2014-09-30 15:56:38 +07:00
|
|
|
/*
|
|
|
|
* Copyright © 2012-2014 Intel Corporation
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
* Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Eugeni Dodonov <eugeni.dodonov@intel.com>
|
|
|
|
* Daniel Vetter <daniel.vetter@ffwll.ch>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <linux/vgaarb.h>
|
|
|
|
|
2019-01-14 21:21:09 +07:00
|
|
|
#include <drm/drm_print.h>
|
|
|
|
|
2014-09-30 15:56:38 +07:00
|
|
|
#include "i915_drv.h"
|
|
|
|
|
2014-09-30 15:56:42 +07:00
|
|
|
/**
|
|
|
|
* DOC: runtime pm
|
|
|
|
*
|
|
|
|
* The i915 driver supports dynamic enabling and disabling of entire hardware
|
|
|
|
* blocks at runtime. This is especially important on the display side where
|
|
|
|
* software is supposed to control many power gates manually on recent hardware,
|
|
|
|
* since on the GT side a lot of the power management is done by the hardware.
|
|
|
|
* But even there some manual control at the device level is required.
|
|
|
|
*
|
|
|
|
* Since i915 supports a diverse set of platforms with a unified codebase and
|
|
|
|
* hardware engineers just love to shuffle functionality around between power
|
|
|
|
* domains there's a sizeable amount of indirection required. This file provides
|
|
|
|
* generic functions to the driver for grabbing and releasing references for
|
|
|
|
* abstract power domains. It then maps those to the actual power wells
|
|
|
|
* present for a given platform.
|
|
|
|
*/
|
|
|
|
|
2019-01-14 21:21:09 +07:00
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
|
|
|
|
|
|
|
|
#include <linux/sort.h>
|
|
|
|
|
|
|
|
#define STACKDEPTH 8
|
|
|
|
|
|
|
|
static noinline depot_stack_handle_t __save_depot_stack(void)
|
|
|
|
{
|
|
|
|
unsigned long entries[STACKDEPTH];
|
2019-04-25 16:45:09 +07:00
|
|
|
unsigned int n;
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-04-25 16:45:09 +07:00
|
|
|
n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
|
|
|
|
return stack_depot_save(entries, n, GFP_NOWAIT | __GFP_NOWARN);
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __print_depot_stack(depot_stack_handle_t stack,
|
|
|
|
char *buf, int sz, int indent)
|
|
|
|
{
|
2019-04-25 16:45:09 +07:00
|
|
|
unsigned long *entries;
|
|
|
|
unsigned int nr_entries;
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-04-25 16:45:09 +07:00
|
|
|
nr_entries = stack_depot_fetch(stack, &entries);
|
|
|
|
stack_trace_snprint(buf, sz, entries, nr_entries, indent);
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:52 +07:00
|
|
|
static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
|
|
|
spin_lock_init(&rpm->debug.lock);
|
|
|
|
}
|
|
|
|
|
2019-01-14 21:21:10 +07:00
|
|
|
static noinline depot_stack_handle_t
|
2019-06-14 06:21:52 +07:00
|
|
|
track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
|
|
|
depot_stack_handle_t stack, *stacks;
|
|
|
|
unsigned long flags;
|
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
if (!rpm->available)
|
2019-01-14 21:21:10 +07:00
|
|
|
return -1;
|
2019-01-14 21:21:09 +07:00
|
|
|
|
|
|
|
stack = __save_depot_stack();
|
|
|
|
if (!stack)
|
2019-01-14 21:21:10 +07:00
|
|
|
return -1;
|
2019-01-14 21:21:09 +07:00
|
|
|
|
|
|
|
spin_lock_irqsave(&rpm->debug.lock, flags);
|
|
|
|
|
|
|
|
if (!rpm->debug.count)
|
|
|
|
rpm->debug.last_acquire = stack;
|
|
|
|
|
|
|
|
stacks = krealloc(rpm->debug.owners,
|
|
|
|
(rpm->debug.count + 1) * sizeof(*stacks),
|
|
|
|
GFP_NOWAIT | __GFP_NOWARN);
|
|
|
|
if (stacks) {
|
|
|
|
stacks[rpm->debug.count++] = stack;
|
|
|
|
rpm->debug.owners = stacks;
|
2019-01-14 21:21:10 +07:00
|
|
|
} else {
|
|
|
|
stack = -1;
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&rpm->debug.lock, flags);
|
2019-01-14 21:21:10 +07:00
|
|
|
|
|
|
|
return stack;
|
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:52 +07:00
|
|
|
static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
|
2019-05-10 00:34:36 +07:00
|
|
|
depot_stack_handle_t stack)
|
2019-01-14 21:21:10 +07:00
