[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
/*
|
|
|
|
* Sleepable Read-Copy Update mechanism for mutual exclusion.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
2013-12-04 01:02:52 +07:00
|
|
|
* along with this program; if not, you can access it online at
|
|
|
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
*
|
|
|
|
* Copyright (C) IBM Corporation, 2006
|
2012-10-13 00:14:14 +07:00
|
|
|
* Copyright (C) Fujitsu, 2012
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
*
|
|
|
|
* Author: Paul McKenney <paulmck@us.ibm.com>
|
2012-10-13 00:14:14 +07:00
|
|
|
* Lai Jiangshan <laijs@cn.fujitsu.com>
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
*
|
|
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
2017-03-14 06:48:18 +07:00
|
|
|
* Documentation/RCU/ *.txt
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2011-05-24 01:51:41 +07:00
|
|
|
#include <linux/export.h>
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
#include <linux/preempt.h>
|
2017-02-06 15:50:49 +07:00
|
|
|
#include <linux/rcupdate_wait.h>
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/smp.h>
|
2010-10-26 16:11:40 +07:00
|
|
|
#include <linux/delay.h>
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
#include <linux/srcu.h>
|
|
|
|
|
2017-03-15 04:29:53 +07:00
|
|
|
#include <linux/rcu_node_tree.h>
|
2012-10-05 13:59:15 +07:00
|
|
|
#include "rcu.h"
|
|
|
|
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
static int init_srcu_struct_fields(struct srcu_struct *sp)
|
|
|
|
{
|
|
|
|
sp->completed = 0;
|
2017-03-11 22:14:06 +07:00
|
|
|
sp->srcu_gp_seq = 0;
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
spin_lock_init(&sp->queue_lock);
|
2017-03-11 06:31:55 +07:00
|
|
|
sp->srcu_state = SRCU_STATE_IDLE;
|
2017-03-14 06:48:18 +07:00
|
|
|
rcu_segcblist_init(&sp->srcu_cblist);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
INIT_DELAYED_WORK(&sp->work, process_srcu);
|
2017-01-24 04:35:18 +07:00
|
|
|
sp->per_cpu_ref = alloc_percpu(struct srcu_array);
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
return sp->per_cpu_ref ? 0 : -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
|
|
|
|
int __init_srcu_struct(struct srcu_struct *sp, const char *name,
|
|
|
|
struct lock_class_key *key)
|
|
|
|
{
|
|
|
|
/* Don't re-initialize a lock while it is held. */
|
|
|
|
debug_check_no_locks_freed((void *)sp, sizeof(*sp));
|
|
|
|
lockdep_init_map(&sp->dep_map, name, key, 0);
|
|
|
|
return init_srcu_struct_fields(sp);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__init_srcu_struct);
|
|
|
|
|
|
|
|
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
/**
|
|
|
|
* init_srcu_struct - initialize a sleep-RCU structure
|
|
|
|
* @sp: structure to initialize.
|
|
|
|
*
|
|
|
|
* Must invoke this on a given srcu_struct before passing that srcu_struct
|
|
|
|
* to any other function. Each srcu_struct represents a separate domain
|
|
|
|
* of SRCU protection.
|
|
|
|
*/
|
2006-10-04 16:17:05 +07:00
|
|
|
int init_srcu_struct(struct srcu_struct *sp)
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
{
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
return init_srcu_struct_fields(sp);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
}
|
2009-10-26 09:03:51 +07:00
|
|
|
EXPORT_SYMBOL_GPL(init_srcu_struct);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
|
2012-02-28 00:29:09 +07:00
|
|
|
/*
|
2017-01-24 04:35:18 +07:00
|
|
|
* Returns approximate total of the readers' ->lock_count[] values for the
|
2012-02-28 00:29:09 +07:00
|
|
|
* rank of per-CPU counters specified by idx.
|
|
|
|
*/
|
2017-01-24 04:35:18 +07:00
|
|
|
static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
|
2012-02-28 00:29:09 +07:00
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
unsigned long sum = 0;
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
2017-01-24 04:35:18 +07:00
|
|
|
struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
|
|
|
|
|
|
|
|
sum += READ_ONCE(cpuc->lock_count[idx]);
|
2012-02-28 00:29:09 +07:00
|
|
|
}
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
/*
|
2017-01-24 04:35:18 +07:00
|
|
|
* Returns approximate total of the readers' ->unlock_count[] values for the
|
|
|
|
* rank of per-CPU counters specified by idx.
