linux_dsm_epyc7002/include/linux/compiler-clang.h

68 lines
2.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
linux/compiler.h: Split into compiler.h and compiler_types.h linux/compiler.h is included indirectly by linux/types.h via uapi/linux/types.h -> uapi/linux/posix_types.h -> linux/stddef.h -> uapi/linux/stddef.h and is needed to provide a proper definition of offsetof. Unfortunately, compiler.h requires a definition of smp_read_barrier_depends() for defining lockless_dereference() and soon for defining READ_ONCE(), which means that all users of READ_ONCE() will need to include asm/barrier.h to avoid splats such as: In file included from include/uapi/linux/stddef.h:1:0, from include/linux/stddef.h:4, from arch/h8300/kernel/asm-offsets.c:11: include/linux/list.h: In function 'list_empty': >> include/linux/compiler.h:343:2: error: implicit declaration of function 'smp_read_barrier_depends' [-Werror=implicit-function-declaration] smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \ ^ A better alternative is to include asm/barrier.h in linux/compiler.h, but this requires a type definition for "bool" on some architectures (e.g. x86), which is defined later by linux/types.h. Type "bool" is also used directly in linux/compiler.h, so the whole thing is pretty fragile. This patch splits compiler.h in two: compiler_types.h contains type annotations, definitions and the compiler-specific parts, whereas compiler.h #includes compiler-types.h and additionally defines macros such as {READ,WRITE.ACCESS}_ONCE(). uapi/linux/stddef.h and linux/linkage.h are then moved over to include linux/compiler_types.h, which fixes the build for h8 and blackfin. Signed-off-by: Will Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1508840570-22169-2-git-send-email-will.deacon@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 17:22:46 +07:00
#ifndef __LINUX_COMPILER_TYPES_H
#error "Please don't include <linux/compiler-clang.h> directly, include <linux/compiler.h> instead."
#endif
compiler-clang: add build check for clang 10.0.1 Patch series "set clang minimum version to 10.0.1", v3. Adds a compile time #error to compiler-clang.h setting the effective minimum supported version to clang 10.0.1. A separate patch has already been picked up into the Documentation/ tree also confirming the version. Next are a series of reverts. One for 32b arm is a partial revert. Then Marco suggested fixes to KASAN docs. Finally, improve the warning for GCC too as per Kees. This patch (of 7): During Plumbers 2020, we voted to just support the latest release of Clang for now. Add a compile time check for this. We plan to remove workarounds for older versions now, which will break in subtle and not so subtle ways. Suggested-by: Sedat Dilek <sedat.dilek@gmail.com> Suggested-by: Nathan Chancellor <natechancellor@gmail.com> Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Reviewed-by: Sedat Dilek <sedat.dilek@gmail.com> Acked-by: Marco Elver <elver@google.com> Acked-by: Nathan Chancellor <natechancellor@gmail.com> Acked-by: Sedat Dilek <sedat.dilek@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Fangrui Song <maskray@google.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Link: https://lkml.kernel.org/r/20200902225911.209899-1-ndesaulniers@google.com Link: https://lkml.kernel.org/r/20200902225911.209899-2-ndesaulniers@google.com Link: https://github.com/ClangBuiltLinux/linux/issues/9 Link: https://github.com/ClangBuiltLinux/linux/issues/941 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 06:47:33 +07:00
#define CLANG_VERSION (__clang_major__ * 10000 \
+ __clang_minor__ * 100 \
+ __clang_patchlevel__)
#if CLANG_VERSION < 100001
#ifndef __BPF_TRACING__
compiler-clang: add build check for clang 10.0.1 Patch series "set clang minimum version to 10.0.1", v3. Adds a compile time #error to compiler-clang.h setting the effective minimum supported version to clang 10.0.1. A separate patch has already been picked up into the Documentation/ tree also confirming the version. Next are a series of reverts. One for 32b arm is a partial revert. Then Marco suggested fixes to KASAN docs. Finally, improve the warning for GCC too as per Kees. This patch (of 7): During Plumbers 2020, we voted to just support the latest release of Clang for now. Add a compile time check for this. We plan to remove workarounds for older versions now, which will break in subtle and not so subtle ways. Suggested-by: Sedat Dilek <sedat.dilek@gmail.com> Suggested-by: Nathan Chancellor <natechancellor@gmail.com> Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Reviewed-by: Sedat Dilek <sedat.dilek@gmail.com> Acked-by: Marco Elver <elver@google.com> Acked-by: Nathan Chancellor <natechancellor@gmail.com> Acked-by: Sedat Dilek <sedat.dilek@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Fangrui Song <maskray@google.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Link: https://lkml.kernel.org/r/20200902225911.209899-1-ndesaulniers@google.com Link: https://lkml.kernel.org/r/20200902225911.209899-2-ndesaulniers@google.com Link: https://github.com/ClangBuiltLinux/linux/issues/9 Link: https://github.com/ClangBuiltLinux/linux/issues/941 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 06:47:33 +07:00
