linux_dsm_epyc7002/drivers/gpu/drm/amd/amdgpu/amdgpu_dpm.c

969 lines
36 KiB
C
Raw Normal View History

/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include "amdgpu.h"
#include "amdgpu_atombios.h"
#include "amdgpu_i2c.h"
#include "amdgpu_dpm.h"
#include "atom.h"
#include "amd_pcie.h"
void amdgpu_dpm_print_class_info(u32 class, u32 class2)
{
const char *s;
switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
default:
s = "none";
break;
case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
s = "battery";
break;
case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
s = "balanced";
break;
case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
s = "performance";
break;
}
printk("\tui class: %s\n", s);
printk("\tinternal class:");
if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) &&
(class2 == 0))
pr_cont(" none");
else {
if (class & ATOM_PPLIB_CLASSIFICATION_BOOT)
pr_cont(" boot");
if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
pr_cont(" thermal");
if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
pr_cont(" limited_pwr");
if (class & ATOM_PPLIB_CLASSIFICATION_REST)
pr_cont(" rest");
if (class & ATOM_PPLIB_CLASSIFICATION_FORCED)
pr_cont(" forced");
if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
pr_cont(" 3d_perf");
if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
pr_cont(" ovrdrv");
if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
pr_cont(" uvd");
if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW)
pr_cont(" 3d_low");
if (class & ATOM_PPLIB_CLASSIFICATION_ACPI)
pr_cont(" acpi");
if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
pr_cont(" uvd_hd2");
if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
pr_cont(" uvd_hd");
if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
pr_cont(" uvd_sd");
if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
pr_cont(" limited_pwr2");
if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
pr_cont(" ulv");
if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
pr_cont(" uvd_mvc");
}
pr_cont("\n");
}
void amdgpu_dpm_print_cap_info(u32 caps)
{
printk("\tcaps:");
if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
pr_cont(" single_disp");
if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK)
pr_cont(" video");
if (caps & ATOM_PPLIB_DISALLOW_ON_DC)
pr_cont(" no_dc");
pr_cont("\n");
}
void amdgpu_dpm_print_ps_status(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
printk("\tstatus:");
if (rps == adev->pm.dpm.current_ps)
pr_cont(" c");
if (rps == adev->pm.dpm.requested_ps)
pr_cont(" r");
if (rps == adev->pm.dpm.boot_ps)
pr_cont(" b");
pr_cont("\n");
}
void amdgpu_dpm_get_active_displays(struct amdgpu_device *adev)
{
struct drm_device *ddev = adev->ddev;
struct drm_crtc *crtc;
struct amdgpu_crtc *amdgpu_crtc;
adev->pm.dpm.new_active_crtcs = 0;
adev->pm.dpm.new_active_crtc_count = 0;
if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
list_for_each_entry(crtc,
&ddev->mode_config.crtc_list, head) {
amdgpu_crtc = to_amdgpu_crtc(crtc);
if (amdgpu_crtc->enabled) {
adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id);
adev->pm.dpm.new_active_crtc_count++;
}
}
}
}
u32 amdgpu_dpm_get_vblank_time(struct amdgpu_device *adev)
{
struct drm_device *dev = adev->ddev;
struct drm_crtc *crtc;
struct amdgpu_crtc *amdgpu_crtc;
u32 vblank_in_pixels;
u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */
if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
amdgpu_crtc = to_amdgpu_crtc(crtc);
if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
vblank_in_pixels =
amdgpu_crtc->hw_mode.crtc_htotal *
(amdgpu_crtc->hw_mode.crtc_vblank_end -
amdgpu_crtc->hw_mode.crtc_vdisplay +
(amdgpu_crtc->v_border * 2));
vblank_time_us = vblank_in_pixels * 1000 / amdgpu_crtc->hw_mode.clock;
break;
}
}
}
return vblank_time_us;
}
u32 amdgpu_dpm_get_vrefresh(struct amdgpu_device *adev)
{
struct drm_device *dev = adev->ddev;
struct drm_crtc *crtc;
struct amdgpu_crtc *amdgpu_crtc;
u32 vrefresh = 0;
if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
amdgpu_crtc = to_amdgpu_crtc(crtc);
if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
vrefresh = drm_mode_vrefresh(&amdgpu_crtc->hw_mode);
break;
}
}
}
return vrefresh;
}
bool amdgpu_is_internal_thermal_sensor(enum amdgpu_int_thermal_type sensor)
{
switch (sensor) {
case THERMAL_TYPE_RV6XX:
case THERMAL_TYPE_RV770:
case THERMAL_TYPE_EVERGREEN:
case THERMAL_TYPE_SUMO:
case THERMAL_TYPE_NI:
case THERMAL_TYPE_SI:
