Highlights:
- Major rework of Book3S 64-bit exception vectors (Nicholas Piggin)
- Use gas sections for arranging exception vectors et. al.
- Large set of TM cleanups and selftests (Cyril Bur)
- Enable transactional memory (TM) lazily for userspace (Cyril Bur)
- Support for XZ compression in the zImage wrapper (Oliver O'Halloran)
- Add support for bpf constant blinding (Naveen N. Rao)
- Beginnings of upstream support for PA Semi Nemo motherboards (Darren Stevens)
Fixes:
- Ensure .mem(init|exit).text are within _stext/_etext (Michael Ellerman)
- xmon: Don't use ld on 32-bit (Michael Ellerman)
- vdso64: Use double word compare on pointers (Anton Blanchard)
- powerpc/nvram: Fix an incorrect partition merge (Pan Xinhui)
- powerpc: Fix usage of _PAGE_RO in hugepage (Christophe Leroy)
- powerpc/mm: Update FORCE_MAX_ZONEORDER range to allow hugetlb w/4K (Aneesh Kumar K.V)
- Fix memory leak in queue_hotplug_event() error path (Andrew Donnellan)
- Replay hypervisor maintenance interrupt first (Nicholas Piggin)
Cleanups & features:
- Sparse fixes/cleanups (Daniel Axtens)
- Preserve CFAR value on SLB miss caused by access to bogus address (Paul Mackerras)
- Radix MMU fixups for POWER9 (Aneesh Kumar K.V)
- Support for setting used_(vsr|vr|spe) in sigreturn path (for CRIU) (Simon Guo)
- Optimise syscall entry for virtual, relocatable case (Nicholas Piggin)
- Optimise MSR handling in exception handling (Nicholas Piggin)
- Support for kexec with Radix MMU (Benjamin Herrenschmidt)
- powernv EEH fixes (Russell Currey)
- Suprise PCI hotplug support for powernv (Gavin Shan)
- Endian/sparse fixes for powernv PCI (Gavin Shan)
- Defconfig updates (Anton Blanchard)
- Various performance optimisations (Anton Blanchard)
- Align hot loops of memset() and backwards_memcpy()
- During context switch, check before setting mm_cpumask
- Remove static branch prediction in atomic{, 64}_add_unless
- Only disable HAVE_EFFICIENT_UNALIGNED_ACCESS on POWER7 little endian
- Set default CPU type to POWER8 for little endian builds
- KVM: PPC: Book3S HV: Migrate pinned pages out of CMA (Balbir Singh)
- cxl: Flush PSL cache before resetting the adapter (Frederic Barrat)
- cxl: replace loop with for_each_child_of_node(), remove unneeded of_node_put() (Andrew Donnellan)
- Fix HV facility unavailable to use correct handler (Nicholas Piggin)
- Remove unnecessary syscall trampoline (Nicholas Piggin)
- fadump: Fix build break when CONFIG_PROC_VMCORE=n (Michael Ellerman)
- Quieten EEH message when no adapters are found (Anton Blanchard)
- powernv: Add PHB register dump debugfs handle (Russell Currey)
- Use kprobe blacklist for exception handlers & asm functions (Nicholas Piggin)
- Document the syscall ABI (Nicholas Piggin)
- MAINTAINERS: Update cxl maintainers (Michael Neuling)
- powerpc: Remove all usages of NO_IRQ (Michael Ellerman)
Minor cleanups:
- Andrew Donnellan, Christophe Leroy, Colin Ian King, Cyril Bur, Frederic Barrat,
