2019-05-19 20:51:43 +07:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
/*
|
|
|
|
* transition.c - Kernel Live Patching transition functions
|
|
|
|
*
|
|
|
|
* Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/stacktrace.h>
|
2017-03-08 20:27:05 +07:00
|
|
|
#include "core.h"
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
#include "patch.h"
|
|
|
|
#include "transition.h"
|
|
|
|
#include "../sched/sched.h"
|
|
|
|
|
|
|
|
#define MAX_STACK_ENTRIES 100
|
|
|
|
#define STACK_ERR_BUF_SIZE 128
|
|
|
|
|
2019-01-15 23:45:06 +07:00
|
|
|
#define SIGNALS_TIMEOUT 15
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
struct klp_patch *klp_transition_patch;
|
|
|
|
|
|
|
|
static int klp_target_state = KLP_UNDEFINED;
|
|
|
|
|
2019-01-15 23:45:06 +07:00
|
|
|
static unsigned int klp_signals_cnt;
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
/*
|
|
|
|
* This work can be performed periodically to finish patching or unpatching any
|
|
|
|
* "straggler" tasks which failed to transition in the first attempt.
|
|
|
|
*/
|
|
|
|
static void klp_transition_work_fn(struct work_struct *work)
|
|
|
|
{
|
|
|
|
mutex_lock(&klp_mutex);
|
|
|
|
|
|
|
|
if (klp_transition_patch)
|
|
|
|
klp_try_complete_transition();
|
|
|
|
|
|
|
|
mutex_unlock(&klp_mutex);
|
|
|
|
}
|
|
|
|
static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
|
|
|
|
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
/*
|
|
|
|
* This function is just a stub to implement a hard force
|
2018-11-08 05:16:57 +07:00
|
|
|
* of synchronize_rcu(). This requires synchronizing
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
* tasks even in userspace and idle.
|
|
|
|
*/
|
|
|
|
static void klp_sync(struct work_struct *work)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We allow to patch also functions where RCU is not watching,
|
|
|
|
* e.g. before user_exit(). We can not rely on the RCU infrastructure
|
|
|
|
* to do the synchronization. Instead hard force the sched synchronization.
|
|
|
|
*
|
|
|
|
* This approach allows to use RCU functions for manipulating func_stack
|
|
|
|
* safely.
|
|
|
|
*/
|
|
|
|
static void klp_synchronize_transition(void)
|
|
|
|
{
|
|
|
|
schedule_on_each_cpu(klp_sync);
|
|
|
|
}
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
/*
|
|
|
|
* The transition to the target patch state is complete. Clean up the data
|
|
|
|
* structures.
|
|
|
|
*/
|
|
|
|
static void klp_complete_transition(void)
|
|
|
|
{
|
|
|
|
struct klp_object *obj;
|
|
|
|
struct klp_func *func;
|
|
|
|
struct task_struct *g, *task;
|
|
|
|
unsigned int cpu;
|
|
|
|
|
2017-10-14 02:08:43 +07:00
|
|
|
pr_debug("'%s': completing %s transition\n",
|
|
|
|
klp_transition_patch->mod->name,
|
|
|
|
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
|
|
|
|
2019-01-09 19:43:26 +07:00
|
|
|
if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
|
livepatch: Add atomic replace
Sometimes we would like to revert a particular fix. Currently, this
is not easy because we want to keep all other fixes active and we
could revert only the last applied patch.
One solution would be to apply new patch that implemented all
the reverted functions like in the original code. It would work
as expected but there will be unnecessary redirections. In addition,
it would also require knowing which functions need to be reverted at
build time.
Another problem is when there are many patches that touch the same
functions. There might be dependencies between patches that are
not enforced on the kernel side. Also it might be pretty hard to
actually prepare the patch and ensure compatibility with the other
patches.
Atomic replace && cumulative patches:
A better solution would be to create cumulative patch and say that
it replaces all older ones.
This patch adds a new "replace" flag to struct klp_patch. When it is
enabled, a set of 'nop' klp_func will be dynamically created for all
functions that are already being patched but that will no longer be
modified by the new patch. They are used as a new target during
the patch transition.
The idea is to handle Nops' structures like the static ones. When
the dynamic structures are allocated, we initialize all values that
are normally statically defined.
The only exception is "new_func" in struct klp_func. It has to point
to the original function and the address is known only when the object
(module) is loaded. Note that we really need to set it. The address is
used, for example, in klp_check_stack_func().