|
|
|
{
|
|
|
|
unsigned long flags, n;
|
|
|
|
bool found = false;
|
|
|
|
|
|
|
|
if (unlikely(stack == -1))
|
|
|
|
return;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&rpm->debug.lock, flags);
|
|
|
|
for (n = rpm->debug.count; n--; ) {
|
|
|
|
if (rpm->debug.owners[n] == stack) {
|
|
|
|
memmove(rpm->debug.owners + n,
|
|
|
|
rpm->debug.owners + n + 1,
|
|
|
|
(--rpm->debug.count - n) * sizeof(stack));
|
|
|
|
found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&rpm->debug.lock, flags);
|
|
|
|
|
|
|
|
if (WARN(!found,
|
|
|
|
"Unmatched wakeref (tracking %lu), count %u\n",
|
|
|
|
rpm->debug.count, atomic_read(&rpm->wakeref_count))) {
|
|
|
|
char *buf;
|
|
|
|
|
2019-04-10 00:41:08 +07:00
|
|
|
buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
|
2019-01-14 21:21:10 +07:00
|
|
|
if (!buf)
|
|
|
|
return;
|
|
|
|
|
|
|
|
__print_depot_stack(stack, buf, PAGE_SIZE, 2);
|
|
|
|
DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf);
|
|
|
|
|
|
|
|
stack = READ_ONCE(rpm->debug.last_release);
|
|
|
|
if (stack) {
|
|
|
|
__print_depot_stack(stack, buf, PAGE_SIZE, 2);
|
|
|
|
DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(buf);
|
|
|
|
}
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
static int cmphandle(const void *_a, const void *_b)
|
|
|
|
{
|
|
|
|
const depot_stack_handle_t * const a = _a, * const b = _b;
|
|
|
|
|
|
|
|
if (*a < *b)
|
|
|
|
return -1;
|
|
|
|
else if (*a > *b)
|
|
|
|
return 1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
__print_intel_runtime_pm_wakeref(struct drm_printer *p,
|
|
|
|
const struct intel_runtime_pm_debug *dbg)
|
|
|
|
{
|
|
|
|
unsigned long i;
|
|
|
|
char *buf;
|
|
|
|
|
2019-04-10 00:41:08 +07:00
|
|
|
buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
|
2019-01-14 21:21:09 +07:00
|
|
|
if (!buf)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (dbg->last_acquire) {
|
|
|
|
__print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2);
|
|
|
|
drm_printf(p, "Wakeref last acquired:\n%s", buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dbg->last_release) {
|
|
|
|
__print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2);
|
|
|
|
drm_printf(p, "Wakeref last released:\n%s", buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
drm_printf(p, "Wakeref count: %lu\n", dbg->count);
|
|
|
|
|
|
|
|
sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL);
|
|
|
|
|
|
|
|
for (i = 0; i < dbg->count; i++) {
|
|
|
|
depot_stack_handle_t stack = dbg->owners[i];
|
|
|
|
unsigned long rep;
|
|
|
|
|
|
|
|
rep = 1;
|
|
|
|
while (i + 1 < dbg->count && dbg->owners[i + 1] == stack)
|
|
|
|
rep++, i++;
|
|
|
|
__print_depot_stack(stack, buf, PAGE_SIZE, 2);
|
|
|
|
drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static noinline void
|
2019-05-10 00:34:37 +07:00
|
|
|
__untrack_all_wakerefs(struct intel_runtime_pm_debug *debug,
|
|
|
|
struct intel_runtime_pm_debug *saved)
|
|
|
|
{
|
|
|
|
*saved = *debug;
|
|
|
|
|
|
|
|
debug->owners = NULL;
|
|
|
|
debug->count = 0;
|
|
|
|
debug->last_release = __save_depot_stack();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dump_and_free_wakeref_tracking(struct intel_runtime_pm_debug *debug)
|
|
|
|
{
|
2019-07-01 17:44:42 +07:00
|
|
|
if (debug->count) {
|
|
|
|
struct drm_printer p = drm_debug_printer("i915");
|
2019-05-10 00:34:37 +07:00
|
|
|
|
2019-07-01 17:44:42 +07:00
|
|
|
__print_intel_runtime_pm_wakeref(&p, debug);
|
|
|
|
}
|
2019-05-10 00:34:37 +07:00
|
|
|
|
|
|
|
kfree(debug->owners);
|
|
|
|
}
|
|
|
|
|
2019-01-14 21:21:09 +07:00
|
|
|
static noinline void
|
2019-06-14 06:21:52 +07:00
|
|
|
__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
|
|
|
struct intel_runtime_pm_debug dbg = {};
|
|
|
|
unsigned long flags;
|
|
|
|
|
2019-05-10 00:34:37 +07:00
|
|
|
if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count,
|
|
|
|
&rpm->debug.lock,
|
|
|
|
flags))
|
|
|
|
return;
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-05-10 00:34:37 +07:00
|
|
|