Pan Xinhui, PrasannaKumar Muralidharan, Rui Teng, Simon Guo.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJX9x5ZAAoJEFHr6jzI4aWAWQ0P+gOhdtayMsRY0k0dzPmYaFr0
Ha5v968RJaNIyGGM9ARJg8h27PGMaSlBp/9zaYdk1G7xfv/DMR0uq8d8l5pjy/Zw
Jm72WE4PEX/zAcQxry6Y2fDdumO09crTBA/W0hM1UZzqu0bcVUfD+E51ZFYWW7yh
fyhT2YnlucxIcT34pxsLqwTIiZYG4xgN3+YGo0wohY1D1GHE3UZ7SXIglb49yM6v
ZeXrL7SOdERR1w88rC+g99P/cWng5HDS0wPLUbxGT5KIpoOSXOs7EbZwFqQBUy5O
37PB07K5dDyUbrm++l5lUigldF3W1OZQBN5+n8PciulxxwFX84pllTlAxv1p60JR
piEKZ8pl023IF7zMGatUG9qcNOcnbxdMsAhoEhlcFi9ulM/yLzbmRTKVfDYm+O/J
UI+YtcbsgdyOXMdGXCqdpeBNuuypgLG/g7gC8bnk3taS0LUUZLcXtRNuE4tcPJJe
v8FnszaLkjAi83Lmzt3fgZo7DI1RIPwDSw6fY+nBrxCRfEPRVx3f7KhmUXvSeol5
Ln9xpk4AtyQt1RHhckxXwWSUgvXVg2ltmz7ElqK4sQ9mO/D2ZIs6R6fPY4VlJLc4
/2yIV4RLIsbHmdv9IbJ8PBp0VTugSNdicZ904QiAHSZQv/i1mgYuXw3tjR6kuy9f
bKOzNJTwLV1WUsOlUpiq
=Jnn8
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights:
- Major rework of Book3S 64-bit exception vectors (Nicholas Piggin)
- Use gas sections for arranging exception vectors et. al.
- Large set of TM cleanups and selftests (Cyril Bur)
- Enable transactional memory (TM) lazily for userspace (Cyril Bur)
- Support for XZ compression in the zImage wrapper (Oliver
O'Halloran)
- Add support for bpf constant blinding (Naveen N. Rao)
- Beginnings of upstream support for PA Semi Nemo motherboards
(Darren Stevens)
Fixes:
- Ensure .mem(init|exit).text are within _stext/_etext (Michael
Ellerman)
- xmon: Don't use ld on 32-bit (Michael Ellerman)
- vdso64: Use double word compare on pointers (Anton Blanchard)
- powerpc/nvram: Fix an incorrect partition merge (Pan Xinhui)
- powerpc: Fix usage of _PAGE_RO in hugepage (Christophe Leroy)
- powerpc/mm: Update FORCE_MAX_ZONEORDER range to allow hugetlb w/4K
(Aneesh Kumar K.V)
- Fix memory leak in queue_hotplug_event() error path (Andrew
Donnellan)
- Replay hypervisor maintenance interrupt first (Nicholas Piggin)
Various performance optimisations (Anton Blanchard):
- Align hot loops of memset() and backwards_memcpy()
- During context switch, check before setting mm_cpumask
- Remove static branch prediction in atomic{, 64}_add_unless
- Only disable HAVE_EFFICIENT_UNALIGNED_ACCESS on POWER7 little
endian
- Set default CPU type to POWER8 for little endian builds
Cleanups & features:
- Sparse fixes/cleanups (Daniel Axtens)
- Preserve CFAR value on SLB miss caused by access to bogus address
(Paul Mackerras)
- Radix MMU fixups for POWER9 (Aneesh Kumar K.V)
- Support for setting used_(vsr|vr|spe) in sigreturn path (for CRIU)
(Simon Guo)
- Optimise syscall entry for virtual, relocatable case (Nicholas
Piggin)
- Optimise MSR handling in exception handling (Nicholas Piggin)
- Support for kexec with Radix MMU (Benjamin Herrenschmidt)
- powernv EEH fixes (Russell Currey)
- Suprise PCI hotplug support for powernv (Gavin Shan)
- Endian/sparse fixes for powernv PCI (Gavin Shan)
- Defconfig updates (Anton Blanchard)
- KVM: PPC: Book3S HV: Migrate pinned pages out of CMA (Balbir Singh)