Nevertheless we still need to distinguish the dynamically allocated
structures in some operations. For this, we add "nop" flag into
struct klp_func and "dynamic" flag into struct klp_object. They
need special handling in the following situations:
+ The structures are added into the lists of objects and functions
immediately. In fact, the lists were created for this purpose.
+ The address of the original function is known only when the patched
object (module) is loaded. Therefore it is copied later in
klp_init_object_loaded().
+ The ftrace handler must not set PC to func->new_func. It would cause
infinite loop because the address points back to the beginning of
the original function.
+ The various free() functions must free the structure itself.
Note that other ways to detect the dynamic structures are not considered
safe. For example, even the statically defined struct klp_object might
include empty funcs array. It might be there just to run some callbacks.
Also note that the safe iterator must be used in the free() functions.
Otherwise already freed structures might get accessed.
Special callbacks handling:
The callbacks from the replaced patches are _not_ called by intention.
It would be pretty hard to define a reasonable semantic and implement it.
It might even be counter-productive. The new patch is cumulative. It is
supposed to include most of the changes from older patches. In most cases,
it will not want to call pre_unpatch() post_unpatch() callbacks from
the replaced patches. It would disable/break things for no good reasons.
Also it should be easier to handle various scenarios in a single script
in the new patch than think about interactions caused by running many
scripts from older patches. Not to say that the old scripts even would
not expect to be called in this situation.
Removing replaced patches:
One nice effect of the cumulative patches is that the code from the
older patches is no longer used. Therefore the replaced patches can
be removed. It has several advantages:
+ Nops' structs will no longer be necessary and might be removed.
This would save memory, restore performance (no ftrace handler),
allow clear view on what is really patched.
+ Disabling the patch will cause using the original code everywhere.
Therefore the livepatch callbacks could handle only one scenario.
Note that the complication is already complex enough when the patch
gets enabled. It is currently solved by calling callbacks only from
the new cumulative patch.
+ The state is clean in both the sysfs interface and lsmod. The modules
with the replaced livepatches might even get removed from the system.
Some people actually expected this behavior from the beginning. After all
a cumulative patch is supposed to "completely" replace an existing one.
It is like when a new version of an application replaces an older one.
This patch does the first step. It removes the replaced patches from
the list of patches. It is safe. The consistency model ensures that
they are no longer used. By other words, each process works only with
the structures from klp_transition_patch.
The removal is done by a special function. It combines actions done by
__disable_patch() and klp_complete_transition(). But it is a fast
track without all the transaction-related stuff.
Signed-off-by: Jason Baron <jbaron@akamai.com>
[pmladek@suse.com: Split, reuse existing code, simplified]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-09 19:43:25 +07:00
|
|
|
klp_discard_replaced_patches(klp_transition_patch);
|
2019-01-09 19:43:26 +07:00
|
|
|
klp_discard_nops(klp_transition_patch);
|
|
|
|
}
|
livepatch: Add atomic replace
Sometimes we would like to revert a particular fix. Currently, this
is not easy because we want to keep all other fixes active and we
could revert only the last applied patch.
One solution would be to apply new patch that implemented all
the reverted functions like in the original code. It would work
as expected but there will be unnecessary redirections. In addition,
it would also require knowing which functions need to be reverted at
build time.
Another problem is when there are many patches that touch the same
functions. There might be dependencies between patches that are
not enforced on the kernel side. Also it might be pretty hard to
actually prepare the patch and ensure compatibility with the other
patches.
Atomic replace && cumulative patches:
A better solution would be to create cumulative patch and say that
it replaces all older ones.
This patch adds a new "replace" flag to struct klp_patch. When it is
enabled, a set of 'nop' klp_func will be dynamically created for all
functions that are already being patched but that will no longer be
modified by the new patch. They are used as a new target during
the patch transition.
The idea is to handle Nops' structures like the static ones. When
the dynamic structures are allocated, we initialize all values that
are normally statically defined.
The only exception is "new_func" in struct klp_func. It has to point
to the original function and the address is known only when the object
(module) is loaded. Note that we really need to set it. The address is
used, for example, in klp_check_stack_func().
Nevertheless we still need to distinguish the dynamically allocated
structures in some operations. For this, we add "nop" flag into
struct klp_func and "dynamic" flag into struct klp_object. They
need special handling in the following situations:
+ The structures are added into the lists of objects and functions
immediately. In fact, the lists were created for this purpose.