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
*/
|
2017-01-24 04:35:18 +07:00
|
|
|
static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
|
2012-02-05 22:42:44 +07:00
|
|
|
{
|
|
|
|
int cpu;
|
|
|
|
unsigned long sum = 0;
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
|
2012-02-05 22:42:44 +07:00
|
|
|
for_each_possible_cpu(cpu) {
|
2017-01-24 04:35:18 +07:00
|
|
|
struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
|
|
|
|
|
|
|
|
sum += READ_ONCE(cpuc->unlock_count[idx]);
|
2012-02-05 22:42:44 +07:00
|
|
|
}
|
2012-02-28 00:29:09 +07:00
|
|
|
return sum;
|
2012-02-05 22:42:44 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2012-02-28 00:29:09 +07:00
|
|
|
* Return true if the number of pre-existing readers is determined to
|
2017-01-24 04:35:18 +07:00
|
|
|
* be zero.
|
2012-02-05 22:42:44 +07:00
|
|
|
*/
|
|
|
|
static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
{
|
2017-01-24 04:35:18 +07:00
|
|
|
unsigned long unlocks;
|
2012-02-28 00:29:09 +07:00
|
|
|
|
2017-01-24 04:35:18 +07:00
|
|
|
unlocks = srcu_readers_unlock_idx(sp, idx);
|
2012-02-28 00:29:09 +07:00
|
|
|
|
|
|
|
/*
|
2017-01-24 04:35:18 +07:00
|
|
|
* Make sure that a lock is always counted if the corresponding unlock
|
|
|
|
* is counted. Needs to be a smp_mb() as the read side may contain a
|
|
|
|
* read from a variable that is written to before the synchronize_srcu()
|
|
|
|
* in the write side. In this case smp_mb()s A and B act like the store
|
|
|
|
* buffering pattern.
|
2012-02-28 00:29:09 +07:00
|
|
|
*
|
2017-01-24 04:35:18 +07:00
|
|
|
* This smp_mb() also pairs with smp_mb() C to prevent accesses after the
|
|
|
|
* synchronize_srcu() from being executed before the grace period ends.
|
2012-02-28 00:29:09 +07:00
|
|
|
*/
|
|
|
|
smp_mb(); /* A */
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
|
2012-02-05 22:42:44 +07:00
|
|
|
/*
|
2017-01-24 04:35:18 +07:00
|
|
|
* If the locks are the same as the unlocks, then there must have
|
|
|
|
* been no readers on this index at some time in between. This does not
|
|
|
|
* mean that there are no more readers, as one could have read the
|
|
|
|
* current index but not have incremented the lock counter yet.
|
2012-02-05 22:42:44 +07:00
|
|
|
*
|
2017-01-24 04:35:18 +07:00
|
|
|
* Possible bug: There is no guarantee that there haven't been ULONG_MAX
|
|
|
|
* increments of ->lock_count[] since the unlocks were counted, meaning
|
|
|
|
* that this could return true even if there are still active readers.
|
|
|
|
* Since there are no memory barriers around srcu_flip(), the CPU is not
|
|
|
|
* required to increment ->completed before running
|
|
|
|
* srcu_readers_unlock_idx(), which means that there could be an
|
|
|
|
* arbitrarily large number of critical sections that execute after
|
|
|
|
* srcu_readers_unlock_idx() but use the old value of ->completed.
|
2012-02-05 22:42:44 +07:00
|
|
|
*/
|
2017-01-24 04:35:18 +07:00
|
|
|
return srcu_readers_lock_idx(sp, idx) == unlocks;
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2015-05-27 13:56:25 +07:00
|
|
|
* srcu_readers_active - returns true if there are readers. and false
|
|
|
|
* otherwise
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
* @sp: which srcu_struct to count active readers (holding srcu_read_lock).
|
|
|
|
*
|
|
|
|
* Note that this is not an atomic primitive, and can therefore suffer
|
|
|
|
* severe errors when invoked on an active srcu_struct. That said, it
|
|
|
|
* can be useful as an error check at cleanup time.
|
|
|
|
*/
|
2015-05-27 13:56:25 +07:00
|
|
|
static bool srcu_readers_active(struct srcu_struct *sp)
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
{
|
2012-03-06 16:57:34 +07:00
|
|
|
int cpu;
|
|
|
|
unsigned long sum = 0;
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
2017-01-24 04:35:18 +07:00
|
|
|
struct srcu_array *cpuc = per_cpu_ptr(sp->per_cpu_ref, cpu);
|
|
|
|
|
|
|
|
sum += READ_ONCE(cpuc->lock_count[0]);
|
|
|
|
sum += READ_ONCE(cpuc->lock_count[1]);
|
|
|
|
sum -= READ_ONCE(cpuc->unlock_count[0]);
|
|
|
|
sum -= READ_ONCE(cpuc->unlock_count[1]);
|
2012-03-06 16:57:34 +07:00
|
|
|
}
|
|
|
|
return sum;
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cleanup_srcu_struct - deconstruct a sleep-RCU structure
|
|
|
|
* @sp: structure to clean up.
|
|
|
|
*
|
srcu: Check for tardy grace-period activity in cleanup_srcu_struct()
Users of SRCU are obliged to complete all grace-period activity before
invoking cleanup_srcu_struct(). This means that all calls to either
synchronize_srcu() or synchronize_srcu_expedited() must have returned,
and all calls to call_srcu() must have returned, and the last call to
call_srcu() must have been followed by a call to srcu_barrier().
Furthermore, the caller must have done something to prevent any
further calls to synchronize_srcu(), synchronize_srcu_expedited(),
and call_srcu().
