linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_sdvo.c

3185 lines
95 KiB
C
Raw Normal View History

/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2007 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "intel_sdvo_regs.h"
#define SDVO_TMDS_MASK (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)
#define SDVO_RGB_MASK (SDVO_OUTPUT_RGB0 | SDVO_OUTPUT_RGB1)
#define SDVO_LVDS_MASK (SDVO_OUTPUT_LVDS0 | SDVO_OUTPUT_LVDS1)
#define SDVO_TV_MASK (SDVO_OUTPUT_CVBS0 | SDVO_OUTPUT_SVID0 | SDVO_OUTPUT_YPRPB0)
#define SDVO_OUTPUT_MASK (SDVO_TMDS_MASK | SDVO_RGB_MASK | SDVO_LVDS_MASK |\
SDVO_TV_MASK)
#define IS_TV(c) (c->output_flag & SDVO_TV_MASK)
#define IS_TMDS(c) (c->output_flag & SDVO_TMDS_MASK)
#define IS_LVDS(c) (c->output_flag & SDVO_LVDS_MASK)
#define IS_TV_OR_LVDS(c) (c->output_flag & (SDVO_TV_MASK | SDVO_LVDS_MASK))
#define IS_DIGITAL(c) (c->output_flag & (SDVO_TMDS_MASK | SDVO_LVDS_MASK))
static const char * const tv_format_names[] = {
"NTSC_M" , "NTSC_J" , "NTSC_443",
"PAL_B" , "PAL_D" , "PAL_G" ,
"PAL_H" , "PAL_I" , "PAL_M" ,
"PAL_N" , "PAL_NC" , "PAL_60" ,
"SECAM_B" , "SECAM_D" , "SECAM_G" ,
"SECAM_K" , "SECAM_K1", "SECAM_L" ,
"SECAM_60"
};
#define TV_FORMAT_NUM ARRAY_SIZE(tv_format_names)
struct intel_sdvo {
struct intel_encoder base;
struct i2c_adapter *i2c;
u8 slave_addr;
struct i2c_adapter ddc;
/* Register for the SDVO device: SDVOB or SDVOC */
drm/i915: Type safe register read/write Make I915_READ and I915_WRITE more type safe by wrapping the register offset in a struct. This should eliminate most of the fumbles we've had with misplaced parens. This only takes care of normal mmio registers. We could extend the idea to other register types and define each with its own struct. That way you wouldn't be able to accidentally pass the wrong thing to a specific register access function. The gpio_reg setup is probably the ugliest thing left. But I figure I'd just leave it for now, and wait for some divine inspiration to strike before making it nice. As for the generated code, it's actually a bit better sometimes. Eg. looking at i915_irq_handler(), we can see the following change: lea 0x70024(%rdx,%rax,1),%r9d mov $0x1,%edx - movslq %r9d,%r9 - mov %r9,%rsi - mov %r9,-0x58(%rbp) - callq *0xd8(%rbx) + mov %r9d,%esi + mov %r9d,-0x48(%rbp) callq *0xd8(%rbx) So previously gcc thought the register offset might be signed and decided to sign extend it, just in case. The rest appears to be mostly just minor shuffling of instructions. v2: i915_mmio_reg_{offset,equal,valid}() helpers added s/_REG/_MMIO/ in the register defines mo more switch statements left to worry about ring_emit stuff got sorted in a prep patch cmd parser, lrc context and w/a batch buildup also in prep patch vgpu stuff cleaned up and moved to a prep patch all other unrelated changes split out v3: Rebased due to BXT DSI/BLC, MOCS, etc. v4: Rebased due to churn, s/i915_mmio_reg_t/i915_reg_t/ Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1447853606-2751-1-git-send-email-ville.syrjala@linux.intel.com
2015-11-18 20:33:26 +07:00
i915_reg_t sdvo_reg;
/* Active outputs controlled by this SDVO output */
uint16_t controlled_output;
/*
* Capabilities of the SDVO device returned by
* intel_sdvo_get_capabilities()
*/
struct intel_sdvo_caps caps;
/* Pixel clock limitations reported by the SDVO device, in kHz */
int pixel_clock_min, pixel_clock_max;
/*
* For multiple function SDVO device,
* this is for current attached outputs.
*/
uint16_t attached_output;
/*
* Hotplug activation bits for this device
*/
uint16_t hotplug_active;
/**
* This is set if we're going to treat the device as TV-out.
*
* While we have these nice friendly flags for output types that ought
* to decide this for us, the S-Video output on our HDMI+S-Video card
* shows up as RGB1 (VGA).
*/
bool is_tv;
enum port port;
/**
* This is set if we treat the device as HDMI, instead of DVI.
*/
bool is_hdmi;
bool has_hdmi_monitor;
bool has_hdmi_audio;
bool rgb_quant_range_selectable;
/**
* This is set if we detect output of sdvo device as LVDS and
* have a valid fixed mode to use with the panel.
*/
bool is_lvds;
/**
* This is sdvo fixed pannel mode pointer
*/
struct drm_display_mode *sdvo_lvds_fixed_mode;
/* DDC bus used by this SDVO encoder */
uint8_t ddc_bus;
/*
* the sdvo flag gets lost in round trip: dtd->adjusted_mode->dtd
*/
uint8_t dtd_sdvo_flags;
};
struct intel_sdvo_connector {
struct intel_connector base;
/* Mark the type of connector */
uint16_t output_flag;
/* This contains all current supported TV format */
u8 tv_format_supported[TV_FORMAT_NUM];
int format_supported_num;
struct drm_property *tv_format;
/* add the property for the SDVO-TV */
struct drm_property *left;
struct drm_property *right;
struct drm_property *top;
struct drm_property *bottom;
struct drm_property *hpos;
struct drm_property *vpos;
struct drm_property *contrast;
struct drm_property *saturation;
struct drm_property *hue;
struct drm_property *sharpness;
struct drm_property *flicker_filter;
struct drm_property *flicker_filter_adaptive;
struct drm_property *flicker_filter_2d;
struct drm_property *tv_chroma_filter;
struct drm_property *tv_luma_filter;
struct drm_property *dot_crawl;
/* add the property for the SDVO-TV/LVDS */
struct drm_property *brightness;
/* this is to get the range of margin.*/
u32 max_hscan, max_vscan;
};
struct intel_sdvo_connector_state {
/* base.base: tv.saturation/contrast/hue/brightness */
struct intel_digital_connector_state base;
struct {
unsigned overscan_h, overscan_v, hpos, vpos, sharpness;
unsigned flicker_filter, flicker_filter_2d, flicker_filter_adaptive;
unsigned chroma_filter, luma_filter, dot_crawl;
} tv;
};
static struct intel_sdvo *to_sdvo(struct intel_encoder *encoder)
{
return container_of(encoder, struct intel_sdvo, base);
}
static struct intel_sdvo *intel_attached_sdvo(struct drm_connector *connector)
{
return to_sdvo(intel_attached_encoder(connector));
}
static struct intel_sdvo_connector *
to_intel_sdvo_connector(struct drm_connector *connector)
{
return container_of(connector, struct intel_sdvo_connector, base.base);
}
#define to_intel_sdvo_connector_state(conn_state) \
container_of((conn_state), struct intel_sdvo_connector_state, base.base)
static bool
intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, uint16_t flags);
static bool
intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
int type);
static bool
intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector);
/*
* Writes the SDVOB or SDVOC with the given value, but always writes both
* SDVOB and SDVOC to work around apparent hardware issues (according to
* comments in the BIOS).
*/
static void intel_sdvo_write_sdvox(struct intel_sdvo *intel_sdvo, u32 val)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
u32 bval = val, cval = val;
int i;
if (HAS_PCH_SPLIT(dev_priv)) {
I915_WRITE(intel_sdvo->sdvo_reg, val);
POSTING_READ(intel_sdvo->sdvo_reg);
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
if (HAS_PCH_IBX(dev_priv)) {
I915_WRITE(intel_sdvo->sdvo_reg, val);
POSTING_READ(intel_sdvo->sdvo_reg);
}
return;
}
if (intel_sdvo->port == PORT_B)
cval = I915_READ(GEN3_SDVOC);
else
bval = I915_READ(GEN3_SDVOB);
/*
* Write the registers twice for luck. Sometimes,
* writing them only once doesn't appear to 'stick'.
* The BIOS does this too. Yay, magic
*/
for (i = 0; i < 2; i++) {
I915_WRITE(GEN3_SDVOB, bval);
POSTING_READ(GEN3_SDVOB);
I915_WRITE(GEN3_SDVOC, cval);
POSTING_READ(GEN3_SDVOC);
}
}
static bool intel_sdvo_read_byte(struct intel_sdvo *intel_sdvo, u8 addr, u8 *ch)
{
struct i2c_msg msgs[] = {
{
.addr = intel_sdvo->slave_addr,
.flags = 0,
.len = 1,
.buf = &addr,
},
{
.addr = intel_sdvo->slave_addr,
.flags = I2C_M_RD,
.len = 1,
.buf = ch,
}
};
int ret;
if ((ret = i2c_transfer(intel_sdvo->i2c, msgs, 2)) == 2)
return true;
DRM_DEBUG_KMS("i2c transfer returned %d\n", ret);
return false;
}
#define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd}
/** Mapping of command numbers to names, for debug output */
static const struct _sdvo_cmd_name {
u8 cmd;
const char *name;
} __attribute__ ((packed)) sdvo_cmd_names[] = {
SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS),
/* Add the op code for SDVO enhancements */
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_VPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_VPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_VPOS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SATURATION),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SATURATION),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SATURATION),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HUE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HUE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HUE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_CONTRAST),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CONTRAST),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTRAST),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_BRIGHTNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_BRIGHTNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_BRIGHTNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_H),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_H),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_H),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_V),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_V),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_V),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_ADAPTIVE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_ADAPTIVE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_ADAPTIVE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_2D),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_2D),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_2D),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SHARPNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SHARPNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SHARPNESS),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DOT_CRAWL),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DOT_CRAWL),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_CHROMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_CHROMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_CHROMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_LUMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_LUMA_FILTER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_LUMA_FILTER),
/* HDMI op code */
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA),
SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA),
};
#define SDVO_NAME(svdo) ((svdo)->port == PORT_B ? "SDVOB" : "SDVOC")
static void intel_sdvo_debug_write(struct intel_sdvo *intel_sdvo, u8 cmd,
const void *args, int args_len)
{
int i, pos = 0;
#define BUF_LEN 256
char buffer[BUF_LEN];
#define BUF_PRINT(args...) \
pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args)
for (i = 0; i < args_len; i++) {
BUF_PRINT("%02X ", ((u8 *)args)[i]);
}
for (; i < 8; i++) {
BUF_PRINT(" ");
}
for (i = 0; i < ARRAY_SIZE(sdvo_cmd_names); i++) {
if (cmd == sdvo_cmd_names[i].cmd) {
BUF_PRINT("(%s)", sdvo_cmd_names[i].name);
break;
}
}
if (i == ARRAY_SIZE(sdvo_cmd_names)) {
BUF_PRINT("(%02X)", cmd);
}
BUG_ON(pos >= BUF_LEN - 1);
#undef BUF_PRINT
#undef BUF_LEN
DRM_DEBUG_KMS("%s: W: %02X %s\n", SDVO_NAME(intel_sdvo), cmd, buffer);
}
static const char * const cmd_status_names[] = {
"Power on",
"Success",
"Not supported",
"Invalid arg",
"Pending",
"Target not specified",
"Scaling not supported"
};
static bool __intel_sdvo_write_cmd(struct intel_sdvo *intel_sdvo, u8 cmd,
const void *args, int args_len,
bool unlocked)
{
u8 *buf, status;
struct i2c_msg *msgs;
int i, ret = true;
/* Would be simpler to allocate both in one go ? */
buf = kzalloc(args_len * 2 + 2, GFP_KERNEL);
if (!buf)
return false;
msgs = kcalloc(args_len + 3, sizeof(*msgs), GFP_KERNEL);
if (!msgs) {
kfree(buf);
return false;
}
intel_sdvo_debug_write(intel_sdvo, cmd, args, args_len);
for (i = 0; i < args_len; i++) {
msgs[i].addr = intel_sdvo->slave_addr;
msgs[i].flags = 0;
msgs[i].len = 2;
msgs[i].buf = buf + 2 *i;
buf[2*i + 0] = SDVO_I2C_ARG_0 - i;
buf[2*i + 1] = ((u8*)args)[i];
}
msgs[i].addr = intel_sdvo->slave_addr;
msgs[i].flags = 0;
msgs[i].len = 2;
msgs[i].buf = buf + 2*i;
buf[2*i + 0] = SDVO_I2C_OPCODE;
buf[2*i + 1] = cmd;
/* the following two are to read the response */
status = SDVO_I2C_CMD_STATUS;
msgs[i+1].addr = intel_sdvo->slave_addr;
msgs[i+1].flags = 0;
msgs[i+1].len = 1;
msgs[i+1].buf = &status;
msgs[i+2].addr = intel_sdvo->slave_addr;
msgs[i+2].flags = I2C_M_RD;
msgs[i+2].len = 1;
msgs[i+2].buf = &status;
if (unlocked)
ret = i2c_transfer(intel_sdvo->i2c, msgs, i+3);
else
ret = __i2c_transfer(intel_sdvo->i2c, msgs, i+3);
if (ret < 0) {
DRM_DEBUG_KMS("I2c transfer returned %d\n", ret);
ret = false;
goto out;
}
if (ret != i+3) {
/* failure in I2C transfer */
DRM_DEBUG_KMS("I2c transfer returned %d/%d\n", ret, i+3);
ret = false;
}
out:
kfree(msgs);
kfree(buf);
return ret;
}
static bool intel_sdvo_write_cmd(struct intel_sdvo *intel_sdvo, u8 cmd,
const void *args, int args_len)
{
return __intel_sdvo_write_cmd(intel_sdvo, cmd, args, args_len, true);
}
static bool intel_sdvo_read_response(struct intel_sdvo *intel_sdvo,
void *response, int response_len)
{
u8 retry = 15; /* 5 quick checks, followed by 10 long checks */
u8 status;
int i, pos = 0;
#define BUF_LEN 256
char buffer[BUF_LEN];
/*
* The documentation states that all commands will be
* processed within 15µs, and that we need only poll
* the status byte a maximum of 3 times in order for the
* command to be complete.
*
* Check 5 times in case the hardware failed to read the docs.
