Use PM runtime and HWMOD support to handle enabling and disabling of DSS
modules.
Each DSS module will have get and put functions which can be used to
enable and disable that module. The functions use pm_runtime and hwmod
opt-clocks to enable the hardware.
Acked-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
CONFIG_OMAP2_DSS_SLEEP_BEFORE_RESET is used to avoid an unclear bug at
DSS reset time. The pm runtime will handle reset in the future, and this
code has to be removed. Hopefully we won't see this error anymore.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently dss.c does all the low level clock handling in the DSS, and
thus it contains pointers to all the clocks. This allows dss.c to dump
the clock information for all the clocks.
With pm_runtime this is no longer the case, as each submodule will
handle its clocks independently. Thus remove the core_dump_clocks
function as it cannot be used with pm_runtime.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSI PLL requires sys_clk to function, and DPI enables sys_clk when it
wants to use DSI PLL. However, DSI PLL code already handles enabling
sys_clk, so DPI's sys_clk code is extra.
Remove the unneeded sys_clk handling from dpi.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The function to get device's context loss count has changed from
omap_pm_get_last_off_on_transaction_id() to
omap_pm_get_dev_context_loss_count()
Change name of the function pointer in omapdss.h accordingly, and use
the term "context loss count" instead of "context id" in the code.
Restructure the context loss count functions to handle errors properly,
and ensure that context is always considered lost if an error happens.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSS enables core clocks for the duration of initialization to avoid
unnecessary context saves and restores.
With PM runtime the clocks cannot be handled in this way, outside the
dss module drivers. Thus we need to remove the optimization.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The initialization order of the DSS modules is important when pm_runtime
support is implemented. Currently RFBI is initialized before DISPC,
which will cause problems with pm_runtime as RFBI uses DISPC.
The same goes for uninitialization order, and dss_uninit needs to be
called last, and dispc_uninit just before that.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Both dss.c and dsi.c had a probe function, which was almost a dummy one,
calling dss_init() and dsi_init().
Remove the init functions by moving the initialization code into probe
functions.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Get and put for dpll4_m4_ck was handled in dss_init/dss_exit. Move the
code to dss_get/put_clocks(), which is a better place to handle it.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DMA FIFO threshold registers and burst size registers have changed
for OMAP4. The current code only handles OMAP2/3 case, and so the
values are a bit off for OMAP4. A summary of the differences between
OMAP2/3 and OMAP4:
Burst size:
OMAP2/3: 4 x 32 bits / 8 x 32 bits / 16 x 32 bits
OMAP4: 2 x 128 bits / 4 x 128 bits / 8 x 128 bits
Threshold size:
OMAP2/3: in bytes (8 bit units)
OMAP4: in 128bit units
This patch fixes the issue by creating two new helper functions in
dss_features: dss_feat_get_buffer_size_unit() and
dss_feat_get_burst_size_unit(). These return (in bytes) the unit size
for threshold registers and unit size for burst size register,
respectively, and are used to calculate correct values.
For the threshold size the usage is straightforward. However, the burst
size register has different multipliers for OMAP2/3 and OMAP4. This
patch solves the problem by defining the multipliers for the burst size
as 2x, 4x and 8x, which fit fine for the OMAP4 burst size definition
(i.e. burst size unit for OMAP4 is 128bits), but requires a slight twist
on OMAP2/3 by defining the burst size unit as 64bit.
As the driver in practice always uses the maximum burst size, and no use
case currently exists where we would want to use a smaller burst size,
this patch changes the driver to hardcode the burst size when
initializing DISPC. This makes the threshold configuration code somewhat
simpler.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When the panel driver calls omapdss_dsi_display_disable() it is possible
that there are still some unsent packets in the TX fifo.
Add dsi_sync_vc() calls in the beginning of
omapdss_dsi_display_disable() to make sure the TX fifos are empty.
This allows us to remove the msleep(10) hack from panel-taal.c
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add Color Phase Rotation (CPR) support and sysfs files to enable CPR and
to set the CPR coefficient matrix.
CPR is enabled via manager?/cpr_enable file, and the coefficient matrix
is set via manager?/cpr_coef file. The values in cpr_coef are in the
following order:
RR RG RB GR GG GB BR BG BB
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The overlay_cache_data and manager_cache_data structs include
the elements of omap_overlay_info and omap_overlay_manager_info
structs respectively. Include the structs instead of the individual
elements to reduce code.
Signed-off-by: Nishant Kamat <nskamat@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP2 doesn't have CPR, PRELOAD nor FIR_COEF_V registers. Add new
feature definitions for those, and check the feature before accessing
those registers.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP3430 requires an 96MHz clock to VENC's DAC, but no other OMAP needs
it.
Add a new feature, FEAT_VENC_REQUIRES_TV_DAC_CLK, which tells if the
clock is needed on this platform, and use that feature in venc.c to
decide if the clock needs enabling.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
LANEx_ULPS_SIG2 bits are left on after entering ULPS. This doesn't cause
any problems currently, as DSI HW is reset when it is enabled. However,
if the reset is not done, operation fails if the bits are still set.
So reset the bits after entering ULPS to ensure operation even without
HW reset.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
If ULPS exit fails, and the following reset fails also, Taal driver was
left in state where it thinks DSI is enabled while it really isn't,
leading to crash.
This patch checks the return value of taal_panel_reset, and if that
fails, ulps_enabled is left true, causing the driver to retry ulps exit
later.
