linux_dsm_epyc7002/arch/s390/kernel/signal.c

536 lines
14 KiB
C
Raw Normal View History

/*
* arch/s390/kernel/signal.c
*
* Copyright (C) IBM Corp. 1999,2006
* Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
*
* Based on Intel version
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
*/
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/wait.h>
#include <linux/ptrace.h>
#include <linux/unistd.h>
#include <linux/stddef.h>
#include <linux/tty.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
#include <linux/tracehook.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <asm/ucontext.h>
#include <asm/uaccess.h>
#include <asm/lowcore.h>
#include "entry.h"
#define _BLOCKABLE (~(sigmask(SIGKILL) | sigmask(SIGSTOP)))
typedef struct
{
__u8 callee_used_stack[__SIGNAL_FRAMESIZE];
struct sigcontext sc;
_sigregs sregs;
int signo;
__u8 retcode[S390_SYSCALL_SIZE];
} sigframe;
typedef struct
{
__u8 callee_used_stack[__SIGNAL_FRAMESIZE];
__u8 retcode[S390_SYSCALL_SIZE];
struct siginfo info;
struct ucontext uc;
} rt_sigframe;
/*
* Atomically swap in the new signal mask, and wait for a signal.
*/
SYSCALL_DEFINE3(sigsuspend, int, history0, int, history1, old_sigset_t, mask)
{
mask &= _BLOCKABLE;
spin_lock_irq(&current->sighand->siglock);
current->saved_sigmask = current->blocked;
siginitset(&current->blocked, mask);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
set_current_state(TASK_INTERRUPTIBLE);
schedule();
set_thread_flag(TIF_RESTORE_SIGMASK);
return -ERESTARTNOHAND;
}
SYSCALL_DEFINE3(sigaction, int, sig, const struct old_sigaction __user *, act,
struct old_sigaction __user *, oact)
{
struct k_sigaction new_ka, old_ka;
int ret;
if (act) {
old_sigset_t mask;
if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
__get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
__get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
__get_user(mask, &act->sa_mask))
return -EFAULT;
siginitset(&new_ka.sa.sa_mask, mask);
}
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) {
if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
__put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
__put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
return -EFAULT;
}
return ret;
}
SYSCALL_DEFINE2(sigaltstack, const stack_t __user *, uss,
stack_t __user *, uoss)
{
struct pt_regs *regs = task_pt_regs(current);
return do_sigaltstack(uss, uoss, regs->gprs[15]);
}
/* Returns non-zero on fault. */
static int save_sigregs(struct pt_regs *regs, _sigregs __user *sregs)
{
_sigregs user_sregs;
save_access_regs(current->thread.acrs);
/* Copy a 'clean' PSW mask to the user to avoid leaking
information about whether PER is currently on. */
[S390] noexec protection This provides a noexec protection on s390 hardware. Our hardware does not have any bits left in the pte for a hw noexec bit, so this is a different approach using shadow page tables and a special addressing mode that allows separate address spaces for code and data. As a special feature of our "secondary-space" addressing mode, separate page tables can be specified for the translation of data addresses (storage operands) and instruction addresses. The shadow page table is used for the instruction addresses and the standard page table for the data addresses. The shadow page table is linked to the standard page table by a pointer in page->lru.next of the struct page corresponding to the page that contains the standard page table (since page->private is not really private with the pte_lock and the page table pages are not in the LRU list). Depending on the software bits of a pte, it is either inserted into both page tables or just into the standard (data) page table. Pages of a vma that does not have the VM_EXEC bit set get mapped only in the data address space. Any try to execute code on such a page will cause a page translation exception. The standard reaction to this is a SIGSEGV with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the kernel to the signal stack frame. Unfortunately, the signal return mechanism cannot be modified to use an SA_RESTORER because the exception unwinding code depends on the system call opcode stored behind the signal stack frame. This feature requires that user space is executed in secondary-space mode and the kernel in home-space mode, which means that the addressing modes need to be switched and that the noexec protection only works for user space. After switching the addressing modes, we cannot use the mvcp/mvcs instructions anymore to copy between kernel and user space. A new mvcos instruction has been added to the z9 EC/BC hardware which allows to copy between arbitrary address spaces, but on older hardware the page tables need to be walked manually. Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-02-06 03:18:17 +07:00
user_sregs.regs.psw.mask = PSW_MASK_MERGE(psw_user_bits, regs->psw.mask);
user_sregs.regs.psw.addr = regs->psw.addr;
memcpy(&user_sregs.regs.gprs, &regs->gprs, sizeof(sregs->regs.gprs));
memcpy(&user_sregs.regs.acrs, current->thread.acrs,
sizeof(sregs->regs.acrs));
/*
* We have to store the fp registers to current->thread.fp_regs
* to merge them with the emulated registers.