*
* Also beware that the first response by many devices is to
* reply PENDING and stall for time. TVs are notorious for
* requiring longer than specified to complete their replies.
* Originally (in the DDX long ago), the delay was only ever 15ms
* with an additional delay of 30ms applied for TVs added later after
* many experiments. To accommodate both sets of delays, we do a
* sequence of slow checks if the device is falling behind and fails
* to reply within 5*15µs.
*/
if (!intel_sdvo_read_byte(intel_sdvo,
SDVO_I2C_CMD_STATUS,
&status))
goto log_fail;
while ((status == SDVO_CMD_STATUS_PENDING ||
status == SDVO_CMD_STATUS_TARGET_NOT_SPECIFIED) && --retry) {
if (retry < 10)
msleep(15);
else
udelay(15);
if (!intel_sdvo_read_byte(intel_sdvo,
SDVO_I2C_CMD_STATUS,
&status))
goto log_fail;
}
#define BUF_PRINT(args...) \
pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args)
if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP)
BUF_PRINT("(%s)", cmd_status_names[status]);
else
BUF_PRINT("(??? %d)", status);
if (status != SDVO_CMD_STATUS_SUCCESS)
goto log_fail;
/* Read the command response */
for (i = 0; i < response_len; i++) {
if (!intel_sdvo_read_byte(intel_sdvo,
SDVO_I2C_RETURN_0 + i,
&((u8 *)response)[i]))
goto log_fail;
BUF_PRINT(" %02X", ((u8 *)response)[i]);
}
BUG_ON(pos >= BUF_LEN - 1);
#undef BUF_PRINT
#undef BUF_LEN
DRM_DEBUG_KMS("%s: R: %s\n", SDVO_NAME(intel_sdvo), buffer);
return true;
log_fail:
DRM_DEBUG_KMS("%s: R: ... failed\n", SDVO_NAME(intel_sdvo));
return false;
}
static int intel_sdvo_get_pixel_multiplier(const struct drm_display_mode *adjusted_mode)
{
if (adjusted_mode->crtc_clock >= 100000)
return 1;
else if (adjusted_mode->crtc_clock >= 50000)
return 2;
else
return 4;
}
static bool __intel_sdvo_set_control_bus_switch(struct intel_sdvo *intel_sdvo,
u8 ddc_bus)
{
/* This must be the immediately preceding write before the i2c xfer */
return __intel_sdvo_write_cmd(intel_sdvo,
SDVO_CMD_SET_CONTROL_BUS_SWITCH,
&ddc_bus, 1, false);
}
static bool intel_sdvo_set_value(struct intel_sdvo *intel_sdvo, u8 cmd, const void *data, int len)
{
if (!intel_sdvo_write_cmd(intel_sdvo, cmd, data, len))
return false;
return intel_sdvo_read_response(intel_sdvo, NULL, 0);
}
static bool
intel_sdvo_get_value(struct intel_sdvo *intel_sdvo, u8 cmd, void *value, int len)
{
if (!intel_sdvo_write_cmd(intel_sdvo, cmd, NULL, 0))
return false;
return intel_sdvo_read_response(intel_sdvo, value, len);
}
static bool intel_sdvo_set_target_input(struct intel_sdvo *intel_sdvo)
{
struct intel_sdvo_set_target_input_args targets = {0};
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_TARGET_INPUT,
&targets, sizeof(targets));
}
/*
* Return whether each input is trained.
*
* This function is making an assumption about the layout of the response,
* which should be checked against the docs.
*/
static bool intel_sdvo_get_trained_inputs(struct intel_sdvo *intel_sdvo, bool *input_1, bool *input_2)
{
struct intel_sdvo_get_trained_inputs_response response;
BUILD_BUG_ON(sizeof(response) != 1);
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_TRAINED_INPUTS,
&response, sizeof(response)))
return false;
*input_1 = response.input0_trained;
*input_2 = response.input1_trained;
return true;
}
static bool intel_sdvo_set_active_outputs(struct intel_sdvo *intel_sdvo,
u16 outputs)
{
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_ACTIVE_OUTPUTS,
&outputs, sizeof(outputs));
}
static bool intel_sdvo_get_active_outputs(struct intel_sdvo *intel_sdvo,
u16 *outputs)
{
return intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_ACTIVE_OUTPUTS,
outputs, sizeof(*outputs));
}
static bool intel_sdvo_set_encoder_power_state(struct intel_sdvo *intel_sdvo,
int mode)
{
u8 state = SDVO_ENCODER_STATE_ON;
switch (mode) {
case DRM_MODE_DPMS_ON:
state = SDVO_ENCODER_STATE_ON;
break;
case DRM_MODE_DPMS_STANDBY:
state = SDVO_ENCODER_STATE_STANDBY;
break;
case DRM_MODE_DPMS_SUSPEND:
state = SDVO_ENCODER_STATE_SUSPEND;
break;
case DRM_MODE_DPMS_OFF:
state = SDVO_ENCODER_STATE_OFF;
break;
}
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_ENCODER_POWER_STATE, &state, sizeof(state));
}
static bool intel_sdvo_get_input_pixel_clock_range(struct intel_sdvo *intel_sdvo,
int *clock_min,
int *clock_max)
{
struct intel_sdvo_pixel_clock_range clocks;
BUILD_BUG_ON(sizeof(clocks) != 4);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE,
&clocks, sizeof(clocks)))
return false;
/* Convert the values from units of 10 kHz to kHz. */
*clock_min = clocks.min * 10;
*clock_max = clocks.max * 10;
return true;
}
static bool intel_sdvo_set_target_output(struct intel_sdvo *intel_sdvo,
u16 outputs)
{
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_TARGET_OUTPUT,
&outputs, sizeof(outputs));
}
static bool intel_sdvo_set_timing(struct intel_sdvo *intel_sdvo, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) &&
intel_sdvo_set_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2));
}
static bool intel_sdvo_get_timing(struct intel_sdvo *intel_sdvo, u8 cmd,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) &&
intel_sdvo_get_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2));
}
static bool intel_sdvo_set_input_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_sdvo,
SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_set_output_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_set_timing(intel_sdvo,
SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd);
}
static bool intel_sdvo_get_input_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
return intel_sdvo_get_timing(intel_sdvo,
SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd);
}
static bool
intel_sdvo_create_preferred_input_timing(struct intel_sdvo *intel_sdvo,
uint16_t clock,
uint16_t width,
uint16_t height)
{
struct intel_sdvo_preferred_input_timing_args args;
memset(&args, 0, sizeof(args));
args.clock = clock;
args.width = width;
args.height = height;
args.interlace = 0;
if (intel_sdvo->is_lvds &&
(intel_sdvo->sdvo_lvds_fixed_mode->hdisplay != width ||
intel_sdvo->sdvo_lvds_fixed_mode->vdisplay != height))
args.scaled = 1;
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING,
&args, sizeof(args));
}
static bool intel_sdvo_get_preferred_input_timing(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_dtd *dtd)
{
BUILD_BUG_ON(sizeof(dtd->part1) != 8);
BUILD_BUG_ON(sizeof(dtd->part2) != 8);
return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1,
&dtd->part1, sizeof(dtd->part1)) &&
intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2,
&dtd->part2, sizeof(dtd->part2));
}
static bool intel_sdvo_set_clock_rate_mult(struct intel_sdvo *intel_sdvo, u8 val)
{
return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1);
}
static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd,
const struct drm_display_mode *mode)
{
uint16_t width, height;
uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len;
uint16_t h_sync_offset, v_sync_offset;
drm/i915: handle input/output sdvo timings separately in mode_set We seem to have a decent confusion between the output timings and the input timings of the sdvo encoder. If I understand the code correctly, we use the original mode unchanged for the output timings, safe for the lvds case. And we should use the adjusted mode for input timings. Clarify the situation by adding an explicit output_dtd to the sdvo mode_set function and streamline the code-flow by moving the input and output mode setting in the sdvo encode together. Furthermore testing showed that the sdvo input timing needs the unadjusted dotclock, the sdvo chip will automatically compute the required pixel multiplier to get a dotclock above 100 MHz. Fix this up when converting a drm mode to an sdvo dtd. This regression was introduced in commit c74696b9c890074c1e1ee3d7496fc71eb3680ced Author: Pavel Roskin <proski@gnu.org> Date: Thu Sep 2 14:46:34 2010 -0400 i915: revert some checks added by commit 32aad86f particularly the following hunk: diff --git a/drivers/gpu/drm/i915/intel_sdvo.c b/drivers/gpu/drm/i915/intel_sdvo.c index 093e914..62d22ae 100644 --- a/drivers/gpu/drm/i915/intel_sdvo.c +++ b/drivers/gpu/drm/i915/intel_sdvo.c @@ -1122,11 +1123,9 @@ static void intel_sdvo_mode_set(struct drm_encoder *encoder, /* We have tried to get input timing in mode_fixup, and filled into adjusted_mode */ - if (intel_sdvo->is_tv || intel_sdvo->is_lvds) { - intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + if (intel_sdvo->is_tv || intel_sdvo->is_lvds) input_dtd.part2.sdvo_flags = intel_sdvo->sdvo_flags; - } else - intel_sdvo_get_dtd_from_mode(&input_dtd, mode); /* If it's a TV, we already set the output timing in mode_fixup. * Otherwise, the output timing is equal to the input timing. Due to questions raised in review, below a more elaborate analysis of the bug at hand: Sdvo seems to have two timings, one is the output timing which will be sent over whatever is connected on the other side of the sdvo chip (panel, hdmi screen, tv), the other is the input timing which will be generated by the gmch pipe. It looks like sdvo is expected to scale between the two. To make things slightly more complicated, we have a bunch of special cases: - For lvds panel we always use a fixed output timing, namely intel_sdvo->sdvo_lvds_fixed_mode, hence that special case. - Sdvo has an interface to generate a preferred input timing for a given output timing. This is the confusing thing that I've tried to clear up with the follow-on patches. - A special requirement is that the input pixel clock needs to be between 100MHz and 200MHz (likely to keep it within the electromechanical design range of PCIe), 270MHz on later gen4+. Lower pixel clocks are doubled/quadrupled. The thing this patch tries to fix is that the pipe needs to be explicitly instructed to double/quadruple the pixels and needs the correspondingly higher pixel clock, whereas the sdvo adaptor seems to do that itself and needs the unadjusted pixel clock. For the sdvo encode side we already set the pixel mutliplier with a different command (0x21). This patch tries to fix this mess by: - Keeping the output mode timing in the unadjusted plain mode, safe for the lvds case. - Storing the input timing in the adjusted_mode with the adjusted pixel clock. This way we don't need to frob around with the core crtc mode set code. - Fixing up the pixelclock when constructing the sdvo dtd timing struct. This is why the first hunk of the patch is an integral part of the series. - Dropping the is_tv special case because input_dtd is equivalent to adjusted_mode after these changes. Follow-up patches clear this up further (by simply ripping out intel_sdvo->input_dtd because it's not needed). v2: Extend commit message with an in-depth bug analysis. Reported-and-Tested-by: Bernard Blackham <b-linuxgit@largestprime.net> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=48157 Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: stable@kernel.org Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-04-02 00:16:18 +07:00
int mode_clock;
memset(dtd, 0, sizeof(*dtd));
width = mode->hdisplay;
height = mode->vdisplay;
/* do some mode translations */
h_blank_len = mode->htotal - mode->hdisplay;
h_sync_len = mode->hsync_end - mode->hsync_start;
v_blank_len = mode->vtotal - mode->vdisplay;
v_sync_len = mode->vsync_end - mode->vsync_start;
h_sync_offset = mode->hsync_start - mode->hdisplay;
v_sync_offset = mode->vsync_start - mode->vdisplay;
drm/i915: handle input/output sdvo timings separately in mode_set We seem to have a decent confusion between the output timings and the input timings of the sdvo encoder. If I understand the code correctly, we use the original mode unchanged for the output timings, safe for the lvds case. And we should use the adjusted mode for input timings. Clarify the situation by adding an explicit output_dtd to the sdvo mode_set function and streamline the code-flow by moving the input and output mode setting in the sdvo encode together. Furthermore testing showed that the sdvo input timing needs the unadjusted dotclock, the sdvo chip will automatically compute the required pixel multiplier to get a dotclock above 100 MHz. Fix this up when converting a drm mode to an sdvo dtd. This regression was introduced in commit c74696b9c890074c1e1ee3d7496fc71eb3680ced Author: Pavel Roskin <proski@gnu.org> Date: Thu Sep 2 14:46:34 2010 -0400 i915: revert some checks added by commit 32aad86f particularly the following hunk: diff --git a/drivers/gpu/drm/i915/intel_sdvo.c b/drivers/gpu/drm/i915/intel_sdvo.c index 093e914..62d22ae 100644 --- a/drivers/gpu/drm/i915/intel_sdvo.c +++ b/drivers/gpu/drm/i915/intel_sdvo.c @@ -1122,11 +1123,9 @@ static void intel_sdvo_mode_set(struct drm_encoder *encoder, /* We have tried to get input timing in mode_fixup, and filled into adjusted_mode */ - if (intel_sdvo->is_tv || intel_sdvo->is_lvds) { - intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + if (intel_sdvo->is_tv || intel_sdvo->is_lvds) input_dtd.part2.sdvo_flags = intel_sdvo->sdvo_flags; - } else - intel_sdvo_get_dtd_from_mode(&input_dtd, mode); /* If it's a TV, we already set the output timing in mode_fixup. * Otherwise, the output timing is equal to the input timing. Due to questions raised in review, below a more elaborate analysis of the bug at hand: Sdvo seems to have two timings, one is the output timing which will be sent over whatever is connected on the other side of the sdvo chip (panel, hdmi screen, tv), the other is the input timing which will be generated by the gmch pipe. It looks like sdvo is expected to scale between the two. To make things slightly more complicated, we have a bunch of special cases: - For lvds panel we always use a fixed output timing, namely intel_sdvo->sdvo_lvds_fixed_mode, hence that special case. - Sdvo has an interface to generate a preferred input timing for a given output timing. This is the confusing thing that I've tried to clear up with the follow-on patches. - A special requirement is that the input pixel clock needs to be between 100MHz and 200MHz (likely to keep it within the electromechanical design range of PCIe), 270MHz on later gen4+. Lower pixel clocks are doubled/quadrupled. The thing this patch tries to fix is that the pipe needs to be explicitly instructed to double/quadruple the pixels and needs the correspondingly higher pixel clock, whereas the sdvo adaptor seems to do that itself and needs the unadjusted pixel clock. For the sdvo encode side we already set the pixel mutliplier with a different command (0x21). This patch tries to fix this mess by: - Keeping the output mode timing in the unadjusted plain mode, safe for the lvds case. - Storing the input timing in the adjusted_mode with the adjusted pixel clock. This way we don't need to frob around with the core crtc mode set code. - Fixing up the pixelclock when constructing the sdvo dtd timing struct. This is why the first hunk of the patch is an integral part of the series. - Dropping the is_tv special case because input_dtd is equivalent to adjusted_mode after these changes. Follow-up patches clear this up further (by simply ripping out intel_sdvo->input_dtd because it's not needed). v2: Extend commit message with an in-depth bug analysis. Reported-and-Tested-by: Bernard Blackham <b-linuxgit@largestprime.net> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=48157 Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: stable@kernel.org Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-04-02 00:16:18 +07:00
