen two patch proposals now for helper additions that used
ARG_PTR_TO_MEM or similar in reg_X but no corresponding ARG_CONST_SIZE
in reg_X+1. Verifier won't complain in such case, but it will omit
verifying the memory passed to the helper thus ending up badly.
Detect such buggy helper function signature and bail out during
verification rather than finding them through review.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
syzkaller generated a BPF proglet and triggered a warning with
the following:
0: (b7) r0 = 0
1: (d5) if r0 s<= 0x0 goto pc+0
R0=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (1f) r0 -= r1
R0=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0
verifier internal error: known but bad sbounds
What happens is that in the first insn, r0's min/max value
are both 0 due to the immediate assignment, later in the jsle
test the bounds are updated for the min value in the false
path, meaning, they yield smin_val = 1, smax_val = 0, and when
ctx pointer is subtracted from r0, verifier bails out with the
internal error and throwing a WARN since smin_val != smax_val
for the known constant.
For min_val > max_val scenario it means that reg_set_min_max()
and reg_set_min_max_inv() (which both refine existing bounds)
demonstrated that such branch cannot be taken at runtime.
In above scenario for the case where it will be taken, the
existing [0, 0] bounds are kept intact. Meaning, the rejection
is not due to a verifier internal error, and therefore the
WARN() is not necessary either.
We could just reject such cases in adjust_{ptr,scalar}_min_max_vals()
when either known scalars have smin_val != smax_val or
umin_val != umax_val or any scalar reg with bounds
smin_val > smax_val or umin_val > umax_val. However, there
may be a small risk of breakage of buggy programs, so handle
this more gracefully and in adjust_{ptr,scalar}_min_max_vals()
just taint the dst reg as unknown scalar when we see ops with
such kind of src reg.
Reported-by: syzbot+6d362cadd45dc0a12ba4@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Alexei found that verifier does not reject stores into context
via BPF_ST instead of BPF_STX. And while looking at it, we
also should not allow XADD variant of BPF_STX.
The context rewriter is only assuming either BPF_LDX_MEM- or
BPF_STX_MEM-type operations, thus reject anything other than
that so that assumptions in the rewriter properly hold. Add
test cases as well for BPF selftests.
Fixes: d691f9e8d4 ("bpf: allow programs to write to certain skb fields")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF map offload follow similar path to program offload. At creation
time users may specify ifindex of the device on which they want to
create the map. Map will be validated by the kernel's
.map_alloc_check callback and device driver will be called for the
actual allocation. Map will have an empty set of operations
associated with it (save for alloc and free callbacks). The real
device callbacks are kept in map->offload->dev_ops because they
have slightly different signatures. Map operations are called in
process context so the driver may communicate with HW freely,
msleep(), wait() etc.
Map alloc and free callbacks are muxed via existing .ndo_bpf, and
are always called with rtnl lock held. Maps and programs are
guaranteed to be destroyed before .ndo_uninit (i.e. before
unregister_netdev() returns). Map callbacks are invoked with
bpf_devs_lock *read* locked, drivers must take care of exclusive
locking if necessary.
All offload-specific branches are marked with unlikely() (through
bpf_map_is_dev_bound()), given that branch penalty will be
negligible compared to IO anyway, and we don't want to penalize
SW path unnecessarily.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
due to some JITs doing if (src_reg == 0) check in 64-bit mode
for div/mod operations mask upper 32-bits of src register
before doing the check
Fixes: 622582786c ("net: filter: x86: internal BPF JIT")
Fixes: 7a12b5031c ("sparc64: Add eBPF JIT.")
Reported-by: syzbot+48340bb518e88849e2e3@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
BPF alignment tests got a conflict because the registers
are output as Rn_w instead of just Rn in net-next, and
in net a fixup for a testcase prohibits logical operations
on pointers before using them.
Also, we should attempt to patch BPF call args if JIT always on is
enabled. Instead, if we fail to JIT the subprogs we should pass
an error back up and fail immediately.
Signed-off-by: David S. Miller <davem@davemloft.net>
The following snippet was throwing an 'unknown opcode cc' warning
in BPF interpreter:
0: (18) r0 = 0x0
2: (7b) *(u64 *)(r10 -16) = r0
3: (cc) (u32) r0 s>>= (u32) r0
4: (95) exit
Although a number of JITs do support BPF_ALU | BPF_ARSH | BPF_{K,X}
generation, not all of them do and interpreter does neither. We can
leave existing ones and implement it later in bpf-next for the
remaining ones, but reject this properly in verifier for the time
being.