- cxl: Flush PSL cache before resetting the adapter (Frederic Barrat)
- cxl: replace loop with for_each_child_of_node(), remove unneeded
of_node_put() (Andrew Donnellan)
- Fix HV facility unavailable to use correct handler (Nicholas
Piggin)
- Remove unnecessary syscall trampoline (Nicholas Piggin)
- fadump: Fix build break when CONFIG_PROC_VMCORE=n (Michael
Ellerman)
- Quieten EEH message when no adapters are found (Anton Blanchard)
- powernv: Add PHB register dump debugfs handle (Russell Currey)
- Use kprobe blacklist for exception handlers & asm functions
(Nicholas Piggin)
- Document the syscall ABI (Nicholas Piggin)
- MAINTAINERS: Update cxl maintainers (Michael Neuling)
- powerpc: Remove all usages of NO_IRQ (Michael Ellerman)
Minor cleanups:
- Andrew Donnellan, Christophe Leroy, Colin Ian King, Cyril Bur,
Frederic Barrat, Pan Xinhui, PrasannaKumar Muralidharan, Rui Teng,
Simon Guo"
* tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (156 commits)
powerpc/bpf: Add support for bpf constant blinding
powerpc/bpf: Implement support for tail calls
powerpc/bpf: Introduce accessors for using the tmp local stack space
powerpc/fadump: Fix build break when CONFIG_PROC_VMCORE=n
powerpc: tm: Enable transactional memory (TM) lazily for userspace
powerpc/tm: Add TM Unavailable Exception
powerpc: Remove do_load_up_transact_{fpu,altivec}
powerpc: tm: Rename transct_(*) to ck(\1)_state
powerpc: tm: Always use fp_state and vr_state to store live registers
selftests/powerpc: Add checks for transactional VSXs in signal contexts
selftests/powerpc: Add checks for transactional VMXs in signal contexts
selftests/powerpc: Add checks for transactional FPUs in signal contexts
selftests/powerpc: Add checks for transactional GPRs in signal contexts
selftests/powerpc: Check that signals always get delivered
selftests/powerpc: Add TM tcheck helpers in C
selftests/powerpc: Allow tests to extend their kill timeout
selftests/powerpc: Introduce GPR asm helper header file
selftests/powerpc: Move VMX stack frame macros to header file
selftests/powerpc: Rework FPU stack placement macros and move to header file
selftests/powerpc: Check for VSX preservation across userspace preemption
...
All architectures:
Move `make kvmconfig` stubs from x86; use 64 bits for debugfs stats.
ARM:
Important fixes for not using an in-kernel irqchip; handle SError
exceptions and present them to guests if appropriate; proxying of GICV
access at EL2 if guest mappings are unsafe; GICv3 on AArch32 on ARMv8;
preparations for GICv3 save/restore, including ABI docs; cleanups and
a bit of optimizations.
MIPS:
A couple of fixes in preparation for supporting MIPS EVA host kernels;
MIPS SMP host & TLB invalidation fixes.
PPC:
Fix the bug which caused guests to falsely report lockups; other minor
fixes; a small optimization.
s390:
Lazy enablement of runtime instrumentation; up to 255 CPUs for nested
guests; rework of machine check deliver; cleanups and fixes.