Also the return value of taal_wake_up is checked at taal_disable, and if
wake up fails, we'll skip the power_off. This could leave the panel into
a not-quite-valid state, but there's nothing we can do about it in that
situation.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Remove the whole update_mode stuff from omapdss driver. If automatic
update for manual update displays is needed, it's better implemented in
higher layers.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Implement auto-update mode for manual-update displays. omapfb driver
uses a delayed work to update the display with a constant rate.
The update mode can be changed via OMAPFB_SET_UPDATE_MODE ioctl, which
previously called omapdss but is now handled inside omapfb, and a new
sysfs file, "update_mode".
The update interval is by default 20 times per second, but can be
changed via "auto_update_freq" module parameter. There is also a new
module parameter "auto_update", which will make omapfb start manual
update displays in auto-update mode.
This auto-update mode can be used for testing if the userspace does not
support manual update displays properly. However, it is a very
inefficient solution, and should be considered more as a hack for
testing than something that could be used as a long term solution.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Create a new struct omapfb_display_data to contain omapfb's private
per-display data. Move the bpp override there.
This struct will be used to hold auto/manual update state of a display
in the following patches.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Using empty macros for performance measurement functions when DSS DEBUG
is not enabled causes an unused variable warning.
Change the empty macros to empty inline functions to remove the
warning.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapdss.h included platform_device.h and atomic.h, neither of which is
needed by omapdss.h. Remove those includes from omapdss.h, and fix the
affected .c files which did not include platform_device.h even though
they should.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add the support for NV12 color format.
Configure base address for UV component of NV12 color format.
Change the way chroma scaling is handled for YUV formats on OMAP4 by enabling
chroma-resampling for video pipeline and hence using FIR2 register set for
scaling UV.
Changes to _dispc_set_scaling(), because of the reason above, are:
- call _dispc_set_scaling_common() to handle scaling for all color formats
except for OMAP4 where it only handles scaling for RGB or Y-component
- call _dispc_set_scaling_uv() for special handling required for UV
component on OMAP4.
- dispc_set_scaling_uv() also resets chroma-resampling bit for RGB color modes.
Contains chroma scaling (_dispc_set_scaling_uv) design and implemented by
Lajos Molnar <molnar@ti.com>
Signed-off-by: Amber Jain <amber@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new registers specific to UV color component that are introduced in OMAP4.
Add simple helper functions to configure the newly added registers.
These new registers are mainly:
- UV base address registers used specifically for NV12 color-format
- FIR registers used for UV-color-component scaling on OMAP4
- Accumulator registers used for UV-color-component scaling
Add these new registers to save/restore and DUMPREG functions.
Also add two new features for OMAP4:
- FEAT_HANDLE_UV_SEPARATE - this is used on OMAP4 as UV color-component requires
separate handling.
- FEAT_ATTR2 - this is used on OMAP4 to configure new ATTRIBUTES2 register.
Signed-off-by: Amber Jain <amber@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use for loop instead of individual entries for OVL_FIR_COEF_H, OVL_FIR_COEF_HV,
OVL_FIR_COEF_V and OVL_CONV_COEF in SR() and RR().
Signed-off-by: Amber Jain <amber@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
FIR values can never be zero as per TRM, and the current code writes zero
when scaling is not used. It was not causing any problem as scaling was
disabled when zero was written. Its still safer to not write zero to
it in any case.
Now we configure correct FIR values even when scaling is not used (i.e. set FIR
to 1024 when scaling is not used), but the scaling enable bits are still kept
off if the scaling is not needed.
Signed-off-by: Amber Jain <amber@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add new color formats supported by OMAP4: NV12, RGBA16, RGBX16,
ARGB16_1555, XRGB16_1555.
NV12 color format is defined here, its support in DSS will be added separately.
Signed-off-by: Amber Jain <amber@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Implement an ASoC Codec Driver to handle audio configuration. The
implementation offers an interface for audio configuration and
control to be exposed to ALSA while hidding the HDMI details.
The ASoC driver supports the Basic Audio configuration as described
in CEA-861-D: 2-channel linear PCM with 32, 44.1 and 48kHz sample
rates and 16 bits/sample. It additionally supports 24 bit/sample
in 32-bit words.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add functionality for relevant audio configuration. Functions to
configure the audio FIFO and DMA as well as functions for the audio
core and Audio Info frame are included. This functionality is to
be used by the ASoC HDMI audio codec.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add enurations and structures for audio configuration. This includes
enumerations for the Audio InfoFrame, I2S, audio FIFO and audio core.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
CTS and N parameters are used to regenerate the audio clock from
the TMDS clock at the HDMI sink. In OMAP4430 ES1.0 version
the calculation of the CTS parameter is done by the HDMI IP
(hardware mode) while in others it must be done by the HDMI driver
(software mode). A DSS feature is used to indicate the HDMI
driver which mode is used.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Create a separate DSS features structure for OMAP4430 ES1.0. This
structure is used to expose features only present in such
silicon version. Specifically, this is required to handle how
the HDMI IP calculates the CTS parameter for audio clock
regeneration packets. OMAP4430 ES1.0 is the only one that supports
computation of the CTS parameter by the HDMI IP (hardware mode).