+ The address of the original function is known only when the patched
object (module) is loaded. Therefore it is copied later in
klp_init_object_loaded().
+ The ftrace handler must not set PC to func->new_func. It would cause
infinite loop because the address points back to the beginning of
the original function.
+ The various free() functions must free the structure itself.
Note that other ways to detect the dynamic structures are not considered
safe. For example, even the statically defined struct klp_object might
include empty funcs array. It might be there just to run some callbacks.
Also note that the safe iterator must be used in the free() functions.
Otherwise already freed structures might get accessed.
Special callbacks handling:
The callbacks from the replaced patches are _not_ called by intention.
It would be pretty hard to define a reasonable semantic and implement it.
It might even be counter-productive. The new patch is cumulative. It is
supposed to include most of the changes from older patches. In most cases,
it will not want to call pre_unpatch() post_unpatch() callbacks from
the replaced patches. It would disable/break things for no good reasons.
Also it should be easier to handle various scenarios in a single script
in the new patch than think about interactions caused by running many
scripts from older patches. Not to say that the old scripts even would
not expect to be called in this situation.
Removing replaced patches:
One nice effect of the cumulative patches is that the code from the
older patches is no longer used. Therefore the replaced patches can
be removed. It has several advantages:
+ Nops' structs will no longer be necessary and might be removed.
This would save memory, restore performance (no ftrace handler),
allow clear view on what is really patched.
+ Disabling the patch will cause using the original code everywhere.
Therefore the livepatch callbacks could handle only one scenario.
Note that the complication is already complex enough when the patch
gets enabled. It is currently solved by calling callbacks only from
the new cumulative patch.
+ The state is clean in both the sysfs interface and lsmod. The modules
with the replaced livepatches might even get removed from the system.
Some people actually expected this behavior from the beginning. After all
a cumulative patch is supposed to "completely" replace an existing one.
It is like when a new version of an application replaces an older one.
This patch does the first step. It removes the replaced patches from
the list of patches. It is safe. The consistency model ensures that
they are no longer used. By other words, each process works only with
the structures from klp_transition_patch.
The removal is done by a special function. It combines actions done by
__disable_patch() and klp_complete_transition(). But it is a fast
track without all the transaction-related stuff.
Signed-off-by: Jason Baron <jbaron@akamai.com>
[pmladek@suse.com: Split, reuse existing code, simplified]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-09 19:43:25 +07:00
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
if (klp_target_state == KLP_UNPATCHED) {
|
|
|
|
/*
|
|
|
|
* All tasks have transitioned to KLP_UNPATCHED so we can now
|
|
|
|
* remove the new functions from the func_stack.
|
|
|
|
*/
|
|
|
|
klp_unpatch_objects(klp_transition_patch);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure klp_ftrace_handler() can no longer see functions
|
|
|
|
* from this patch on the ops->func_stack. Otherwise, after
|
|
|
|
* func->transition gets cleared, the handler may choose a
|
|
|
|
* removed function.
|
|
|
|
*/
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
klp_synchronize_transition();
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
}
|
|
|
|
|
2018-01-10 17:01:28 +07:00
|
|
|
klp_for_each_object(klp_transition_patch, obj)
|
|
|
|
klp_for_each_func(obj, func)
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
func->transition = false;
|
2017-03-07 00:20:29 +07:00
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
|
|
|
|
if (klp_target_state == KLP_PATCHED)
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
klp_synchronize_transition();
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process_thread(g, task) {
|
|
|
|
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
|
|
|
|
task->patch_state = KLP_UNDEFINED;
|
|
|
|
}
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
task = idle_task(cpu);
|
|
|
|
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
|
|
|
|
task->patch_state = KLP_UNDEFINED;
|
|
|
|
}
|
|
|
|
|
2017-10-14 02:08:41 +07:00
|
|
|
klp_for_each_object(klp_transition_patch, obj) {
|
|
|
|
if (!klp_is_object_loaded(obj))
|
|
|
|
continue;
|
|
|
|
if (klp_target_state == KLP_PATCHED)
|
|
|
|
klp_post_patch_callback(obj);
|
|
|
|
else if (klp_target_state == KLP_UNPATCHED)
|
|
|
|
klp_post_unpatch_callback(obj);
|
|
|
|
}
|
|
|
|
|
2017-10-14 02:08:42 +07:00
|
|
|
pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
|
|
|
|
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
klp_target_state = KLP_UNDEFINED;
|
|
|
|
klp_transition_patch = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called in the error path, to cancel a transition before it has
|
|
|
|
* started, i.e. klp_init_transition() has been called but
|
|
|
|
* klp_start_transition() hasn't. If the transition *has* been started,
|
|
|
|
* klp_reverse_transition() should be used instead.