x86:
IOMMU part of AMD's AVIC for vmexit-less interrupt delivery; Hyper-V
TSC page; per-vcpu tsc_offset in debugfs; accelerated INS/OUTS in
nVMX; cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJX9iDrAAoJEED/6hsPKofoOPoIAIUlgojkb9l2l1XVDgsXdgQL
sRVhYSVv7/c8sk9vFImrD5ElOPZd+CEAIqFOu45+NM3cNi7gxip9yftUVs7wI5aC
eDZRWm1E4trDZLe54ZM9ThcqZzZZiELVGMfR1+ZndUycybwyWzafpXYsYyaXp3BW
hyHM3qVkoWO3dxBWFwHIoO/AUJrWYkRHEByKyvlC6KPxSdBPSa5c1AQwMCoE0Mo4
K/xUj4gBn9eMelNhg4Oqu/uh49/q+dtdoP2C+sVM8bSdquD+PmIeOhPFIcuGbGFI
B+oRpUhIuntN39gz8wInJ4/GRSeTuR2faNPxMn4E1i1u4LiuJvipcsOjPfe0a18=
=fZRB
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"All architectures:
- move `make kvmconfig` stubs from x86
- use 64 bits for debugfs stats
ARM:
- Important fixes for not using an in-kernel irqchip
- handle SError exceptions and present them to guests if appropriate
- proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- preparations for GICv3 save/restore, including ABI docs
- cleanups and a bit of optimizations
MIPS:
- A couple of fixes in preparation for supporting MIPS EVA host
kernels
- MIPS SMP host & TLB invalidation fixes
PPC:
- Fix the bug which caused guests to falsely report lockups
- other minor fixes
- a small optimization
s390:
- Lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups and fixes
x86:
- IOMMU part of AMD's AVIC for vmexit-less interrupt delivery
- Hyper-V TSC page
- per-vcpu tsc_offset in debugfs
- accelerated INS/OUTS in nVMX
- cleanups and fixes"
* tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (140 commits)
KVM: MIPS: Drop dubious EntryHi optimisation
KVM: MIPS: Invalidate TLB by regenerating ASIDs
KVM: MIPS: Split kernel/user ASID regeneration
KVM: MIPS: Drop other CPU ASIDs on guest MMU changes
KVM: arm/arm64: vgic: Don't flush/sync without a working vgic
KVM: arm64: Require in-kernel irqchip for PMU support
KVM: PPC: Book3s PR: Allow access to unprivileged MMCR2 register
KVM: PPC: Book3S PR: Support 64kB page size on POWER8E and POWER8NVL
KVM: PPC: Book3S: Remove duplicate setting of the B field in tlbie
KVM: PPC: BookE: Fix a sanity check
KVM: PPC: Book3S HV: Take out virtual core piggybacking code
KVM: PPC: Book3S: Treat VTB as a per-subcore register, not per-thread
ARM: gic-v3: Work around definition of gic_write_bpr1
KVM: nVMX: Fix the NMI IDT-vectoring handling
KVM: VMX: Enable MSR-BASED TPR shadow even if APICv is inactive
KVM: nVMX: Fix reload apic access page warning
kvmconfig: add virtio-gpu to config fragment
config: move x86 kvm_guest.config to a common location
arm64: KVM: Remove duplicating init code for setting VMID
ARM: KVM: Support vgic-v3
...
Tail calls allow JIT'ed eBPF programs to call into other JIT'ed eBPF
programs. This can be achieved either by:
(1) retaining the stack setup by the first eBPF program and having all
subsequent eBPF programs re-using it, or,
(2) by unwinding/tearing down the stack and having each eBPF program
deal with its own stack as it sees fit.
To ensure that this does not create loops, there is a limit to how many
tail calls can be done (currently 32). This requires the JIT'ed code to
maintain a count of the number of tail calls done so far.
Approach (1) is simple, but requires every eBPF program to have (almost)
the same prologue/epilogue, regardless of whether they need it. This is
inefficient for small eBPF programs which may not sometimes need a
prologue at all. As such, to minimize impact of tail call
implementation, we use approach (2) here which needs each eBPF program
in the chain to use its own prologue/epilogue. This is not ideal when
many tail calls are involved and when all the eBPF programs in the chain
have similar prologue/epilogue. However, the impact is restricted to
programs that do tail calls. Individual eBPF programs are not affected.
We maintain the tail call count in a fixed location on the stack and
updated tail call count values are passed in through this. The very
first eBPF program in a chain sets this up to 0 (the first 2
instructions). Subsequent tail calls skip the first two eBPF JIT
instructions to maintain the count. For programs that don't do tail
calls themselves, the first two instructions are NOPs.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
While at it, ensure that the location of the local save area is
consistent whether or not we setup our own stackframe. This property is
utilised in the next patch that adds support for tail calls.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The fadump code calls vmcore_cleanup() which only exists if
CONFIG_PROC_VMCORE=y. We don't want to depend on CONFIG_PROC_VMCORE,
because it's user selectable, so just wrap the call in an #ifdef.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently the MSR TM bit is always set if the hardware is TM capable.
This adds extra overhead as it means the TM SPRS (TFHAR, TEXASR and
TFAIR) must be swapped for each process regardless of if they use TM.