mode_clock = mode->clock;
mode_clock /= 10;
dtd->part1.clock = mode_clock;
dtd->part1.h_active = width & 0xff;
dtd->part1.h_blank = h_blank_len & 0xff;
dtd->part1.h_high = (((width >> 8) & 0xf) << 4) |
((h_blank_len >> 8) & 0xf);
dtd->part1.v_active = height & 0xff;
dtd->part1.v_blank = v_blank_len & 0xff;
dtd->part1.v_high = (((height >> 8) & 0xf) << 4) |
((v_blank_len >> 8) & 0xf);
dtd->part2.h_sync_off = h_sync_offset & 0xff;
dtd->part2.h_sync_width = h_sync_len & 0xff;
dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 |
(v_sync_len & 0xf);
dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) |
((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) |
((v_sync_len & 0x30) >> 4);
dtd->part2.dtd_flags = 0x18;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
dtd->part2.dtd_flags |= DTD_FLAG_INTERLACE;
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
dtd->part2.dtd_flags |= DTD_FLAG_HSYNC_POSITIVE;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
dtd->part2.dtd_flags |= DTD_FLAG_VSYNC_POSITIVE;
dtd->part2.v_sync_off_high = v_sync_offset & 0xc0;
}
static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode *pmode,
const struct intel_sdvo_dtd *dtd)
{
struct drm_display_mode mode = {};
mode.hdisplay = dtd->part1.h_active;
mode.hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8;
mode.hsync_start = mode.hdisplay + dtd->part2.h_sync_off;
mode.hsync_start += (dtd->part2.sync_off_width_high & 0xc0) << 2;
mode.hsync_end = mode.hsync_start + dtd->part2.h_sync_width;
mode.hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4;
mode.htotal = mode.hdisplay + dtd->part1.h_blank;
mode.htotal += (dtd->part1.h_high & 0xf) << 8;
mode.vdisplay = dtd->part1.v_active;
mode.vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8;
mode.vsync_start = mode.vdisplay;
mode.vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf;
mode.vsync_start += (dtd->part2.sync_off_width_high & 0x0c) << 2;
mode.vsync_start += dtd->part2.v_sync_off_high & 0xc0;
mode.vsync_end = mode.vsync_start +
(dtd->part2.v_sync_off_width & 0xf);
mode.vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4;
mode.vtotal = mode.vdisplay + dtd->part1.v_blank;
mode.vtotal += (dtd->part1.v_high & 0xf) << 8;
mode.clock = dtd->part1.clock * 10;
if (dtd->part2.dtd_flags & DTD_FLAG_INTERLACE)
mode.flags |= DRM_MODE_FLAG_INTERLACE;
if (dtd->part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE)
mode.flags |= DRM_MODE_FLAG_PHSYNC;
else
mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (dtd->part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE)
mode.flags |= DRM_MODE_FLAG_PVSYNC;
else
mode.flags |= DRM_MODE_FLAG_NVSYNC;
drm_mode_set_crtcinfo(&mode, 0);
drm_mode_copy(pmode, &mode);
}
static bool intel_sdvo_check_supp_encode(struct intel_sdvo *intel_sdvo)
{
struct intel_sdvo_encode encode;
BUILD_BUG_ON(sizeof(encode) != 2);
return intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_SUPP_ENCODE,
&encode, sizeof(encode));
}
static bool intel_sdvo_set_encode(struct intel_sdvo *intel_sdvo,
uint8_t mode)
{
return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ENCODE, &mode, 1);
}
static bool intel_sdvo_set_colorimetry(struct intel_sdvo *intel_sdvo,
uint8_t mode)
{
return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_COLORIMETRY, &mode, 1);
}
#if 0
static void intel_sdvo_dump_hdmi_buf(struct intel_sdvo *intel_sdvo)
{
int i, j;
uint8_t set_buf_index[2];
uint8_t av_split;
uint8_t buf_size;
uint8_t buf[48];
uint8_t *pos;
intel_sdvo_get_value(encoder, SDVO_CMD_GET_HBUF_AV_SPLIT, &av_split, 1);
for (i = 0; i <= av_split; i++) {
set_buf_index[0] = i; set_buf_index[1] = 0;
intel_sdvo_write_cmd(encoder, SDVO_CMD_SET_HBUF_INDEX,
set_buf_index, 2);
intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_INFO, NULL, 0);
intel_sdvo_read_response(encoder, &buf_size, 1);
pos = buf;
for (j = 0; j <= buf_size; j += 8) {
intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_DATA,
NULL, 0);
intel_sdvo_read_response(encoder, pos, 8);
pos += 8;
}
}
}
#endif
static bool intel_sdvo_write_infoframe(struct intel_sdvo *intel_sdvo,
unsigned if_index, uint8_t tx_rate,
const uint8_t *data, unsigned length)
{
uint8_t set_buf_index[2] = { if_index, 0 };
uint8_t hbuf_size, tmp[8];
int i;
if (!intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_HBUF_INDEX,
set_buf_index, 2))
return false;
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HBUF_INFO,
&hbuf_size, 1))
return false;
/* Buffer size is 0 based, hooray! */
hbuf_size++;
DRM_DEBUG_KMS("writing sdvo hbuf: %i, hbuf_size %i, hbuf_size: %i\n",
if_index, length, hbuf_size);
for (i = 0; i < hbuf_size; i += 8) {
memset(tmp, 0, 8);
if (i < length)
memcpy(tmp, data + i, min_t(unsigned, 8, length - i));
if (!intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_HBUF_DATA,
tmp, 8))
return false;
}
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_HBUF_TXRATE,
&tx_rate, 1);
}
static bool intel_sdvo_set_avi_infoframe(struct intel_sdvo *intel_sdvo,
const struct intel_crtc_state *pipe_config)
{
uint8_t sdvo_data[HDMI_INFOFRAME_SIZE(AVI)];
union hdmi_infoframe frame;
int ret;
ssize_t len;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
drm: handle HDMI 2.0 VICs in AVI info-frames HDMI 1.4b support the CEA video modes as per range of CEA-861-D (VIC 1-64). For any other mode, the VIC filed in AVI infoframes should be 0. HDMI 2.0 sinks, support video modes range as per CEA-861-F spec, which is extended to (VIC 1-107). This patch adds a bool input variable, which indicates if the connected sink is a HDMI 2.0 sink or not. This will make sure that we don't pass a HDMI 2.0 VIC to a HDMI 1.4 sink. This patch touches all drm drivers, who are callers of this function drm_hdmi_avi_infoframe_from_display_mode but to make sure there is no change in current behavior, is_hdmi2 is kept as false. In case of I915 driver, this patch: - checks if the connected display is HDMI 2.0. - HDMI infoframes carry one of this two type of information: - VIC for 4K modes for HDMI 1.4 sinks - S3D information for S3D modes As CEA-861-F has already defined VICs for 4K videomodes, this patch doesn't allow sending HDMI infoframes for HDMI 2.0 sinks, until the mode is 3D. Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Jose Abreu <jose.abreu@synopsys.com> Cc: Andrzej Hajda <a.hajda@samsung.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Daniel Vetter <daniel.vetter@intel.com> PS: This patch touches a few lines in few files, which were already above 80 char, so checkpatch gives 80 char warning again. - gpu/drm/omapdrm/omap_encoder.c - gpu/drm/i915/intel_sdvo.c V2: Rebase, Added r-b from Andrzej V3: Addressed review comment from Ville: - Do not send VICs in both AVI-IF and HDMI-IF send only one of it. V4: Rebase V5: Added r-b from Neil. Addressed review comments from Ville - Do not block HDMI vendor IF, instead check for VIC while handling AVI infoframes V6: Rebase V7: Rebase Reviewed-by: Andrzej Hajda <a.hajda@samsung.com> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Shashank Sharma <shashank.sharma@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1499960000-9232-2-git-send-email-shashank.sharma@intel.com Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
2017-07-13 22:33:07 +07:00
&pipe_config->base.adjusted_mode,
false);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
return false;
}
if (intel_sdvo->rgb_quant_range_selectable) {
if (pipe_config->limited_color_range)
frame.avi.quantization_range =
HDMI_QUANTIZATION_RANGE_LIMITED;
else
frame.avi.quantization_range =
HDMI_QUANTIZATION_RANGE_FULL;
}
len = hdmi_infoframe_pack(&frame, sdvo_data, sizeof(sdvo_data));
if (len < 0)
return false;
return intel_sdvo_write_infoframe(intel_sdvo, SDVO_HBUF_INDEX_AVI_IF,
SDVO_HBUF_TX_VSYNC,
sdvo_data, sizeof(sdvo_data));
}
static bool intel_sdvo_set_tv_format(struct intel_sdvo *intel_sdvo,
const struct drm_connector_state *conn_state)
{
struct intel_sdvo_tv_format format;
uint32_t format_map;
format_map = 1 << conn_state->tv.mode;
memset(&format, 0, sizeof(format));
memcpy(&format, &format_map, min(sizeof(format), sizeof(format_map)));
BUILD_BUG_ON(sizeof(format) != 6);
return intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_TV_FORMAT,
&format, sizeof(format));
}
static bool
intel_sdvo_set_output_timings_from_mode(struct intel_sdvo *intel_sdvo,
const struct drm_display_mode *mode)
{
struct intel_sdvo_dtd output_dtd;
if (!intel_sdvo_set_target_output(intel_sdvo,
intel_sdvo->attached_output))
return false;
intel_sdvo_get_dtd_from_mode(&output_dtd, mode);
if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd))
return false;
return true;
}
/*
* Asks the sdvo controller for the preferred input mode given the output mode.
* Unfortunately we have to set up the full output mode to do that.
*/
static bool
intel_sdvo_get_preferred_input_mode(struct intel_sdvo *intel_sdvo,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct intel_sdvo_dtd input_dtd;
/* Reset the input timing to the screen. Assume always input 0. */
if (!intel_sdvo_set_target_input(intel_sdvo))
return false;
if (!intel_sdvo_create_preferred_input_timing(intel_sdvo,
mode->clock / 10,
mode->hdisplay,
mode->vdisplay))
return false;
if (!intel_sdvo_get_preferred_input_timing(intel_sdvo,
&input_dtd))
return false;
intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd);
intel_sdvo->dtd_sdvo_flags = input_dtd.part2.sdvo_flags;
return true;
}
static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc_state *pipe_config)
{
unsigned dotclock = pipe_config->port_clock;
struct dpll *clock = &pipe_config->dpll;
/*
* SDVO TV has fixed PLL values depend on its clock range,
* this mirrors vbios setting.
*/
if (dotclock >= 100000 && dotclock < 140500) {
clock->p1 = 2;
clock->p2 = 10;
clock->n = 3;
clock->m1 = 16;
clock->m2 = 8;
} else if (dotclock >= 140500 && dotclock <= 200000) {
clock->p1 = 1;
clock->p2 = 10;
clock->n = 6;
clock->m1 = 12;
clock->m2 = 8;
} else {
WARN(1, "SDVO TV clock out of range: %i\n", dotclock);
}
pipe_config->clock_set = true;
}
static bool intel_sdvo_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_sdvo_connector_state *intel_sdvo_state =
to_intel_sdvo_connector_state(conn_state);
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct drm_display_mode *mode = &pipe_config->base.mode;
DRM_DEBUG_KMS("forcing bpc to 8 for SDVO\n");
pipe_config->pipe_bpp = 8*3;
if (HAS_PCH_SPLIT(to_i915(encoder->base.dev)))
pipe_config->has_pch_encoder = true;
/*
* We need to construct preferred input timings based on our
* output timings. To do that, we have to set the output
* timings, even though this isn't really the right place in
* the sequence to do it. Oh well.
*/
if (intel_sdvo->is_tv) {
if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo, mode))
return false;
(void) intel_sdvo_get_preferred_input_mode(intel_sdvo,
mode,
adjusted_mode);
pipe_config->sdvo_tv_clock = true;
} else if (intel_sdvo->is_lvds) {
if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo,
intel_sdvo->sdvo_lvds_fixed_mode))
return false;
(void) intel_sdvo_get_preferred_input_mode(intel_sdvo,
mode,
adjusted_mode);
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return false;
/*
* Make the CRTC code factor in the SDVO pixel multiplier. The
* SDVO device will factor out the multiplier during mode_set.
*/
pipe_config->pixel_multiplier =
intel_sdvo_get_pixel_multiplier(adjusted_mode);
if (intel_sdvo_state->base.force_audio != HDMI_AUDIO_OFF_DVI)
pipe_config->has_hdmi_sink = intel_sdvo->has_hdmi_monitor;
if (intel_sdvo_state->base.force_audio == HDMI_AUDIO_ON ||
(intel_sdvo_state->base.force_audio == HDMI_AUDIO_AUTO && intel_sdvo->has_hdmi_audio))
pipe_config->has_audio = true;
if (intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/*
* See CEA-861-E - 5.1 Default Encoding Parameters
*
* FIXME: This bit is only valid when using TMDS encoding and 8
* bit per color mode.