*/
save_fp_regs(&current->thread.fp_regs);
memcpy(&user_sregs.fpregs, &current->thread.fp_regs,
sizeof(s390_fp_regs));
return __copy_to_user(sregs, &user_sregs, sizeof(_sigregs));
}
/* Returns positive number on error */
static int restore_sigregs(struct pt_regs *regs, _sigregs __user *sregs)
{
int err;
_sigregs user_sregs;
/* Alwys make any pending restarted system call return -EINTR */
current_thread_info()->restart_block.fn = do_no_restart_syscall;
err = __copy_from_user(&user_sregs, sregs, sizeof(_sigregs));
if (err)
return err;
regs->psw.mask = PSW_MASK_MERGE(regs->psw.mask,
user_sregs.regs.psw.mask);
regs->psw.addr = PSW_ADDR_AMODE | user_sregs.regs.psw.addr;
memcpy(&regs->gprs, &user_sregs.regs.gprs, sizeof(sregs->regs.gprs));
memcpy(&current->thread.acrs, &user_sregs.regs.acrs,
sizeof(sregs->regs.acrs));
restore_access_regs(current->thread.acrs);
memcpy(&current->thread.fp_regs, &user_sregs.fpregs,
sizeof(s390_fp_regs));
current->thread.fp_regs.fpc &= FPC_VALID_MASK;
restore_fp_regs(&current->thread.fp_regs);
regs->svcnr = 0; /* disable syscall checks */
return 0;
}
SYSCALL_DEFINE0(sigreturn)
{
struct pt_regs *regs = task_pt_regs(current);
sigframe __user *frame = (sigframe __user *)regs->gprs[15];
sigset_t set;
if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
goto badframe;
if (__copy_from_user(&set.sig, &frame->sc.oldmask, _SIGMASK_COPY_SIZE))
goto badframe;
sigdelsetmask(&set, ~_BLOCKABLE);
spin_lock_irq(&current->sighand->siglock);
current->blocked = set;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
if (restore_sigregs(regs, &frame->sregs))
goto badframe;
return regs->gprs[2];
badframe:
force_sig(SIGSEGV, current);
return 0;
}
SYSCALL_DEFINE0(rt_sigreturn)
{
struct pt_regs *regs = task_pt_regs(current);
rt_sigframe __user *frame = (rt_sigframe __user *)regs->gprs[15];
sigset_t set;
if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
goto badframe;
if (__copy_from_user(&set.sig, &frame->uc.uc_sigmask, sizeof(set)))
goto badframe;
sigdelsetmask(&set, ~_BLOCKABLE);
spin_lock_irq(&current->sighand->siglock);
current->blocked = set;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
if (restore_sigregs(regs, &frame->uc.uc_mcontext))
goto badframe;
if (do_sigaltstack(&frame->uc.uc_stack, NULL,
regs->gprs[15]) == -EFAULT)
goto badframe;
return regs->gprs[2];
badframe:
force_sig(SIGSEGV, current);
return 0;
}
/*
* Set up a signal frame.
*/
/*
* Determine which stack to use..