For processes that don't use TM the TM MSR bit can be turned off
allowing the kernel to avoid the expensive swap of the TM registers.
A TM unavailable exception will occur if a thread does use TM and the
kernel will enable MSR_TM and leave it so for some time afterwards.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If the kernel disables transactional memory (TM) and userspace still
tries TM related actions (TM instructions or TM SPR accesses) TM aware
hardware will cause the kernel to take a facility unavailable
exception.
Add checks for the exception being caused by illegal TM access in
userspace.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
[mpe: Rewrite comment entirely, bugs in it are mine]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Make the structures being used for checkpointed state named
consistently with the pt_regs/ckpt_regs.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There is currently an inconsistency as to how the entire CPU register
state is saved and restored when a thread uses transactional memory
(TM).
Using transactional memory results in the CPU having duplicated
(almost) all of its register state. This duplication results in a set
of registers which can be considered 'live', those being currently
modified by the instructions being executed and another set that is
frozen at a point in time.
On context switch, both sets of state have to be saved and (later)
restored. These two states are often called a variety of different
things. Common terms for the state which only exists after the CPU has
entered a transaction (performed a TBEGIN instruction) in hardware are
'transactional' or 'speculative'.
Between a TBEGIN and a TEND or TABORT (or an event that causes the
hardware to abort), regardless of the use of TSUSPEND the
transactional state can be referred to as the live state.
The second state is often to referred to as the 'checkpointed' state
and is a duplication of the live state when the TBEGIN instruction is
executed. This state is kept in the hardware and will be rolled back
to on transaction failure.
Currently all the registers stored in pt_regs are ALWAYS the live
registers, that is, when a thread has transactional registers their
values are stored in pt_regs and the checkpointed state is in
ckpt_regs. A strange opposite is true for fp_state/vr_state. When a
thread is non transactional fp_state/vr_state holds the live
registers. When a thread has initiated a transaction fp_state/vr_state
holds the checkpointed state and transact_fp/transact_vr become the
structure which holds the live state (at this point it is a
transactional state).
This method creates confusion as to where the live state is, in some
circumstances it requires extra work to determine where to put the
live state and prevents the use of common functions designed (probably
before TM) to save the live state.
With this patch pt_regs, fp_state and vr_state all represent the
same thing and the other structures [pending rename] are for
checkpointed state.
Acked-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Much of the signal code takes a pt_regs on which it operates. Over
time the signal code has needed to know more about the thread than
what pt_regs can supply, this information is obtained as needed by
using 'current'.
This approach is not strictly incorrect however it does mean that
there is now a hard requirement that the pt_regs being passed around
does belong to current, this is never checked. A safer approach is for
the majority of the signal functions to take a task_struct from which
they can obtain pt_regs and any other information they need. The
caveat that the task_struct they are passed must be current doesn't go
away but can more easily be checked for.
Functions called from outside powerpc signal code are passed a pt_regs
and they can confirm that the pt_regs is that of current and pass
current to other functions, furthurmore, powerpc signal functions can
check that the task_struct they are passed is the same as current
avoiding possible corruption of current (or the task they are passed)
if this assertion ever fails.
CC: paulus@samba.org
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
After a thread is reclaimed from its active or suspended transactional
state the checkpointed state exists on CPU, this state (along with the
live/transactional state) has been saved in its entirety by the
reclaiming process.
There exists a sequence of events that would cause the kernel to call
one of enable_kernel_fp(), enable_kernel_altivec() or
enable_kernel_vsx() after a thread has been reclaimed. These functions
save away any user state on the CPU so that the kernel can use the
registers. Not only is this saving away unnecessary at this point, it
is actually incorrect. It causes a save of the checkpointed state to
the live structures within the thread struct thus destroying the true
live state for that thread.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
msr_check_and_set() always performs a mfmsr() to determine if it needs
to perform an mtmsr(), as mfmsr() can be a costly operation
msr_check_and_set() could return the MSR now on the CPU to avoid
callers of msr_check_and_set having to make their own mfmsr() call.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
giveup_all() causes FPU/VMX/VSX facilities to be disabled in a threads
MSR. If the thread performing the giveup was transactional, the kernel
must record which facilities were in use before the giveup as the
thread must have these facilities re-enabled on return to userspace.