*/
if (pipe_config->has_hdmi_sink &&
drm_match_cea_mode(adjusted_mode) > 1)
pipe_config->limited_color_range = true;
} else {
if (pipe_config->has_hdmi_sink &&
intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED)
pipe_config->limited_color_range = true;
}
/* Clock computation needs to happen after pixel multiplier. */
if (intel_sdvo->is_tv)
i9xx_adjust_sdvo_tv_clock(pipe_config);
/* Set user selected PAR to incoming mode's member */
if (intel_sdvo->is_hdmi)
adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio;
return true;
}
#define UPDATE_PROPERTY(input, NAME) \
do { \
val = input; \
intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_##NAME, &val, sizeof(val)); \
} while (0)
static void intel_sdvo_update_props(struct intel_sdvo *intel_sdvo,
const struct intel_sdvo_connector_state *sdvo_state)
{
const struct drm_connector_state *conn_state = &sdvo_state->base.base;
struct intel_sdvo_connector *intel_sdvo_conn =
to_intel_sdvo_connector(conn_state->connector);
uint16_t val;
if (intel_sdvo_conn->left)
UPDATE_PROPERTY(sdvo_state->tv.overscan_h, OVERSCAN_H);
if (intel_sdvo_conn->top)
UPDATE_PROPERTY(sdvo_state->tv.overscan_v, OVERSCAN_V);
if (intel_sdvo_conn->hpos)
UPDATE_PROPERTY(sdvo_state->tv.hpos, HPOS);
if (intel_sdvo_conn->vpos)
UPDATE_PROPERTY(sdvo_state->tv.vpos, VPOS);
if (intel_sdvo_conn->saturation)
UPDATE_PROPERTY(conn_state->tv.saturation, SATURATION);
if (intel_sdvo_conn->contrast)
UPDATE_PROPERTY(conn_state->tv.contrast, CONTRAST);
if (intel_sdvo_conn->hue)
UPDATE_PROPERTY(conn_state->tv.hue, HUE);
if (intel_sdvo_conn->brightness)
UPDATE_PROPERTY(conn_state->tv.brightness, BRIGHTNESS);
if (intel_sdvo_conn->sharpness)
UPDATE_PROPERTY(sdvo_state->tv.sharpness, SHARPNESS);
if (intel_sdvo_conn->flicker_filter)
UPDATE_PROPERTY(sdvo_state->tv.flicker_filter, FLICKER_FILTER);
if (intel_sdvo_conn->flicker_filter_2d)
UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_2d, FLICKER_FILTER_2D);
if (intel_sdvo_conn->flicker_filter_adaptive)
UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE);
if (intel_sdvo_conn->tv_chroma_filter)
UPDATE_PROPERTY(sdvo_state->tv.chroma_filter, TV_CHROMA_FILTER);
if (intel_sdvo_conn->tv_luma_filter)
UPDATE_PROPERTY(sdvo_state->tv.luma_filter, TV_LUMA_FILTER);
if (intel_sdvo_conn->dot_crawl)
UPDATE_PROPERTY(sdvo_state->tv.dot_crawl, DOT_CRAWL);
#undef UPDATE_PROPERTY
}
static void intel_sdvo_pre_enable(struct intel_encoder *intel_encoder,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
const struct intel_sdvo_connector_state *sdvo_state =
to_intel_sdvo_connector_state(conn_state);
const struct drm_display_mode *mode = &crtc_state->base.mode;
struct intel_sdvo *intel_sdvo = to_sdvo(intel_encoder);
u32 sdvox;
struct intel_sdvo_in_out_map in_out;
drm/i915: handle input/output sdvo timings separately in mode_set We seem to have a decent confusion between the output timings and the input timings of the sdvo encoder. If I understand the code correctly, we use the original mode unchanged for the output timings, safe for the lvds case. And we should use the adjusted mode for input timings. Clarify the situation by adding an explicit output_dtd to the sdvo mode_set function and streamline the code-flow by moving the input and output mode setting in the sdvo encode together. Furthermore testing showed that the sdvo input timing needs the unadjusted dotclock, the sdvo chip will automatically compute the required pixel multiplier to get a dotclock above 100 MHz. Fix this up when converting a drm mode to an sdvo dtd. This regression was introduced in commit c74696b9c890074c1e1ee3d7496fc71eb3680ced Author: Pavel Roskin <proski@gnu.org> Date: Thu Sep 2 14:46:34 2010 -0400 i915: revert some checks added by commit 32aad86f particularly the following hunk: diff --git a/drivers/gpu/drm/i915/intel_sdvo.c b/drivers/gpu/drm/i915/intel_sdvo.c index 093e914..62d22ae 100644 --- a/drivers/gpu/drm/i915/intel_sdvo.c +++ b/drivers/gpu/drm/i915/intel_sdvo.c @@ -1122,11 +1123,9 @@ static void intel_sdvo_mode_set(struct drm_encoder *encoder, /* We have tried to get input timing in mode_fixup, and filled into adjusted_mode */ - if (intel_sdvo->is_tv || intel_sdvo->is_lvds) { - intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + if (intel_sdvo->is_tv || intel_sdvo->is_lvds) input_dtd.part2.sdvo_flags = intel_sdvo->sdvo_flags; - } else - intel_sdvo_get_dtd_from_mode(&input_dtd, mode); /* If it's a TV, we already set the output timing in mode_fixup. * Otherwise, the output timing is equal to the input timing. Due to questions raised in review, below a more elaborate analysis of the bug at hand: Sdvo seems to have two timings, one is the output timing which will be sent over whatever is connected on the other side of the sdvo chip (panel, hdmi screen, tv), the other is the input timing which will be generated by the gmch pipe. It looks like sdvo is expected to scale between the two. To make things slightly more complicated, we have a bunch of special cases: - For lvds panel we always use a fixed output timing, namely intel_sdvo->sdvo_lvds_fixed_mode, hence that special case. - Sdvo has an interface to generate a preferred input timing for a given output timing. This is the confusing thing that I've tried to clear up with the follow-on patches. - A special requirement is that the input pixel clock needs to be between 100MHz and 200MHz (likely to keep it within the electromechanical design range of PCIe), 270MHz on later gen4+. Lower pixel clocks are doubled/quadrupled. The thing this patch tries to fix is that the pipe needs to be explicitly instructed to double/quadruple the pixels and needs the correspondingly higher pixel clock, whereas the sdvo adaptor seems to do that itself and needs the unadjusted pixel clock. For the sdvo encode side we already set the pixel mutliplier with a different command (0x21). This patch tries to fix this mess by: - Keeping the output mode timing in the unadjusted plain mode, safe for the lvds case. - Storing the input timing in the adjusted_mode with the adjusted pixel clock. This way we don't need to frob around with the core crtc mode set code. - Fixing up the pixelclock when constructing the sdvo dtd timing struct. This is why the first hunk of the patch is an integral part of the series. - Dropping the is_tv special case because input_dtd is equivalent to adjusted_mode after these changes. Follow-up patches clear this up further (by simply ripping out intel_sdvo->input_dtd because it's not needed). v2: Extend commit message with an in-depth bug analysis. Reported-and-Tested-by: Bernard Blackham <b-linuxgit@largestprime.net> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=48157 Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: stable@kernel.org Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-04-02 00:16:18 +07:00
struct intel_sdvo_dtd input_dtd, output_dtd;
int rate;
intel_sdvo_update_props(intel_sdvo, sdvo_state);
/*
* First, set the input mapping for the first input to our controlled
* output. This is only correct if we're a single-input device, in
* which case the first input is the output from the appropriate SDVO
* channel on the motherboard. In a two-input device, the first input
* will be SDVOB and the second SDVOC.
*/
in_out.in0 = intel_sdvo->attached_output;
in_out.in1 = 0;
intel_sdvo_set_value(intel_sdvo,
SDVO_CMD_SET_IN_OUT_MAP,
&in_out, sizeof(in_out));
/* Set the output timings to the screen */
if (!intel_sdvo_set_target_output(intel_sdvo,
intel_sdvo->attached_output))
return;
drm/i915: handle input/output sdvo timings separately in mode_set We seem to have a decent confusion between the output timings and the input timings of the sdvo encoder. If I understand the code correctly, we use the original mode unchanged for the output timings, safe for the lvds case. And we should use the adjusted mode for input timings. Clarify the situation by adding an explicit output_dtd to the sdvo mode_set function and streamline the code-flow by moving the input and output mode setting in the sdvo encode together. Furthermore testing showed that the sdvo input timing needs the unadjusted dotclock, the sdvo chip will automatically compute the required pixel multiplier to get a dotclock above 100 MHz. Fix this up when converting a drm mode to an sdvo dtd. This regression was introduced in commit c74696b9c890074c1e1ee3d7496fc71eb3680ced Author: Pavel Roskin <proski@gnu.org> Date: Thu Sep 2 14:46:34 2010 -0400 i915: revert some checks added by commit 32aad86f particularly the following hunk: diff --git a/drivers/gpu/drm/i915/intel_sdvo.c b/drivers/gpu/drm/i915/intel_sdvo.c index 093e914..62d22ae 100644 --- a/drivers/gpu/drm/i915/intel_sdvo.c +++ b/drivers/gpu/drm/i915/intel_sdvo.c @@ -1122,11 +1123,9 @@ static void intel_sdvo_mode_set(struct drm_encoder *encoder, /* We have tried to get input timing in mode_fixup, and filled into adjusted_mode */ - if (intel_sdvo->is_tv || intel_sdvo->is_lvds) { - intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + if (intel_sdvo->is_tv || intel_sdvo->is_lvds) input_dtd.part2.sdvo_flags = intel_sdvo->sdvo_flags; - } else - intel_sdvo_get_dtd_from_mode(&input_dtd, mode); /* If it's a TV, we already set the output timing in mode_fixup. * Otherwise, the output timing is equal to the input timing. Due to questions raised in review, below a more elaborate analysis of the bug at hand: Sdvo seems to have two timings, one is the output timing which will be sent over whatever is connected on the other side of the sdvo chip (panel, hdmi screen, tv), the other is the input timing which will be generated by the gmch pipe. It looks like sdvo is expected to scale between the two. To make things slightly more complicated, we have a bunch of special cases: - For lvds panel we always use a fixed output timing, namely intel_sdvo->sdvo_lvds_fixed_mode, hence that special case. - Sdvo has an interface to generate a preferred input timing for a given output timing. This is the confusing thing that I've tried to clear up with the follow-on patches. - A special requirement is that the input pixel clock needs to be between 100MHz and 200MHz (likely to keep it within the electromechanical design range of PCIe), 270MHz on later gen4+. Lower pixel clocks are doubled/quadrupled. The thing this patch tries to fix is that the pipe needs to be explicitly instructed to double/quadruple the pixels and needs the correspondingly higher pixel clock, whereas the sdvo adaptor seems to do that itself and needs the unadjusted pixel clock. For the sdvo encode side we already set the pixel mutliplier with a different command (0x21). This patch tries to fix this mess by: - Keeping the output mode timing in the unadjusted plain mode, safe for the lvds case. - Storing the input timing in the adjusted_mode with the adjusted pixel clock. This way we don't need to frob around with the core crtc mode set code. - Fixing up the pixelclock when constructing the sdvo dtd timing struct. This is why the first hunk of the patch is an integral part of the series. - Dropping the is_tv special case because input_dtd is equivalent to adjusted_mode after these changes. Follow-up patches clear this up further (by simply ripping out intel_sdvo->input_dtd because it's not needed). v2: Extend commit message with an in-depth bug analysis. Reported-and-Tested-by: Bernard Blackham <b-linuxgit@largestprime.net> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=48157 Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: stable@kernel.org Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-04-02 00:16:18 +07:00
/* lvds has a special fixed output timing. */
if (intel_sdvo->is_lvds)
intel_sdvo_get_dtd_from_mode(&output_dtd,
intel_sdvo->sdvo_lvds_fixed_mode);
else
intel_sdvo_get_dtd_from_mode(&output_dtd, mode);
if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd))
DRM_INFO("Setting output timings on %s failed\n",
SDVO_NAME(intel_sdvo));
/* Set the input timing to the screen. Assume always input 0. */
if (!intel_sdvo_set_target_input(intel_sdvo))
return;
if (crtc_state->has_hdmi_sink) {
intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_HDMI);
intel_sdvo_set_colorimetry(intel_sdvo,
SDVO_COLORIMETRY_RGB256);
intel_sdvo_set_avi_infoframe(intel_sdvo, crtc_state);
} else
intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_DVI);
if (intel_sdvo->is_tv &&
!intel_sdvo_set_tv_format(intel_sdvo, conn_state))
return;