Fixes: 17a5267067 ("bpf: verifier (add verifier core)")
Reported-by: syzbot+93c4904c5c70348a6890@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Trivial fix to spelling mistake in error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Rename the BPF verifier `verbose()` to `bpf_verifier_log_write()` and
export it, so that other components (in particular, drivers for BPF
offload) can reuse the user buffer log to dump error messages at
verification time.
Renaming `verbose()` was necessary in order to avoid a name so generic
to be exported to the global namespace. However to prevent too much pain
for backports, the calls to `verbose()` in the kernel BPF verifier were
not changed. Instead, use function aliasing to make `verbose` point to
`bpf_verifier_log_write`. Another solution could consist in making a
wrapper around `verbose()`, but since it is a variadic function, I don't
see a clean way without creating two identical wrappers, one for the
verifier and one to export.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Under speculation, CPUs may mis-predict branches in bounds checks. Thus,
memory accesses under a bounds check may be speculated even if the
bounds check fails, providing a primitive for building a side channel.
To avoid leaking kernel data round up array-based maps and mask the index
after bounds check, so speculated load with out of bounds index will load
either valid value from the array or zero from the padded area.
Unconditionally mask index for all array types even when max_entries
are not rounded to power of 2 for root user.
When map is created by unpriv user generate a sequence of bpf insns
that includes AND operation to make sure that JITed code includes
the same 'index & index_mask' operation.
If prog_array map is created by unpriv user replace
bpf_tail_call(ctx, map, index);
with
if (index >= max_entries) {
index &= map->index_mask;
bpf_tail_call(ctx, map, index);
}
(along with roundup to power 2) to prevent out-of-bounds speculation.
There is secondary redundant 'if (index >= max_entries)' in the interpreter
and in all JITs, but they can be optimized later if necessary.
Other array-like maps (cpumap, devmap, sockmap, perf_event_array, cgroup_array)
cannot be used by unpriv, so no changes there.
That fixes bpf side of "Variant 1: bounds check bypass (CVE-2017-5753)" on
all architectures with and without JIT.
v2->v3:
Daniel noticed that attack potentially can be crafted via syscall commands
without loading the program, so add masking to those paths as well.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
syzbot reported the following panic in the verifier triggered
by kmalloc error injection:
kasan: GPF could be caused by NULL-ptr deref or user memory access
RIP: 0010:copy_func_state kernel/bpf/verifier.c:403 [inline]
RIP: 0010:copy_verifier_state+0x364/0x590 kernel/bpf/verifier.c:431
Call Trace:
pop_stack+0x8c/0x270 kernel/bpf/verifier.c:449
push_stack kernel/bpf/verifier.c:491 [inline]
check_cond_jmp_op kernel/bpf/verifier.c:3598 [inline]
do_check+0x4b60/0xa050 kernel/bpf/verifier.c:4731
bpf_check+0x3296/0x58c0 kernel/bpf/verifier.c:5489
bpf_prog_load+0xa2a/0x1b00 kernel/bpf/syscall.c:1198
SYSC_bpf kernel/bpf/syscall.c:1807 [inline]
SyS_bpf+0x1044/0x4420 kernel/bpf/syscall.c:1769
when copy_verifier_state() aborts in the middle due to kmalloc failure
some of the frames could have been partially copied while
current free_verifier_state() loop
for (i = 0; i <= state->curframe; i++)
assumed that all frames are non-null.
Simply fix it by adding 'if (!state)' to free_func_state().
Also avoid stressing copy frame logic more if kzalloc fails
in push_stack() free env->cur_state right away.
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Reported-by: syzbot+32ac5a3e473f2e01cfc7@syzkaller.appspotmail.com
Reported-by: syzbot+fa99e24f3c29d269a7d5@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
To allow verifier instruction callbacks without any extra locking
NETDEV_UNREGISTER notification would wait on a waitqueue for verifier
to finish. This design decision was made when rtnl lock was providing
all the locking. Use the read/write lock instead and remove the
workqueue.
Verifier will now call into the offload code, so dev_ops are moved
to offload structure. Since verifier calls are all under
bpf_prog_is_dev_bound() we no longer need static inline implementations
to please builds with CONFIG_NET=n.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Daniel Borkmann says:
====================
pull-request: bpf-next 2017-12-28
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Fix incorrect state pruning related to recognition of zero initialized
stack slots, where stacksafe exploration would mistakenly return a
positive pruning verdict too early ignoring other slots, from Gianluca.