__untrack_all_wakerefs(&rpm->debug, &dbg);
|
|
|
|
spin_unlock_irqrestore(&rpm->debug.lock, flags);
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-05-10 00:34:37 +07:00
|
|
|
dump_and_free_wakeref_tracking(&dbg);
|
|
|
|
}
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-05-10 00:34:37 +07:00
|
|
|
static noinline void
|
2019-06-14 06:21:52 +07:00
|
|
|
untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
|
2019-05-10 00:34:37 +07:00
|
|
|
{
|
|
|
|
struct intel_runtime_pm_debug dbg = {};
|
|
|
|
unsigned long flags;
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-05-10 00:34:37 +07:00
|
|
|
spin_lock_irqsave(&rpm->debug.lock, flags);
|
|
|
|
__untrack_all_wakerefs(&rpm->debug, &dbg);
|
|
|
|
spin_unlock_irqrestore(&rpm->debug.lock, flags);
|
|
|
|
|
|
|
|
dump_and_free_wakeref_tracking(&dbg);
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:53 +07:00
|
|
|
void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
|
2019-01-14 21:21:09 +07:00
|
|
|
struct drm_printer *p)
|
|
|
|
{
|
|
|
|
struct intel_runtime_pm_debug dbg = {};
|
|
|
|
|
|
|
|
do {
|
|
|
|
unsigned long alloc = dbg.count;
|
|
|
|
depot_stack_handle_t *s;
|
|
|
|
|
|
|
|
spin_lock_irq(&rpm->debug.lock);
|
|
|
|
dbg.count = rpm->debug.count;
|
|
|
|
if (dbg.count <= alloc) {
|
|
|
|
memcpy(dbg.owners,
|
|
|
|
rpm->debug.owners,
|
|
|
|
dbg.count * sizeof(*s));
|
|
|
|
}
|
|
|
|
dbg.last_acquire = rpm->debug.last_acquire;
|
|
|
|
dbg.last_release = rpm->debug.last_release;
|
|
|
|
spin_unlock_irq(&rpm->debug.lock);
|
|
|
|
if (dbg.count <= alloc)
|
|
|
|
break;
|
|
|
|
|
2019-04-10 00:41:08 +07:00
|
|
|
s = krealloc(dbg.owners,
|
|
|
|
dbg.count * sizeof(*s),
|
|
|
|
GFP_NOWAIT | __GFP_NOWARN);
|
2019-01-14 21:21:09 +07:00
|
|
|
if (!s)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
dbg.owners = s;
|
|
|
|
} while (1);
|
|
|
|
|
|
|
|
__print_intel_runtime_pm_wakeref(p, &dbg);
|
|
|
|
|
|
|
|
out:
|
|
|
|
kfree(dbg.owners);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
2019-06-14 06:21:52 +07:00
|
|
|
static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2019-01-14 21:21:10 +07:00
|
|
|
static depot_stack_handle_t
|
2019-06-14 06:21:52 +07:00
|
|
|
track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
2019-01-14 21:21:10 +07:00
|
|
|
return -1;
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:52 +07:00
|
|
|
static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
|
2019-05-10 00:34:36 +07:00
|
|
|
intel_wakeref_t wref)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2019-06-14 06:21:52 +07:00
|
|
|
__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
2019-06-14 06:21:49 +07:00
|
|
|
atomic_dec(&rpm->wakeref_count);
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
2019-05-10 00:34:37 +07:00
|
|
|
static void
|
2019-06-14 06:21:52 +07:00
|
|
|
untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
|
2019-05-10 00:34:37 +07:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2019-01-14 21:21:09 +07:00
|
|
|
#endif
|
|
|
|
|
2019-05-10 00:34:36 +07:00
|
|
|
static void
|
2019-06-14 06:21:52 +07:00
|
|
|
intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock)
|
2019-05-10 00:34:36 +07:00
|
|
|
{
|
|
|
|
if (wakelock) {
|
|
|
|
atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
|
2019-06-14 06:21:50 +07:00
|
|
|
assert_rpm_wakelock_held(rpm);
|
2019-05-10 00:34:36 +07:00
|
|
|
} else {
|
|
|
|
atomic_inc(&rpm->wakeref_count);
|
2019-06-14 06:21:50 +07:00
|
|
|
assert_rpm_raw_wakeref_held(rpm);
|
2019-05-10 00:34:36 +07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2019-06-14 06:21:52 +07:00
|
|
|
intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock)
|
2019-05-10 00:34:36 +07:00
|
|
|
{
|
|
|
|
if (wakelock) {
|
2019-06-14 06:21:50 +07:00
|
|
|
assert_rpm_wakelock_held(rpm);
|
2019-05-10 00:34:36 +07:00
|
|
|
atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
|
|
|
|
} else {
|
2019-06-14 06:21:50 +07:00
|
|
|
assert_rpm_raw_wakeref_held(rpm);
|
2019-05-10 00:34:36 +07:00