drm/i915: handle input/output sdvo timings separately in mode_set We seem to have a decent confusion between the output timings and the input timings of the sdvo encoder. If I understand the code correctly, we use the original mode unchanged for the output timings, safe for the lvds case. And we should use the adjusted mode for input timings. Clarify the situation by adding an explicit output_dtd to the sdvo mode_set function and streamline the code-flow by moving the input and output mode setting in the sdvo encode together. Furthermore testing showed that the sdvo input timing needs the unadjusted dotclock, the sdvo chip will automatically compute the required pixel multiplier to get a dotclock above 100 MHz. Fix this up when converting a drm mode to an sdvo dtd. This regression was introduced in commit c74696b9c890074c1e1ee3d7496fc71eb3680ced Author: Pavel Roskin <proski@gnu.org> Date: Thu Sep 2 14:46:34 2010 -0400 i915: revert some checks added by commit 32aad86f particularly the following hunk: diff --git a/drivers/gpu/drm/i915/intel_sdvo.c b/drivers/gpu/drm/i915/intel_sdvo.c index 093e914..62d22ae 100644 --- a/drivers/gpu/drm/i915/intel_sdvo.c +++ b/drivers/gpu/drm/i915/intel_sdvo.c @@ -1122,11 +1123,9 @@ static void intel_sdvo_mode_set(struct drm_encoder *encoder, /* We have tried to get input timing in mode_fixup, and filled into adjusted_mode */ - if (intel_sdvo->is_tv || intel_sdvo->is_lvds) { - intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); + if (intel_sdvo->is_tv || intel_sdvo->is_lvds) input_dtd.part2.sdvo_flags = intel_sdvo->sdvo_flags; - } else - intel_sdvo_get_dtd_from_mode(&input_dtd, mode); /* If it's a TV, we already set the output timing in mode_fixup. * Otherwise, the output timing is equal to the input timing. Due to questions raised in review, below a more elaborate analysis of the bug at hand: Sdvo seems to have two timings, one is the output timing which will be sent over whatever is connected on the other side of the sdvo chip (panel, hdmi screen, tv), the other is the input timing which will be generated by the gmch pipe. It looks like sdvo is expected to scale between the two. To make things slightly more complicated, we have a bunch of special cases: - For lvds panel we always use a fixed output timing, namely intel_sdvo->sdvo_lvds_fixed_mode, hence that special case. - Sdvo has an interface to generate a preferred input timing for a given output timing. This is the confusing thing that I've tried to clear up with the follow-on patches. - A special requirement is that the input pixel clock needs to be between 100MHz and 200MHz (likely to keep it within the electromechanical design range of PCIe), 270MHz on later gen4+. Lower pixel clocks are doubled/quadrupled. The thing this patch tries to fix is that the pipe needs to be explicitly instructed to double/quadruple the pixels and needs the correspondingly higher pixel clock, whereas the sdvo adaptor seems to do that itself and needs the unadjusted pixel clock. For the sdvo encode side we already set the pixel mutliplier with a different command (0x21). This patch tries to fix this mess by: - Keeping the output mode timing in the unadjusted plain mode, safe for the lvds case. - Storing the input timing in the adjusted_mode with the adjusted pixel clock. This way we don't need to frob around with the core crtc mode set code. - Fixing up the pixelclock when constructing the sdvo dtd timing struct. This is why the first hunk of the patch is an integral part of the series. - Dropping the is_tv special case because input_dtd is equivalent to adjusted_mode after these changes. Follow-up patches clear this up further (by simply ripping out intel_sdvo->input_dtd because it's not needed). v2: Extend commit message with an in-depth bug analysis. Reported-and-Tested-by: Bernard Blackham <b-linuxgit@largestprime.net> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=48157 Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: stable@kernel.org Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-04-02 00:16:18 +07:00
intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode);
if (intel_sdvo->is_tv || intel_sdvo->is_lvds)
input_dtd.part2.sdvo_flags = intel_sdvo->dtd_sdvo_flags;
if (!intel_sdvo_set_input_timing(intel_sdvo, &input_dtd))
DRM_INFO("Setting input timings on %s failed\n",
SDVO_NAME(intel_sdvo));
switch (crtc_state->pixel_multiplier) {
default:
WARN(1, "unknown pixel multiplier specified\n");
case 1: rate = SDVO_CLOCK_RATE_MULT_1X; break;
case 2: rate = SDVO_CLOCK_RATE_MULT_2X; break;
case 4: rate = SDVO_CLOCK_RATE_MULT_4X; break;
}
if (!intel_sdvo_set_clock_rate_mult(intel_sdvo, rate))
return;
/* Set the SDVO control regs. */
if (INTEL_GEN(dev_priv) >= 4) {
/* The real mode polarity is set by the SDVO commands, using
* struct intel_sdvo_dtd. */
sdvox = SDVO_VSYNC_ACTIVE_HIGH | SDVO_HSYNC_ACTIVE_HIGH;
if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range)
sdvox |= HDMI_COLOR_RANGE_16_235;
if (INTEL_GEN(dev_priv) < 5)
sdvox |= SDVO_BORDER_ENABLE;
} else {
sdvox = I915_READ(intel_sdvo->sdvo_reg);
if (intel_sdvo->port == PORT_B)
sdvox &= SDVOB_PRESERVE_MASK;
else
sdvox &= SDVOC_PRESERVE_MASK;
sdvox |= (9 << 19) | SDVO_BORDER_ENABLE;
}
if (HAS_PCH_CPT(dev_priv))
sdvox |= SDVO_PIPE_SEL_CPT(crtc->pipe);
else
sdvox |= SDVO_PIPE_SEL(crtc->pipe);
if (crtc_state->has_audio) {
WARN_ON_ONCE(INTEL_GEN(dev_priv) < 4);
sdvox |= SDVO_AUDIO_ENABLE;
}
if (INTEL_GEN(dev_priv) >= 4) {
/* done in crtc_mode_set as the dpll_md reg must be written early */
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
/* done in crtc_mode_set as it lives inside the dpll register */
} else {
sdvox |= (crtc_state->pixel_multiplier - 1)
<< SDVO_PORT_MULTIPLY_SHIFT;
}
if (input_dtd.part2.sdvo_flags & SDVO_NEED_TO_STALL &&
INTEL_GEN(dev_priv) < 5)
sdvox |= SDVO_STALL_SELECT;
intel_sdvo_write_sdvox(intel_sdvo, sdvox);
}
static bool intel_sdvo_connector_get_hw_state(struct intel_connector *connector)
{
struct intel_sdvo_connector *intel_sdvo_connector =
to_intel_sdvo_connector(&connector->base);
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(&connector->base);
u16 active_outputs = 0;
intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs);
if (active_outputs & intel_sdvo_connector->output_flag)
return true;
else
return false;
}
bool intel_sdvo_port_enabled(struct drm_i915_private *dev_priv,
i915_reg_t sdvo_reg, enum pipe *pipe)
{
u32 val;
val = I915_READ(sdvo_reg);
/* asserts want to know the pipe even if the port is disabled */
if (HAS_PCH_CPT(dev_priv))
*pipe = (val & SDVO_PIPE_SEL_MASK_CPT) >> SDVO_PIPE_SEL_SHIFT_CPT;
else if (IS_CHERRYVIEW(dev_priv))
*pipe = (val & SDVO_PIPE_SEL_MASK_CHV) >> SDVO_PIPE_SEL_SHIFT_CHV;
else
*pipe = (val & SDVO_PIPE_SEL_MASK) >> SDVO_PIPE_SEL_SHIFT;
return val & SDVO_ENABLE;
}
static bool intel_sdvo_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
u16 active_outputs = 0;
bool ret;
intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs);
ret = intel_sdvo_port_enabled(dev_priv, intel_sdvo->sdvo_reg, pipe);
return ret || active_outputs;
}
static void intel_sdvo_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_sdvo_dtd dtd;
int encoder_pixel_multiplier = 0;
int dotclock;
u32 flags = 0, sdvox;
u8 val;
bool ret;
pipe_config->output_types |= BIT(INTEL_OUTPUT_SDVO);
sdvox = I915_READ(intel_sdvo->sdvo_reg);
ret = intel_sdvo_get_input_timing(intel_sdvo, &dtd);
if (!ret) {
/*
* Some sdvo encoders are not spec compliant and don't
* implement the mandatory get_timings function.
*/
DRM_DEBUG_DRIVER("failed to retrieve SDVO DTD\n");
pipe_config->quirks |= PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS;
} else {
if (dtd.part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (dtd.part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
}
pipe_config->base.adjusted_mode.flags |= flags;
/*
* pixel multiplier readout is tricky: Only on i915g/gm it is stored in
* the sdvo port register, on all other platforms it is part of the dpll
* state. Since the general pipe state readout happens before the
* encoder->get_config we so already have a valid pixel multplier on all
* other platfroms.
*/
if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
pipe_config->pixel_multiplier =
((sdvox & SDVO_PORT_MULTIPLY_MASK)
>> SDVO_PORT_MULTIPLY_SHIFT) + 1;
}
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
/* Cross check the port pixel multiplier with the sdvo encoder state. */
if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_CLOCK_RATE_MULT,
&val, 1)) {
switch (val) {
case SDVO_CLOCK_RATE_MULT_1X:
encoder_pixel_multiplier = 1;
break;
case SDVO_CLOCK_RATE_MULT_2X:
encoder_pixel_multiplier = 2;
break;
case SDVO_CLOCK_RATE_MULT_4X:
encoder_pixel_multiplier = 4;
break;
}
}
if (sdvox & HDMI_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
if (sdvox & SDVO_AUDIO_ENABLE)
pipe_config->has_audio = true;
if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ENCODE,
&val, 1)) {
if (val == SDVO_ENCODE_HDMI)
pipe_config->has_hdmi_sink = true;
}
WARN(encoder_pixel_multiplier != pipe_config->pixel_multiplier,
"SDVO pixel multiplier mismatch, port: %i, encoder: %i\n",
pipe_config->pixel_multiplier, encoder_pixel_multiplier);
}
static void intel_disable_sdvo(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
u32 temp;
intel_sdvo_set_active_outputs(intel_sdvo, 0);
if (0)
intel_sdvo_set_encoder_power_state(intel_sdvo,
DRM_MODE_DPMS_OFF);
temp = I915_READ(intel_sdvo->sdvo_reg);
temp &= ~SDVO_ENABLE;
intel_sdvo_write_sdvox(intel_sdvo, temp);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching DP port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) {
/*
* We get CPU/PCH FIFO underruns on the other pipe when
* doing the workaround. Sweep them under the rug.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
temp &= ~SDVO_PIPE_SEL_MASK;
temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A);
intel_sdvo_write_sdvox(intel_sdvo, temp);
temp &= ~SDVO_ENABLE;
intel_sdvo_write_sdvox(intel_sdvo, temp);
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
}
}
static void pch_disable_sdvo(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
}
static void pch_post_disable_sdvo(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_sdvo(encoder, old_crtc_state, old_conn_state);
}
static void intel_enable_sdvo(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
u32 temp;
bool input1, input2;
int i;
bool success;
temp = I915_READ(intel_sdvo->sdvo_reg);
temp |= SDVO_ENABLE;
intel_sdvo_write_sdvox(intel_sdvo, temp);
for (i = 0; i < 2; i++)
intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
success = intel_sdvo_get_trained_inputs(intel_sdvo, &input1, &input2);
/*
* Warn if the device reported failure to sync.
*
* A lot of SDVO devices fail to notify of sync, but it's
* a given it the status is a success, we succeeded.
*/
if (success && !input1) {
DRM_DEBUG_KMS("First %s output reported failure to "
"sync\n", SDVO_NAME(intel_sdvo));
}
if (0)
intel_sdvo_set_encoder_power_state(intel_sdvo,
DRM_MODE_DPMS_ON);
intel_sdvo_set_active_outputs(intel_sdvo, intel_sdvo->attached_output);
}
static enum drm_mode_status
intel_sdvo_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
if (intel_sdvo->pixel_clock_min > mode->clock)
return MODE_CLOCK_LOW;
if (intel_sdvo->pixel_clock_max < mode->clock)
return MODE_CLOCK_HIGH;
if (mode->clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (intel_sdvo->is_lvds) {
if (mode->hdisplay > intel_sdvo->sdvo_lvds_fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > intel_sdvo->sdvo_lvds_fixed_mode->vdisplay)
return MODE_PANEL;
}
return MODE_OK;
}
static bool intel_sdvo_get_capabilities(struct intel_sdvo *intel_sdvo, struct intel_sdvo_caps *caps)
{
BUILD_BUG_ON(sizeof(*caps) != 8);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_DEVICE_CAPS,
caps, sizeof(*caps)))
return false;
DRM_DEBUG_KMS("SDVO capabilities:\n"
" vendor_id: %d\n"
" device_id: %d\n"
" device_rev_id: %d\n"
" sdvo_version_major: %d\n"
" sdvo_version_minor: %d\n"
" sdvo_inputs_mask: %d\n"
" smooth_scaling: %d\n"
" sharp_scaling: %d\n"
" up_scaling: %d\n"
" down_scaling: %d\n"
" stall_support: %d\n"
" output_flags: %d\n",
caps->vendor_id,
caps->device_id,
caps->device_rev_id,
caps->sdvo_version_major,
caps->sdvo_version_minor,
caps->sdvo_inputs_mask,
caps->smooth_scaling,
caps->sharp_scaling,
caps->up_scaling,
caps->down_scaling,
caps->stall_support,
caps->output_flags);
return true;
}
static uint16_t intel_sdvo_get_hotplug_support(struct intel_sdvo *intel_sdvo)
{
struct drm_i915_private *dev_priv = to_i915(intel_sdvo->base.base.dev);
uint16_t hotplug;
if (!I915_HAS_HOTPLUG(dev_priv))
return 0;
/*
* HW Erratum: SDVO Hotplug is broken on all i945G chips, there's noise
* on the line.
*/
if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
return 0;
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HOT_PLUG_SUPPORT,
&hotplug, sizeof(hotplug)))
return 0;
return hotplug;
}
static void intel_sdvo_enable_hotplug(struct intel_encoder *encoder)
{
struct intel_sdvo *intel_sdvo = to_sdvo(encoder);
intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_SET_ACTIVE_HOT_PLUG,
&intel_sdvo->hotplug_active, 2);
}
static bool intel_sdvo_hotplug(struct intel_encoder *encoder,
struct intel_connector *connector)
{
intel_sdvo_enable_hotplug(encoder);
return intel_encoder_hotplug(encoder, connector);
}
static bool
intel_sdvo_multifunc_encoder(struct intel_sdvo *intel_sdvo)
{
/* Is there more than one type of output? */
return hweight16(intel_sdvo->caps.output_flags) > 1;
}
static struct edid *
intel_sdvo_get_edid(struct drm_connector *connector)
{
struct intel_sdvo *sdvo = intel_attached_sdvo(connector);
return drm_get_edid(connector, &sdvo->ddc);
}
/* Mac mini hack -- use the same DDC as the analog connector */
static struct edid *
intel_sdvo_get_analog_edid(struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
return drm_get_edid(connector,
intel_gmbus_get_adapter(dev_priv,
dev_priv->vbt.crt_ddc_pin));
}
static enum drm_connector_status
intel_sdvo_tmds_sink_detect(struct drm_connector *connector)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
enum drm_connector_status status;
struct edid *edid;
edid = intel_sdvo_get_edid(connector);
if (edid == NULL && intel_sdvo_multifunc_encoder(intel_sdvo)) {
u8 ddc, saved_ddc = intel_sdvo->ddc_bus;
/*
* Don't use the 1 as the argument of DDC bus switch to get
* the EDID. It is used for SDVO SPD ROM.
*/
for (ddc = intel_sdvo->ddc_bus >> 1; ddc > 1; ddc >>= 1) {
intel_sdvo->ddc_bus = ddc;
edid = intel_sdvo_get_edid(connector);
if (edid)
break;
}
/*
* If we found the EDID on the other bus,
* assume that is the correct DDC bus.
*/
if (edid == NULL)
intel_sdvo->ddc_bus = saved_ddc;
}
/*
* When there is no edid and no monitor is connected with VGA
* port, try to use the CRT ddc to read the EDID for DVI-connector.