2) Various BPF to BPF calls related follow-up fixes. Fix an off-by-one
in maximum call depth check, and rework maximum stack depth tracking
logic to fix a bypass of the total stack size check reported by Jann.
Also fix a bug in arm64 JIT where prog->jited_len was uninitialized.
Addition of various test cases to BPF selftests, from Alexei.
3) Addition of a BPF selftest to test_verifier that is related to BPF to
BPF calls which demonstrates a late caller stack size increase and
thus out of bounds access. Fixed above in 2). Test case from Jann.
4) Addition of correlating BPF helper calls, BPF to BPF calls as well
as BPF maps to bpftool xlated dump in order to allow for better
BPF program introspection and debugging, from Daniel.
5) Fixing several bugs in BPF to BPF calls kallsyms handling in order
to get it actually to work for subprogs, from Daniel.
6) Extending sparc64 JIT support for BPF to BPF calls and fix a couple
of build errors for libbpf on sparc64, from David.
7) Allow narrower context access for BPF dev cgroup typed programs in
order to adapt to LLVM code generation. Also adjust memlock rlimit
in the test_dev_cgroup BPF selftest, from Yonghong.
8) Add netdevsim Kconfig entry to BPF selftests since test_offload.py
relies on netdevsim device being available, from Jakub.
9) Reduce scope of xdp_do_generic_redirect_map() to being static,
from Xiongwei.
10) Minor cleanups and spelling fixes in BPF verifier, from Colin.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
fix off by one error in max call depth check
and add a test
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Instead of computing max stack depth for current call chain
during the main verifier pass track stack depth of each
function independently and after do_check() is done do
another pass over all instructions analyzing depth
of all possible call stacks.
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Commit cc2b14d510 ("bpf: teach verifier to recognize zero initialized
stack") introduced a very relaxed check when comparing stacks of different
states, effectively returning a positive result in many cases where it
shouldn't.
This can create problems in cases such as this following C pseudocode:
long var;
long *x = bpf_map_lookup(...);
if (!x)
return;
if (*x != 0xbeef)
var = 0;
else
var = 1;
/* This is the key part, calling a helper causes an explored state
* to be saved with the information that "var" is on the stack as
* STACK_ZERO, since the helper is first met by the verifier after
* the "var = 0" assignment. This state will however be wrongly used
* also for the "var = 1" case, so the verifier assumes "var" is always
* 0 and will replace the NULL assignment with nops, because the
* search pruning prevents it from exploring the faulty branch.
*/
bpf_ktime_get_ns();
if (var)
*(long *)0 = 0xbeef;
Fix the issue by making sure that the stack is fully explored before
returning a positive comparison result.
Also attach a couple tests that highlight the bad behavior. In the first
test, without this fix instructions 16 and 17 are replaced with nops
instead of being rejected by the verifier.
The second test, instead, allows a program to make a potentially illegal
read from the stack.
Fixes: cc2b14d510 ("bpf: teach verifier to recognize zero initialized stack")
Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lots of overlapping changes. Also on the net-next side
the XDP state management is handled more in the generic
layers so undo the 'net' nfp fix which isn't applicable
in net-next.
Include a necessary change by Jakub Kicinski, with log message:
====================
cls_bpf no longer takes care of offload tracking. Make sure
netdevsim performs necessary checks. This fixes a warning
caused by TC trying to remove a filter it has not added.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Right now kallsyms handling is not working with JITed subprogs.
The reason is that when in 1c2a088a66 ("bpf: x64: add JIT support
for multi-function programs") in jit_subprogs() they are passed
to bpf_prog_kallsyms_add(), then their prog type is 0, which BPF
core will think it's a cBPF program as only cBPF programs have a
0 type. Thus, they need to inherit the type from the main prog.
Once that is fixed, they are indeed added to the BPF kallsyms
infra, but their tag is 0. Therefore, since intention is to add
them as bpf_prog_F_<tag>, we need to pass them to bpf_prog_calc_tag()
first. And once this is resolved, there is a use-after-free on
prog cleanup: we remove the kallsyms entry from the main prog,
later walk all subprogs and call bpf_jit_free() on them. However,
the kallsyms linkage was never released on them. Thus, do that
for all subprogs right in __bpf_prog_put() when refcount hits 0.
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Do not allow root to convert valid pointers into unknown scalars.