|
|
|
|
*/
|
|
|
|
void klp_cancel_transition(void)
|
|
|
|
{
|
2017-03-07 00:20:29 +07:00
|
|
|
if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
|
|
|
|
return;
|
|
|
|
|
2017-10-14 02:08:43 +07:00
|
|
|
pr_debug("'%s': canceling patching transition, going to unpatch\n",
|
|
|
|
klp_transition_patch->mod->name);
|
|
|
|
|
2017-03-07 00:20:29 +07:00
|
|
|
klp_target_state = KLP_UNPATCHED;
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
klp_complete_transition();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Switch the patched state of the task to the set of functions in the target
|
|
|
|
* patch state.
|
|
|
|
*
|
|
|
|
* NOTE: If task is not 'current', the caller must ensure the task is inactive.
|
|
|
|
* Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
|
|
|
|
*/
|
|
|
|
void klp_update_patch_state(struct task_struct *task)
|
|
|
|
{
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
/*
|
2018-11-08 05:16:57 +07:00
|
|
|
* A variant of synchronize_rcu() is used to allow patching functions
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
* where RCU is not watching, see klp_synchronize_transition().
|
|
|
|
*/
|
|
|
|
preempt_disable_notrace();
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This test_and_clear_tsk_thread_flag() call also serves as a read
|
|
|
|
* barrier (smp_rmb) for two cases:
|
|
|
|
*
|
|
|
|
* 1) Enforce the order of the TIF_PATCH_PENDING read and the
|
|
|
|
* klp_target_state read. The corresponding write barrier is in
|
|
|
|
* klp_init_transition().
|
|
|
|
*
|
|
|
|
* 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
|
|
|
|
* of func->transition, if klp_ftrace_handler() is called later on
|
|
|
|
* the same CPU. See __klp_disable_patch().
|
|
|
|
*/
|
|
|
|
if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
|
|
|
|
task->patch_state = READ_ONCE(klp_target_state);
|
|
|
|
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
preempt_enable_notrace();
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine whether the given stack trace includes any references to a
|
|
|
|
* to-be-patched or to-be-unpatched function.
|
|
|
|
*/
|
2019-04-25 16:45:18 +07:00
|
|
|
static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
|
|
|
|
unsigned int nr_entries)
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
{
|
|
|
|
unsigned long func_addr, func_size, address;
|
|
|
|
struct klp_ops *ops;
|
|
|
|
int i;
|
|
|
|
|
2019-04-25 16:45:18 +07:00
|
|
|
for (i = 0; i < nr_entries; i++) {
|
|
|
|
address = entries[i];
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
|
|
|
|
if (klp_target_state == KLP_UNPATCHED) {
|
|
|
|
/*
|
|
|
|
* Check for the to-be-unpatched function
|
|
|
|
* (the func itself).
|
|
|
|
*/
|
|
|
|
func_addr = (unsigned long)func->new_func;
|
|
|
|
func_size = func->new_size;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Check for the to-be-patched function
|
|
|
|
* (the previous func).
|
|
|
|
*/
|
2019-01-09 19:43:19 +07:00
|
|
|
ops = klp_find_ops(func->old_func);
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
|
|
|
|
if (list_is_singular(&ops->func_stack)) {
|
|
|
|
/* original function */
|
2019-01-09 19:43:19 +07:00
|
|
|
func_addr = (unsigned long)func->old_func;
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
func_size = func->old_size;
|
|
|
|
} else {
|
|
|
|
/* previously patched function */
|
|
|
|
struct klp_func *prev;
|
|
|
|
|
|
|
|
prev = list_next_entry(func, stack_node);
|
|
|
|
func_addr = (unsigned long)prev->new_func;
|
|
|
|
func_size = prev->new_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (address >= func_addr && address < func_addr + func_size)
|
|
|
|
return -EAGAIN;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine whether it's safe to transition the task to the target patch state
|
|
|
|
* by looking for any to-be-patched or to-be-unpatched functions on its stack.