# error Sorry, your version of Clang is too old - please use 10.0.1 or newer.
#endif
#endif
compiler-clang: add build check for clang 10.0.1 Patch series "set clang minimum version to 10.0.1", v3. Adds a compile time #error to compiler-clang.h setting the effective minimum supported version to clang 10.0.1. A separate patch has already been picked up into the Documentation/ tree also confirming the version. Next are a series of reverts. One for 32b arm is a partial revert. Then Marco suggested fixes to KASAN docs. Finally, improve the warning for GCC too as per Kees. This patch (of 7): During Plumbers 2020, we voted to just support the latest release of Clang for now. Add a compile time check for this. We plan to remove workarounds for older versions now, which will break in subtle and not so subtle ways. Suggested-by: Sedat Dilek <sedat.dilek@gmail.com> Suggested-by: Nathan Chancellor <natechancellor@gmail.com> Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Reviewed-by: Sedat Dilek <sedat.dilek@gmail.com> Acked-by: Marco Elver <elver@google.com> Acked-by: Nathan Chancellor <natechancellor@gmail.com> Acked-by: Sedat Dilek <sedat.dilek@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Fangrui Song <maskray@google.com> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Link: https://lkml.kernel.org/r/20200902225911.209899-1-ndesaulniers@google.com Link: https://lkml.kernel.org/r/20200902225911.209899-2-ndesaulniers@google.com Link: https://github.com/ClangBuiltLinux/linux/issues/9 Link: https://github.com/ClangBuiltLinux/linux/issues/941 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14 06:47:33 +07:00
/* Compiler specific definitions for Clang compiler */
/* same as gcc, this was present in clang-2.6 so we can assume it works
* with any version that can compile the kernel
*/
#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
include/linux/compiler-clang.h: handle randomizable anonymous structs The GCC randomize layout plugin can randomize the member offsets of sensitive kernel data structures. To use this feature, certain annotations and members are added to the structures which affect the member offsets even if this plugin is not used. All of these structures are completely randomized, except for task_struct which leaves out some of its members. All the other members are wrapped within an anonymous struct with the __randomize_layout attribute. This is done using the randomized_struct_fields_start and randomized_struct_fields_end defines. When the plugin is disabled, the behaviour of this attribute can vary based on the GCC version. For GCC 5.1+, this attribute maps to __designated_init otherwise it is just an empty define but the anonymous structure is still present. For other compilers, both randomized_struct_fields_start and randomized_struct_fields_end default to empty defines meaning the anonymous structure is not introduced at all. So, if a module compiled with Clang, such as a BPF program, needs to access task_struct fields such as pid and comm, the offsets of these members as recognized by Clang are different from those recognized by modules compiled with GCC. If GCC 4.6+ is used to build the kernel, this can be solved by introducing appropriate defines for Clang so that the anonymous structure is seen when determining the offsets for the members. Link: http://lkml.kernel.org/r/20171109064645.25581-1-sandipan@linux.vnet.ibm.com Signed-off-by: Sandipan Das <sandipan@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-18 06:27:28 +07:00
/* all clang versions usable with the kernel support KASAN ABI version 5 */
#define KASAN_ABI_VERSION 5