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
__intel_wakeref_dec_and_check_tracking(rpm);
|
2019-05-10 00:34:36 +07:00
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:52 +07:00
|
|
|
static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm,
|
2019-06-01 05:24:08 +07:00
|
|
|
bool wakelock)
|
2015-07-31 04:20:27 +07:00
|
|
|
{
|
2019-06-01 05:24:08 +07:00
|
|
|
int ret;
|
2015-07-31 04:20:27 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
ret = pm_runtime_get_sync(rpm->kdev);
|
2019-06-01 05:24:08 +07:00
|
|
|
WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
|
2016-06-13 20:44:33 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
intel_runtime_pm_acquire(rpm, wakelock);
|
2016-06-13 20:44:33 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
return track_intel_runtime_pm_wakeref(rpm);
|
2016-06-13 20:44:33 +07:00
|
|
|
}
|
|
|
|
|
2014-09-30 15:56:42 +07:00
|
|
|
/**
|
2019-06-01 05:24:08 +07:00
|
|
|
* intel_runtime_pm_get_raw - grab a raw runtime pm reference
|
2019-06-14 06:21:54 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2014-09-30 15:56:42 +07:00
|
|
|
*
|
|
|
|
* This is the unlocked version of intel_display_power_is_enabled() and should
|
|
|
|
* only be used from error capture and recovery code where deadlocks are
|
|
|
|
* possible.
|
2019-06-01 05:24:08 +07:00
|
|
|
* This function grabs a device-level runtime pm reference (mostly used for
|
|
|
|
* asynchronous PM management from display code) and ensures that it is powered
|
|
|
|
* up. Raw references are not considered during wakelock assert checks.
|
2014-09-30 15:56:42 +07:00
|
|
|
*
|
2019-06-01 05:24:08 +07:00
|
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
|
|
* call to intel_runtime_pm_put_raw() to release the reference again.
|
|
|
|
*
|
|
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates
|
|
|
|
* as True if the wakeref was acquired, or False otherwise.
|
2014-09-30 15:56:42 +07:00
|
|
|
*/
|
2019-06-14 06:21:54 +07:00
|
|
|
intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm)
|
2019-06-01 05:24:08 +07:00
|
|
|
{
|
2019-06-14 06:21:54 +07:00
|
|
|
return __intel_runtime_pm_get(rpm, false);
|
2014-09-30 15:56:38 +07:00
|
|
|
}
|
|
|
|
|
2014-09-30 15:56:42 +07:00
|
|
|
/**
|
2019-06-01 05:24:08 +07:00
|
|
|
* intel_runtime_pm_get - grab a runtime pm reference
|
2019-06-14 06:21:54 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2014-09-30 15:56:42 +07:00
|
|
|
*
|
2019-06-01 05:24:08 +07:00
|
|
|
* This function grabs a device-level runtime pm reference (mostly used for GEM
|
|
|
|
* code to ensure the GTT or GT is on) and ensures that it is powered up.
|
2014-09-30 15:56:42 +07:00
|
|
|
*
|
2019-06-01 05:24:08 +07:00
|
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
|
|
* call to intel_runtime_pm_put() to release the reference again.
|
2014-09-30 15:56:42 +07:00
|
|
|
*
|
2019-06-01 05:24:08 +07:00
|
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put()
|
2014-09-30 15:56:42 +07:00
|
|
|
*/
|
2019-06-14 06:21:54 +07:00
|
|
|
intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm)
|
2014-09-30 15:56:38 +07:00
|
|
|
{
|
2019-06-14 06:21:54 +07:00
|
|
|
return __intel_runtime_pm_get(rpm, true);
|
2014-09-30 15:56:38 +07:00
|
|
|
}
|
|
|
|
|
2019-06-01 05:24:08 +07:00
|
|
|
/**
|
|
|
|
* intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
|
2019-06-14 06:21:54 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2019-06-01 05:24:08 +07:00
|
|
|
*
|
|
|
|
* This function grabs a device-level runtime pm reference if the device is
|
|
|
|
* already in use and ensures that it is powered up. It is illegal to try
|
|
|
|
* and access the HW should intel_runtime_pm_get_if_in_use() report failure.
|
|
|
|
*
|
|
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
|
|
* call to intel_runtime_pm_put() to release the reference again.
|
|
|
|
*
|
|
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates
|
|
|
|
* as True if the wakeref was acquired, or False otherwise.