The rest of the revisions require the HDMI driver to perform the
computation.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The line buffer sizes vary across DSI modules, create a function
dsi_get_line_buf_size() using DSI_GNQ register to get the size of
line buffer used for the DISPC video port data.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On OMAP3, the DSI module has 2 data lanes. On OMAP4, DSI1 has 4 data lanes
and DSI2 has 2 data lanes. Introduce function dsi_get_num_data_lanes() which
returns the number of data lanes on the dsi interface, introduce function
dsi_get_num_data_lanes_dssdev() which returns the number of data lanes used by
the omap_dss_device connected to the lanes.
Use the DSI_GNQ register on OMAP4 to get the number of data lanes, modify
dsi.c to use the number of lanes and the extra data lanes on DSI1.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
In the previous DSI driver design, a private workqueue was needed to prevent a
deadlock as explained in the commit : 0f16aa0ae6
. In the current design, the workqueue is only used for queueing delayed work in
the case where we don't get a FRAMEDONE interrupt for 250 milliseconds. It is
safe to remove the private workqueue amd use the system workqueue instead to
schedule the delayed work with the new design where the deadlock can't occur.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_dump_clocks() prints lck and pck rates for the DISPC channel which it is
connected to. Remove this since it is already printed by dispc_dump_clocks()
in debugfs.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapfb_mode_to_timings() had struct fb_info, struct fb_var and struct
fb_ops allocated from stack. This caused the stack usage grow quite
high.
Use kzalloc to allocate the structs instead.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add omap_rfbi_configure() which the panel driver can use to reconfigure
the data element size and the number of data lines in the RFBI bus.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
RFBI enables and disables clocks inside almost every function to get a
finegrained control to the clocks. However, the current understanding is
that this is not necessary power-management-wise.
Change the clocking scheme so that RFBI clocks are enabled when the
omapdss_rfbi_display_enable is called, and disabled when
omapdss_rfbi_display_disable is called.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add similar bus lock to RFBI as is in DSI. The panel driver can use the
bus lock to mark that the RFBI bus is currently in use.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dpi.c does not compile if DSI is not compiled in. Add the missing dummy
functions so that dpi.c compiles.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Panel Taal driver uses the string "taal" to register for a backlight device.
This causes backlight_device_register() to fail when a second taal panel
is added. Use dev_name(&dssdev->dev) as a parameter instead of the string.
Note: This will break backlight related sysfs commands. Use the name as
generated by the DSS2 driver, in the form "displayi", which represents
the ith registered display device.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Introduce DSI2 PLL clock sources needed by LCD2 channel and DSI2 Protocol
engine and DISPC Functional clock. Do the following:
- Modify dss_get_dsi_clk_source() and dss_select_dsi_clk_source() to take the
dsi module number as an argument.
- Create debugfs files for dsi2, split the corresponding debugfs functions.
- Allow DPI to use these new clock sources.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_packet_sent_handler_vp() and dsi_packet_sent_handler_l4() currently
receive the completion parameter as their argument. This is not sufficient
information to differentiate between DSI1 and DSI2 platform devices.
Pass the struct "dsi_packet_sent_handler_data" to the packet_sent_handler
isrs, these contain the platform_device pointer of the DSI device and the
pointer to the completion struct.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The dsi related data structure currently creates one global instance of itself
which is accessed by dsi functions. Remove this global structure instance and
declare the struct as dsi_data. Modify dsi_init() to allocate a "dsi_data"
structure for each platform device instance. Link this data with the device's
platform_device pointer. Create the function dsi_get_dsidrv_data() which takes
the pdev and return a pointer to the device's dsi_data.
Make dsi_get_dsidev_id() return only 0 for now, this will be removed once the
name of the DSI platform device is changed to the device instance form, like
"omapdss_dsi.0" and "omapdss_dsi.1" etc.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI interface is represented as a platform device, using the DSI platform
driver(dsi.c). The current DSI driver design is capable of running only one
instance of a DSI device. On OMAP4, there are 2 very similar DSI modules which
can be represented as instances of "omapdss_dsi" platform device.
Add member "module" in "dssdev.phy.dsi" that tells us which DSI module's lanes
the panel is connected to. Modify dsi.c functions to take the device's
platform_device struct pointer, provide functions dsi_get_dsidev_from_dssdev()
and dsi_get_dsidev_from_id() take the panel's omap_dss_device and module number
respectively, and return the platform_device pointer. Currently, the dsi struct
is declared globally and is accessed when dsi data is needed. The new pdev
argument will be used later to provide the platform device's dsi related data.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The function dsi_pll_init() has omap_dss_device argument which is
not used. Remove this argument.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add pointer to omap_dss_device struct as an argument in the functions which
are exported to dsi panel drivers. This argument will tell the DSI driver
which DSI interface's data it has to choose.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When DBG() is used in a simple if-else, the resulting code path
currently depends on the definition of DBG(). Inserting the statement in
a "do { ... } while (0)" prevents this possible misuse.
Signed-off-by: Niels de Vos <ndevos@redhat.com>
[tomi.valkeinen@ti.com: changed the title of the commit msg]
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Rather than always add the omap2 dirs to the build list (and thus
force everyone to generate a useless built-in.o), bind the dirs to
their relevant kconfig symbol.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSS_IRQSTATUS register is available only on OMAP3, and reading it in
dss_dump_registers() on OMAP4 seems to cause a crash.
The register is not used for anything, and displaying its value is of no
use, so let's just remove it altogether.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
struct dispc_reg was originally used while migrating from old omapfb to
catch cases where the arguments to dispc_read_reg/dispc_write_reg were in
wrong order, since old omapfb had the arguments in reverse order.