*/
if (edid == NULL)
edid = intel_sdvo_get_analog_edid(connector);
status = connector_status_unknown;
if (edid != NULL) {
/* DDC bus is shared, match EDID to connector type */
if (edid->input & DRM_EDID_INPUT_DIGITAL) {
status = connector_status_connected;
if (intel_sdvo->is_hdmi) {
intel_sdvo->has_hdmi_monitor = drm_detect_hdmi_monitor(edid);
intel_sdvo->has_hdmi_audio = drm_detect_monitor_audio(edid);
intel_sdvo->rgb_quant_range_selectable =
drm_rgb_quant_range_selectable(edid);
}
} else
status = connector_status_disconnected;
kfree(edid);
}
return status;
}
static bool
intel_sdvo_connector_matches_edid(struct intel_sdvo_connector *sdvo,
struct edid *edid)
{
bool monitor_is_digital = !!(edid->input & DRM_EDID_INPUT_DIGITAL);
bool connector_is_digital = !!IS_DIGITAL(sdvo);
DRM_DEBUG_KMS("connector_is_digital? %d, monitor_is_digital? %d\n",
connector_is_digital, monitor_is_digital);
return connector_is_digital == monitor_is_digital;
}
static enum drm_connector_status
intel_sdvo_detect(struct drm_connector *connector, bool force)
{
uint16_t response;
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
enum drm_connector_status ret;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_ATTACHED_DISPLAYS,
&response, 2))
return connector_status_unknown;
DRM_DEBUG_KMS("SDVO response %d %d [%x]\n",
response & 0xff, response >> 8,
intel_sdvo_connector->output_flag);
if (response == 0)
return connector_status_disconnected;
intel_sdvo->attached_output = response;
intel_sdvo->has_hdmi_monitor = false;
intel_sdvo->has_hdmi_audio = false;
intel_sdvo->rgb_quant_range_selectable = false;
if ((intel_sdvo_connector->output_flag & response) == 0)
ret = connector_status_disconnected;
else if (IS_TMDS(intel_sdvo_connector))
ret = intel_sdvo_tmds_sink_detect(connector);
else {
struct edid *edid;
/* if we have an edid check it matches the connection */
edid = intel_sdvo_get_edid(connector);
if (edid == NULL)
edid = intel_sdvo_get_analog_edid(connector);
if (edid != NULL) {
if (intel_sdvo_connector_matches_edid(intel_sdvo_connector,
edid))
ret = connector_status_connected;
else
ret = connector_status_disconnected;
kfree(edid);
} else
ret = connector_status_connected;
}
/* May update encoder flag for like clock for SDVO TV, etc.*/
if (ret == connector_status_connected) {
intel_sdvo->is_tv = false;
intel_sdvo->is_lvds = false;
if (response & SDVO_TV_MASK)
intel_sdvo->is_tv = true;
if (response & SDVO_LVDS_MASK)
intel_sdvo->is_lvds = intel_sdvo->sdvo_lvds_fixed_mode != NULL;
}
return ret;
}
static void intel_sdvo_get_ddc_modes(struct drm_connector *connector)
{
struct edid *edid;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
/* set the bus switch and get the modes */
edid = intel_sdvo_get_edid(connector);
/*
* Mac mini hack. On this device, the DVI-I connector shares one DDC
* link between analog and digital outputs. So, if the regular SDVO
* DDC fails, check to see if the analog output is disconnected, in
* which case we'll look there for the digital DDC data.
*/
if (edid == NULL)
edid = intel_sdvo_get_analog_edid(connector);
if (edid != NULL) {
if (intel_sdvo_connector_matches_edid(to_intel_sdvo_connector(connector),
edid)) {
drm_mode_connector_update_edid_property(connector, edid);
drm_add_edid_modes(connector, edid);
}
kfree(edid);
}
}
/*
* Set of SDVO TV modes.
* Note! This is in reply order (see loop in get_tv_modes).
* XXX: all 60Hz refresh?
*/
static const struct drm_display_mode sdvo_tv_modes[] = {
{ DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815, 320, 321, 384,
416, 0, 200, 201, 232, 233, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814, 320, 321, 384,
416, 0, 240, 241, 272, 273, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910, 400, 401, 464,
496, 0, 300, 301, 332, 333, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913, 640, 641, 704,
736, 0, 350, 351, 382, 383, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121, 640, 641, 704,
736, 0, 400, 401, 432, 433, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 22654, 640, 641, 704,
736, 0, 480, 481, 512, 513, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624, 704, 705, 768,
800, 0, 480, 481, 512, 513, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232, 704, 705, 768,
800, 0, 576, 577, 608, 609, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751, 720, 721, 784,
816, 0, 350, 351, 382, 383, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199, 720, 721, 784,
816, 0, 400, 401, 432, 433, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116, 720, 721, 784,
816, 0, 480, 481, 512, 513, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054, 720, 721, 784,
816, 0, 540, 541, 572, 573, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816, 720, 721, 784,
816, 0, 576, 577, 608, 609, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570, 768, 769, 832,
864, 0, 576, 577, 608, 609, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030, 800, 801, 864,
896, 0, 600, 601, 632, 633, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581, 832, 833, 896,
928, 0, 624, 625, 656, 657, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707, 920, 921, 984,
1016, 0, 766, 767, 798, 799, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827, 1024, 1025, 1088,
1120, 0, 768, 769, 800, 801, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265, 1280, 1281, 1344,
1376, 0, 1024, 1025, 1056, 1057, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
};
static void intel_sdvo_get_tv_modes(struct drm_connector *connector)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
const struct drm_connector_state *conn_state = connector->state;
struct intel_sdvo_sdtv_resolution_request tv_res;
uint32_t reply = 0, format_map = 0;
int i;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
/*
* Read the list of supported input resolutions for the selected TV
* format.
*/
format_map = 1 << conn_state->tv.mode;
memcpy(&tv_res, &format_map,
min(sizeof(format_map), sizeof(struct intel_sdvo_sdtv_resolution_request)));
if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output))
return;
BUILD_BUG_ON(sizeof(tv_res) != 3);
if (!intel_sdvo_write_cmd(intel_sdvo,
SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT,
&tv_res, sizeof(tv_res)))
return;
if (!intel_sdvo_read_response(intel_sdvo, &reply, 3))
return;
for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++)
if (reply & (1 << i)) {
struct drm_display_mode *nmode;
nmode = drm_mode_duplicate(connector->dev,
&sdvo_tv_modes[i]);
if (nmode)
drm_mode_probed_add(connector, nmode);
}
}
static void intel_sdvo_get_lvds_modes(struct drm_connector *connector)
{
struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector);
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct drm_display_mode *newmode;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
/*
* Fetch modes from VBT. For SDVO prefer the VBT mode since some
* SDVO->LVDS transcoders can't cope with the EDID mode.
*/
if (dev_priv->vbt.sdvo_lvds_vbt_mode != NULL) {
newmode = drm_mode_duplicate(connector->dev,
dev_priv->vbt.sdvo_lvds_vbt_mode);
if (newmode != NULL) {
/* Guarantee the mode is preferred */
newmode->type = (DRM_MODE_TYPE_PREFERRED |
DRM_MODE_TYPE_DRIVER);
drm_mode_probed_add(connector, newmode);
}
}
/*
* Attempt to get the mode list from DDC.
* Assume that the preferred modes are
* arranged in priority order.
*/
intel_ddc_get_modes(connector, &intel_sdvo->ddc);
list_for_each_entry(newmode, &connector->probed_modes, head) {
if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
intel_sdvo->sdvo_lvds_fixed_mode =
drm_mode_duplicate(connector->dev, newmode);
intel_sdvo->is_lvds = true;
break;
}
}
}
static int intel_sdvo_get_modes(struct drm_connector *connector)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
if (IS_TV(intel_sdvo_connector))
intel_sdvo_get_tv_modes(connector);
else if (IS_LVDS(intel_sdvo_connector))
intel_sdvo_get_lvds_modes(connector);
else
intel_sdvo_get_ddc_modes(connector);
return !list_empty(&connector->probed_modes);
}
static void intel_sdvo_destroy(struct drm_connector *connector)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
drm_connector_cleanup(connector);
kfree(intel_sdvo_connector);
}
static int
intel_sdvo_connector_atomic_get_property(struct drm_connector *connector,
const struct drm_connector_state *state,
struct drm_property *property,
uint64_t *val)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
const struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state((void *)state);
if (property == intel_sdvo_connector->tv_format) {
int i;
for (i = 0; i < intel_sdvo_connector->format_supported_num; i++)
if (state->tv.mode == intel_sdvo_connector->tv_format_supported[i]) {
*val = i;
return 0;
}
WARN_ON(1);
*val = 0;
} else if (property == intel_sdvo_connector->top ||
property == intel_sdvo_connector->bottom)
*val = intel_sdvo_connector->max_vscan - sdvo_state->tv.overscan_v;
else if (property == intel_sdvo_connector->left ||
property == intel_sdvo_connector->right)
*val = intel_sdvo_connector->max_hscan - sdvo_state->tv.overscan_h;
else if (property == intel_sdvo_connector->hpos)
*val = sdvo_state->tv.hpos;
else if (property == intel_sdvo_connector->vpos)
*val = sdvo_state->tv.vpos;
else if (property == intel_sdvo_connector->saturation)
*val = state->tv.saturation;
else if (property == intel_sdvo_connector->contrast)
*val = state->tv.contrast;
else if (property == intel_sdvo_connector->hue)
*val = state->tv.hue;
else if (property == intel_sdvo_connector->brightness)
*val = state->tv.brightness;
else if (property == intel_sdvo_connector->sharpness)
*val = sdvo_state->tv.sharpness;
else if (property == intel_sdvo_connector->flicker_filter)
*val = sdvo_state->tv.flicker_filter;
else if (property == intel_sdvo_connector->flicker_filter_2d)
*val = sdvo_state->tv.flicker_filter_2d;
else if (property == intel_sdvo_connector->flicker_filter_adaptive)
*val = sdvo_state->tv.flicker_filter_adaptive;
else if (property == intel_sdvo_connector->tv_chroma_filter)
*val = sdvo_state->tv.chroma_filter;
else if (property == intel_sdvo_connector->tv_luma_filter)
*val = sdvo_state->tv.luma_filter;
else if (property == intel_sdvo_connector->dot_crawl)
*val = sdvo_state->tv.dot_crawl;
else
return intel_digital_connector_atomic_get_property(connector, state, property, val);
return 0;
}
static int
intel_sdvo_connector_atomic_set_property(struct drm_connector *connector,
struct drm_connector_state *state,
struct drm_property *property,
uint64_t val)
{
struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector);
struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(state);
if (property == intel_sdvo_connector->tv_format) {
state->tv.mode = intel_sdvo_connector->tv_format_supported[val];
if (state->crtc) {
struct drm_crtc_state *crtc_state =
drm_atomic_get_new_crtc_state(state->state, state->crtc);
crtc_state->connectors_changed = true;
}
} else if (property == intel_sdvo_connector->top ||
property == intel_sdvo_connector->bottom)
/* Cannot set these independent from each other */
sdvo_state->tv.overscan_v = intel_sdvo_connector->max_vscan - val;
else if (property == intel_sdvo_connector->left ||
property == intel_sdvo_connector->right)
/* Cannot set these independent from each other */
sdvo_state->tv.overscan_h = intel_sdvo_connector->max_hscan - val;
else if (property == intel_sdvo_connector->hpos)
sdvo_state->tv.hpos = val;
else if (property == intel_sdvo_connector->vpos)
sdvo_state->tv.vpos = val;
else if (property == intel_sdvo_connector->saturation)
state->tv.saturation = val;
else if (property == intel_sdvo_connector->contrast)
state->tv.contrast = val;
else if (property == intel_sdvo_connector->hue)
state->tv.hue = val;
else if (property == intel_sdvo_connector->brightness)
state->tv.brightness = val;
else if (property == intel_sdvo_connector->sharpness)
sdvo_state->tv.sharpness = val;
else if (property == intel_sdvo_connector->flicker_filter)
sdvo_state->tv.flicker_filter = val;
else if (property == intel_sdvo_connector->flicker_filter_2d)
sdvo_state->tv.flicker_filter_2d = val;
else if (property == intel_sdvo_connector->flicker_filter_adaptive)
sdvo_state->tv.flicker_filter_adaptive = val;
else if (property == intel_sdvo_connector->tv_chroma_filter)
sdvo_state->tv.chroma_filter = val;
else if (property == intel_sdvo_connector->tv_luma_filter)
sdvo_state->tv.luma_filter = val;
else if (property == intel_sdvo_connector->dot_crawl)
sdvo_state->tv.dot_crawl = val;
else
return intel_digital_connector_atomic_set_property(connector, state, property, val);
return 0;
}
static int
intel_sdvo_connector_register(struct drm_connector *connector)
{
struct intel_sdvo *sdvo = intel_attached_sdvo(connector);
int ret;
ret = intel_connector_register(connector);
if (ret)
return ret;
return sysfs_create_link(&connector->kdev->kobj,
&sdvo->ddc.dev.kobj,
sdvo->ddc.dev.kobj.name);
}
static void
intel_sdvo_connector_unregister(struct drm_connector *connector)
{
struct intel_sdvo *sdvo = intel_attached_sdvo(connector);
sysfs_remove_link(&connector->kdev->kobj,
sdvo->ddc.dev.kobj.name);
intel_connector_unregister(connector);
}
static struct drm_connector_state *
intel_sdvo_connector_duplicate_state(struct drm_connector *connector)
{
struct intel_sdvo_connector_state *state;
state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector, &state->base.base);
return &state->base.base;
}
static const struct drm_connector_funcs intel_sdvo_connector_funcs = {
.detect = intel_sdvo_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_sdvo_connector_atomic_get_property,
.atomic_set_property = intel_sdvo_connector_atomic_set_property,
.late_register = intel_sdvo_connector_register,
.early_unregister = intel_sdvo_connector_unregister,
.destroy = intel_sdvo_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_sdvo_connector_duplicate_state,
};
static int intel_sdvo_atomic_check(struct drm_connector *conn,
struct drm_connector_state *new_conn_state)
{
struct drm_atomic_state *state = new_conn_state->state;
struct drm_connector_state *old_conn_state =
drm_atomic_get_old_connector_state(state, conn);
struct intel_sdvo_connector_state *old_state =
to_intel_sdvo_connector_state(old_conn_state);
struct intel_sdvo_connector_state *new_state =
to_intel_sdvo_connector_state(new_conn_state);
if (new_conn_state->crtc &&
(memcmp(&old_state->tv, &new_state->tv, sizeof(old_state->tv)) ||
memcmp(&old_conn_state->tv, &new_conn_state->tv, sizeof(old_conn_state->tv)))) {
struct drm_crtc_state *crtc_state =
drm_atomic_get_new_crtc_state(new_conn_state->state,
new_conn_state->crtc);
crtc_state->connectors_changed = true;
}
return intel_digital_connector_atomic_check(conn, new_conn_state);
}
static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = {
.get_modes = intel_sdvo_get_modes,
.mode_valid = intel_sdvo_mode_valid,
.atomic_check = intel_sdvo_atomic_check,
};
static void intel_sdvo_enc_destroy(struct drm_encoder *encoder)
{
struct intel_sdvo *intel_sdvo = to_sdvo(to_intel_encoder(encoder));
if (intel_sdvo->sdvo_lvds_fixed_mode != NULL)
drm_mode_destroy(encoder->dev,
intel_sdvo->sdvo_lvds_fixed_mode);
i2c_del_adapter(&intel_sdvo->ddc);
intel_encoder_destroy(encoder);
}
static const struct drm_encoder_funcs intel_sdvo_enc_funcs = {
.destroy = intel_sdvo_enc_destroy,
};
static void
intel_sdvo_guess_ddc_bus(struct intel_sdvo *sdvo)
{
uint16_t mask = 0;
unsigned int num_bits;
/*
* Make a mask of outputs less than or equal to our own priority in the
* list.