|
2014-09-30 15:56:38 +07:00
|
|
|
*/
|
2019-06-14 06:21:54 +07:00
|
|
|
intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm)
|
2014-09-30 15:56:38 +07:00
|
|
|
{
|
2019-06-14 06:21:49 +07:00
|
|
|
if (IS_ENABLED(CONFIG_PM)) {
|
2017-07-12 03:42:35 +07:00
|
|
|
/*
|
2019-06-01 05:24:08 +07:00
|
|
|
* In cases runtime PM is disabled by the RPM core and we get
|
|
|
|
* an -EINVAL return value we are not supposed to call this
|
|
|
|
* function, since the power state is undefined. This applies
|
|
|
|
* atm to the late/early system suspend/resume handlers.
|
2017-07-12 03:42:35 +07:00
|
|
|
*/
|
2019-06-14 06:21:49 +07:00
|
|
|
if (pm_runtime_get_if_in_use(rpm->kdev) <= 0)
|
2019-06-01 05:24:08 +07:00
|
|
|
return 0;
|
2018-10-13 04:57:58 +07:00
|
|
|
}
|
2014-11-24 15:07:44 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
intel_runtime_pm_acquire(rpm, true);
|
2016-04-21 00:27:56 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
return track_intel_runtime_pm_wakeref(rpm);
|
2016-04-21 00:27:56 +07:00
|
|
|
}
|
|
|
|
|
2018-04-17 18:31:47 +07:00
|
|
|
/**
|
2019-06-01 05:24:08 +07:00
|
|
|
* intel_runtime_pm_get_noresume - grab a runtime pm reference
|
2019-06-14 06:21:54 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2019-06-01 05:24:08 +07:00
|
|
|
*
|
|
|
|
* This function grabs a device-level runtime pm reference (mostly used for GEM
|
|
|
|
* code to ensure the GTT or GT is on).
|
|
|
|
*
|
|
|
|
* It will _not_ power up the device but instead only check that it's powered
|
|
|
|
* on. Therefore it is only valid to call this functions from contexts where
|
|
|
|
* the device is known to be powered up and where trying to power it up would
|
|
|
|
* result in hilarity and deadlocks. That pretty much means only the system
|
|
|
|
* suspend/resume code where this is used to grab runtime pm references for
|
|
|
|
* delayed setup down in work items.
|
2018-04-17 18:31:47 +07:00
|
|
|
*
|
2019-06-01 05:24:08 +07:00
|
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
|
|
* call to intel_runtime_pm_put() to release the reference again.
|
2018-04-17 18:31:47 +07:00
|
|
|
*
|
2019-06-01 05:24:08 +07:00
|
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put()
|
2018-04-17 18:31:47 +07:00
|
|
|
*/
|
2019-06-14 06:21:54 +07:00
|
|
|
intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm)
|
drm/i915/skl: Add DC5 Trigger Sequence
Add triggers as per expectations mentioned in gen9_enable_dc5
and gen9_disable_dc5 patch.
Also call POSTING_READ for every write to a register to ensure that
its written immediately.
v1: Remove POSTING_READ calls as they've already been added in previous patches.
v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file.
Modified as per review comments from Imre:
1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant
functions.
2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into
gen9_disable_DC5 which is a more appropriate place.
3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well()
to warnings. However, removing them for now as they'll be included in a future patch
asserting DC-state entry/exit criteria.
4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure
to track 'enabled' and 'deferred' status of DC5.
5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering
runtime-suspend and release it when it's loaded.
6] Protect necessary CSR-related code with locks.
7] Move CSR-loading call to runtime PM initialization, as power domains needed to be
accessed during deferred DC5-enabling, are not initialized earlier.
v3: Rebase to latest.
Modified as per review comments from Imre:
1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of
deferring enabling DC5 until CSR is loaded.
2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5-
enabling is removed and release it at the end of CSR-loading functionality.
3] Revert calling CSR-loading functionality to the beginning of i915 driver-load
functionality to avoid any delay in loading.
4] Define another variable to track whether CSR-loading failed and use it to avoid enabling
DC5 if it's true.
5] Define CSR-load-status accessor functions for use later.
v4:
1] Disable DC5 before enabling PG2 instead of after it.
2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that.
3] Enable DC5-related functionality using a macro.
4] Remove dc5_enabled tracking variable and its use as it's not needed now.
v5:
1] Mark CSR failed to load where necessary in finish_csr_load function.
2] Use mutex-protected accessor function to check if CSR loaded instead of directly
accessing the variable.
3] Prefix csr_load_status_get/set function names with intel_.
v6: rebase to latest.
v7: Rebase on top of nightly (Damien)
v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre)
v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh)
v10: Added a enum for different csr states, suggested by Imre. (Animesh)
v11: Based on review comments from Imre, Damien and Daniel following changes done
- enum name chnaged to csr_state (singular form).
- FW_UNINITIALIZED used as zeroth element in enum csr_state.
- Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool.
v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps
calling once to set the csr status. The same flag used to fail RPM if find any issue during
firmware loading.