Therefore, if there has ever been an invocation of call_srcu() on
the srcu_struct in question, the sequence of events must be as
follows:
1. Prevent any further calls to call_srcu().
2. Wait for any pre-existing call_srcu() invocations to return.
3. Invoke srcu_barrier().
4. It is now safe to invoke cleanup_srcu_struct().
On the other hand, if there has ever been a call to synchronize_srcu()
or synchronize_srcu_expedited(), the sequence of events must be as
follows:
1. Prevent any further calls to synchronize_srcu() or
synchronize_srcu_expedited().
2. Wait for any pre-existing synchronize_srcu() or
synchronize_srcu_expedited() invocations to return.
3. It is now safe to invoke cleanup_srcu_struct().
If there have been calls to all both types of functions (call_srcu()
and either of synchronize_srcu() and synchronize_srcu_expedited()), then
the caller must do the first three steps of the call_srcu() procedure
above and the first two steps of the synchronize_s*() procedure above,
and only then invoke cleanup_srcu_struct().
Note that cleanup_srcu_struct() does some probabilistic checks
for the caller failing to follow these procedures, in which case
cleanup_srcu_struct() does WARN_ON() and avoids freeing the per-CPU
structures associated with the specified srcu_struct structure.
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2017-01-20 04:40:09 +07:00
|
|
|
* Must invoke this only after you are finished using a given srcu_struct
|
|
|
|
* that was initialized via init_srcu_struct(). This code does some
|
|
|
|
* probabalistic checking, spotting late uses of srcu_read_lock(),
|
|
|
|
* synchronize_srcu(), synchronize_srcu_expedited(), and call_srcu().
|
|
|
|
* If any such late uses are detected, the per-CPU memory associated with
|
|
|
|
* the srcu_struct is simply leaked and WARN_ON() is invoked. If the
|
|
|
|
* caller frees the srcu_struct itself, a use-after-free crash will likely
|
|
|
|
* ensue, but at least there will be a warning printed.
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
*/
|
|
|
|
void cleanup_srcu_struct(struct srcu_struct *sp)
|
|
|
|
{
|
2012-11-29 15:46:04 +07:00
|
|
|
if (WARN_ON(srcu_readers_active(sp)))
|
|
|
|
return; /* Leakage unless caller handles error. */
|
2017-03-14 06:48:18 +07:00
|
|
|
if (WARN_ON(!rcu_segcblist_empty(&sp->srcu_cblist)))
|
srcu: Check for tardy grace-period activity in cleanup_srcu_struct()
Users of SRCU are obliged to complete all grace-period activity before
invoking cleanup_srcu_struct(). This means that all calls to either
synchronize_srcu() or synchronize_srcu_expedited() must have returned,
and all calls to call_srcu() must have returned, and the last call to
call_srcu() must have been followed by a call to srcu_barrier().
Furthermore, the caller must have done something to prevent any
further calls to synchronize_srcu(), synchronize_srcu_expedited(),
and call_srcu().
Therefore, if there has ever been an invocation of call_srcu() on
the srcu_struct in question, the sequence of events must be as
follows:
1. Prevent any further calls to call_srcu().
2. Wait for any pre-existing call_srcu() invocations to return.
3. Invoke srcu_barrier().
4. It is now safe to invoke cleanup_srcu_struct().
On the other hand, if there has ever been a call to synchronize_srcu()
or synchronize_srcu_expedited(), the sequence of events must be as
follows:
1. Prevent any further calls to synchronize_srcu() or
synchronize_srcu_expedited().
2. Wait for any pre-existing synchronize_srcu() or
synchronize_srcu_expedited() invocations to return.
3. It is now safe to invoke cleanup_srcu_struct().
If there have been calls to all both types of functions (call_srcu()
and either of synchronize_srcu() and synchronize_srcu_expedited()), then
the caller must do the first three steps of the call_srcu() procedure
above and the first two steps of the synchronize_s*() procedure above,
and only then invoke cleanup_srcu_struct().
Note that cleanup_srcu_struct() does some probabilistic checks
for the caller failing to follow these procedures, in which case
cleanup_srcu_struct() does WARN_ON() and avoids freeing the per-CPU
structures associated with the specified srcu_struct structure.
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2017-01-20 04:40:09 +07:00
|
|
|
return; /* Leakage unless caller handles error. */
|
|
|
|
flush_delayed_work(&sp->work);
|
2017-03-11 06:31:55 +07:00
|
|
|
if (WARN_ON(READ_ONCE(sp->srcu_state) != SRCU_STATE_IDLE))
|
srcu: Check for tardy grace-period activity in cleanup_srcu_struct()
Users of SRCU are obliged to complete all grace-period activity before
invoking cleanup_srcu_struct(). This means that all calls to either
synchronize_srcu() or synchronize_srcu_expedited() must have returned,
and all calls to call_srcu() must have returned, and the last call to
call_srcu() must have been followed by a call to srcu_barrier().
Furthermore, the caller must have done something to prevent any
further calls to synchronize_srcu(), synchronize_srcu_expedited(),
and call_srcu().