In particular disallow:
ptr &= reg
ptr <<= reg
ptr += ptr
and explicitly allow:
ptr -= ptr
since pkt_end - pkt == length
1.
This minimizes amount of address leaks root can do.
In the future may need to further tighten the leaks with kptr_restrict.
2.
If program has such pointer math it's likely a user mistake and
when verifier complains about it right away instead of many instructions
later on invalid memory access it's easier for users to fix their progs.
3.
when register holding a pointer cannot change to scalar it allows JITs to
optimize better. Like 32-bit archs could use single register for pointers
instead of a pair required to hold 64-bit scalars.
4.
reduces architecture dependent behavior. Since code:
r1 = r10;
r1 &= 0xff;
if (r1 ...)
will behave differently arm64 vs x64 and offloaded vs native.
A significant chunk of ptr mangling was allowed by
commit f1174f77b5 ("bpf/verifier: rework value tracking")
yet some of it was allowed even earlier.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
There were various issues related to the limited size of integers used in
the verifier:
- `off + size` overflow in __check_map_access()
- `off + reg->off` overflow in check_mem_access()
- `off + reg->var_off.value` overflow or 32-bit truncation of
`reg->var_off.value` in check_mem_access()
- 32-bit truncation in check_stack_boundary()
Make sure that any integer math cannot overflow by not allowing
pointer math with large values.
Also reduce the scope of "scalar op scalar" tracking.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This could be made safe by passing through a reference to env and checking
for env->allow_ptr_leaks, but it would only work one way and is probably
not worth the hassle - not doing it will not directly lead to program
rejection.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Force strict alignment checks for stack pointers because the tracking of
stack spills relies on it; unaligned stack accesses can lead to corruption
of spilled registers, which is exploitable.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
32-bit ALU ops operate on 32-bit values and have 32-bit outputs.
Adjust the verifier accordingly.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Properly handle register truncation to a smaller size.
The old code first mirrors the clearing of the high 32 bits in the bitwise
tristate representation, which is correct. But then, it computes the new
arithmetic bounds as the intersection between the old arithmetic bounds and
the bounds resulting from the bitwise tristate representation. Therefore,
when coerce_reg_to_32() is called on a number with bounds
[0xffff'fff8, 0x1'0000'0007], the verifier computes
[0xffff'fff8, 0xffff'ffff] as bounds of the truncated number.
This is incorrect: The truncated number could also be in the range [0, 7],
and no meaningful arithmetic bounds can be computed in that case apart from
the obvious [0, 0xffff'ffff].
Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.
Debian assigned CVE-2017-16996 for this issue.
v2:
- flip the mask during arithmetic bounds calculation (Ben Hutchings)
v3:
- add CVE number (Ben Hutchings)
Fixes: b03c9f9fdc ("bpf/verifier: track signed and unsigned min/max values")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Distinguish between
BPF_ALU64|BPF_MOV|BPF_K (load 32-bit immediate, sign-extended to 64-bit)
and BPF_ALU|BPF_MOV|BPF_K (load 32-bit immediate, zero-padded to 64-bit);
only perform sign extension in the first case.
Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.
Debian assigned CVE-2017-16995 for this issue.
v3:
- add CVE number (Ben Hutchings)
Fixes: 484611357c ("bpf: allow access into map value arrays")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Incorrect signed bounds were being computed.
If the old upper signed bound was positive and the old lower signed bound was
negative, this could cause the new upper signed bound to be too low,
leading to security issues.
Fixes: b03c9f9fdc ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[jannh@google.com: changed description to reflect bug impact]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Function skip_callee is local to the source and does not need to
be in global scope, so make it static. Also return NULL rather than 0.
Cleans up two sparse warnings:
symbol 'skip_callee' was not declared. Should it be static?
Using plain integer as NULL pointer
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Trivial fix to spelling mistake in error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit
We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.
When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.
Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
global bpf_jit_enable variable is tested multiple times in JITs,
blinding and verifier core. The malicious root can try to toggle
it while loading the programs. This race condition was accounted
for and there should be no issues, but it's safer to avoid
this race condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
programs with function calls are often passing various
pointers via stack. When all calls are inlined llvm
flattens stack accesses and optimizes away extra branches.
When functions are not inlined it becomes the job of
the verifier to recognize zero initialized stack to avoid
exploring paths that program will not take.
The following program would fail otherwise:
ptr = &buffer_on_stack;
*ptr = 0;
...
func_call(.., ptr, ...) {
if (..)