*/
static inline void __user *
get_sigframe(struct k_sigaction *ka, struct pt_regs * regs, size_t frame_size)
{
unsigned long sp;
/* Default to using normal stack */
sp = regs->gprs[15];
/* Overflow on alternate signal stack gives SIGSEGV. */
if (on_sig_stack(sp) && !on_sig_stack((sp - frame_size) & -8UL))
return (void __user *) -1UL;
/* This is the X/Open sanctioned signal stack switching. */
if (ka->sa.sa_flags & SA_ONSTACK) {
if (! sas_ss_flags(sp))
sp = current->sas_ss_sp + current->sas_ss_size;
}
/* This is the legacy signal stack switching. */
else if (!user_mode(regs) &&
!(ka->sa.sa_flags & SA_RESTORER) &&
ka->sa.sa_restorer) {
sp = (unsigned long) ka->sa.sa_restorer;
}
return (void __user *)((sp - frame_size) & -8ul);
}
static inline int map_signal(int sig)
{
if (current_thread_info()->exec_domain
&& current_thread_info()->exec_domain->signal_invmap
&& sig < 32)
return current_thread_info()->exec_domain->signal_invmap[sig];
else
return sig;
}
static int setup_frame(int sig, struct k_sigaction *ka,
sigset_t *set, struct pt_regs * regs)
{
sigframe __user *frame;
frame = get_sigframe(ka, regs, sizeof(sigframe));
if (!access_ok(VERIFY_WRITE, frame, sizeof(sigframe)))
goto give_sigsegv;
if (frame == (void __user *) -1UL)
goto give_sigsegv;
if (__copy_to_user(&frame->sc.oldmask, &set->sig, _SIGMASK_COPY_SIZE))
goto give_sigsegv;
if (save_sigregs(regs, &frame->sregs))
goto give_sigsegv;
if (__put_user(&frame->sregs, &frame->sc.sregs))
goto give_sigsegv;
/* Set up to return from userspace. If provided, use a stub
already in userspace. */
if (ka->sa.sa_flags & SA_RESTORER) {
regs->gprs[14] = (unsigned long)
ka->sa.sa_restorer | PSW_ADDR_AMODE;
} else {
regs->gprs[14] = (unsigned long)
frame->retcode | PSW_ADDR_AMODE;
if (__put_user(S390_SYSCALL_OPCODE | __NR_sigreturn,
(u16 __user *)(frame->retcode)))
goto give_sigsegv;
}
/* Set up backchain. */
if (__put_user(regs->gprs[15], (addr_t __user *) frame))
goto give_sigsegv;
/* Set up registers for signal handler */
regs->gprs[15] = (unsigned long) frame;
regs->psw.addr = (unsigned long) ka->sa.sa_handler | PSW_ADDR_AMODE;
regs->gprs[2] = map_signal(sig);
regs->gprs[3] = (unsigned long) &frame->sc;
/* We forgot to include these in the sigcontext.
To avoid breaking binary compatibility, they are passed as args. */
regs->gprs[4] = current->thread.trap_no;
regs->gprs[5] = current->thread.prot_addr;
regs->gprs[6] = task_thread_info(current)->last_break;
/* Place signal number on stack to allow backtrace from handler. */
if (__put_user(regs->gprs[2], (int __user *) &frame->signo))
goto give_sigsegv;
return 0;
give_sigsegv:
force_sigsegv(sig, current);
return -EFAULT;
}
static int setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
sigset_t *set, struct pt_regs * regs)
{
int err = 0;
rt_sigframe __user *frame;
frame = get_sigframe(ka, regs, sizeof(rt_sigframe));
if (!access_ok(VERIFY_WRITE, frame, sizeof(rt_sigframe)))
goto give_sigsegv;
if (frame == (void __user *) -1UL)
goto give_sigsegv;
if (copy_siginfo_to_user(&frame->info, info))
goto give_sigsegv;
/* Create the ucontext. */
err |= __put_user(0, &frame->uc.uc_flags);
err |= __put_user(NULL, &frame->uc.uc_link);
err |= __put_user((void __user *)current->sas_ss_sp, &frame->uc.uc_stack.ss_sp);
err |= __put_user(sas_ss_flags(regs->gprs[15]),
&frame->uc.uc_stack.ss_flags);
err |= __put_user(current->sas_ss_size, &frame->uc.uc_stack.ss_size);
err |= save_sigregs(regs, &frame->uc.uc_mcontext);
err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
if (err)
goto give_sigsegv;
/* Set up to return from userspace. If provided, use a stub
already in userspace. */
if (ka->sa.sa_flags & SA_RESTORER) {