Issue: VIZ-2819
Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com>
Signed-off-by: Suketu Shah <suketu.j.shah@intel.com>
Signed-off-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: Animesh Manna <animesh.manna@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 21:16:16 +07:00
|
|
|
{
|
2019-06-14 06:21:50 +07:00
|
|
|
assert_rpm_wakelock_held(rpm);
|
2019-06-14 06:21:49 +07:00
|
|
|
pm_runtime_get_noresume(rpm->kdev);
|
2015-04-16 15:52:10 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
intel_runtime_pm_acquire(rpm, true);
|
2015-04-16 15:52:10 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
return track_intel_runtime_pm_wakeref(rpm);
|
2015-04-16 15:52:10 +07:00
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:52 +07:00
|
|
|
static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm,
|
2019-06-01 05:24:08 +07:00
|
|
|
intel_wakeref_t wref,
|
|
|
|
bool wakelock)
|
2015-04-16 15:52:10 +07:00
|
|
|
{
|
2019-06-14 06:21:49 +07:00
|
|
|
struct device *kdev = rpm->kdev;
|
2017-12-05 06:22:10 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
untrack_intel_runtime_pm_wakeref(rpm, wref);
|
drm/i915/skl: Add DC5 Trigger Sequence
Add triggers as per expectations mentioned in gen9_enable_dc5
and gen9_disable_dc5 patch.
Also call POSTING_READ for every write to a register to ensure that
its written immediately.
v1: Remove POSTING_READ calls as they've already been added in previous patches.
v2: Rebase to move all runtime pm specific changes to intel_runtime_pm.c file.
Modified as per review comments from Imre:
1] Change variable name 'dc5_allowed' to 'dc5_enabled' to correspond to relevant
functions.
2] Move the check dc5_enabled in skl_set_power_well() to disable DC5 into
gen9_disable_DC5 which is a more appropriate place.
3] Convert checks for 'pm.dc5_enabled' and 'pm.suspended' in skl_set_power_well()
to warnings. However, removing them for now as they'll be included in a future patch
asserting DC-state entry/exit criteria.
4] Enable DC5, only when CSR firmware is verified to be loaded. Create new structure
to track 'enabled' and 'deferred' status of DC5.
5] Ensure runtime PM reference is obtained, if CSR is not loaded, to avoid entering
runtime-suspend and release it when it's loaded.
6] Protect necessary CSR-related code with locks.
7] Move CSR-loading call to runtime PM initialization, as power domains needed to be
accessed during deferred DC5-enabling, are not initialized earlier.
v3: Rebase to latest.
Modified as per review comments from Imre:
1] Use blocking wait for CSR-loading to finish to enable DC5 for simplicity, instead of
deferring enabling DC5 until CSR is loaded.
2] Obtain runtime PM reference during CSR-loading initialization itself as deferred DC5-
enabling is removed and release it at the end of CSR-loading functionality.
3] Revert calling CSR-loading functionality to the beginning of i915 driver-load
functionality to avoid any delay in loading.
4] Define another variable to track whether CSR-loading failed and use it to avoid enabling
DC5 if it's true.
5] Define CSR-load-status accessor functions for use later.
v4:
1] Disable DC5 before enabling PG2 instead of after it.
2] DC5 was being mistaken enabled even when CSR-loading timed-out. Fix that.
3] Enable DC5-related functionality using a macro.
4] Remove dc5_enabled tracking variable and its use as it's not needed now.
v5:
1] Mark CSR failed to load where necessary in finish_csr_load function.
2] Use mutex-protected accessor function to check if CSR loaded instead of directly
accessing the variable.
3] Prefix csr_load_status_get/set function names with intel_.
v6: rebase to latest.
v7: Rebase on top of nightly (Damien)
v8: Squashed the patch from Imre - added csr helper pointers to simplify the code. (Imre)
v9: After adding dmc ver 1.0 support rebased on top of nightly. (Animesh)
v10: Added a enum for different csr states, suggested by Imre. (Animesh)
v11: Based on review comments from Imre, Damien and Daniel following changes done
- enum name chnaged to csr_state (singular form).
- FW_UNINITIALIZED used as zeroth element in enum csr_state.
- Prototype changed for helper function(set/get csr status), using enum csr_state instead of bool.
v12: Based on review comment from Imre, introduced bool fw_loaded local to finish_csr_load() which helps
calling once to set the csr status. The same flag used to fail RPM if find any issue during
firmware loading.