Remove this struct and use u16 instead
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Represent manager/channel specific DISPC registers as inline functions returning
the required dispc_reg struct. This is done since the current method is not
scalable as the number of overlay managers increase in number.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Move all DISPC register definitions to a new header dispc.h. There are
separate register offset definitions for GFX, VID1 and VID2 pipeline share
register definitions by using an argument. The introduction of VID3 pipeline
on OMAP4 will not let us use the above method since VID3 pipe register offsets
don't map with VID1 and VID2 offsets.
Represent overlay registers as DISPC_OVL_XXXX(plane), where the plane argument
tells the overlay. Register offsets are calculated as:
DISPC_OVL_XXXX(plane) = DISPC_OVL_BASE(plane) + DISPC_XXXX_OFFSET(plane)
Idea suggested by Tomi Valkeinen.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP4 requires SCP clocks enabled to access DSI PLL registers and DSI COMPLEXIO
registers. Enable scp clock before accessing the registers and disable it before
exiting dsi_dump_regs().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add support for Powertip PH480242T, a LCD 4.3inch (480x242) display
type with 24-bit RGB interface, to panel-generic-dpi.
Tested with IGEP v2 board.
Signed-off-by: Enric Balletbo i Serra <eballetbo@iseebcn.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add support for Seiko 70WVW1TZ3, a LCD 7.0inch WVGA (800x480) display
type with 24-bit RGB interface and Touch-Panel, to panel-generic-dpi
Tested with IGEP v2 board.
Signed-off-by: Enric Balletbo i Serra <eballetbo@iseebcn.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
By default, the DSI is not getting enabled for omap4.
OMAP2PLUS does not catch this issue since it has ARCH_OMAP3.
The issue is only seen when using defconfig with ARCH_OMAP4 only.
Signed-off-by: Vikram Pandita <vikram.pandita@ti.com>
Cc: Archit Taneja <archit@ti.com>
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP4 DSI block has new interrupts for the two new DSI lanes.
Add definitions for those interrupts, and add the interrupts to the CIO
error mask.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
ULPS is a low power state where the DSI lanes are kept at ground. This
patch implements ULPS by having a DSI bus inactivity timer which
triggers the entry to ULPS. ULPS exit will happen automatically when the
driver needs to do something on the DSI lanes.
The ulps_timeout is configurable from board file or via sysfs.
Additionally another sysfs file, "ulps", can be used to check the
current ULPS state, or to manually enter or exit ULPS.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
ESD workqueue will be shared with other functionality also. Rename
"esd_wq" to "workqueue" to better reflect its usage.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Separate panel reset code to a function of its own. This will keep the
code cleaner in the future when panel reset is called from multiple
locations.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
ESD check in Taal driver is currently on/off feature with hardcoded
interval. This patch changes it to a configurable interval, which can be
set from the board file.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The panel drivers can leave the VDDS_DSI regulator enabled, even when
the panel is disabled, to ensure that the DSI pins are powered.
This patch ensures that VDDS_DSI is disabled on DSI module unload.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add dsi_mux_pads function pointer to omap_dss_board_info, and use the
function pointer in DSI code to configure the DSI pads either to normal
DSI operation, or to pull down when in ULPS.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add parameter to omapdss_dsi_display_disable() which the panel driver
can use to tell if the DSI lanes should be put to ULPS before disabling
the interface.
This can be used to skip ULPS entry in cases where the panel doesn't
care about ULPS state, for example when the panel will be reset, or when
the display interface will be enabled again right after the disable.
This will speed up the operation considerably in cases where entering
ULPS would fail with timeout, and the panel driver isn't even interested
in entering ULPS.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add dsi_cio_wait_tx_clk_esc_reset() function which waits for the
TXCLKESC domains to come out of reset.
Things have worked fine without this, but better be safe than sorry.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use dsi_enable_scp_clk and dsi_disable_scp_clk in CIO init and uninit,
and improve the CIO init by adding a few status checks and error
handling.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
SCP clock is needed for CIO on OMAP3, and for CIO and PLL on OMAP4.
Current driver enables the CIO clock always when DSI display is
initialized. However, if a DPI display tries to use DSI PLL, the SCP
clock is never enabled.
This patch implements simple ref counting enable/disable functions for
SCP clock.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP3430 has RESETDONETXCLKESCx bits in the order following bitnumber
order for lanes 0, 1, 2: 28, 27, 26. OMAP3630 and later have them in
saner order: 24, 25, 26 (and 27, 28 for OMAP4).
This patch adds a dss_feature that can be used to differentiate between
those two orders of RESETDONETXCLKESCx bits.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Rename ComplexIO from dsi_complexio_xxx to dsi_cio_xxx for brevity.
Also, add cio prefix for couple of functions that didn't have it, but
are cio related.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI pins are powered by VDDS_DSI. If VDDS_DSI is off, the DSI pins
are floating even if they are pinmuxed to, say, safe mode and there's a
pull down/up.
This patch gives the panel drivers an option to leave the VDDS_DSI power
enabled while the DSS itself is turned off. This can be used to keep the
DSI lanes in a valid state while DSS is off, if the DSI pins are muxed
for pull down (not done in this patch).