case THERMAL_TYPE_CI:
case THERMAL_TYPE_KV:
return true;
case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
return false; /* need special handling */
case THERMAL_TYPE_NONE:
case THERMAL_TYPE_EXTERNAL:
case THERMAL_TYPE_EXTERNAL_GPIO:
default:
return false;
}
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
};
union fan_info {
struct _ATOM_PPLIB_FANTABLE fan;
struct _ATOM_PPLIB_FANTABLE2 fan2;
struct _ATOM_PPLIB_FANTABLE3 fan3;
};
static int amdgpu_parse_clk_voltage_dep_table(struct amdgpu_clock_voltage_dependency_table *amdgpu_table,
ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table)
{
u32 size = atom_table->ucNumEntries *
sizeof(struct amdgpu_clock_voltage_dependency_entry);
int i;
ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry;
amdgpu_table->entries = kzalloc(size, GFP_KERNEL);
if (!amdgpu_table->entries)
return -ENOMEM;
entry = &atom_table->entries[0];
for (i = 0; i < atom_table->ucNumEntries; i++) {
amdgpu_table->entries[i].clk = le16_to_cpu(entry->usClockLow) |
(entry->ucClockHigh << 16);
amdgpu_table->entries[i].v = le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record));
}
amdgpu_table->count = atom_table->ucNumEntries;
return 0;
}
int amdgpu_get_platform_caps(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
adev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
adev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
adev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
return 0;
}
/* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24
#define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26
int amdgpu_parse_extended_power_table(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
union power_info *power_info;
union fan_info *fan_info;
ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
int ret, i;
if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
/* fan table */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
if (power_info->pplib3.usFanTableOffset) {
fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib3.usFanTableOffset));
adev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst;
adev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin);
adev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed);
adev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh);
adev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin);
adev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed);
adev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh);
if (fan_info->fan.ucFanTableFormat >= 2)
adev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax);
else
adev->pm.dpm.fan.t_max = 10900;
adev->pm.dpm.fan.cycle_delay = 100000;
if (fan_info->fan.ucFanTableFormat >= 3) {
adev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode;
adev->pm.dpm.fan.default_max_fan_pwm =
le16_to_cpu(fan_info->fan3.usFanPWMMax);
adev->pm.dpm.fan.default_fan_output_sensitivity = 4836;
adev->pm.dpm.fan.fan_output_sensitivity =
le16_to_cpu(fan_info->fan3.usFanOutputSensitivity);
}
adev->pm.dpm.fan.ucode_fan_control = true;
}
}
/* clock dependancy tables, shedding tables */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) {
if (power_info->pplib4.usVddcDependencyOnSCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset));
ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
dep_table);
if (ret) {
amdgpu_free_extended_power_table(adev);
return ret;
}
}
if (power_info->pplib4.usVddciDependencyOnMCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset));
ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
dep_table);
if (ret) {
amdgpu_free_extended_power_table(adev);
return ret;
}
}
if (power_info->pplib4.usVddcDependencyOnMCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset));
ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
dep_table);
if (ret) {
amdgpu_free_extended_power_table(adev);
return ret;
}
}
if (power_info->pplib4.usMvddDependencyOnMCLKOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset));
ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
dep_table);
if (ret) {
amdgpu_free_extended_power_table(adev);
return ret;
}
}
if (power_info->pplib4.usMaxClockVoltageOnDCOffset) {
ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v =
(ATOM_PPLIB_Clock_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset));
if (clk_v->ucNumEntries) {
adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk =
le16_to_cpu(clk_v->entries[0].usSclkLow) |
(clk_v->entries[0].ucSclkHigh << 16);
adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk =
le16_to_cpu(clk_v->entries[0].usMclkLow) |
(clk_v->entries[0].ucMclkHigh << 16);
adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc =
le16_to_cpu(clk_v->entries[0].usVddc);
adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci =
le16_to_cpu(clk_v->entries[0].usVddci);
}
}
if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) {
ATOM_PPLIB_PhaseSheddingLimits_Table *psl =
(ATOM_PPLIB_PhaseSheddingLimits_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset));
ATOM_PPLIB_PhaseSheddingLimits_Record *entry;
adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries =
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:03:40 +07:00
kcalloc(psl->ucNumEntries,
sizeof(struct amdgpu_phase_shedding_limits_entry),
GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
entry = &psl->entries[0];
for (i = 0; i < psl->ucNumEntries; i++) {
adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk =
le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16);
adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk =
le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16);
adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record));
}
adev->pm.dpm.dyn_state.phase_shedding_limits_table.count =
psl->ucNumEntries;
}
}
/* cac data */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) {
adev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit);
adev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit);
adev->pm.dpm.near_tdp_limit_adjusted = adev->pm.dpm.near_tdp_limit;
adev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit);
if (adev->pm.dpm.tdp_od_limit)
adev->pm.dpm.power_control = true;
else
adev->pm.dpm.power_control = false;
adev->pm.dpm.tdp_adjustment = 0;
adev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold);
adev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage);
adev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope);
if (power_info->pplib5.usCACLeakageTableOffset) {
ATOM_PPLIB_CAC_Leakage_Table *cac_table =
(ATOM_PPLIB_CAC_Leakage_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset));
ATOM_PPLIB_CAC_Leakage_Record *entry;
u32 size = cac_table->ucNumEntries * sizeof(struct amdgpu_cac_leakage_table);
adev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.cac_leakage_table.entries) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
entry = &cac_table->entries[0];
for (i = 0; i < cac_table->ucNumEntries; i++) {
if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 =
le16_to_cpu(entry->usVddc1);
adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 =
le16_to_cpu(entry->usVddc2);
adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 =
le16_to_cpu(entry->usVddc3);
} else {
adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc =
le16_to_cpu(entry->usVddc);
adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage =
le32_to_cpu(entry->ulLeakageValue);
}
entry = (ATOM_PPLIB_CAC_Leakage_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record));
}
adev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries;
}
}
/* ext tables */
if (le16_to_cpu(power_info->pplib.usTableSize) >=
sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset));
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) &&
ext_hdr->usVCETableOffset) {
VCEClockInfoArray *array = (VCEClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usVCETableOffset) + 1);
ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits =
(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
1 + array->ucNumEntries * sizeof(VCEClockInfo));
ATOM_PPLIB_VCE_State_Table *states =
(ATOM_PPLIB_VCE_State_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
1 + (array->ucNumEntries * sizeof (VCEClockInfo)) +
1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)));
ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry;
ATOM_PPLIB_VCE_State_Record *state_entry;
VCEClockInfo *vce_clk;
u32 size = limits->numEntries *
sizeof(struct amdgpu_vce_clock_voltage_dependency_entry);
adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
state_entry = &states->entries[0];
for (i = 0; i < limits->numEntries; i++) {
vce_clk = (VCEClockInfo *)
((u8 *)&array->entries[0] +
(entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk =
le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk =
le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record));
}
adev->pm.dpm.num_of_vce_states =
states->numEntries > AMD_MAX_VCE_LEVELS ?