*ptr = bpf_map_lookup();
}
...
if (*ptr != 0) {
// Access (*ptr)->field is valid.
// Without stack_zero tracking such (*ptr)->field access
// will be rejected
}
since stack slots are no longer uniform invalid | spill | misc
add liveness marking to all slots, but do it in 8 byte chunks.
So if nothing was read or written in [fp-16, fp-9] range
it will be marked as LIVE_NONE.
If any byte in that range was read, it will be marked LIVE_READ
and stacksafe() check will perform byte-by-byte verification.
If all bytes in the range were written the slot will be
marked as LIVE_WRITTEN.
This significantly speeds up state equality comparison
and reduces total number of states processed.
before after
bpf_lb-DLB_L3.o 2051 2003
bpf_lb-DLB_L4.o 3287 3164
bpf_lb-DUNKNOWN.o 1080 1080
bpf_lxc-DDROP_ALL.o 24980 12361
bpf_lxc-DUNKNOWN.o 34308 16605
bpf_netdev.o 15404 10962
bpf_overlay.o 7191 6679
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow arbitrary function calls from bpf function to another bpf function.
To recognize such set of bpf functions the verifier does:
1. runs control flow analysis to detect function boundaries
2. proceeds with verification of all functions starting from main(root) function
It recognizes that the stack of the caller can be accessed by the callee
(if the caller passed a pointer to its stack to the callee) and the callee
can store map_value and other pointers into the stack of the caller.
3. keeps track of the stack_depth of each function to make sure that total
stack depth is still less than 512 bytes
4. disallows pointers to the callee stack to be stored into the caller stack,
since they will be invalid as soon as the callee returns
5. to reuse all of the existing state_pruning logic each function call
is considered to be independent call from the verifier point of view.
The verifier pretends to inline all function calls it sees are being called.
It stores the callsite instruction index as part of the state to make sure
that two calls to the same callee from two different places in the caller
will be different from state pruning point of view
6. more safety checks are added to liveness analysis
Implementation details:
. struct bpf_verifier_state is now consists of all stack frames that
led to this function
. struct bpf_func_state represent one stack frame. It consists of
registers in the given frame and its stack
. propagate_liveness() logic had a premature optimization where
mark_reg_read() and mark_stack_slot_read() were manually inlined
with loop iterating over parents for each register or stack slot.
Undo this optimization to reuse more complex mark_*_read() logic
. skip_callee() logic is not necessary from safety point of view,
but without it mark_*_read() markings become too conservative,
since after returning from the funciton call a read of r6-r9
will incorrectly propagate the read marks into callee causing
inefficient pruning later
. mark_*_read() logic is now aware of control flow which makes it
more complex. In the future the plan is to rewrite liveness
to be hierarchical. So that liveness can be done within
basic block only and control flow will be responsible for
propagation of liveness information along cfg and between calls.
. tail_calls and ld_abs insns are not allowed in the programs with
bpf-to-bpf calls
. returning stack pointers to the caller or storing them into stack
frame of the caller is not allowed
Testing:
. no difference in cilium processed_insn numbers
. large number of tests follows in next patches
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow arbitrary function calls from bpf function to another bpf function.
Since the beginning of bpf all bpf programs were represented as a single function
and program authors were forced to use always_inline for all functions
in their C code. That was causing llvm to unnecessary inflate the code size
and forcing developers to move code to header files with little code reuse.
With a bit of additional complexity teach verifier to recognize
arbitrary function calls from one bpf function to another as long as
all of functions are presented to the verifier as a single bpf program.
New program layout:
r6 = r1 // some code
..
r1 = .. // arg1
r2 = .. // arg2
call pc+1 // function call pc-relative
exit
.. = r1 // access arg1
.. = r2 // access arg2
..
call pc+20 // second level of function call
...
It allows for better optimized code and finally allows to introduce
the core bpf libraries that can be reused in different projects,
since programs are no longer limited by single elf file.
With function calls bpf can be compiled into multiple .o files.
This patch is the first step. It detects programs that contain
multiple functions and checks that calls between them are valid.
It splits the sequence of bpf instructions (one program) into a set
of bpf functions that call each other. Calls to only known
functions are allowed. In the future the verifier may allow
calls to unresolved functions and will do dynamic linking.
This logic supports statically linked bpf functions only.
Such function boundary detection could have been done as part of
control flow graph building in check_cfg(), but it's cleaner to
separate function boundary detection vs control flow checks within
a subprogram (function) into logically indepedent steps.