There will be a slight power consumption increase (~100 uA?) when the
VDDS_DSI is left on, but because this option is used when the panel is
left on, the regulator consumption is negligible compared to panel power
consumption.
When the panel is fully turned off the VDDS_DSI is also turned off.
As an added bonus this will give us faster start up time when starting
up the DSS and the regulator is already enabled.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Entering ULPS (Ultra Low Power State) happens by sending ULPS entry
sequence to the DSI peripheral and pulling the DSI lines down.
Exiting ULPS happens by sending ULPS exit sequence.
We can send the ULPS entry sequence by using OMAP DSS HW's ULPS support,
but we cannot use the ULPS exit support from DSS HW. DSS HW refuses to
send the ULPS exit sequence if it thinks that the lanes are not in ULPS.
After being in OFF mode the DSS HW has been reset, and so it does not
know that the lanes are actually in ULPS.
Thus we need to use the lane override support and manually send the ULPS
exit sequence. Luckily the sequence is very simple.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
CIO LDO status check seems to be broken on OMAP3630+ chips, and it's
also quite unclear what LDO status actually tells and when its status
changes.
This patch removes the whole check on the grounds that if there's a
problem with the LDO, we should anyway catch the problem as we check the
CIO power state and CIO reset status.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSI_DSIPHY_CFG10 register can be used to override DSI lane state. Add
functions to configure and enable the override, and to disable the
override.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP4 has clocks set up in a bit interesting way, causing, for example,
the DSS's "ick" to be called "dss_fck".
This patch changes the debugfs output to show both the DSS's name for
the clock (ie. basically the clock alias), and the real name from the
clock struct.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Convert simple/strict_strto* functions to kstrto* functions. Only simple
cases are converted.
simple_strto* uses are still left to places where it is used to parse
numbers from a list of numbers. These need some other solution than
kstrto*.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The clock sources for DISPC_FCLK and LCD1_CLK are now specified in the board file.
There is no need for the hack config "CONFIG_OMAP2_DSS_USE_DSI_PLL" anymore.
Introduce function dpi_use_dsi_pll() which checks for the clock sources to decide
whether DSI PLL is to be used or not.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Move some of the configurable HDMI PLL parameters to dssdev.clock struct.
Cleanup the function hdmi_compute_pll() by using the parameters defined in the
board file and do some cosmetic modifications.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add enum dss_clock_source in dssdev.clocks struct so that the clock sources can
be specified in the board file.
Replace hard coded clock sources in dsi.c, dpi.c and replace them with the new
clock source members in dssdev.clocks. Modify the sdp4430_lcd_device struct in
board-4430sdp.c to specify clock sources for DISPC_FCLK, LCD1_CLK and DSI1_FCLK.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Change enum dss_clk_source to omap_dss_clock_source and move it to
'plat/display.h'. Change the enum members to attach "OMAP_" in the beginning.
These changes are done in order to specify the clock sources for DSS in the
board file.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We can use __exit for the driver remove function in plain dss panels
(ie. those that do not need i2c or spi).
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omap_dss_register_device and omap_dss_unregister_device can only be
called from core.c, so we can make it static.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
VENC code was missing omap_dss_start/stop_device calls. This didn't
cause any problems as VENC could not be compiled as a module, but
nevertheless it's better to add the calls.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently omapfb does an implicit display update (for manual update
displays) on unblank.
There is no guarantee that the framebuffer contains a valid image when
unblank is called. When using manual update displays it is the
responsibility of the user space to update the display, and so it should
be in this case also.
This patch removes the implicit display update on unblank.
Signed-off-by: Jani Nikula <ext-jani.1.nikula@nokia.com>
[tomi.valkeinen@ti.com: improved description]
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Errors from the panel driver were ignored during panel initialization.
Handle the errors and fail accordingly.
Also move the display initialization to a separate function to make it
cleaner.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add get_dimensions() to struct omap_dss_driver. Use the call, if supported
by the driver, in OMAPFB.
Signed-off-by: Jani Nikula <ext-jani.1.nikula@nokia.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
VENC code had 50ms sleep after enabling the output and 100ms sleep after
disabling the output. I don't see any reason for these sleeps.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There's a 20ms sleep after VENC reset. It's unknown what bug this
circumvents and on what platforms. Add a Kconfig option to disable the
sleep.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
For some unknown reason we may get SYNC_LOST errors from the display
subsystem at initialization time if we don't sleep before resetting the
DSS. See the source (dss.c) for more comments.
However, 50ms is quite long time to sleep, and with some configurations
the SYNC_LOST may never happen, so this patch creates a Kconfig option
to disable the sleep.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The sleep workaround for the problem described in the comment doesn't
really work. This patch removes the workaround, and improves the comment
about the bug, and proposes an userspace workaround.
omap_dss_set_manager() is called 6 times when loading omapdss and
omapfb, which means that 40ms * 6 = 240ms was spent sleeping when
booting up.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clock configuration was defined inside dssdev.phy.dsi struct. The clock
config doesn't really belong there, and so it's moved to dssdev.clock
struct.
Now the explicit clock configuration could also be used for other
interfaces than DSI, although there's no support for it currently.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI protocol engine has no interrupt for signalling the end of a Frame
transfer. The present approach is to send a BTA after DISPC generates a
FRAMEDONE interrupt, and unlock the dsi bus only when the BTA Ack is received.