AMD_MAX_VCE_LEVELS : states->numEntries;
for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) {
vce_clk = (VCEClockInfo *)
((u8 *)&array->entries[0] +
(state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
adev->pm.dpm.vce_states[i].evclk =
le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
adev->pm.dpm.vce_states[i].ecclk =
le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
adev->pm.dpm.vce_states[i].clk_idx =
state_entry->ucClockInfoIndex & 0x3f;
adev->pm.dpm.vce_states[i].pstate =
(state_entry->ucClockInfoIndex & 0xc0) >> 6;
state_entry = (ATOM_PPLIB_VCE_State_Record *)
((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) &&
ext_hdr->usUVDTableOffset) {
UVDClockInfoArray *array = (UVDClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usUVDTableOffset) + 1);
ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits =
(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 +
1 + (array->ucNumEntries * sizeof (UVDClockInfo)));
ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry;
u32 size = limits->numEntries *
sizeof(struct amdgpu_uvd_clock_voltage_dependency_entry);
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
for (i = 0; i < limits->numEntries; i++) {
UVDClockInfo *uvd_clk = (UVDClockInfo *)
((u8 *)&array->entries[0] +
(entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo)));
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk =
le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16);
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk =
le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16);
adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) &&
ext_hdr->usSAMUTableOffset) {
ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits =
(ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1);
ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry;
u32 size = limits->numEntries *
sizeof(struct amdgpu_clock_voltage_dependency_entry);
adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
for (i = 0; i < limits->numEntries; i++) {
adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk =
le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16);
adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) &&
ext_hdr->usPPMTableOffset) {
ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPPMTableOffset));
adev->pm.dpm.dyn_state.ppm_table =
kzalloc(sizeof(struct amdgpu_ppm_table), GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.ppm_table) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
adev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign;
adev->pm.dpm.dyn_state.ppm_table->cpu_core_number =
le16_to_cpu(ppm->usCpuCoreNumber);
adev->pm.dpm.dyn_state.ppm_table->platform_tdp =
le32_to_cpu(ppm->ulPlatformTDP);
adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp =
le32_to_cpu(ppm->ulSmallACPlatformTDP);
adev->pm.dpm.dyn_state.ppm_table->platform_tdc =
le32_to_cpu(ppm->ulPlatformTDC);
adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc =
le32_to_cpu(ppm->ulSmallACPlatformTDC);
adev->pm.dpm.dyn_state.ppm_table->apu_tdp =
le32_to_cpu(ppm->ulApuTDP);
adev->pm.dpm.dyn_state.ppm_table->dgpu_tdp =
le32_to_cpu(ppm->ulDGpuTDP);
adev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power =
le32_to_cpu(ppm->ulDGpuUlvPower);
adev->pm.dpm.dyn_state.ppm_table->tj_max =
le32_to_cpu(ppm->ulTjmax);
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) &&
ext_hdr->usACPTableOffset) {
ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits =
(ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usACPTableOffset) + 1);
ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry;
u32 size = limits->numEntries *
sizeof(struct amdgpu_clock_voltage_dependency_entry);
adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries =
kzalloc(size, GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count =
limits->numEntries;
entry = &limits->entries[0];
for (i = 0; i < limits->numEntries; i++) {
adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk =
le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16);
adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v =
le16_to_cpu(entry->usVoltage);
entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *)
((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record));
}
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) &&
ext_hdr->usPowerTuneTableOffset) {
u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
ATOM_PowerTune_Table *pt;
adev->pm.dpm.dyn_state.cac_tdp_table =
kzalloc(sizeof(struct amdgpu_cac_tdp_table), GFP_KERNEL);
if (!adev->pm.dpm.dyn_state.cac_tdp_table) {
amdgpu_free_extended_power_table(adev);
return -ENOMEM;
}
if (rev > 0) {
ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit =
ppt->usMaximumPowerDeliveryLimit;
pt = &ppt->power_tune_table;
} else {
ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255;
pt = &ppt->power_tune_table;
}
adev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP);
adev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp =
le16_to_cpu(pt->usConfigurableTDP);
adev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC);
adev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit =
le16_to_cpu(pt->usBatteryPowerLimit);
adev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit =
le16_to_cpu(pt->usSmallPowerLimit);
adev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage =
le16_to_cpu(pt->usLowCACLeakage);
adev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage =
le16_to_cpu(pt->usHighCACLeakage);
}
if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) &&
ext_hdr->usSclkVddgfxTableOffset) {
dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(ext_hdr->usSclkVddgfxTableOffset));
ret = amdgpu_parse_clk_voltage_dep_table(
&adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk,
dep_table);
if (ret) {
kfree(adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk.entries);
return ret;
}
}
}
return 0;
}
void amdgpu_free_extended_power_table(struct amdgpu_device *adev)
{
struct amdgpu_dpm_dynamic_state *dyn_state = &adev->pm.dpm.dyn_state;
kfree(dyn_state->vddc_dependency_on_sclk.entries);
kfree(dyn_state->vddci_dependency_on_mclk.entries);
kfree(dyn_state->vddc_dependency_on_mclk.entries);
kfree(dyn_state->mvdd_dependency_on_mclk.entries);
kfree(dyn_state->cac_leakage_table.entries);
kfree(dyn_state->phase_shedding_limits_table.entries);
kfree(dyn_state->ppm_table);
kfree(dyn_state->cac_tdp_table);
kfree(dyn_state->vce_clock_voltage_dependency_table.entries);
kfree(dyn_state->uvd_clock_voltage_dependency_table.entries);
kfree(dyn_state->samu_clock_voltage_dependency_table.entries);
kfree(dyn_state->acp_clock_voltage_dependency_table.entries);
kfree(dyn_state->vddgfx_dependency_on_sclk.entries);
}
static const char *pp_lib_thermal_controller_names[] = {
"NONE",
"lm63",
"adm1032",
"adm1030",
"max6649",
"lm64",
"f75375",
"RV6xx",
"RV770",
"adt7473",
"NONE",
"External GPIO",
"Evergreen",
"emc2103",
"Sumo",
"Northern Islands",
"Southern Islands",
"lm96163",
"Sea Islands",
"Kaveri/Kabini",
};
void amdgpu_add_thermal_controller(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
ATOM_PPLIB_POWERPLAYTABLE *power_table;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
ATOM_PPLIB_THERMALCONTROLLER *controller;
struct amdgpu_i2c_bus_rec i2c_bus;
u16 data_offset;
u8 frev, crev;
if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return;
power_table = (ATOM_PPLIB_POWERPLAYTABLE *)
(mode_info->atom_context->bios + data_offset);
controller = &power_table->sThermalController;
/* add the i2c bus for thermal/fan chip */
if (controller->ucType > 0) {
if (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN)
adev->pm.no_fan = true;
adev->pm.fan_pulses_per_revolution =
controller->ucFanParameters & ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
if (adev->pm.fan_pulses_per_revolution) {
adev->pm.fan_min_rpm = controller->ucFanMinRPM;
adev->pm.fan_max_rpm = controller->ucFanMaxRPM;
}
if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_RV6XX;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_RV770;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_SUMO;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_NISLANDS) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_NI;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SISLANDS) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_SI;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_CISLANDS) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_CI;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_KAVERI) {