Therefore, if there has ever been an invocation of call_srcu() on
the srcu_struct in question, the sequence of events must be as
follows:
1. Prevent any further calls to call_srcu().
2. Wait for any pre-existing call_srcu() invocations to return.
3. Invoke srcu_barrier().
4. It is now safe to invoke cleanup_srcu_struct().
On the other hand, if there has ever been a call to synchronize_srcu()
or synchronize_srcu_expedited(), the sequence of events must be as
follows:
1. Prevent any further calls to synchronize_srcu() or
synchronize_srcu_expedited().
2. Wait for any pre-existing synchronize_srcu() or
synchronize_srcu_expedited() invocations to return.
3. It is now safe to invoke cleanup_srcu_struct().
If there have been calls to all both types of functions (call_srcu()
and either of synchronize_srcu() and synchronize_srcu_expedited()), then
the caller must do the first three steps of the call_srcu() procedure
above and the first two steps of the synchronize_s*() procedure above,
and only then invoke cleanup_srcu_struct().
Note that cleanup_srcu_struct() does some probabilistic checks
for the caller failing to follow these procedures, in which case
cleanup_srcu_struct() does WARN_ON() and avoids freeing the per-CPU
structures associated with the specified srcu_struct structure.
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2017-01-20 04:40:09 +07:00
|
|
|
return; /* Caller forgot to stop doing call_srcu()? */
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
free_percpu(sp->per_cpu_ref);
|
|
|
|
sp->per_cpu_ref = NULL;
|
|
|
|
}
|
2009-10-26 09:03:51 +07:00
|
|
|
EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
/*
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
* Counts the new reader in the appropriate per-CPU element of the
|
|
|
|
* srcu_struct. Must be called from process context.
|
|
|
|
* Returns an index that must be passed to the matching srcu_read_unlock().
|
|
|
|
*/
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
int __srcu_read_lock(struct srcu_struct *sp)
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
|
2015-03-04 05:57:58 +07:00
|
|
|
idx = READ_ONCE(sp->completed) & 0x1;
|
2017-01-24 04:35:18 +07:00
|
|
|
__this_cpu_inc(sp->per_cpu_ref->lock_count[idx]);
|
2012-02-05 22:42:44 +07:00
|
|
|
smp_mb(); /* B */ /* Avoid leaking the critical section. */
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
return idx;
|
|
|
|
}
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
EXPORT_SYMBOL_GPL(__srcu_read_lock);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
/*
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
* Removes the count for the old reader from the appropriate per-CPU
|
|
|
|
* element of the srcu_struct. Note that this may well be a different
|
|
|
|
* CPU than that which was incremented by the corresponding srcu_read_lock().
|
|
|
|
* Must be called from process context.
|
|
|
|
*/
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
void __srcu_read_unlock(struct srcu_struct *sp, int idx)
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
{
|
2012-02-05 22:42:44 +07:00
|
|
|
smp_mb(); /* C */ /* Avoid leaking the critical section. */
|
2017-01-24 04:35:18 +07:00
|
|
|
this_cpu_inc(sp->per_cpu_ref->unlock_count[idx]);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
}
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 08:04:45 +07:00
|
|
|
EXPORT_SYMBOL_GPL(__srcu_read_unlock);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
|
2011-01-07 17:33:47 +07:00
|
|
|
/*
|
|
|
|
* We use an adaptive strategy for synchronize_srcu() and especially for
|
|
|
|
* synchronize_srcu_expedited(). We spin for a fixed time period
|
|
|
|
* (defined below) to allow SRCU readers to exit their read-side critical
|
|
|
|
* sections. If there are still some readers after 10 microseconds,
|
|
|
|
* we repeatedly block for 1-millisecond time periods. This approach
|
|
|
|
* has done well in testing, so there is no need for a config parameter.
|
|
|
|
*/
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
#define SRCU_RETRY_CHECK_DELAY 5
|
2012-03-19 15:12:12 +07:00
|
|
|
#define SYNCHRONIZE_SRCU_TRYCOUNT 2
|
|
|
|
#define SYNCHRONIZE_SRCU_EXP_TRYCOUNT 12
|
2012-02-05 22:42:44 +07:00
|
|
|
|
2017-03-11 22:14:06 +07:00
|
|
|
/*
|
|
|
|
* Start an SRCU grace period.
|
|
|
|
*/
|
|
|
|
static void srcu_gp_start(struct srcu_struct *sp)
|
|
|
|
{
|
2017-03-14 06:48:18 +07:00
|
|
|
rcu_segcblist_accelerate(&sp->srcu_cblist,
|
|
|
|
rcu_seq_snap(&sp->srcu_gp_seq));
|
2017-03-11 22:14:06 +07:00
|
|
|
WRITE_ONCE(sp->srcu_state, SRCU_STATE_SCAN1);
|
|
|
|
rcu_seq_start(&sp->srcu_gp_seq);
|
|
|
|
}
|
|
|
|
|
2012-02-28 00:28:10 +07:00
|
|
|
/*
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
* @@@ Wait until all pre-existing readers complete. Such readers
|
2012-02-28 00:28:10 +07:00
|
|
|
* will have used the index specified by "idx".