The assumption made with this approach was that OMAP will send a BTA only after
the long packet corresponding to the last line is sent. However, it is possible
that on the DISPC FRAMEDONE interrupt there are 2 (or more) lines of pixel data
in the DSI line buffer. Hence, the BTA Ack could be received for the long packet
corresponding to the second last line (or the third last and so on..).
Therefore, the current method doesn't ensure that the complete frame data is
sent before we start a new transfer. A similar explanation holds valid if we
send a BTA in between multiple short/long command packets from the slave port.
Introduce dsi_sync_vc functions, based on Tomi Valkeinen's idea, which ensure
that the DSI Virtual Channel in use(update_channel) completes its previous work
before proceeding to the next Frame/Command.
For a frame update, the DSI driver now sends a callback to the Panel Driver
on the FRAMEDONE interrupt itself. The callback in the panel driver then unlocks
the bus. dsi_sync_vc() functions are placed in dsi_vc_config_l4() and
dsi_vc_config_vp() to ensure that the previous task of the Virtual Channel is
completed.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The following changes have changed from OMAP3 to OMAP4 DSI:
-The register field DSI_PLL_FREQSEL in DSI_PLL_CONFIGURATION2 has been removed.
-DCS_CMD_ENABLE and DCS_CMD_CODE bits have been moved from DSI_CTRL to
DSI_VC_CTRLi, hence the control of the bits is available per VC.
-DSI LDO powergood notification doesn't work on OMAP4. This is mentioned in
OMAP4 errata revision 1.8(Errata 1.76).
-OCP_WIDTH register field is included in DSI_VC_CTRL.
-The SCP clock is also required to access DSI PLL registers
Introduce dss features for these changes so that DSI runs on both OMAP3 and
OMAP4.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP3630 has a HW bug causing DSI PLL power command POWER_ON_DIV (0x3)
to not work properly. The bug prevents us from enabling DSI PLL power
only to HS divider block.
This patch adds a dss feature for the bug and converts POWER_ON_DIV
requests to POWER_ON_ALL (0x2).
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dss.lcd_clk_source is set to the default value DSS_CLK_SRC_FCK at dss_init.
For OMAP2 and OMAP3, the dss.lcd_clk_source should always be the same as
dss.dispc_clk_source. The function dss_get_lcd_clk_source() always returns the
default value DSS_CLK_SRC_FCK for OMAP2/3. This leads to wrong clock dumps when
dispc_clk_source is not DSS_CLK_SRC_FCK.
Correct this function to always return dss.dispc_clk_source for OMAP2/3.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On OMAP4, reading DSI_PLL_CONFIGURATION2 register requires the L3 clock
(CIO_CLK_ICG) to PLL. Currently dsi_dump_clocks() tries to read that
register without enabling the L3 clock, leading to crash if DSI is not
in use.
The status of the bit being read from DSI_PLL_CONFIGURATION2 is
available from dsi_clock_info->use_sys_clk, so we can avoid the whole
problem by just using that.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
use_sys_clk and highfreq fields in dsi.current_cinfo were never set.
Luckily they weren't used anywhere so it didn't cause any problems.
This patch fixes those fields and they are now set at the same time as
the rest of the fields.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
arch/arm/plat-omap/include/plat/nokia-dsi-panel.h is an include for the
OMAP DSS panel driver for Nokia's DSI displays. A more logical place for
it is in include/video.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
arch/arm/plat-omap/include/plat/panel-generic-dpi.h is an include for
the OMAP DSS panel driver for generic DPI displays. A more logical place
for it is in include/video.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
arch/arm/plat-omap/include/plat/display.h is an include for the OMAP DSS
driver. A more logical place for it is in include/video.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There may be multiple ways of controlling the backlight on a given
machine. Allow drivers to expose the type of interface they are
providing, making it possible for userspace to make appropriate policy
decisions.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: David Airlie <airlied@linux.ie>
Cc: Alex Deucher <alexdeucher@gmail.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add dss.dpll4_m4_ck (DSS FCLK) initialization for OMAP4. This is used
to compute the pixel clock for DPI interface and also to reconfigure
the DSS FCLK to the desired rate, corresponding to the rate computed
for pixel clock.
Adding these cpu_is_44xx() checks are meant to be temporary, until a
cleaner implementation to manage these checks are added. Currently this
is needed to get DVI display running on OMAP4 PandaBoard
Signed-off-by: Raghuveer Murthy <raghuveer.murthy@ti.com>
[tomi.valkeinen@ti.com: minor changes due to conflicts]
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP2 does not have dpll4_m4_ck source clock for dss functional clock,
but later OMAPs do. Currently we check for cpu type in multiple places
to find out if dpll4_m4_ck is available.
This patch cleans up dss.c by using the fact that dss.dpll4_m4_ck
pointer is NULL on OMAP2. This allows us to remove many of the cpu
checks.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
calling the platform registration of HDMI driver from core
during initialization.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Adding kconfig and makefile changes to add support for HDMI in OMAP4.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The panel driver(hdmi_omap4_panel.c) in omap2/dss acts as a controller
to manage the enable and disable requests and synchronize audio and video.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Adding the hdmi interface driver(hdmi.c) to the dss driver. It configures
the audio and video portion of HDMI based on functionality called by the
panel driver.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Yong Zhi <y-zhi@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Adding the hdmi interface driver header file (hdmi.h) to the dss driver.