Issue: VIZ-2819
Signed-off-by: A.Sunil Kamath <sunil.kamath@intel.com>
Signed-off-by: Suketu Shah <suketu.j.shah@intel.com>
Signed-off-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: Animesh Manna <animesh.manna@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-17 21:16:16 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
intel_runtime_pm_release(rpm, wakelock);
|
2015-04-16 15:52:13 +07:00
|
|
|
|
2019-06-01 05:24:08 +07:00
|
|
|
pm_runtime_mark_last_busy(kdev);
|
|
|
|
pm_runtime_put_autosuspend(kdev);
|
2015-04-16 15:52:13 +07:00
|
|
|
}
|
|
|
|
|
2019-06-01 05:24:08 +07:00
|
|
|
/**
|
|
|
|
* intel_runtime_pm_put_raw - release a raw runtime pm reference
|
2019-06-14 06:21:54 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2019-06-01 05:24:08 +07:00
|
|
|
* @wref: wakeref acquired for the reference that is being released
|
|
|
|
*
|
|
|
|
* This function drops the device-level runtime pm reference obtained by
|
|
|
|
* intel_runtime_pm_get_raw() and might power down the corresponding
|
|
|
|
* hardware block right away if this is the last reference.
|
|
|
|
*/
|
|
|
|
void
|
2019-06-14 06:21:54 +07:00
|
|
|
intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
|
2015-04-16 15:52:13 +07:00
|
|
|
{
|
2019-06-14 06:21:54 +07:00
|
|
|
__intel_runtime_pm_put(rpm, wref, false);
|
2015-04-16 15:52:11 +07:00
|
|
|
}
|
|
|
|
|
2014-09-30 15:56:42 +07:00
|
|
|
/**
|
2019-05-10 00:34:36 +07:00
|
|
|
* intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference
|
2019-06-14 06:21:54 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2014-09-30 15:56:42 +07:00
|
|
|
*
|
|
|
|
* This function drops the device-level runtime pm reference obtained by
|
|
|
|
* intel_runtime_pm_get() and might power down the corresponding
|
|
|
|
* hardware block right away if this is the last reference.
|
2019-05-10 00:34:36 +07:00
|
|
|
*
|
|
|
|
* This function exists only for historical reasons and should be avoided in
|
|
|
|
* new code, as the correctness of its use cannot be checked. Always use
|
|
|
|
* intel_runtime_pm_put() instead.
|
2014-09-30 15:56:42 +07:00
|
|
|
*/
|
2019-06-14 06:21:54 +07:00
|
|
|
void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm)
|
2014-09-30 15:56:38 +07:00
|
|
|
{
|
2019-06-14 06:21:54 +07:00
|
|
|
__intel_runtime_pm_put(rpm, -1, true);
|
2014-09-30 15:56:38 +07:00
|
|
|
}
|
|
|
|
|
2019-01-14 21:21:10 +07:00
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
|
2019-05-10 00:34:36 +07:00
|
|
|
/**
|
|
|
|
* intel_runtime_pm_put - release a runtime pm reference
|
2019-06-14 06:21:54 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2019-05-10 00:34:36 +07:00
|
|
|
* @wref: wakeref acquired for the reference that is being released
|
|
|
|
*
|
|
|
|
* This function drops the device-level runtime pm reference obtained by
|
|
|
|
* intel_runtime_pm_get() and might power down the corresponding
|
|
|
|
* hardware block right away if this is the last reference.
|
|
|
|
*/
|
2019-06-14 06:21:54 +07:00
|
|
|
void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
|
2019-01-14 21:21:10 +07:00
|
|
|
{
|
2019-06-14 06:21:54 +07:00
|
|
|
__intel_runtime_pm_put(rpm, wref, true);
|
2019-01-14 21:21:10 +07:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2014-09-30 15:56:42 +07:00
|
|
|
/**
|
|
|
|
* intel_runtime_pm_enable - enable runtime pm
|
2019-06-14 06:21:53 +07:00
|
|
|
* @rpm: the intel_runtime_pm structure
|
2014-09-30 15:56:42 +07:00
|
|
|
*
|
|
|
|
* This function enables runtime pm at the end of the driver load sequence.
|
|
|
|
*
|
|
|
|
* Note that this function does currently not enable runtime pm for the
|
2018-08-16 19:37:57 +07:00
|
|
|
* subordinate display power domains. That is done by
|
|
|
|
* intel_power_domains_enable().
|
2014-09-30 15:56:42 +07:00
|
|
|
*/
|
2019-06-14 06:21:53 +07:00
|
|
|
void intel_runtime_pm_enable(struct intel_runtime_pm *rpm)
|
2014-09-30 15:56:38 +07:00
|
|
|
{
|
2019-06-14 06:21:49 +07:00
|
|
|
struct device *kdev = rpm->kdev;
|
2014-09-30 15:56:38 +07:00
|
|
|
|
2018-08-16 19:37:56 +07:00
|
|
|
/*
|
|
|
|
* Disable the system suspend direct complete optimization, which can
|
|
|
|
* leave the device suspended skipping the driver's suspend handlers
|
|
|
|
* if the device was already runtime suspended. This is needed due to
|
|
|
|
* the difference in our runtime and system suspend sequence and
|
|
|
|
* becaue the HDA driver may require us to enable the audio power
|
|
|
|
* domain during system suspend.