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
* the caller should ensures the ->completed is not changed while checking
|
|
|
|
* and idx = (->completed & 1) ^ 1
|
2012-02-28 00:28:10 +07:00
|
|
|
*/
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
|
2012-02-05 22:42:44 +07:00
|
|
|
{
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
for (;;) {
|
|
|
|
if (srcu_readers_active_idx_check(sp, idx))
|
|
|
|
return true;
|
|
|
|
if (--trycount <= 0)
|
|
|
|
return false;
|
|
|
|
udelay(SRCU_RETRY_CHECK_DELAY);
|
2012-02-05 22:42:44 +07:00
|
|
|
}
|
|
|
|
}
|
2011-01-07 17:33:47 +07:00
|
|
|
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
/*
|
|
|
|
* Increment the ->completed counter so that future SRCU readers will
|
2017-01-24 04:35:18 +07:00
|
|
|
* use the other rank of the ->(un)lock_count[] arrays. This allows
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
* us to wait for pre-existing readers in a starvation-free manner.
|
|
|
|
*/
|
2012-02-28 00:28:10 +07:00
|
|
|
static void srcu_flip(struct srcu_struct *sp)
|
2012-02-23 07:43:55 +07:00
|
|
|
{
|
2017-01-24 23:51:34 +07:00
|
|
|
WRITE_ONCE(sp->completed, sp->completed + 1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ensure that if the updater misses an __srcu_read_unlock()
|
|
|
|
* increment, that task's next __srcu_read_lock() will see the
|
|
|
|
* above counter update. Note that both this memory barrier
|
|
|
|
* and the one in srcu_readers_active_idx_check() provide the
|
|
|
|
* guarantee for __srcu_read_lock().
|
|
|
|
*/
|
|
|
|
smp_mb(); /* D */ /* Pairs with C. */
|
2012-02-23 07:43:55 +07:00
|
|
|
}
|
|
|
|
|
2017-03-11 22:14:06 +07:00
|
|
|
/*
|
|
|
|
* End an SRCU grace period.
|
|
|
|
*/
|
|
|
|
static void srcu_gp_end(struct srcu_struct *sp)
|
|
|
|
{
|
|
|
|
rcu_seq_end(&sp->srcu_gp_seq);
|
|
|
|
WRITE_ONCE(sp->srcu_state, SRCU_STATE_DONE);
|
2017-03-14 06:48:18 +07:00
|
|
|
|
|
|
|
spin_lock_irq(&sp->queue_lock);
|
|
|
|
rcu_segcblist_advance(&sp->srcu_cblist,
|
|
|
|
rcu_seq_current(&sp->srcu_gp_seq));
|
|
|
|
spin_unlock_irq(&sp->queue_lock);
|
2017-03-11 22:14:06 +07:00
|
|
|
}
|
|
|
|
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
/*
|
|
|
|
* Enqueue an SRCU callback on the specified srcu_struct structure,
|
|
|
|
* initiating grace-period processing if it is not already running.
|
2013-10-26 18:43:36 +07:00
|
|
|
*
|
|
|
|
* Note that all CPUs must agree that the grace period extended beyond
|
|
|
|
* all pre-existing SRCU read-side critical section. On systems with
|
|
|
|
* more than one CPU, this means that when "func()" is invoked, each CPU
|
|
|
|
* is guaranteed to have executed a full memory barrier since the end of
|
|
|
|
* its last corresponding SRCU read-side critical section whose beginning
|
|
|
|
* preceded the call to call_rcu(). It also means that each CPU executing
|
|
|
|
* an SRCU read-side critical section that continues beyond the start of
|
|
|
|
* "func()" must have executed a memory barrier after the call_rcu()
|
|
|
|
* but before the beginning of that SRCU read-side critical section.
|
|
|
|
* Note that these guarantees include CPUs that are offline, idle, or
|
|
|
|
* executing in user mode, as well as CPUs that are executing in the kernel.
|
|
|
|
*
|
|
|
|
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
|
|
|
|
* resulting SRCU callback function "func()", then both CPU A and CPU
|
|
|
|
* B are guaranteed to execute a full memory barrier during the time
|
|
|
|
* interval between the call to call_rcu() and the invocation of "func()".
|
|
|
|
* This guarantee applies even if CPU A and CPU B are the same CPU (but
|
|
|
|
* again only if the system has more than one CPU).
|
|
|
|
*
|
|
|
|
* Of course, these guarantees apply only for invocations of call_srcu(),
|
|
|
|
* srcu_read_lock(), and srcu_read_unlock() that are all passed the same
|
|
|
|
* srcu_struct structure.
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
*/
|
|
|
|
void call_srcu(struct srcu_struct *sp, struct rcu_head *head,
|
2015-07-29 12:29:38 +07:00
|
|
|
rcu_callback_t func)
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
head->next = NULL;
|
|
|
|
head->func = func;
|
|
|
|
spin_lock_irqsave(&sp->queue_lock, flags);
|
2016-11-29 03:08:49 +07:00
|
|
|
smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
|
2017-03-14 06:48:18 +07:00
|
|
|
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
|
2017-03-11 06:31:55 +07:00
|
|
|
if (READ_ONCE(sp->srcu_state) == SRCU_STATE_IDLE) {
|
2017-03-11 22:14:06 +07:00
|
|
|
srcu_gp_start(sp);
|
2014-02-01 02:53:06 +07:00
|
|
|
queue_delayed_work(system_power_efficient_wq, &sp->work, 0);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&sp->queue_lock, flags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(call_srcu);
|
|
|
|
|
2017-03-10 07:16:42 +07:00
|
|
|
static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
|
2009-10-26 09:03:51 +07:00
|
|
|
/*
|
|
|
|
* Helper function for synchronize_srcu() and synchronize_srcu_expedited().