kasan: add CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS This commit splits the current CONFIG_KASAN config option into two: 1. CONFIG_KASAN_GENERIC, that enables the generic KASAN mode (the one that exists now); 2. CONFIG_KASAN_SW_TAGS, that enables the software tag-based KASAN mode. The name CONFIG_KASAN_SW_TAGS is chosen as in the future we will have another hardware tag-based KASAN mode, that will rely on hardware memory tagging support in arm64. With CONFIG_KASAN_SW_TAGS enabled, compiler options are changed to instrument kernel files with -fsantize=kernel-hwaddress (except the ones for which KASAN_SANITIZE := n is set). Both CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS support both CONFIG_KASAN_INLINE and CONFIG_KASAN_OUTLINE instrumentation modes. This commit also adds empty placeholder (for now) implementation of tag-based KASAN specific hooks inserted by the compiler and adjusts common hooks implementation. While this commit adds the CONFIG_KASAN_SW_TAGS config option, this option is not selectable, as it depends on HAVE_ARCH_KASAN_SW_TAGS, which we will enable once all the infrastracture code has been added. Link: http://lkml.kernel.org/r/b2550106eb8a68b10fefbabce820910b115aa853.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 15:29:53 +07:00
#if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
/* Emulate GCC's __SANITIZE_ADDRESS__ flag */
#define __SANITIZE_ADDRESS__
kasan: add CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS This commit splits the current CONFIG_KASAN config option into two: 1. CONFIG_KASAN_GENERIC, that enables the generic KASAN mode (the one that exists now); 2. CONFIG_KASAN_SW_TAGS, that enables the software tag-based KASAN mode. The name CONFIG_KASAN_SW_TAGS is chosen as in the future we will have another hardware tag-based KASAN mode, that will rely on hardware memory tagging support in arm64. With CONFIG_KASAN_SW_TAGS enabled, compiler options are changed to instrument kernel files with -fsantize=kernel-hwaddress (except the ones for which KASAN_SANITIZE := n is set). Both CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS support both CONFIG_KASAN_INLINE and CONFIG_KASAN_OUTLINE instrumentation modes. This commit also adds empty placeholder (for now) implementation of tag-based KASAN specific hooks inserted by the compiler and adjusts common hooks implementation. While this commit adds the CONFIG_KASAN_SW_TAGS config option, this option is not selectable, as it depends on HAVE_ARCH_KASAN_SW_TAGS, which we will enable once all the infrastracture code has been added. Link: http://lkml.kernel.org/r/b2550106eb8a68b10fefbabce820910b115aa853.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 15:29:53 +07:00
#define __no_sanitize_address \
__attribute__((no_sanitize("address", "hwaddress")))
#else
#define __no_sanitize_address
#endif
#if __has_feature(thread_sanitizer)
/* emulate gcc's __SANITIZE_THREAD__ flag */
#define __SANITIZE_THREAD__
#define __no_sanitize_thread \
__attribute__((no_sanitize("thread")))
#else
#define __no_sanitize_thread
#endif
#if __has_feature(undefined_behavior_sanitizer)
/* GCC does not have __SANITIZE_UNDEFINED__ */
#define __no_sanitize_undefined \
__attribute__((no_sanitize("undefined")))
#else
#define __no_sanitize_undefined
#endif
compiler.h: enable builtin overflow checkers and add fallback code This adds wrappers for the __builtin overflow checkers present in gcc 5.1+ as well as fallback implementations for earlier compilers. It's not that easy to implement the fully generic __builtin_X_overflow(T1 a, T2 b, T3 *d) in macros, so the fallback code assumes that T1, T2 and T3 are the same. We obviously don't want the wrappers to have different semantics depending on $GCC_VERSION, so we also insist on that even when using the builtins. There are a few problems with the 'a+b < a' idiom for checking for overflow: For signed types, it relies on undefined behaviour and is not actually complete (it doesn't check underflow; e.g. INT_MIN+INT_MIN == 0 isn't caught). Due to type promotion it is wrong for all types (signed and unsigned) narrower than int. Similarly, when a and b does not have the same type, there are subtle cases like u32 a; if (a + sizeof(foo) < a) return -EOVERFLOW; a += sizeof(foo); where the test is always false on 64 bit platforms. Add to that that it is not always possible to determine the types involved at a glance. The new overflow.h is