Register and structure declaration done here.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Adding function to reset/set gamma table bit for TV interface, currently
only support for disabled is added.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Adding function to select between HDMI or VENC clock source.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Adding display type HDMI in dss_features, overlay and the manager so that
HDMI type of display will be recognized.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
print_irq_status functions can be called with empty irq status when full
irq debugging is enabled. This patch makes print_irq_status functions
return immediately when given an empty irq status to lessen the debug
spam slightly.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_vc_send_bta_sync() waits for BTA interrupt with a 500ms timeout. If
a DSI error happens, no BTA is received and the timeout triggers. This
could be handled much faster by listening to DSI errors also.
This patch uses the ISR support to notice DSI errors while waiting for
the BTA, thus speeding up the fail-path considerably.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add generic ISR support for DSI interrupts. ISRs can be used instead of
custom hooks in the interrupt handler.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clean up the IRQ handler a bit by separating collection of IRQ stats and
handling of IRQ errors to separate functions.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DSI PLL parameters (regm, regn, regm_dispc, regm_dsi, fint) have different
fields and also different Max values on OMAP3 and OMAP4. Use dss features to
calculate the register fields and min/max values based on current OMAP revision.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Create 2 functions dss_feat_get_param_min() and dss_feat_get_param_max() which
return the minimum and maximum value of a parameter. Introduce a enum in
dss_features called dss_range_param which contains parameters whose ranges we
are interested in.
Replace this with dss_feat_get_max_dss_fck() which is specific to the parameter
DSS_FCK.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The structures dss_reg_field and dss_clk_source_name have enum members which
specify the register field and the clock source respectively. These members are
not used to choose the correct result in the corresponding feature functions.
Remove these members and change the features array declaration to incorporate
these enums.
The structure dss_clk_source_name without the enum member is just a pointer to
an string. Remove the structure and use a character pointer directly.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Something seems to be wrong with OMAP4 & VENC, and register access fails
in omap_venchw_probe().
This patch skips venc driver registration on OMAP4, thus circumventing
the problem for now.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On OMAP3, the pixel clock for the LCD manager was derived through DISPC_FCLK as:
Lcd Pixel clock = DISPC_FCLK / lcd / pcd
Where lcd and pcd are divisors in the DISPC_DIVISOR register.
On OMAP4, the pixel clocks for LCD1 and LCD2 managers are derived from 2 new
clocks named LCD1_CLK and LCD2_CLK. The pixel clocks are calculated as:
Lcd_o Pixel clock = LCDo_CLK / lcdo /pcdo, o = 1, 2
Where lcdo and pcdo registers are divisors in DISPC_DIVISORo registers.
LCD1_CLK and LCD2_CLK can have DSS_FCLK, and the M4 divider clocks of DSI1 PLL
and DSI2 PLL as clock sources respectively. Introduce functions to select and
get the clock source for these new clocks. Modify DISPC functions get the
correct lck and pck rates based on the clock source of these clocks. Since
OMAP2/3 don't have these clocks, force OMAP2/3 to always have the LCD_CLK source
as DSS_CLK_SRC_FCK by introducing a dss feature.
Introduce clock source names for OMAP4 and some register field changes in
DSS_CTRL on OMAP4.
Currently, LCD2_CLK can only have DSS_FCLK as its clock source as DSI2 PLL
functionality hasn't been introduced yet. BUG for now if DSI2 PLL is selected as
clock.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clean up some of the DSS functions which select/get clock sources, use switch
to select the clock source members since more clock sources will be introduced
later on.
Remove the use of macro CONFIG_OMAP2_DSS_DSI in dispc_fclk_rate, use a dummy
inline for function for dsi_get_pll_hsdiv_dispc_rate() instead for code clarity.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This patch adds support for the Gumstix Palo35 expansion board
which utilizes the 320 x 240 pixel LG.Philips LB035Q02 LCD Panel
Signed-off-by: Steve Sakoman <steve@sakoman.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Fix handling of error in omap_dispc_register_isr() in case there are no
free isr slots available.
Reported-by: Ben Tucker <btucker@mpcdata.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Using dss_features to select independent core clock divider and setting
it. Added the register used, to DISPC context save and restore group
-----------------------------------------------------------------------
In OMAP4, the minimum DISPC_CORE_CLK required can be expressed as:
DISPC_CORE_CLK >= max(PCLK1*HSCALE1, PCLK2*HSCALE2, ...)
Where PCLKi is the pixel clock generated by MANAGERi and HSCALEi is the
maximum horizontal downscaling done through MANAGERi
Based on the usecase, core clk can be increased or decreased at runtime
to save power. Such mechanism are not yet implemented. Hence, we set the
core clock divisor to 1, to support maximum range of resolutions
------------------------------------------------------------------------
Signed-off-by: Raghuveer Murthy <raghuveer.murthy@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The OMAP4 DISPC_DIVISOR1 is backward compatible to OMAP3xxx DISPC_DIVISOR.
However DISPC_DIVISOR is also provided in OMAP4, to control DISPC_CORE_CLK
independent of Primary and Secondary display clocks.
Renamed DISPC_DIVISOR(ch) to DISPC_DIVISORo(ch), to facilitate introduction
of DISPC_DIVISOR register, which is specific for OMAP4. OMAP4 has 3 registers
DISPC_DIVISOR, DISPC_DIVISOR1 and DISPC_DIVISOR2.
Also updated, all the usages of DISPC_DIVISOR(ch) to DISPC_DIVISORo(ch).