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
*/
|
2012-03-19 15:12:12 +07:00
|
|
|
static void __synchronize_srcu(struct srcu_struct *sp, int trycount)
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
{
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
struct rcu_synchronize rcu;
|
|
|
|
struct rcu_head *head = &rcu.head;
|
2012-02-28 00:28:10 +07:00
|
|
|
|
2015-06-19 05:50:02 +07:00
|
|
|
RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
|
|
|
|
lock_is_held(&rcu_bh_lock_map) ||
|
|
|
|
lock_is_held(&rcu_lock_map) ||
|
|
|
|
lock_is_held(&rcu_sched_lock_map),
|
|
|
|
"Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
|
2012-01-05 04:30:33 +07:00
|
|
|
|
2017-02-11 05:50:46 +07:00
|
|
|
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
|
|
|
|
return;
|
2012-11-29 15:46:03 +07:00
|
|
|
might_sleep();
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
init_completion(&rcu.completion);
|
|
|
|
|
|
|
|
head->next = NULL;
|
|
|
|
head->func = wakeme_after_rcu;
|
|
|
|
spin_lock_irq(&sp->queue_lock);
|
2016-11-29 03:08:49 +07:00
|
|
|
smp_mb__after_unlock_lock(); /* Caller's prior accesses before GP. */
|
2017-03-11 06:31:55 +07:00
|
|
|
if (READ_ONCE(sp->srcu_state) == SRCU_STATE_IDLE) {
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
/* steal the processing owner */
|
2017-03-14 06:48:18 +07:00
|
|
|
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
|
2017-03-11 22:14:06 +07:00
|
|
|
srcu_gp_start(sp);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
spin_unlock_irq(&sp->queue_lock);
|
|
|
|
/* give the processing owner to work_struct */
|
2017-03-10 07:16:42 +07:00
|
|
|
srcu_reschedule(sp, 0);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
} else {
|
2017-03-14 06:48:18 +07:00
|
|
|
rcu_segcblist_enqueue(&sp->srcu_cblist, head, false);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
spin_unlock_irq(&sp->queue_lock);
|
|
|
|
}
|
2012-02-23 07:43:55 +07:00
|
|
|
|
2017-03-10 07:16:42 +07:00
|
|
|
wait_for_completion(&rcu.completion);
|
|
|
|
smp_mb(); /* Caller's later accesses after GP. */
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
}
|
|
|
|
|
2009-10-26 09:03:51 +07:00
|
|
|
/**
|
|
|
|
* synchronize_srcu - wait for prior SRCU read-side critical-section completion
|
|
|
|
* @sp: srcu_struct with which to synchronize.
|
|
|
|
*
|
2012-11-29 15:46:07 +07:00
|
|
|
* Wait for the count to drain to zero of both indexes. To avoid the
|
|
|
|
* possible starvation of synchronize_srcu(), it waits for the count of
|
|
|
|
* the index=((->completed & 1) ^ 1) to drain to zero at first,
|
|
|
|
* and then flip the completed and wait for the count of the other index.
|
|
|
|
*
|
|
|
|
* Can block; must be called from process context.
|
2009-10-26 09:03:51 +07:00
|
|
|
*
|
|
|
|
* Note that it is illegal to call synchronize_srcu() from the corresponding
|
|
|
|
* SRCU read-side critical section; doing so will result in deadlock.
|
|
|
|
* However, it is perfectly legal to call synchronize_srcu() on one
|
2013-10-26 18:43:36 +07:00
|
|
|
* srcu_struct from some other srcu_struct's read-side critical section,
|
|
|
|
* as long as the resulting graph of srcu_structs is acyclic.
|
|
|
|
*
|
|
|
|
* There are memory-ordering constraints implied by synchronize_srcu().
|
|
|
|
* On systems with more than one CPU, when synchronize_srcu() returns,
|
|
|
|
* each CPU is guaranteed to have executed a full memory barrier since
|
|
|
|
* the end of its last corresponding SRCU-sched read-side critical section
|
|
|
|
* whose beginning preceded the call to synchronize_srcu(). In addition,
|
|
|
|
* each CPU having an SRCU read-side critical section that extends beyond
|
|
|
|
* the return from synchronize_srcu() is guaranteed to have executed a
|
|
|
|
* full memory barrier after the beginning of synchronize_srcu() and before
|
|
|
|
* the beginning of that SRCU read-side critical section. Note that these
|
|
|
|
* guarantees include CPUs that are offline, idle, or executing in user mode,
|
|
|
|
* as well as CPUs that are executing in the kernel.