DRM_INFO("Internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_KV;
} else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) {
DRM_INFO("External GPIO thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL_GPIO;
} else if (controller->ucType ==
ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) {
DRM_INFO("ADT7473 with internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_ADT7473_WITH_INTERNAL;
} else if (controller->ucType ==
ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) {
DRM_INFO("EMC2103 with internal thermal controller %s fan control\n",
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_EMC2103_WITH_INTERNAL;
} else if (controller->ucType < ARRAY_SIZE(pp_lib_thermal_controller_names)) {
DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n",
pp_lib_thermal_controller_names[controller->ucType],
controller->ucI2cAddress >> 1,
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL;
i2c_bus = amdgpu_atombios_lookup_i2c_gpio(adev, controller->ucI2cLine);
adev->pm.i2c_bus = amdgpu_i2c_lookup(adev, &i2c_bus);
if (adev->pm.i2c_bus) {
struct i2c_board_info info = { };
const char *name = pp_lib_thermal_controller_names[controller->ucType];
info.addr = controller->ucI2cAddress >> 1;
strlcpy(info.type, name, sizeof(info.type));
i2c_new_device(&adev->pm.i2c_bus->adapter, &info);
}
} else {
DRM_INFO("Unknown thermal controller type %d at 0x%02x %s fan control\n",
controller->ucType,
controller->ucI2cAddress >> 1,
(controller->ucFanParameters &
ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
}
}
}
enum amdgpu_pcie_gen amdgpu_get_pcie_gen_support(struct amdgpu_device *adev,
u32 sys_mask,
enum amdgpu_pcie_gen asic_gen,
enum amdgpu_pcie_gen default_gen)
{
switch (asic_gen) {
case AMDGPU_PCIE_GEN1:
return AMDGPU_PCIE_GEN1;
case AMDGPU_PCIE_GEN2:
return AMDGPU_PCIE_GEN2;
case AMDGPU_PCIE_GEN3:
return AMDGPU_PCIE_GEN3;
default:
if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) &&
(default_gen == AMDGPU_PCIE_GEN3))
return AMDGPU_PCIE_GEN3;
else if ((sys_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) &&
(default_gen == AMDGPU_PCIE_GEN2))
return AMDGPU_PCIE_GEN2;
else
return AMDGPU_PCIE_GEN1;
}
return AMDGPU_PCIE_GEN1;
}
struct amd_vce_state*
amdgpu_get_vce_clock_state(void *handle, u32 idx)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (idx < adev->pm.dpm.num_of_vce_states)
return &adev->pm.dpm.vce_states[idx];
return NULL;
}
int amdgpu_dpm_get_sclk(struct amdgpu_device *adev, bool low)
{
uint32_t clk_freq;
int ret = 0;
if (is_support_sw_smu(adev)) {
ret = smu_get_dpm_freq_range(&adev->smu, SMU_GFXCLK,
low ? &clk_freq : NULL,
!low ? &clk_freq : NULL);
if (ret)
return 0;
return clk_freq * 100;
} else {
return (adev)->powerplay.pp_funcs->get_sclk((adev)->powerplay.pp_handle, (low));
}
}
int amdgpu_dpm_get_mclk(struct amdgpu_device *adev, bool low)
{
uint32_t clk_freq;
int ret = 0;
if (is_support_sw_smu(adev)) {
ret = smu_get_dpm_freq_range(&adev->smu, SMU_UCLK,
low ? &clk_freq : NULL,
!low ? &clk_freq : NULL);
if (ret)
return 0;
return clk_freq * 100;
} else {
return (adev)->powerplay.pp_funcs->get_mclk((adev)->powerplay.pp_handle, (low));
}
}
int amdgpu_dpm_set_powergating_by_smu(struct amdgpu_device *adev, uint32_t block_type, bool gate)
{
int ret = 0;
bool swsmu = is_support_sw_smu(adev);
switch (block_type) {
case AMD_IP_BLOCK_TYPE_GFX:
case AMD_IP_BLOCK_TYPE_UVD:
case AMD_IP_BLOCK_TYPE_VCN:
case AMD_IP_BLOCK_TYPE_VCE:
if (swsmu)
ret = smu_dpm_set_power_gate(&adev->smu, block_type, gate);
else
ret = ((adev)->powerplay.pp_funcs->set_powergating_by_smu(
(adev)->powerplay.pp_handle, block_type, gate));
break;
case AMD_IP_BLOCK_TYPE_GMC:
case AMD_IP_BLOCK_TYPE_ACP:
case AMD_IP_BLOCK_TYPE_SDMA:
ret = ((adev)->powerplay.pp_funcs->set_powergating_by_smu(
(adev)->powerplay.pp_handle, block_type, gate));
break;
default:
break;
}
return ret;
}