regs->gprs[14] = (unsigned long)
ka->sa.sa_restorer | PSW_ADDR_AMODE;
} else {
regs->gprs[14] = (unsigned long)
frame->retcode | PSW_ADDR_AMODE;
if (__put_user(S390_SYSCALL_OPCODE | __NR_rt_sigreturn,
(u16 __user *)(frame->retcode)))
goto give_sigsegv;
}
/* Set up backchain. */
if (__put_user(regs->gprs[15], (addr_t __user *) frame))
goto give_sigsegv;
/* Set up registers for signal handler */
regs->gprs[15] = (unsigned long) frame;
regs->psw.addr = (unsigned long) ka->sa.sa_handler | PSW_ADDR_AMODE;
regs->gprs[2] = map_signal(sig);
regs->gprs[3] = (unsigned long) &frame->info;
regs->gprs[4] = (unsigned long) &frame->uc;
regs->gprs[5] = task_thread_info(current)->last_break;
return 0;
give_sigsegv:
force_sigsegv(sig, current);
return -EFAULT;
}
/*
* OK, we're invoking a handler
*/
static int
handle_signal(unsigned long sig, struct k_sigaction *ka,
siginfo_t *info, sigset_t *oldset, struct pt_regs * regs)
{
int ret;
/* Set up the stack frame */
if (ka->sa.sa_flags & SA_SIGINFO)
ret = setup_rt_frame(sig, ka, info, oldset, regs);
else
ret = setup_frame(sig, ka, oldset, regs);
if (ret == 0) {
spin_lock_irq(&current->sighand->siglock);
sigorsets(&current->blocked,&current->blocked,&ka->sa.sa_mask);
if (!(ka->sa.sa_flags & SA_NODEFER))
sigaddset(&current->blocked,sig);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
}
return ret;
}
/*
* Note that 'init' is a special process: it doesn't get signals it doesn't
* want to handle. Thus you cannot kill init even with a SIGKILL even by
* mistake.
*
* Note that we go through the signals twice: once to check the signals that
* the kernel can handle, and then we build all the user-level signal handling
* stack-frames in one go after that.
*/
void do_signal(struct pt_regs *regs)
{
unsigned long retval = 0, continue_addr = 0, restart_addr = 0;
siginfo_t info;
int signr;
struct k_sigaction ka;
sigset_t *oldset;
/*
* We want the common case to go fast, which
* is why we may in certain cases get here from
* kernel mode. Just return without doing anything
* if so.
*/
if (!user_mode(regs))
return;
if (test_thread_flag(TIF_RESTORE_SIGMASK))
oldset = &current->saved_sigmask;
else
oldset = &current->blocked;
/* Are we from a system call? */
if (regs->svcnr) {
continue_addr = regs->psw.addr;
restart_addr = continue_addr - regs->ilc;
retval = regs->gprs[2];
/* Prepare for system call restart. We do this here so that a
debugger will see the already changed PSW. */
switch (retval) {
case -ERESTARTNOHAND:
case -ERESTARTSYS:
case -ERESTARTNOINTR:
regs->gprs[2] = regs->orig_gpr2;
regs->psw.addr = restart_addr;
break;
case -ERESTART_RESTARTBLOCK:
regs->gprs[2] = -EINTR;
}
regs->svcnr = 0; /* Don't deal with this again. */
}
/* Get signal to deliver. When running under ptrace, at this point
the debugger may change all our registers ... */
signr = get_signal_to_deliver(&info, &ka, regs, NULL);
/* Depending on the signal settings we may need to revert the
decision to restart the system call. */
if (signr > 0 && regs->psw.addr == restart_addr) {
if (retval == -ERESTARTNOHAND
|| (retval == -ERESTARTSYS
&& !(current->sighand->action[signr-1].sa.sa_flags
& SA_RESTART))) {
regs->gprs[2] = -EINTR;
regs->psw.addr = continue_addr;
}
}
if (signr > 0) {
/* Whee! Actually deliver the signal. */
int ret;
#ifdef CONFIG_COMPAT
if (is_compat_task()) {
ret = handle_signal32(signr, &ka, &info, oldset, regs);
}
else
#endif
ret = handle_signal(signr, &ka, &info, oldset, regs);
if (!ret) {
/*
* A signal was successfully delivered; the saved
* sigmask will have been stored in the signal frame,
* and will be restored by sigreturn, so we can simply
* clear the TIF_RESTORE_SIGMASK flag.
