linux_dsm_epyc7002/arch/arm64/include/asm/cacheflush.h

183 lines
5.6 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Based on arch/arm/include/asm/cacheflush.h
*
* Copyright (C) 1999-2002 Russell King.
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_CACHEFLUSH_H
#define __ASM_CACHEFLUSH_H
#include <linux/kgdb.h>
#include <linux/mm.h>
/*
* This flag is used to indicate that the page pointed to by a pte is clean
* and does not require cleaning before returning it to the user.
*/
#define PG_dcache_clean PG_arch_1
/*
* MM Cache Management
* ===================
*
* The arch/arm64/mm/cache.S implements these methods.
*
* Start addresses are inclusive and end addresses are exclusive; start
* addresses should be rounded down, end addresses up.
*
* See Documentation/core-api/cachetlb.rst for more information. Please note that
* the implementation assumes non-aliasing VIPT D-cache and (aliasing)
* VIPT I-cache.
*
* flush_cache_mm(mm)
*
* Clean and invalidate all user space cache entries
* before a change of page tables.
*
* flush_icache_range(start, end)
*
* Ensure coherency between the I-cache and the D-cache in the
* region described by start, end.
* - start - virtual start address
* - end - virtual end address
*
* invalidate_icache_range(start, end)
*
* Invalidate the I-cache in the region described by start, end.
* - start - virtual start address
* - end - virtual end address
*
* __flush_cache_user_range(start, end)
*
* Ensure coherency between the I-cache and the D-cache in the
* region described by start, end.
* - start - virtual start address
* - end - virtual end address
*
* __flush_dcache_area(kaddr, size)
*
* Ensure that the data held in page is written back.
* - kaddr - page address
* - size - region size
*/
extern void __flush_icache_range(unsigned long start, unsigned long end);
extern int invalidate_icache_range(unsigned long start, unsigned long end);
extern void __flush_dcache_area(void *addr, size_t len);
extern void __inval_dcache_area(void *addr, size_t len);
extern void __clean_dcache_area_poc(void *addr, size_t len);
extern void __clean_dcache_area_pop(void *addr, size_t len);
extern void __clean_dcache_area_pou(void *addr, size_t len);
extern long __flush_cache_user_range(unsigned long start, unsigned long end);
extern void sync_icache_aliases(void *kaddr, unsigned long len);
static inline void flush_icache_range(unsigned long start, unsigned long end)
{
__flush_icache_range(start, end);
/*
* IPI all online CPUs so that they undergo a context synchronization
* event and are forced to refetch the new instructions.
*/
#ifdef CONFIG_KGDB
/*
* KGDB performs cache maintenance with interrupts disabled, so we
* will deadlock trying to IPI the secondary CPUs. In theory, we can
* set CACHE_FLUSH_IS_SAFE to 0 to avoid this known issue, but that
* just means that KGDB will elide the maintenance altogether! As it
* turns out, KGDB uses IPIs to round-up the secondary CPUs during
* the patching operation, so we don't need extra IPIs here anyway.
* In which case, add a KGDB-specific bodge and return early.
*/
if (kgdb_connected && irqs_disabled())
return;
#endif
kick_all_cpus_sync();
}
static inline void flush_cache_mm(struct mm_struct *mm)
{
}
static inline void flush_cache_page(struct vm_area_struct *vma,
unsigned long user_addr, unsigned long pfn)
{
}
static inline void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
/*
* Cache maintenance functions used by the DMA API. No to be used directly.
*/
extern void __dma_map_area(const void *, size_t, int);
extern void __dma_unmap_area(const void *, size_t, int);
extern void __dma_flush_area(const void *, size_t);
/*
* Copy user data from/to a page which is mapped into a different
* processes address space. Really, we want to allow our "user
* space" model to handle this.
*/
extern void copy_to_user_page(struct vm_area_struct *, struct page *,
unsigned long, void *, const void *, unsigned long);
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
do { \
memcpy(dst, src, len); \
} while (0)
#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
/*
* flush_dcache_page is used when the kernel has written to the page
* cache page at virtual address page->virtual.
*
* If this page isn't mapped (ie, page_mapping == NULL), or it might
* have userspace mappings, then we _must_ always clean + invalidate
* the dcache entries associated with the kernel mapping.
*
* Otherwise we can defer the operation, and clean the cache when we are
* about to change to user space. This is the same method as used on SPARC64.
* See update_mmu_cache for the user space part.
*/
#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
extern void flush_dcache_page(struct page *);
static inline void __flush_icache_all(void)
{
arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC The DCache clean & ICache invalidation requirements for instructions to be data coherence are discoverable through new fields in CTR_EL0. The following two control bits DIC and IDC were defined for this purpose. No need to perform point of unification cache maintenance operations from software on systems where CPU caches are transparent. This patch optimize the three functions __flush_cache_user_range(), clean_dcache_area_pou() and invalidate_icache_range() if the hardware reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic in order to avoid the unnecessary overhead. CTR_EL0.DIC: Instruction cache invalidation requirements for instruction to data coherence. The meaning of this bit[29]. 0: Instruction cache invalidation to the point of unification is required for instruction to data coherence. 1: Instruction cache cleaning to the point of unification is not required for instruction to data coherence. CTR_EL0.IDC: Data cache clean requirements for instruction to data coherence. The meaning of this bit[28]. 0: Data cache clean to the point of unification is required for instruction to data coherence, unless CLIDR_EL1.LoC == 0b000 or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000). 1: Data cache clean to the point of unification is not required for instruction to data coherence. Co-authored-by: Philip Elcan <pelcan@codeaurora.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-07 22:00:08 +07:00
if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
return;
asm("ic ialluis");
dsb(ish);
}
#define flush_dcache_mmap_lock(mapping) do { } while (0)
#define flush_dcache_mmap_unlock(mapping) do { } while (0)
/*
* We don't appear to need to do anything here. In fact, if we did, we'd
* duplicate cache flushing elsewhere performed by flush_dcache_page().
*/
#define flush_icache_page(vma,page) do { } while (0)
/*
* Not required on AArch64 (PIPT or VIPT non-aliasing D-cache).
*/
static inline void flush_cache_vmap(unsigned long start, unsigned long end)
{
}
static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
{
}
int set_memory_valid(unsigned long addr, int numpages, int enable);
int set_direct_map_invalid_noflush(struct page *page);
int set_direct_map_default_noflush(struct page *page);
#endif