Follow up patches may split check_cfg() further, but not check_subprogs().
Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs.
These restrictions can be relaxed in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Some JITs don't cache skb context on stack in prologue, so when
LD_ABS/IND is used and helper calls yield bpf_helper_changes_pkt_data()
as true, then they temporarily save/restore skb pointer. However,
the assumption that skb always has to be in r1 is a bit of a
gamble. Right now it turned out to be true for all helpers listed
in bpf_helper_changes_pkt_data(), but lets enforce that from verifier
side, so that we make this a guarantee and bail out if the func
proto is misconfigured in future helpers.
In case of BPF helper calls from cBPF, bpf_helper_changes_pkt_data()
is completely unrelevant here (since cBPF is context read-only) and
therefore always false.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
don't pass large struct bpf_reg_state by value.
Instead pass it by pointer.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
verifier knows how to trim paths that are known not to be
taken at run-time when register containing run-time constant
is compared with another constant.
It was done only for JEQ comparison.
Extend it to include JNE as well.
More cases can be added in the future.
before after
bpf_lb-DLB_L3.o 2270 2051
bpf_lb-DLB_L4.o 3682 3287
bpf_lb-DUNKNOWN.o 1110 1080
bpf_lxc-DDROP_ALL.o 27876 24980
bpf_lxc-DUNKNOWN.o 38780 34308
bpf_netdev.o 16937 15404
bpf_overlay.o 7929 7191
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
registers with pointers filled from stack were missing live_written marks
which caused liveness propagation to unnecessary mark more registers as
live_read and miss state pruning opportunities later on.
before after
bpf_lb-DLB_L3.o 2285 2270
bpf_lb-DLB_L4.o 3723 3682
bpf_lb-DUNKNOWN.o 1110 1110
bpf_lxc-DDROP_ALL.o 27954 27876
bpf_lxc-DUNKNOWN.o 38954 38780
bpf_netdev.o 16943 16937
bpf_overlay.o 7929 7929
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
when verifier hits an internal bug don't mark register R10==FP as uninit,
since it's read only register and it's not technically correct to let
verifier run further, since it may assume that R10 has valid auxiliary state.
While developing subsequent patches this issue was discovered,
though the code eventually changed that aux reg state doesn't have
pointers any more it is still safer to avoid clearing readonly register.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
let verifier print register and stack liveness information
into verifier log
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
fix incorrect stack state prints in print_verifier_state()
Fixes: 638f5b90d4 ("bpf: reduce verifier memory consumption")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
when the verifier detects that register contains a runtime constant
and it's compared with another constant it will prune exploration
of the branch that is guaranteed not to be taken at runtime.
This is all correct, but malicious program may be constructed
in such a way that it always has a constant comparison and
the other branch is never taken under any conditions.
In this case such path through the program will not be explored
by the verifier. It won't be taken at run-time either, but since
all instructions are JITed the malicious program may cause JITs
to complain about using reserved fields, etc.
To fix the issue we have to track the instructions explored by
the verifier and sanitize instructions that are dead at run time
with NOPs. We cannot reject such dead code, since llvm generates
it for valid C code, since it doesn't do as much data flow
analysis as the verifier does.
Fixes: 17a5267067 ("bpf: verifier (add verifier core)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
With the current ARG_PTR_TO_MEM/ARG_PTR_TO_UNINIT_MEM semantics, an helper
argument can be NULL when the next argument type is ARG_CONST_SIZE_OR_ZERO
and the verifier can prove the value of this next argument is 0. However,
most helpers are just interested in handling <!NULL, 0>, so forcing them to
deal with <NULL, 0> makes the implementation of those helpers more
complicated for no apparent benefits, requiring them to explicitly handle
those corner cases with checks that bpf programs could start relying upon,
preventing the possibility of removing them later.
Solve this by making ARG_PTR_TO_MEM/ARG_PTR_TO_UNINIT_MEM never accept NULL
even when ARG_CONST_SIZE_OR_ZERO is set, and introduce a new argument type
ARG_PTR_TO_MEM_OR_NULL to explicitly deal with the NULL case.
Currently, the only helper that needs this is bpf_csum_diff_proto(), so
change arg1 and arg3 to this new type as well.
Also add a new battery of tests that explicitly test the
!ARG_PTR_TO_MEM_OR_NULL combination: all the current ones testing the
various <NULL, 0> variations are focused on bpf_csum_diff, so cover also
other helpers.
Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>