>From process.c:
/*
* This is called if we are on the way out to userspace and the
* TIF_RESTORE_TM flag is set. It checks if we need to reload
* FP and/or vector state and does so if necessary.
* If userspace is inside a transaction (whether active or
* suspended) and FP/VMX/VSX instructions have ever been enabled
* inside that transaction, then we have to keep them enabled
* and keep the FP/VMX/VSX state loaded while ever the transaction
* continues. The reason is that if we didn't, and subsequently
* got a FP/VMX/VSX unavailable interrupt inside a transaction,
* we don't know whether it's the same transaction, and thus we
* don't know which of the checkpointed state and the transactional
* state to use.
*/
Calling check_if_tm_restore_required() will set TIF_RESTORE_TM and
save the MSR if needed.
Fixes: c208505 ("powerpc: create giveup_all()")
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Comment from arch/powerpc/kernel/process.c:967:
If userspace is inside a transaction (whether active or
suspended) and FP/VMX/VSX instructions have ever been enabled
inside that transaction, then we have to keep them enabled
and keep the FP/VMX/VSX state loaded while ever the transaction
continues. The reason is that if we didn't, and subsequently
got a FP/VMX/VSX unavailable interrupt inside a transaction,
we don't know whether it's the same transaction, and thus we
don't know which of the checkpointed state and the ransactional
state to use.
restore_math() restore_fp() and restore_altivec() currently may not
restore the registers. It doesn't appear that this is more serious
than a performance penalty. If the math registers aren't restored the
userspace thread will still be run with the facility disabled.
Userspace will not be able to read invalid values. On the first access
it will take an facility unavailable exception and the kernel will
detected an active transaction, at which point it will abort the
transaction. There is the possibility for a pathological case
preventing any progress by transactions, however, transactions
are never guaranteed to make progress.
Fixes: 70fe3d9 ("powerpc: Restore FPU/VEC/VSX if previously used")
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This fixes warning reported from sparse:
pci-ioda.c:451:49: warning: incorrect type in argument 2 (different base types)
Fixes: 262af557dd ("powerpc/powernv: Enable M64 aperatus for PHB3")
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This fixes the warning reported from sparse:
eeh-powernv.c:875:23: warning: constant 0x8000000000000000 is so big it is unsigned long
Fixes: ebe2253127 ("powerpc/powernv: Support PCI slot ID")
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The hub diag-data type is filled with big-endian data by OPAL call
opal_pci_get_hub_diag_data(). We need convert it to CPU-endian value
before using it. The issue is reported by sparse as pointed by Michael
Ellerman:
eeh-powernv.c:1309:21: warning: restricted __be16 degrades to integer
This converts hub diag-data type to CPU-endian before using it in
pnv_eeh_get_and_dump_hub_diag().
Fixes: 2a485ad7c8 ("powerpc/powernv: Drop PHB operation next_error()")
Cc: stable@vger.kernel.org # v4.1+
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The PE number (@frozen_pe_no), filled by opal_pci_next_error() is in
big-endian format. It should be converted to CPU-endian before it is
passed to opal_pci_eeh_freeze_clear() when clearing the frozen state if
the PE is invalid one. As Michael Ellerman pointed out, the issue is
also detected by sparse:
eeh-powernv.c:1541:41: warning: incorrect type in argument 2 (different base types)
This passes CPU-endian PE number to opal_pci_eeh_freeze_clear() and it
should be part of commit <0f36db77643b> ("powerpc/eeh: Fix wrong printed
PE number"), which was merged to 4.3 kernel.
Fixes: 71b540adff ("powerpc/powernv: Don't escalate non-existing frozen PE")
Cc: stable@vger.kernel.org # v4.3+
Suggested-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We supported POWER7 CPUs for bootstrapping little endian, but the
target was always POWER8. Now that POWER7 specific issues are
impacting performance, change the default target to POWER8.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER8 handles unaligned accesses in little endian mode, but commit
0b5e6661ac ("powerpc: Don't set HAVE_EFFICIENT_UNALIGNED_ACCESS on
little endian builds") disabled it for all.