*/
if (test_thread_flag(TIF_RESTORE_SIGMASK))
clear_thread_flag(TIF_RESTORE_SIGMASK);
/*
* Let tracing know that we've done the handler setup.
*/
tracehook_signal_handler(signr, &info, &ka, regs,
test_thread_flag(TIF_SINGLE_STEP));
}
return;
}
/*
* If there's no signal to deliver, we just put the saved sigmask back.
*/
if (test_thread_flag(TIF_RESTORE_SIGMASK)) {
clear_thread_flag(TIF_RESTORE_SIGMASK);
sigprocmask(SIG_SETMASK, &current->saved_sigmask, NULL);
}
/* Restart a different system call. */
if (retval == -ERESTART_RESTARTBLOCK
&& regs->psw.addr == continue_addr) {
regs->gprs[2] = __NR_restart_syscall;
set_thread_flag(TIF_RESTART_SVC);
}
}
void do_notify_resume(struct pt_regs *regs)
{
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
KEYS: Add a keyctl to install a process's session keyring on its parent [try #6] Add a keyctl to install a process's session keyring onto its parent. This replaces the parent's session keyring. Because the COW credential code does not permit one process to change another process's credentials directly, the change is deferred until userspace next starts executing again. Normally this will be after a wait*() syscall. To support this, three new security hooks have been provided: cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in the blank security creds and key_session_to_parent() - which asks the LSM if the process may replace its parent's session keyring. The replacement may only happen if the process has the same ownership details as its parent, and the process has LINK permission on the session keyring, and the session keyring is owned by the process, and the LSM permits it. Note that this requires alteration to each architecture's notify_resume path. This has been done for all arches barring blackfin, m68k* and xtensa, all of which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the replacement to be performed at the point the parent process resumes userspace execution. This allows the userspace AFS pioctl emulation to fully emulate newpag() and the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to alter the parent process's PAG membership. However, since kAFS doesn't use PAGs per se, but rather dumps the keys into the session keyring, the session keyring of the parent must be replaced if, for example, VIOCSETTOK is passed the newpag flag. This can be tested with the following program: #include <stdio.h> #include <stdlib.h> #include <keyutils.h> #define KEYCTL_SESSION_TO_PARENT 18 #define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0) int main(int argc, char **argv) { key_serial_t keyring, key; long ret; keyring = keyctl_join_session_keyring(argv[1]); OSERROR(keyring, "keyctl_join_session_keyring"); key = add_key("user", "a", "b", 1, keyring); OSERROR(key, "add_key"); ret = keyctl(KEYCTL_SESSION_TO_PARENT); OSERROR(ret, "KEYCTL_SESSION_TO_PARENT"); return 0; } Compiled and linked with -lkeyutils, you should see something like: [dhowells@andromeda ~]$ keyctl show Session Keyring -3 --alswrv 4043 4043 keyring: _ses 355907932 --alswrv 4043 -1 \_ keyring: _uid.4043 [dhowells@andromeda ~]$ /tmp/newpag [dhowells@andromeda ~]$ keyctl show Session Keyring -3 --alswrv 4043 4043 keyring: _ses 1055658746 --alswrv 4043 4043 \_ user: a [dhowells@andromeda ~]$ /tmp/newpag hello [dhowells@andromeda ~]$ keyctl show Session Keyring -3 --alswrv 4043 4043 keyring: hello 340417692 --alswrv 4043 4043 \_ user: a Where the test program creates a new session keyring, sticks a user key named 'a' into it and then installs it on its parent. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 15:14:21 +07:00
if (current->replacement_session_keyring)
key_replace_session_keyring();
}