Use DISPC_DIVISORo(ch) when DISPC_DIVISOR1 or DISPC_DIVISOR2 has to be
configured
OMAP4 TRM uses DISPC_DIVISORo generically to refer to DISPC_DIVISOR1 and
DISPC_DIVISOR2
Signed-off-by: Raghuveer Murthy <raghuveer.murthy@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
In OMAP3xxx DISPC_DIVISOR register has a logical clock divisor (lcd_div)
field. The lcd_div is common, for deciding the DISPC core functional clock
frequency, and the final pixel clock frequency for LCD display.
In OMAP4, there are 2 LCD channels, hence two divisor registers, DISPC_DIVISOR1
and DISPC_DIVISOR2. Also, there is a third register DISPC_DIVISOR.
The DISPC_DIVISOR in OMAP4 is used to configure lcd_div exclusively for core
functional clock configuration. For pixel clock configuration of primary and
secondary LCDs, lcd_div of DISPC_DIVISOR1 and DISPC_DIVISOR2 are used
respectively
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Raghuveer Murthy <raghuveer.murthy@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On omap4 the registers may not be accessible right after enabling the
clocks. At some point this will be handled by pm_runtime, but, for the
time begin, adding a small delay after clk_enable() should make things
work.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When using OMAP2_DSS_USE_DSI_PLL, which selects DSI PLL as source clock
for DISPC, the DSI needs the vdds_dsi regulator. Latest regulator
changes broke this, causing the the code to not acquire the regulator
when using OMAP2_DSS_USE_DSI_PLL.
This patch acquires the vdds_dsi regulator in dsi_pll_init(), fixing the
issue. This is is just a quick hack to get the OMAP2_DSS_USE_DSI_PLL
option working. There shouldn't be any other downside in this solution
than some extra lines of code.
OMAP2_DSS_USE_DSI_PLL is itself a big hack, and should be removed, and
the feature itself should be implemented in a more sane way. However,
the solution is not trivial, and people are using DSI PLL to get more
exact pixel clocks, so this hack is an acceptable temporary solution for
the time being.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Taal driver used to take a hard coded Macro for Virtual Channel and the VC_ID.
The Taal panel driver now requests for a Virtual channel through the
omap_dsi_request_vc() call in taal_probe().
The channel number returned by the request_vc() call is used for sending command
and data to the Panel. The DSI driver automatically configures the Virtual
Channel's source to either Video Port or L4 Slave port based on what the panel
driver is using it for.
The driver uses omap_dsi_release_vc() to free the VC specified by the panel.
taal_remove() or when a request_vc() call fails.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Introduce functions which request and release VC's. This will be used in panel
drivers in their probes.
omap_dsi_request_vc() takes in the pointer to the omap_dss_device, the VC_ID
parameter which goes into the header of the DSI packets, and returns a Virtual
channel number (or virtual channel register set) which it can use.
omap_dsi_set_vc_id() takes the omap_dss_device pointer, the Virtual Channel
number and the VC_ID that needs to be set for the specifed Virtual Channel.
omap_dsi_release_vc() takes the omap_dss_device pointer and the Virtual Channel
number that needs to be made free.
Initialisation of VC parameters is done in dsi_init().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
cpu_is_omapxxx() was used previously to select the supported interfaces.
Now that the interfaces are platform devices, we no longer need to do
the check when registering the driver. Thus we can just remove the
checks.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DPI and SDI are different from the other interfaces as they are not
hwmods and there is not platform driver for them. They could be said to
be a part of DSS or DISPC modules, although it's not a clear definition.
This patch moves DPI and SDI initialization into DSS platform driver,
making the code more consistent: omap_dss_probe() only initializes
platform drivers now.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
FB_OMAP_BOOTLOADER_INIT does not work, and it was only partially
implemented for SDI.
This patch removes support for FB_OMAP_BOOTLOADER_INIT to clean up the
code and to remove any assumptions that FB_OMAP_BOOTLOADER_INIT would
work.
Proper implementation is much more complex, requiring early boot time
register and clock handling to keep the DSS running.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSI PLL output clock names have been made more generic. The clock name
describes what the source of the clock and what clock is used for. Some of
DSI PLL parameters like dividers and DSI PLL source have also been made more
generic.
dsi1_pll_fclk and dsi2_pll_fclk have been changed as dsi_pll_hsdiv_dispc_clk
and dsi_pll_hsdiv_dsi_clk respectively. Also, the hsdividers are now named
regm_dispc and regm_dsi instead of regm3 and regm4.
Functions and macros named on the basis of these clock names have also been
made generic.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Clock source names vary across OMAP2/3 and OMAP4, the clock source enum
names have been made generic in the driver, but for purposes of debugging
and dumping clock sources, it is better to preserve the actual TRM name of
the clock.
Introduce a dss feature function 'dss_feat_get_clk_source_name()' which
returns a string with the TRM clock name for the current OMAP in use. The OMAP
specific name is printed along the generic name within brackets.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The enum members of 'dss_clk_source' have clock source names specific to
OMAP2/3. Change the names to more generic terms such that they now describe
where the clocks come from and what they are used for.
Also, change the enum member names to have "DSS_CLK_SRC" instead of "DSS_SRC"
for more clarity.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The maximum supported frequency for DSS has increased from 173 to 186 Mhz on
OMAP4.
Introduce a dss feature function to get the max_fck to replace DISPC_MAX_FCK
macro.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>