somewhat bulky, but that's mostly a result of trying to be type-generic, complete (e.g. catching not only overflow but also signed underflow) and not relying on undefined behaviour. Linus is of course right [1] that for unsigned subtraction a-b, the right way to check for overflow (underflow) is "b > a" and not "__builtin_sub_overflow(a, b, &d)", but that's just one out of six cases covered here, and included mostly for completeness. So is it worth it? I think it is, if nothing else for the documentation value of seeing if (check_add_overflow(a, b, &d)) return -EGOAWAY; do_stuff_with(d); instead of the open-coded (and possibly wrong and/or incomplete and/or UBsan-tickling) if (a+b < a) return -EGOAWAY; do_stuff_with(a+b); While gcc does recognize the 'a+b < a' idiom for testing unsigned add overflow, it doesn't do nearly as good for unsigned multiplication (there's also no single well-established idiom). So using check_mul_overflow in kcalloc and friends may also make gcc generate slightly better code. [1] https://lkml.org/lkml/2015/11/2/658 Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-05-08 05:36:27 +07:00
/*
* Not all versions of clang implement the type-generic versions
compiler.h: enable builtin overflow checkers and add fallback code This adds wrappers for the __builtin overflow checkers present in gcc 5.1+ as well as fallback implementations for earlier compilers. It's not that easy to implement the fully generic __builtin_X_overflow(T1 a, T2 b, T3 *d) in macros, so the fallback code assumes that T1, T2 and T3 are the same. We obviously don't want the wrappers to have different semantics depending on $GCC_VERSION, so we also insist on that even when using the builtins. There are a few problems with the 'a+b < a' idiom for checking for overflow: For signed types, it relies on undefined behaviour and is not actually complete (it doesn't check underflow; e.g. INT_MIN+INT_MIN == 0 isn't caught). Due to type promotion it is wrong for all types (signed and unsigned) narrower than int. Similarly, when a and b does not have the same type, there are subtle cases like u32 a; if (a + sizeof(foo) < a) return -EOVERFLOW; a += sizeof(foo); where the test is always false on 64 bit platforms. Add to that that it is not always possible to determine the types involved at a glance. The new overflow.h is somewhat bulky, but that's mostly a result of trying to be type-generic, complete (e.g. catching not only overflow but also signed underflow) and not relying on undefined behaviour. Linus is of course right [1] that for unsigned subtraction a-b, the right way to check for overflow (underflow) is "b > a" and not "__builtin_sub_overflow(a, b, &d)", but that's just one out of six cases covered here, and included mostly for completeness. So is it worth it? I think it is, if nothing else for the documentation value of seeing if (check_add_overflow(a, b, &d)) return -EGOAWAY; do_stuff_with(d); instead of the open-coded (and possibly wrong and/or incomplete and/or UBsan-tickling) if (a+b < a) return -EGOAWAY; do_stuff_with(a+b); While gcc does recognize the 'a+b < a' idiom for testing unsigned add overflow, it doesn't do nearly as good for unsigned multiplication (there's also no single well-established idiom). So using check_mul_overflow in kcalloc and friends may also make gcc generate slightly better code. [1] https://lkml.org/lkml/2015/11/2/658 Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-05-08 05:36:27 +07:00
* of the builtin overflow checkers. Fortunately, clang implements
* __has_builtin allowing us to avoid awkward version
* checks. Unfortunately, we don't know which version of gcc clang
* pretends to be, so the macro may or may not be defined.
*/
#if __has_builtin(__builtin_mul_overflow) && \
__has_builtin(__builtin_add_overflow) && \
__has_builtin(__builtin_sub_overflow)
#define COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW 1
#endif
#if __has_feature(shadow_call_stack)
# define __noscs __attribute__((__no_sanitize__("shadow-call-stack")))
#endif