|
|
|
|
*/
|
|
|
|
static int klp_check_stack(struct task_struct *task, char *err_buf)
|
|
|
|
{
|
|
|
|
static unsigned long entries[MAX_STACK_ENTRIES];
|
|
|
|
struct klp_object *obj;
|
|
|
|
struct klp_func *func;
|
2019-04-25 16:45:18 +07:00
|
|
|
int ret, nr_entries;
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
|
2019-04-25 16:45:18 +07:00
|
|
|
ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
WARN_ON_ONCE(ret == -ENOSYS);
|
2019-04-25 16:45:18 +07:00
|
|
|
if (ret < 0) {
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
snprintf(err_buf, STACK_ERR_BUF_SIZE,
|
|
|
|
"%s: %s:%d has an unreliable stack\n",
|
|
|
|
__func__, task->comm, task->pid);
|
|
|
|
return ret;
|
|
|
|
}
|
2019-04-25 16:45:18 +07:00
|
|
|
nr_entries = ret;
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
|
|
|
|
klp_for_each_object(klp_transition_patch, obj) {
|
|
|
|
if (!obj->patched)
|
|
|
|
continue;
|
|
|
|
klp_for_each_func(obj, func) {
|
2019-04-25 16:45:18 +07:00
|
|
|
ret = klp_check_stack_func(func, entries, nr_entries);
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
if (ret) {
|
|
|
|
snprintf(err_buf, STACK_ERR_BUF_SIZE,
|
|
|
|
"%s: %s:%d is sleeping on function %s\n",
|
|
|
|
__func__, task->comm, task->pid,
|
|
|
|
func->old_name);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Try to safely switch a task to the target patch state. If it's currently
|
|
|
|
* running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
|
|
|
|
* if the stack is unreliable, return false.
|
|
|
|
*/
|
|
|
|
static bool klp_try_switch_task(struct task_struct *task)
|
|
|
|
{
|
|
|
|
struct rq *rq;
|
|
|
|
struct rq_flags flags;
|
|
|
|
int ret;
|
|
|
|
bool success = false;
|
|
|
|
char err_buf[STACK_ERR_BUF_SIZE];
|
|
|
|
|
|
|
|
err_buf[0] = '\0';
|
|
|
|
|
|
|
|
/* check if this task has already switched over */
|
|
|
|
if (task->patch_state == klp_target_state)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now try to check the stack for any to-be-patched or to-be-unpatched
|
|
|
|
* functions. If all goes well, switch the task to the target patch
|
|
|
|
* state.
|
|
|
|
*/
|
|
|
|
rq = task_rq_lock(task, &flags);
|
|
|
|
|
|
|
|
if (task_running(rq, task) && task != current) {
|
|
|
|
snprintf(err_buf, STACK_ERR_BUF_SIZE,
|
|
|
|
"%s: %s:%d is running\n", __func__, task->comm,
|
|
|
|
task->pid);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = klp_check_stack(task, err_buf);
|
|
|
|
if (ret)
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
success = true;
|
|
|
|
|
|
|
|
clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
|
|
|
task->patch_state = klp_target_state;
|
|
|
|
|
|
|
|
done:
|
|
|
|
task_rq_unlock(rq, task, &flags);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Due to console deadlock issues, pr_debug() can't be used while
|
|
|
|
* holding the task rq lock. Instead we have to use a temporary buffer
|
|
|
|
* and print the debug message after releasing the lock.
|
|
|
|
*/
|
|
|
|
if (err_buf[0] != '\0')
|
|
|
|
pr_debug("%s", err_buf);
|
|
|
|
|
|
|
|
return success;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2019-01-15 23:45:07 +07:00
|
|
|
/*
|
|
|
|
* Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
|
|
|
|
* Kthreads with TIF_PATCH_PENDING set are woken up.
|
|
|
|
*/
|
|
|
|
static void klp_send_signals(void)
|
|
|
|
{
|
|
|
|
struct task_struct *g, *task;
|
|
|
|
|
|
|
|
if (klp_signals_cnt == SIGNALS_TIMEOUT)
|
|
|
|
pr_notice("signaling remaining tasks\n");
|
|
|
|
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process_thread(g, task) {
|
|
|
|
if (!klp_patch_pending(task))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There is a small race here. We could see TIF_PATCH_PENDING
|
|
|
|
* set and decide to wake up a kthread or send a fake signal.