*/
switch (sdvo->controlled_output) {
case SDVO_OUTPUT_LVDS1:
mask |= SDVO_OUTPUT_LVDS1;
case SDVO_OUTPUT_LVDS0:
mask |= SDVO_OUTPUT_LVDS0;
case SDVO_OUTPUT_TMDS1:
mask |= SDVO_OUTPUT_TMDS1;
case SDVO_OUTPUT_TMDS0:
mask |= SDVO_OUTPUT_TMDS0;
case SDVO_OUTPUT_RGB1:
mask |= SDVO_OUTPUT_RGB1;
case SDVO_OUTPUT_RGB0:
mask |= SDVO_OUTPUT_RGB0;
break;
}
/* Count bits to find what number we are in the priority list. */
mask &= sdvo->caps.output_flags;
num_bits = hweight16(mask);
/* If more than 3 outputs, default to DDC bus 3 for now. */
if (num_bits > 3)
num_bits = 3;
/* Corresponds to SDVO_CONTROL_BUS_DDCx */
sdvo->ddc_bus = 1 << num_bits;
}
/*
* Choose the appropriate DDC bus for control bus switch command for this
* SDVO output based on the controlled output.
*
* DDC bus number assignment is in a priority order of RGB outputs, then TMDS
* outputs, then LVDS outputs.
*/
static void
intel_sdvo_select_ddc_bus(struct drm_i915_private *dev_priv,
struct intel_sdvo *sdvo)
{
struct sdvo_device_mapping *mapping;
if (sdvo->port == PORT_B)
mapping = &dev_priv->vbt.sdvo_mappings[0];
else
mapping = &dev_priv->vbt.sdvo_mappings[1];
if (mapping->initialized)
sdvo->ddc_bus = 1 << ((mapping->ddc_pin & 0xf0) >> 4);
else
intel_sdvo_guess_ddc_bus(sdvo);
}
static void
intel_sdvo_select_i2c_bus(struct drm_i915_private *dev_priv,
struct intel_sdvo *sdvo)
{
struct sdvo_device_mapping *mapping;
u8 pin;
if (sdvo->port == PORT_B)
mapping = &dev_priv->vbt.sdvo_mappings[0];
else
mapping = &dev_priv->vbt.sdvo_mappings[1];
if (mapping->initialized &&
intel_gmbus_is_valid_pin(dev_priv, mapping->i2c_pin))
pin = mapping->i2c_pin;
else
pin = GMBUS_PIN_DPB;
sdvo->i2c = intel_gmbus_get_adapter(dev_priv, pin);
/*
* With gmbus we should be able to drive sdvo i2c at 2MHz, but somehow
* our code totally fails once we start using gmbus. Hence fall back to
* bit banging for now.
*/
intel_gmbus_force_bit(sdvo->i2c, true);
}
/* undo any changes intel_sdvo_select_i2c_bus() did to sdvo->i2c */
static void
intel_sdvo_unselect_i2c_bus(struct intel_sdvo *sdvo)
{
intel_gmbus_force_bit(sdvo->i2c, false);
}
static bool
intel_sdvo_is_hdmi_connector(struct intel_sdvo *intel_sdvo, int device)
{
return intel_sdvo_check_supp_encode(intel_sdvo);
}
static u8
intel_sdvo_get_slave_addr(struct drm_i915_private *dev_priv,
struct intel_sdvo *sdvo)
{
struct sdvo_device_mapping *my_mapping, *other_mapping;
if (sdvo->port == PORT_B) {
my_mapping = &dev_priv->vbt.sdvo_mappings[0];
other_mapping = &dev_priv->vbt.sdvo_mappings[1];
} else {
my_mapping = &dev_priv->vbt.sdvo_mappings[1];
other_mapping = &dev_priv->vbt.sdvo_mappings[0];
}
/* If the BIOS described our SDVO device, take advantage of it. */
if (my_mapping->slave_addr)
return my_mapping->slave_addr;
/*
* If the BIOS only described a different SDVO device, use the
* address that it isn't using.
*/
if (other_mapping->slave_addr) {
if (other_mapping->slave_addr == 0x70)
return 0x72;
else
return 0x70;
}
/*
* No SDVO device info is found for another DVO port,
* so use mapping assumption we had before BIOS parsing.
*/
if (sdvo->port == PORT_B)
return 0x70;
else
return 0x72;
}
static int
intel_sdvo_connector_init(struct intel_sdvo_connector *connector,
struct intel_sdvo *encoder)
{
struct drm_connector *drm_connector;
int ret;
drm_connector = &connector->base.base;
ret = drm_connector_init(encoder->base.base.dev,
drm_connector,
&intel_sdvo_connector_funcs,
connector->base.base.connector_type);
if (ret < 0)
return ret;
drm_connector_helper_add(drm_connector,
&intel_sdvo_connector_helper_funcs);
connector->base.base.interlace_allowed = 1;
connector->base.base.doublescan_allowed = 0;
connector->base.base.display_info.subpixel_order = SubPixelHorizontalRGB;
connector->base.get_hw_state = intel_sdvo_connector_get_hw_state;
intel_connector_attach_encoder(&connector->base, &encoder->base);
return 0;
}
static void
intel_sdvo_add_hdmi_properties(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.base.dev);
intel_attach_force_audio_property(&connector->base.base);
if (INTEL_GEN(dev_priv) >= 4 && IS_MOBILE(dev_priv)) {
intel_attach_broadcast_rgb_property(&connector->base.base);
}
intel_attach_aspect_ratio_property(&connector->base.base);
connector->base.base.state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
}
static struct intel_sdvo_connector *intel_sdvo_connector_alloc(void)
{
struct intel_sdvo_connector *sdvo_connector;
struct intel_sdvo_connector_state *conn_state;
sdvo_connector = kzalloc(sizeof(*sdvo_connector), GFP_KERNEL);
if (!sdvo_connector)
return NULL;
conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
if (!conn_state) {
kfree(sdvo_connector);
return NULL;
}
__drm_atomic_helper_connector_reset(&sdvo_connector->base.base,
&conn_state->base.base);
return sdvo_connector;
}
static bool
intel_sdvo_dvi_init(struct intel_sdvo *intel_sdvo, int device)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct drm_connector *connector;
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising DVI device %d\n", device);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
if (device == 0) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS0;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS0;
} else if (device == 1) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS1;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS1;
}
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
if (intel_sdvo_get_hotplug_support(intel_sdvo) &
intel_sdvo_connector->output_flag) {
intel_sdvo->hotplug_active |= intel_sdvo_connector->output_flag;
/*
* Some SDVO devices have one-shot hotplug interrupts.
* Ensure that they get re-enabled when an interrupt happens.
*/
intel_encoder->hotplug = intel_sdvo_hotplug;
intel_sdvo_enable_hotplug(intel_encoder);
} else {
intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT;
}
encoder->encoder_type = DRM_MODE_ENCODER_TMDS;
connector->connector_type = DRM_MODE_CONNECTOR_DVID;
/* gen3 doesn't do the hdmi bits in the SDVO register */
if (INTEL_GEN(dev_priv) >= 4 &&
intel_sdvo_is_hdmi_connector(intel_sdvo, device)) {
connector->connector_type = DRM_MODE_CONNECTOR_HDMIA;
intel_sdvo->is_hdmi = true;
}
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
if (intel_sdvo->is_hdmi)
intel_sdvo_add_hdmi_properties(intel_sdvo, intel_sdvo_connector);
return true;
}
static bool
intel_sdvo_tv_init(struct intel_sdvo *intel_sdvo, int type)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_connector *connector;
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising TV type %d\n", type);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
encoder->encoder_type = DRM_MODE_ENCODER_TVDAC;
connector->connector_type = DRM_MODE_CONNECTOR_SVIDEO;
intel_sdvo->controlled_output |= type;
intel_sdvo_connector->output_flag = type;
intel_sdvo->is_tv = true;
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
if (!intel_sdvo_tv_create_property(intel_sdvo, intel_sdvo_connector, type))
goto err;
if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector))
goto err;
return true;
err:
intel_sdvo_destroy(connector);
return false;
}
static bool
intel_sdvo_analog_init(struct intel_sdvo *intel_sdvo, int device)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_connector *connector;
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising analog device %d\n", device);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT;
encoder->encoder_type = DRM_MODE_ENCODER_DAC;
connector->connector_type = DRM_MODE_CONNECTOR_VGA;
if (device == 0) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB0;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB0;
} else if (device == 1) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB1;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB1;
}
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
return true;
}
static bool
intel_sdvo_lvds_init(struct intel_sdvo *intel_sdvo, int device)
{
struct drm_encoder *encoder = &intel_sdvo->base.base;
struct drm_connector *connector;
struct intel_connector *intel_connector;
struct intel_sdvo_connector *intel_sdvo_connector;
DRM_DEBUG_KMS("initialising LVDS device %d\n", device);
intel_sdvo_connector = intel_sdvo_connector_alloc();
if (!intel_sdvo_connector)
return false;
intel_connector = &intel_sdvo_connector->base;
connector = &intel_connector->base;
encoder->encoder_type = DRM_MODE_ENCODER_LVDS;
connector->connector_type = DRM_MODE_CONNECTOR_LVDS;
if (device == 0) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS0;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS0;
} else if (device == 1) {
intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS1;
intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS1;
}
if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) {
kfree(intel_sdvo_connector);
return false;
}
if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector))
goto err;
return true;
err:
intel_sdvo_destroy(connector);
return false;
}
static bool
intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, uint16_t flags)
{
intel_sdvo->is_tv = false;
intel_sdvo->is_lvds = false;
/* SDVO requires XXX1 function may not exist unless it has XXX0 function.*/
if (flags & SDVO_OUTPUT_TMDS0)
if (!intel_sdvo_dvi_init(intel_sdvo, 0))
return false;
if ((flags & SDVO_TMDS_MASK) == SDVO_TMDS_MASK)
if (!intel_sdvo_dvi_init(intel_sdvo, 1))
return false;
/* TV has no XXX1 function block */
if (flags & SDVO_OUTPUT_SVID0)
if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_SVID0))
return false;
if (flags & SDVO_OUTPUT_CVBS0)
if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_CVBS0))
return false;
if (flags & SDVO_OUTPUT_YPRPB0)
if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_YPRPB0))
return false;
if (flags & SDVO_OUTPUT_RGB0)
if (!intel_sdvo_analog_init(intel_sdvo, 0))
return false;
if ((flags & SDVO_RGB_MASK) == SDVO_RGB_MASK)
if (!intel_sdvo_analog_init(intel_sdvo, 1))
return false;
if (flags & SDVO_OUTPUT_LVDS0)
if (!intel_sdvo_lvds_init(intel_sdvo, 0))
return false;
if ((flags & SDVO_LVDS_MASK) == SDVO_LVDS_MASK)
if (!intel_sdvo_lvds_init(intel_sdvo, 1))
return false;
if ((flags & SDVO_OUTPUT_MASK) == 0) {
unsigned char bytes[2];
intel_sdvo->controlled_output = 0;
memcpy(bytes, &intel_sdvo->caps.output_flags, 2);
DRM_DEBUG_KMS("%s: Unknown SDVO output type (0x%02x%02x)\n",
SDVO_NAME(intel_sdvo),
bytes[0], bytes[1]);
return false;
}
intel_sdvo->base.crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
return true;
}
static void intel_sdvo_output_cleanup(struct intel_sdvo *intel_sdvo)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_connector *connector, *tmp;
list_for_each_entry_safe(connector, tmp,
&dev->mode_config.connector_list, head) {
if (intel_attached_encoder(connector) == &intel_sdvo->base) {
drm_connector_unregister(connector);
intel_sdvo_destroy(connector);
}
}
}
static bool intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
int type)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct intel_sdvo_tv_format format;
uint32_t format_map, i;
if (!intel_sdvo_set_target_output(intel_sdvo, type))
return false;
BUILD_BUG_ON(sizeof(format) != 6);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_SUPPORTED_TV_FORMATS,
&format, sizeof(format)))
return false;
memcpy(&format_map, &format, min(sizeof(format_map), sizeof(format)));
if (format_map == 0)
return false;
intel_sdvo_connector->format_supported_num = 0;
for (i = 0 ; i < TV_FORMAT_NUM; i++)
if (format_map & (1 << i))
intel_sdvo_connector->tv_format_supported[intel_sdvo_connector->format_supported_num++] = i;
intel_sdvo_connector->tv_format =
drm_property_create(dev, DRM_MODE_PROP_ENUM,
"mode", intel_sdvo_connector->format_supported_num);
if (!intel_sdvo_connector->tv_format)
return false;
for (i = 0; i < intel_sdvo_connector->format_supported_num; i++)
drm_property_add_enum(intel_sdvo_connector->tv_format, i,
tv_format_names[intel_sdvo_connector->tv_format_supported[i]]);
intel_sdvo_connector->base.base.state->tv.mode = intel_sdvo_connector->tv_format_supported[0];
drm_object_attach_property(&intel_sdvo_connector->base.base.base,
intel_sdvo_connector->tv_format, 0);
return true;
}
#define _ENHANCEMENT(state_assignment, name, NAME) do { \
if (enhancements.name) { \
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_##NAME, &data_value, 4) || \
!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_##NAME, &response, 2)) \
return false; \