|
|
|
|
*/
|
|
|
|
dev_pm_set_driver_flags(kdev, DPM_FLAG_NEVER_SKIP);
|
|
|
|
|
2016-08-22 17:32:42 +07:00
|
|
|
pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
|
|
|
|
pm_runtime_mark_last_busy(kdev);
|
2015-12-18 00:04:33 +07:00
|
|
|
|
2015-12-17 18:44:56 +07:00
|
|
|
/*
|
|
|
|
* Take a permanent reference to disable the RPM functionality and drop
|
|
|
|
* it only when unloading the driver. Use the low level get/put helpers,
|
|
|
|
* so the driver's own RPM reference tracking asserts also work on
|
|
|
|
* platforms without RPM support.
|
|
|
|
*/
|
2019-06-14 06:21:49 +07:00
|
|
|
if (!rpm->available) {
|
2017-03-28 16:38:55 +07:00
|
|
|
int ret;
|
|
|
|
|
2016-08-22 17:32:42 +07:00
|
|
|
pm_runtime_dont_use_autosuspend(kdev);
|
2017-03-28 16:38:55 +07:00
|
|
|
ret = pm_runtime_get_sync(kdev);
|
|
|
|
WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
|
2015-12-18 00:04:33 +07:00
|
|
|
} else {
|
2016-08-22 17:32:42 +07:00
|
|
|
pm_runtime_use_autosuspend(kdev);
|
2015-12-18 00:04:33 +07:00
|
|
|
}
|
2014-09-30 15:56:38 +07:00
|
|
|
|
2015-12-16 01:10:29 +07:00
|
|
|
/*
|
|
|
|
* The core calls the driver load handler with an RPM reference held.
|
|
|
|
* We drop that here and will reacquire it during unloading in
|
|
|
|
* intel_power_domains_fini().
|
|
|
|
*/
|
2016-08-22 17:32:42 +07:00
|
|
|
pm_runtime_put_autosuspend(kdev);
|
2014-09-30 15:56:38 +07:00
|
|
|
}
|
2018-08-16 19:37:56 +07:00
|
|
|
|
2019-06-14 06:21:53 +07:00
|
|
|
void intel_runtime_pm_disable(struct intel_runtime_pm *rpm)
|
2018-08-16 19:37:56 +07:00
|
|
|
{
|
2019-06-14 06:21:49 +07:00
|
|
|
struct device *kdev = rpm->kdev;
|
2018-08-16 19:37:56 +07:00
|
|
|
|
|
|
|
/* Transfer rpm ownership back to core */
|
2019-01-14 21:21:09 +07:00
|
|
|
WARN(pm_runtime_get_sync(kdev) < 0,
|
2018-08-16 19:37:56 +07:00
|
|
|
"Failed to pass rpm ownership back to core\n");
|
|
|
|
|
|
|
|
pm_runtime_dont_use_autosuspend(kdev);
|
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
if (!rpm->available)
|
2018-08-16 19:37:56 +07:00
|
|
|
pm_runtime_put(kdev);
|
|
|
|
}
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-06-14 06:21:53 +07:00
|
|
|
void intel_runtime_pm_cleanup(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
2019-05-10 00:34:37 +07:00
|
|
|
int count = atomic_read(&rpm->wakeref_count);
|
2019-01-14 21:21:09 +07:00
|
|
|
|
|
|
|
WARN(count,
|
2019-05-10 00:34:36 +07:00
|
|
|
"i915 raw-wakerefs=%d wakelocks=%d on cleanup\n",
|
|
|
|
intel_rpm_raw_wakeref_count(count),
|
|
|
|
intel_rpm_wakelock_count(count));
|
2019-01-14 21:21:09 +07:00
|
|
|
|
2019-06-14 06:21:49 +07:00
|
|
|
untrack_all_intel_runtime_pm_wakerefs(rpm);
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|
|
|
|
|
2019-06-14 06:21:53 +07:00
|
|
|
void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm)
|
2019-01-14 21:21:09 +07:00
|
|
|
{
|
2019-06-14 06:21:53 +07:00
|
|
|
struct drm_i915_private *i915 =
|
|
|
|
container_of(rpm, struct drm_i915_private, runtime_pm);
|
2019-06-14 06:21:49 +07:00
|
|
|
struct pci_dev *pdev = i915->drm.pdev;
|
|
|
|
struct device *kdev = &pdev->dev;
|
|
|
|
|
|
|
|
rpm->kdev = kdev;
|
|
|
|
rpm->available = HAS_RUNTIME_PM(i915);
|
|
|
|
|
|
|
|
init_intel_runtime_pm_wakeref(rpm);
|
2019-01-14 21:21:09 +07:00
|
|
|
}
|