|
|
|
|
* Meanwhile the task could migrate itself and the action
|
|
|
|
* would be meaningless. It is not serious though.
|
|
|
|
*/
|
|
|
|
if (task->flags & PF_KTHREAD) {
|
|
|
|
/*
|
|
|
|
* Wake up a kthread which sleeps interruptedly and
|
|
|
|
* still has not been migrated.
|
|
|
|
*/
|
|
|
|
wake_up_state(task, TASK_INTERRUPTIBLE);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Send fake signal to all non-kthread tasks which are
|
|
|
|
* still not migrated.
|
|
|
|
*/
|
|
|
|
spin_lock_irq(&task->sighand->siglock);
|
|
|
|
signal_wake_up(task, 0);
|
|
|
|
spin_unlock_irq(&task->sighand->siglock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
}
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
/*
|
|
|
|
* Try to switch all remaining tasks to the target patch state by walking the
|
|
|
|
* stacks of sleeping tasks and looking for any to-be-patched or
|
|
|
|
* to-be-unpatched functions. If such functions are found, the task can't be
|
|
|
|
* switched yet.
|
|
|
|
*
|
|
|
|
* If any tasks are still stuck in the initial patch state, schedule a retry.
|
|
|
|
*/
|
|
|
|
void klp_try_complete_transition(void)
|
|
|
|
{
|
|
|
|
unsigned int cpu;
|
|
|
|
struct task_struct *g, *task;
|
2019-01-09 19:43:23 +07:00
|
|
|
struct klp_patch *patch;
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
bool complete = true;
|
|
|
|
|
|
|
|
WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Try to switch the tasks to the target patch state by walking their
|
|
|
|
* stacks and looking for any to-be-patched or to-be-unpatched
|
|
|
|
* functions. If such functions are found on a stack, or if the stack
|
|
|
|
* is deemed unreliable, the task can't be switched yet.
|
|
|
|
*
|
|
|
|
* Usually this will transition most (or all) of the tasks on a system
|
|
|
|
* unless the patch includes changes to a very common function.
|
|
|
|
*/
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process_thread(g, task)
|
|
|
|
if (!klp_try_switch_task(task))
|
|
|
|
complete = false;
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ditto for the idle "swapper" tasks.
|
|
|
|
*/
|
|
|
|
get_online_cpus();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
task = idle_task(cpu);
|
|
|
|
if (cpu_online(cpu)) {
|
|
|
|
if (!klp_try_switch_task(task))
|
|
|
|
complete = false;
|
|
|
|
} else if (task->patch_state != klp_target_state) {
|
|
|
|
/* offline idle tasks can be switched immediately */
|
|
|
|
clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
|
|
|
task->patch_state = klp_target_state;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
put_online_cpus();
|
|
|
|
|
|
|
|
if (!complete) {
|
2019-01-15 23:45:06 +07:00
|
|
|
if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
|
|
|
|
klp_send_signals();
|
|
|
|
klp_signals_cnt++;
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
/*
|
|
|
|
* Some tasks weren't able to be switched over. Try again
|
|
|
|
* later and/or wait for other methods like kernel exit
|
|
|
|
* switching.
|
|
|
|
*/
|
|
|
|
schedule_delayed_work(&klp_transition_work,
|
|
|
|
round_jiffies_relative(HZ));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* we're done, now cleanup the data structures */
|
2019-01-09 19:43:23 +07:00
|
|
|
patch = klp_transition_patch;
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
klp_complete_transition();
|
2019-01-09 19:43:23 +07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* It would make more sense to free the patch in
|
|
|
|
* klp_complete_transition() but it is called also
|
|
|
|
* from klp_cancel_transition().
|
|
|
|
*/
|
|
|
|
if (!patch->enabled) {
|
|
|
|
klp_free_patch_start(patch);
|
|
|
|
schedule_work(&patch->free_work);
|
|
|
|
}
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start the transition to the specified target patch state so tasks can begin
|
|
|
|
* switching to it.
|
|
|
|
*/
|
|
|
|
void klp_start_transition(void)
|
|
|
|
{
|
|
|
|
struct task_struct *g, *task;
|
|
|
|
unsigned int cpu;
|
|
|
|
|
|
|
|
WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
|
|
|
|
|
2017-10-14 02:08:43 +07:00
|
|
|
pr_notice("'%s': starting %s transition\n",
|
|
|
|
klp_transition_patch->mod->name,
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark all normal tasks as needing a patch state update. They'll
|
|
|
|
* switch either in klp_try_complete_transition() or as they exit the
|
|
|
|
* kernel.