intel_sdvo_connector->name = \
drm_property_create_range(dev, 0, #name, 0, data_value[0]); \
if (!intel_sdvo_connector->name) return false; \
state_assignment = response; \
drm_object_attach_property(&connector->base, \
intel_sdvo_connector->name, 0); \
DRM_DEBUG_KMS(#name ": max %d, default %d, current %d\n", \
data_value[0], data_value[1], response); \
} \
} while (0)
#define ENHANCEMENT(state, name, NAME) _ENHANCEMENT((state)->name, name, NAME)
static bool
intel_sdvo_create_enhance_property_tv(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
struct intel_sdvo_enhancements_reply enhancements)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_connector *connector = &intel_sdvo_connector->base.base;
struct drm_connector_state *conn_state = connector->state;
struct intel_sdvo_connector_state *sdvo_state =
to_intel_sdvo_connector_state(conn_state);
uint16_t response, data_value[2];
/* when horizontal overscan is supported, Add the left/right property */
if (enhancements.overscan_h) {
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_MAX_OVERSCAN_H,
&data_value, 4))
return false;
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_OVERSCAN_H,
&response, 2))
return false;
sdvo_state->tv.overscan_h = response;
intel_sdvo_connector->max_hscan = data_value[0];
intel_sdvo_connector->left =
drm_property_create_range(dev, 0, "left_margin", 0, data_value[0]);
if (!intel_sdvo_connector->left)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->left, 0);
intel_sdvo_connector->right =
drm_property_create_range(dev, 0, "right_margin", 0, data_value[0]);
if (!intel_sdvo_connector->right)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->right, 0);
DRM_DEBUG_KMS("h_overscan: max %d, "
"default %d, current %d\n",
data_value[0], data_value[1], response);
}
if (enhancements.overscan_v) {
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_MAX_OVERSCAN_V,
&data_value, 4))
return false;
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_OVERSCAN_V,
&response, 2))
return false;
sdvo_state->tv.overscan_v = response;
intel_sdvo_connector->max_vscan = data_value[0];
intel_sdvo_connector->top =
drm_property_create_range(dev, 0,
"top_margin", 0, data_value[0]);
if (!intel_sdvo_connector->top)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->top, 0);
intel_sdvo_connector->bottom =
drm_property_create_range(dev, 0,
"bottom_margin", 0, data_value[0]);
if (!intel_sdvo_connector->bottom)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->bottom, 0);
DRM_DEBUG_KMS("v_overscan: max %d, "
"default %d, current %d\n",
data_value[0], data_value[1], response);
}
ENHANCEMENT(&sdvo_state->tv, hpos, HPOS);
ENHANCEMENT(&sdvo_state->tv, vpos, VPOS);
ENHANCEMENT(&conn_state->tv, saturation, SATURATION);
ENHANCEMENT(&conn_state->tv, contrast, CONTRAST);
ENHANCEMENT(&conn_state->tv, hue, HUE);
ENHANCEMENT(&conn_state->tv, brightness, BRIGHTNESS);
ENHANCEMENT(&sdvo_state->tv, sharpness, SHARPNESS);
ENHANCEMENT(&sdvo_state->tv, flicker_filter, FLICKER_FILTER);
ENHANCEMENT(&sdvo_state->tv, flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE);
ENHANCEMENT(&sdvo_state->tv, flicker_filter_2d, FLICKER_FILTER_2D);
_ENHANCEMENT(sdvo_state->tv.chroma_filter, tv_chroma_filter, TV_CHROMA_FILTER);
_ENHANCEMENT(sdvo_state->tv.luma_filter, tv_luma_filter, TV_LUMA_FILTER);
if (enhancements.dot_crawl) {
if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_DOT_CRAWL, &response, 2))
return false;
sdvo_state->tv.dot_crawl = response & 0x1;
intel_sdvo_connector->dot_crawl =
drm_property_create_range(dev, 0, "dot_crawl", 0, 1);
if (!intel_sdvo_connector->dot_crawl)
return false;
drm_object_attach_property(&connector->base,
intel_sdvo_connector->dot_crawl, 0);
DRM_DEBUG_KMS("dot crawl: current %d\n", response);
}
return true;
}
static bool
intel_sdvo_create_enhance_property_lvds(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector,
struct intel_sdvo_enhancements_reply enhancements)
{
struct drm_device *dev = intel_sdvo->base.base.dev;
struct drm_connector *connector = &intel_sdvo_connector->base.base;
uint16_t response, data_value[2];
ENHANCEMENT(&connector->state->tv, brightness, BRIGHTNESS);
return true;
}
#undef ENHANCEMENT
#undef _ENHANCEMENT
static bool intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo,
struct intel_sdvo_connector *intel_sdvo_connector)
{
union {
struct intel_sdvo_enhancements_reply reply;
uint16_t response;
} enhancements;
BUILD_BUG_ON(sizeof(enhancements) != 2);
if (!intel_sdvo_get_value(intel_sdvo,
SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS,
&enhancements, sizeof(enhancements)) ||
enhancements.response == 0) {
DRM_DEBUG_KMS("No enhancement is supported\n");
return true;
}
if (IS_TV(intel_sdvo_connector))
return intel_sdvo_create_enhance_property_tv(intel_sdvo, intel_sdvo_connector, enhancements.reply);
else if (IS_LVDS(intel_sdvo_connector))
return intel_sdvo_create_enhance_property_lvds(intel_sdvo, intel_sdvo_connector, enhancements.reply);
else
return true;
}
static int intel_sdvo_ddc_proxy_xfer(struct i2c_adapter *adapter,
struct i2c_msg *msgs,
int num)
{
struct intel_sdvo *sdvo = adapter->algo_data;
if (!__intel_sdvo_set_control_bus_switch(sdvo, sdvo->ddc_bus))
return -EIO;
return sdvo->i2c->algo->master_xfer(sdvo->i2c, msgs, num);
}
static u32 intel_sdvo_ddc_proxy_func(struct i2c_adapter *adapter)
{
struct intel_sdvo *sdvo = adapter->algo_data;
return sdvo->i2c->algo->functionality(sdvo->i2c);
}
static const struct i2c_algorithm intel_sdvo_ddc_proxy = {
.master_xfer = intel_sdvo_ddc_proxy_xfer,
.functionality = intel_sdvo_ddc_proxy_func
};
static void proxy_lock_bus(struct i2c_adapter *adapter,
unsigned int flags)
{
struct intel_sdvo *sdvo = adapter->algo_data;
sdvo->i2c->lock_ops->lock_bus(sdvo->i2c, flags);
}
static int proxy_trylock_bus(struct i2c_adapter *adapter,
unsigned int flags)
{
struct intel_sdvo *sdvo = adapter->algo_data;
return sdvo->i2c->lock_ops->trylock_bus(sdvo->i2c, flags);
}
static void proxy_unlock_bus(struct i2c_adapter *adapter,
unsigned int flags)
{
struct intel_sdvo *sdvo = adapter->algo_data;
sdvo->i2c->lock_ops->unlock_bus(sdvo->i2c, flags);
}
static const struct i2c_lock_operations proxy_lock_ops = {
.lock_bus = proxy_lock_bus,
.trylock_bus = proxy_trylock_bus,
.unlock_bus = proxy_unlock_bus,
};
static bool
intel_sdvo_init_ddc_proxy(struct intel_sdvo *sdvo,
struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
sdvo->ddc.owner = THIS_MODULE;
sdvo->ddc.class = I2C_CLASS_DDC;
snprintf(sdvo->ddc.name, I2C_NAME_SIZE, "SDVO DDC proxy");
sdvo->ddc.dev.parent = &pdev->dev;
sdvo->ddc.algo_data = sdvo;
sdvo->ddc.algo = &intel_sdvo_ddc_proxy;
sdvo->ddc.lock_ops = &proxy_lock_ops;
return i2c_add_adapter(&sdvo->ddc) == 0;
}
static void assert_sdvo_port_valid(const struct drm_i915_private *dev_priv,
enum port port)
{
if (HAS_PCH_SPLIT(dev_priv))
WARN_ON(port != PORT_B);
else
WARN_ON(port != PORT_B && port != PORT_C);
}
bool intel_sdvo_init(struct drm_i915_private *dev_priv,
drm/i915: Type safe register read/write Make I915_READ and I915_WRITE more type safe by wrapping the register offset in a struct. This should eliminate most of the fumbles we've had with misplaced parens. This only takes care of normal mmio registers. We could extend the idea to other register types and define each with its own struct. That way you wouldn't be able to accidentally pass the wrong thing to a specific register access function. The gpio_reg setup is probably the ugliest thing left. But I figure I'd just leave it for now, and wait for some divine inspiration to strike before making it nice. As for the generated code, it's actually a bit better sometimes. Eg. looking at i915_irq_handler(), we can see the following change: lea 0x70024(%rdx,%rax,1),%r9d mov $0x1,%edx - movslq %r9d,%r9 - mov %r9,%rsi - mov %r9,-0x58(%rbp) - callq *0xd8(%rbx) + mov %r9d,%esi + mov %r9d,-0x48(%rbp) callq *0xd8(%rbx) So previously gcc thought the register offset might be signed and decided to sign extend it, just in case. The rest appears to be mostly just minor shuffling of instructions. v2: i915_mmio_reg_{offset,equal,valid}() helpers added s/_REG/_MMIO/ in the register defines mo more switch statements left to worry about ring_emit stuff got sorted in a prep patch cmd parser, lrc context and w/a batch buildup also in prep patch vgpu stuff cleaned up and moved to a prep patch all other unrelated changes split out v3: Rebased due to BXT DSI/BLC, MOCS, etc. v4: Rebased due to churn, s/i915_mmio_reg_t/i915_reg_t/ Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1447853606-2751-1-git-send-email-ville.syrjala@linux.intel.com
2015-11-18 20:33:26 +07:00
i915_reg_t sdvo_reg, enum port port)
{
struct intel_encoder *intel_encoder;
struct intel_sdvo *intel_sdvo;
int i;
assert_sdvo_port_valid(dev_priv, port);
intel_sdvo = kzalloc(sizeof(*intel_sdvo), GFP_KERNEL);
if (!intel_sdvo)
return false;
intel_sdvo->sdvo_reg = sdvo_reg;
intel_sdvo->port = port;
intel_sdvo->slave_addr =
intel_sdvo_get_slave_addr(dev_priv, intel_sdvo) >> 1;
intel_sdvo_select_i2c_bus(dev_priv, intel_sdvo);
if (!intel_sdvo_init_ddc_proxy(intel_sdvo, dev_priv))
goto err_i2c_bus;
/* encoder type will be decided later */
intel_encoder = &intel_sdvo->base;
intel_encoder->type = INTEL_OUTPUT_SDVO;
intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER;
intel_encoder->port = port;
drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
&intel_sdvo_enc_funcs, 0,
"SDVO %c", port_name(port));
/* Read the regs to test if we can talk to the device */
for (i = 0; i < 0x40; i++) {
u8 byte;
if (!intel_sdvo_read_byte(intel_sdvo, i, &byte)) {
DRM_DEBUG_KMS("No SDVO device found on %s\n",
SDVO_NAME(intel_sdvo));
goto err;
}
}
intel_encoder->compute_config = intel_sdvo_compute_config;
if (HAS_PCH_SPLIT(dev_priv)) {
intel_encoder->disable = pch_disable_sdvo;
intel_encoder->post_disable = pch_post_disable_sdvo;
} else {
intel_encoder->disable = intel_disable_sdvo;
}
intel_encoder->pre_enable = intel_sdvo_pre_enable;
intel_encoder->enable = intel_enable_sdvo;
intel_encoder->get_hw_state = intel_sdvo_get_hw_state;
intel_encoder->get_config = intel_sdvo_get_config;
/* In default case sdvo lvds is false */
if (!intel_sdvo_get_capabilities(intel_sdvo, &intel_sdvo->caps))
goto err;
if (intel_sdvo_output_setup(intel_sdvo,
intel_sdvo->caps.output_flags) != true) {
DRM_DEBUG_KMS("SDVO output failed to setup on %s\n",
SDVO_NAME(intel_sdvo));
/* Output_setup can leave behind connectors! */
goto err_output;
}
/*
* Only enable the hotplug irq if we need it, to work around noisy
* hotplug lines.
*/
if (intel_sdvo->hotplug_active) {
if (intel_sdvo->port == PORT_B)
intel_encoder->hpd_pin = HPD_SDVO_B;
else
intel_encoder->hpd_pin = HPD_SDVO_C;
}
/*
* Cloning SDVO with anything is often impossible, since the SDVO
* encoder can request a special input timing mode. And even if that's
* not the case we have evidence that cloning a plain unscaled mode with
* VGA doesn't really work. Furthermore the cloning flags are way too
* simplistic anyway to express such constraints, so just give up on
* cloning for SDVO encoders.
*/
intel_sdvo->base.cloneable = 0;
intel_sdvo_select_ddc_bus(dev_priv, intel_sdvo);
/* Set the input timing to the screen. Assume always input 0. */
if (!intel_sdvo_set_target_input(intel_sdvo))
goto err_output;
if (!intel_sdvo_get_input_pixel_clock_range(intel_sdvo,
&intel_sdvo->pixel_clock_min,
&intel_sdvo->pixel_clock_max))
goto err_output;
DRM_DEBUG_KMS("%s device VID/DID: %02X:%02X.%02X, "
"clock range %dMHz - %dMHz, "
"input 1: %c, input 2: %c, "
"output 1: %c, output 2: %c\n",
SDVO_NAME(intel_sdvo),
intel_sdvo->caps.vendor_id, intel_sdvo->caps.device_id,
intel_sdvo->caps.device_rev_id,
intel_sdvo->pixel_clock_min / 1000,
intel_sdvo->pixel_clock_max / 1000,
(intel_sdvo->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N',
(intel_sdvo->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N',
/* check currently supported outputs */
intel_sdvo->caps.output_flags &
(SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N',
intel_sdvo->caps.output_flags &
(SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N');
return true;
err_output:
intel_sdvo_output_cleanup(intel_sdvo);
err:
drm_encoder_cleanup(&intel_encoder->base);
i2c_del_adapter(&intel_sdvo->ddc);
err_i2c_bus:
intel_sdvo_unselect_i2c_bus(intel_sdvo);
kfree(intel_sdvo);
return false;
}