|
|
|
|
*
|
|
|
|
* Furthermore, if CPU A invoked synchronize_srcu(), which returned
|
|
|
|
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
|
|
|
|
* to have executed a full memory barrier during the execution of
|
|
|
|
* synchronize_srcu(). This guarantee applies even if CPU A and CPU B
|
|
|
|
* are the same CPU, but again only if the system has more than one CPU.
|
|
|
|
*
|
|
|
|
* Of course, these memory-ordering guarantees apply only when
|
|
|
|
* synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
|
|
|
|
* passed the same srcu_struct structure.
|
2009-10-26 09:03:51 +07:00
|
|
|
*/
|
|
|
|
void synchronize_srcu(struct srcu_struct *sp)
|
|
|
|
{
|
2015-11-25 06:44:06 +07:00
|
|
|
__synchronize_srcu(sp, (rcu_gp_is_expedited() && !rcu_gp_is_normal())
|
2012-10-05 13:59:15 +07:00
|
|
|
? SYNCHRONIZE_SRCU_EXP_TRYCOUNT
|
|
|
|
: SYNCHRONIZE_SRCU_TRYCOUNT);
|
2009-10-26 09:03:51 +07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(synchronize_srcu);
|
|
|
|
|
|
|
|
/**
|
2012-02-01 05:00:41 +07:00
|
|
|
* synchronize_srcu_expedited - Brute-force SRCU grace period
|
2009-10-26 09:03:51 +07:00
|
|
|
* @sp: srcu_struct with which to synchronize.
|
|
|
|
*
|
2012-02-05 22:42:44 +07:00
|
|
|
* Wait for an SRCU grace period to elapse, but be more aggressive about
|
|
|
|
* spinning rather than blocking when waiting.
|
2009-10-26 09:03:51 +07:00
|
|
|
*
|
2013-10-26 18:43:36 +07:00
|
|
|
* Note that synchronize_srcu_expedited() has the same deadlock and
|
|
|
|
* memory-ordering properties as does synchronize_srcu().
|
2009-10-26 09:03:51 +07:00
|
|
|
*/
|
|
|
|
void synchronize_srcu_expedited(struct srcu_struct *sp)
|
|
|
|
{
|
2012-03-19 15:12:12 +07:00
|
|
|
__synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT);
|
2009-10-26 09:03:51 +07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
|
|
|
|
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
/**
|
|
|
|
* srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
|
2013-10-09 22:09:29 +07:00
|
|
|
* @sp: srcu_struct on which to wait for in-flight callbacks.
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
*/
|
|
|
|
void srcu_barrier(struct srcu_struct *sp)
|
|
|
|
{
|
|
|
|
synchronize_srcu(sp);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(srcu_barrier);
|
|
|
|
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
/**
|
|
|
|
* srcu_batches_completed - return batches completed.
|
|
|
|
* @sp: srcu_struct on which to report batch completion.
|
|
|
|
*
|
|
|
|
* Report the number of batches, correlated with, but not necessarily
|
|
|
|
* precisely the same as, the number of grace periods that have elapsed.
|
|
|
|
*/
|
2014-11-24 11:30:06 +07:00
|
|
|
unsigned long srcu_batches_completed(struct srcu_struct *sp)
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 16:17:02 +07:00
|
|
|
{
|
|
|
|
return sp->completed;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(srcu_batches_completed);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
|
|
|
|
#define SRCU_CALLBACK_BATCH 10
|
|
|
|
#define SRCU_INTERVAL 1
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Core SRCU state machine. Advance callbacks from ->batch_check0 to
|
|
|
|
* ->batch_check1 and then to ->batch_done as readers drain.
|
|
|
|
*/
|
|
|
|
static void srcu_advance_batches(struct srcu_struct *sp, int trycount)
|
|
|
|
{
|
2017-03-11 06:31:55 +07:00
|
|
|
int idx;
|
|
|
|
|
|
|
|
WARN_ON_ONCE(sp->srcu_state == SRCU_STATE_IDLE);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Because readers might be delayed for an extended period after
|
|
|
|
* fetching ->completed for their index, at any point in time there
|
|
|
|
* might well be readers using both idx=0 and idx=1. We therefore
|
|
|
|
* need to wait for readers to clear from both index values before
|
|
|
|
* invoking a callback.
|
|
|
|
*/
|
|
|
|
|
2017-03-11 06:31:55 +07:00
|
|
|
if (sp->srcu_state == SRCU_STATE_DONE)
|
2017-03-11 22:14:06 +07:00
|
|
|
srcu_gp_start(sp);
|
2017-03-11 06:31:55 +07:00
|
|
|
|
|
|
|
if (sp->srcu_state == SRCU_STATE_SCAN1) {
|
|
|
|
idx = 1 ^ (sp->completed & 1);
|
|
|
|
if (!try_check_zero(sp, idx, trycount))
|
|
|
|
return; /* readers present, retry after SRCU_INTERVAL */
|
|
|
|
srcu_flip(sp);
|
|
|
|
WRITE_ONCE(sp->srcu_state, SRCU_STATE_SCAN2);
|
|
|
|
}
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
|
2017-03-11 06:31:55 +07:00
|
|
|
if (sp->srcu_state == SRCU_STATE_SCAN2) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SRCU read-side critical sections are normally short,
|
|
|
|
* so check at least twice in quick succession after a flip.