|
|
|
|
*/
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process_thread(g, task)
|
|
|
|
if (task->patch_state != klp_target_state)
|
|
|
|
set_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark all idle tasks as needing a patch state update. They'll switch
|
|
|
|
* either in klp_try_complete_transition() or at the idle loop switch
|
|
|
|
* point.
|
|
|
|
*/
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
task = idle_task(cpu);
|
|
|
|
if (task->patch_state != klp_target_state)
|
|
|
|
set_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
|
|
|
}
|
2019-01-15 23:45:06 +07:00
|
|
|
|
|
|
|
klp_signals_cnt = 0;
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the global target patch state and all tasks to the initial patch
|
|
|
|
* state, and initialize all function transition states to true in preparation
|
|
|
|
* for patching or unpatching.
|
|
|
|
*/
|
|
|
|
void klp_init_transition(struct klp_patch *patch, int state)
|
|
|
|
{
|
|
|
|
struct task_struct *g, *task;
|
|
|
|
unsigned int cpu;
|
|
|
|
struct klp_object *obj;
|
|
|
|
struct klp_func *func;
|
|
|
|
int initial_state = !state;
|
|
|
|
|
|
|
|
WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
|
|
|
|
|
|
|
|
klp_transition_patch = patch;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the global target patch state which tasks will switch to. This
|
|
|
|
* has no effect until the TIF_PATCH_PENDING flags get set later.
|
|
|
|
*/
|
|
|
|
klp_target_state = state;
|
|
|
|
|
2017-10-14 02:08:43 +07:00
|
|
|
pr_debug("'%s': initializing %s transition\n", patch->mod->name,
|
|
|
|
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
/*
|
|
|
|
* Initialize all tasks to the initial patch state to prepare them for
|
|
|
|
* switching to the target state.
|
|
|
|
*/
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process_thread(g, task) {
|
|
|
|
WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
|
|
|
|
task->patch_state = initial_state;
|
|
|
|
}
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ditto for the idle "swapper" tasks.
|
|
|
|
*/
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
task = idle_task(cpu);
|
|
|
|
WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
|
|
|
|
task->patch_state = initial_state;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enforce the order of the task->patch_state initializations and the
|
|
|
|
* func->transition updates to ensure that klp_ftrace_handler() doesn't
|
|
|
|
* see a func in transition with a task->patch_state of KLP_UNDEFINED.
|
|
|
|
*
|
|
|
|
* Also enforce the order of the klp_target_state write and future
|
|
|
|
* TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
|
|
|
|
* set a task->patch_state to KLP_UNDEFINED.
|
|
|
|
*/
|
|
|
|
smp_wmb();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the func transition states so klp_ftrace_handler() will know to
|
|
|
|
* switch to the transition logic.
|
|
|
|
*
|
|
|
|
* When patching, the funcs aren't yet in the func_stack and will be
|
|
|
|
* made visible to the ftrace handler shortly by the calls to
|
|
|
|
* klp_patch_object().
|
|
|
|
*
|
|
|
|
* When unpatching, the funcs are already in the func_stack and so are
|
|
|
|
* already visible to the ftrace handler.
|
|
|
|
*/
|
|
|
|
klp_for_each_object(patch, obj)
|
|
|
|
klp_for_each_func(obj, func)
|
|
|
|
func->transition = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function can be called in the middle of an existing transition to
|
|
|
|
* reverse the direction of the target patch state. This can be done to
|
|
|
|
* effectively cancel an existing enable or disable operation if there are any
|
|
|
|
* tasks which are stuck in the initial patch state.
|
|
|
|
*/
|
|
|
|
void klp_reverse_transition(void)
|
|
|
|
{
|
|
|
|
unsigned int cpu;
|
|
|
|
struct task_struct *g, *task;
|
|
|
|
|
2017-10-14 02:08:43 +07:00
|
|
|
pr_debug("'%s': reversing transition from %s\n",
|
|
|
|
klp_transition_patch->mod->name,
|
|
|
|
klp_target_state == KLP_PATCHED ? "patching to unpatching" :
|
|
|
|
"unpatching to patching");
|
|
|
|
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
klp_transition_patch->enabled = !klp_transition_patch->enabled;
|
|
|
|
|
|
|
|
klp_target_state = !klp_target_state;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear all TIF_PATCH_PENDING flags to prevent races caused by
|
|
|
|
* klp_update_patch_state() running in parallel with
|
|
|
|
* klp_start_transition().