The issue with unaligned little endian accesses is specific to POWER7,
so update the Kconfig check to match. Using the stat() testcase from
commit a75c380c71 ("powerpc: Enable DCACHE_WORD_ACCESS on ppc64le"),
performance improves 15% on POWER8.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
I see quite a lot of static branch mispredictions on a simple
web serving workload. The issue is in __atomic_add_unless(), called
from _atomic_dec_and_lock(). There is no obvious common case, so it
is better to let the hardware predict the branch.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
During context switch, switch_mm() sets our current CPU in mm_cpumask.
We can avoid this atomic sequence in most cases by checking before
setting the bit.
Testing on a POWER8 using our context switch microbenchmark:
tools/testing/selftests/powerpc/benchmarks/context_switch \
--process --no-fp --no-altivec --no-vector
Performance improves 2%.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
No real need for this to be pr_warn(), reduce it to pr_info().
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We are starting to see i40e adapters in recent machines, so enable
it in our configs.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Change a few devices and filesystems that are seldom used any more
from built in to modules. This reduces our vmlinux about 500kB.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When we issue a system reset, every CPU in the box prints an Oops,
including a backtrace. Each of these can be quite large (over 4kB)
and we may end up wrapping the ring buffer and losing important
information.
Bump the base size from 128kB to 256kB and the per CPU size from
4kB to 8kB.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We see big improvements with the VMX crypto functions (often 10x or more),
so enable it as a module.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Align the hot loops in our assembly implementation of memset()
and backwards_memcpy().
backwards_memcpy() is called from tcp_v4_rcv(), so we might
want to optimise this a little more.
Signed-off-by: Anton Blanchard <anton@samba.org>
Reviewed-by: Nick Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Pull CPU hotplug updates from Thomas Gleixner:
"Yet another batch of cpu hotplug core updates and conversions:
- Provide core infrastructure for multi instance drivers so the
drivers do not have to keep custom lists.
- Convert custom lists to the new infrastructure. The block-mq custom
list conversion comes through the block tree and makes the diffstat
tip over to more lines removed than added.
- Handle unbalanced hotplug enable/disable calls more gracefully.
- Remove the obsolete CPU_STARTING/DYING notifier support.
- Convert another batch of notifier users.
The relayfs changes which conflicted with the conversion have been
shipped to me by Andrew.
The remaining lot is targeted for 4.10 so that we finally can remove
the rest of the notifiers"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
cpufreq: Fix up conversion to hotplug state machine
blk/mq: Reserve hotplug states for block multiqueue
x86/apic/uv: Convert to hotplug state machine
s390/mm/pfault: Convert to hotplug state machine
mips/loongson/smp: Convert to hotplug state machine
mips/octeon/smp: Convert to hotplug state machine
fault-injection/cpu: Convert to hotplug state machine
padata: Convert to hotplug state machine
cpufreq: Convert to hotplug state machine
ACPI/processor: Convert to hotplug state machine
virtio scsi: Convert to hotplug state machine
oprofile/timer: Convert to hotplug state machine
block/softirq: Convert to hotplug state machine
lib/irq_poll: Convert to hotplug state machine
x86/microcode: Convert to hotplug state machine
sh/SH-X3 SMP: Convert to hotplug state machine
ia64/mca: Convert to hotplug state machine
ARM/OMAP/wakeupgen: Convert to hotplug state machine
ARM/shmobile: Convert to hotplug state machine
arm64/FP/SIMD: Convert to hotplug state machine
...
This was not done before the big patches because I only noticed
them afterwards. It has become much easier to see which handlers
are branched to from which exception vectors now, and to see
exactly what vector space is being used for what.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Simple substitution. This is possible now that both parts of the OOL
initial handler get linked into their correct location.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This is not an exception handler as such, it's called from
local_irq_enable(), not exception entry.
Also clean up some now redundant comments at the end of the
consolidation series.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>