|
|
|
|
*/
|
|
|
|
idx = 1 ^ (sp->completed & 1);
|
|
|
|
trycount = trycount < 2 ? 2 : trycount;
|
|
|
|
if (!try_check_zero(sp, idx, trycount))
|
|
|
|
return; /* readers present, retry after SRCU_INTERVAL */
|
2017-03-11 22:14:06 +07:00
|
|
|
srcu_gp_end(sp);
|
2017-03-11 06:31:55 +07:00
|
|
|
}
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invoke a limited number of SRCU callbacks that have passed through
|
|
|
|
* their grace period. If there are more to do, SRCU will reschedule
|
2016-11-29 03:08:49 +07:00
|
|
|
* the workqueue. Note that needed memory barriers have been executed
|
|
|
|
* in this task's context by srcu_readers_active_idx_check().
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
*/
|
|
|
|
static void srcu_invoke_callbacks(struct srcu_struct *sp)
|
|
|
|
{
|
2017-03-14 06:48:18 +07:00
|
|
|
struct rcu_cblist ready_cbs;
|
|
|
|
struct rcu_head *rhp;
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
|
2017-03-14 06:48:18 +07:00
|
|
|
spin_lock_irq(&sp->queue_lock);
|
|
|
|
if (!rcu_segcblist_ready_cbs(&sp->srcu_cblist)) {
|
|
|
|
spin_unlock_irq(&sp->queue_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
rcu_cblist_init(&ready_cbs);
|
|
|
|
rcu_segcblist_extract_done_cbs(&sp->srcu_cblist, &ready_cbs);
|
|
|
|
spin_unlock_irq(&sp->queue_lock);
|
|
|
|
rhp = rcu_cblist_dequeue(&ready_cbs);
|
|
|
|
for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
local_bh_disable();
|
2017-03-14 06:48:18 +07:00
|
|
|
rhp->func(rhp);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
local_bh_enable();
|
|
|
|
}
|
2017-03-14 06:48:18 +07:00
|
|
|
spin_lock_irq(&sp->queue_lock);
|
|
|
|
rcu_segcblist_insert_count(&sp->srcu_cblist, &ready_cbs);
|
|
|
|
spin_unlock_irq(&sp->queue_lock);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Finished one round of SRCU grace period. Start another if there are
|
|
|
|
* more SRCU callbacks queued, otherwise put SRCU into not-running state.
|
|
|
|
*/
|
2017-03-10 07:16:42 +07:00
|
|
|
static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
{
|
|
|
|
bool pending = true;
|
|
|
|
|
2017-03-14 06:48:18 +07:00
|
|
|
if (rcu_segcblist_empty(&sp->srcu_cblist)) {
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
spin_lock_irq(&sp->queue_lock);
|
2017-03-14 06:48:18 +07:00
|
|
|
if (rcu_segcblist_empty(&sp->srcu_cblist) &&
|
2017-03-11 06:31:55 +07:00
|
|
|
READ_ONCE(sp->srcu_state) == SRCU_STATE_DONE) {
|
|
|
|
WRITE_ONCE(sp->srcu_state, SRCU_STATE_IDLE);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
pending = false;
|
|
|
|
}
|
|
|
|
spin_unlock_irq(&sp->queue_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pending)
|
2017-03-10 07:16:42 +07:00
|
|
|
queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the work-queue function that handles SRCU grace periods.
|
|
|
|
*/
|
2012-10-13 00:14:15 +07:00
|
|
|
void process_srcu(struct work_struct *work)
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
{
|
|
|
|
struct srcu_struct *sp;
|
|
|
|
|
|
|
|
sp = container_of(work, struct srcu_struct, work.work);
|
|
|
|
|
|
|
|
srcu_advance_batches(sp, 1);
|
|
|
|
srcu_invoke_callbacks(sp);
|
2017-03-10 07:16:42 +07:00
|
|
|
srcu_reschedule(sp, SRCU_INTERVAL);
|
rcu: Implement per-domain single-threaded call_srcu() state machine
This commit implements an SRCU state machine in support of call_srcu().
The state machine is preemptible, light-weight, and single-threaded,
minimizing synchronization overhead. In particular, there is no longer
any need for synchronize_srcu() to be guarded by a mutex.
Expedited processing is handled, at least in the absence of concurrent
grace-period operations on that same srcu_struct structure, by having
the synchronize_srcu_expedited() thread take on the role of the
workqueue thread for one iteration.
There is a reasonable probability that a given SRCU callback will
be invoked on the same CPU that registered it, however, there is no
guarantee. Concurrent SRCU grace-period primitives can cause callbacks
to be executed elsewhere, even in absence of CPU-hotplug operations.
Callbacks execute in process context, but under the influence of
local_bh_disable(), so it is illegal to sleep in an SRCU callback
function.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-03-19 15:12:13 +07:00
|
|
|
}
|
2012-10-13 00:14:15 +07:00
|
|
|
EXPORT_SYMBOL_GPL(process_srcu);
|