|
|
|
|
*/
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process_thread(g, task)
|
|
|
|
clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu)
|
|
|
|
clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
|
|
|
|
|
|
|
|
/* Let any remaining calls to klp_update_patch_state() complete */
|
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure
access and manipulation of the list of patches that modify the same function.
In particular, it is the variable func_stack that is accessible from the ftrace
handler via struct ftrace_ops and klp_ops.
Of course, it synchronizes also some states of the patch on the top of the
stack, e.g. func->transition in klp_ftrace_handler.
At the same time, this mechanism guards also the manipulation of
task->patch_state. It is modified according to the state of the transition and
the state of the process.
Now, all this works well as long as RCU works well. Sadly livepatching might
get into some corner cases when this is not true. For example, RCU is not
watching when rcu_read_lock() is taken in idle threads. It is because they
might sleep and prevent reaching the grace period for too long.
There are ways how to make RCU watching even in idle threads, see
rcu_irq_enter(). But there is a small location inside RCU infrastructure when
even this does not work.
This small problematic location can be detected either before calling
rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching().
Sadly, there is no safe way how to handle it. Once we detect that RCU was not
watching, we might see inconsistent state of the function stack and the related
variables in klp_ftrace_handler(). Then we could do a wrong decision, use an
incompatible implementation of the function and break the consistency of the
system. We could warn but we could not avoid the damage.
Fortunately, ftrace has similar problems and they seem to be solved well there.
It uses a heavy weight implementation of some RCU operations. In particular, it
replaces:
+ rcu_read_lock() with preempt_disable_notrace()
+ rcu_read_unlock() with preempt_enable_notrace()
+ synchronize_rcu() with schedule_on_each_cpu(sync_work)
My understanding is that this is RCU implementation from a stone age. It meets
the core RCU requirements but it is rather ineffective. Especially, it does not
allow to batch or speed up the synchronize calls.
On the other hand, it is very trivial. It allows to safely trace and/or
livepatch even the RCU core infrastructure. And the effectiveness is a not a
big issue because using ftrace or livepatches on productive systems is a rare
operation. The safety is much more important than a negligible extra load.
Note that the alternative implementation follows the RCU principles. Therefore,
we could and actually must use list_*_rcu() variants when manipulating the
func_stack. These functions allow to access the pointers in the right
order and with the right barriers. But they do not use any other
information that would be set only by rcu_read_lock().
Also note that there are actually two problems solved in ftrace:
First, it cares about the consistency of RCU read sections. It is being solved
the way as described and used in this patch.
Second, ftrace needs to make sure that nobody is inside the dynamic trampoline
when it is being freed. For this, it also calls synchronize_rcu_tasks() in
preemptive kernel in ftrace_shutdown().
Livepatch has similar problem but it is solved by ftrace for free.
klp_ftrace_handler() is a good guy and never sleeps. In addition, it is
registered with FTRACE_OPS_FL_DYNAMIC. It causes that
unregister_ftrace_function() calls:
* schedule_on_each_cpu(ftrace_sync) - always
* synchronize_rcu_tasks() - in preemptive kernel
The effect is that nobody is neither inside the dynamic trampoline nor inside
the ftrace handler after unregister_ftrace_function() returns.
[jkosina@suse.cz: reformat changelog, fix comment]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-06-14 15:54:52 +07:00
|
|
|
klp_synchronize_transition();
|
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the
foundation which will eventually enable us to patch those ~10% of
security patches which change function or data semantics. This is the
biggest remaining piece needed to make livepatch more generally useful.
This code stems from the design proposal made by Vojtech [1] in November
2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
consistency and syscall barrier switching combined with kpatch's stack
trace switching. There are also a number of fallback options which make
it quite flexible.
Patches are applied on a per-task basis, when the task is deemed safe to
switch over. When a patch is enabled, livepatch enters into a
transition state where tasks are converging to the patched state.
Usually this transition state can complete in a few seconds. The same
sequence occurs when a patch is disabled, except the tasks converge from
the patched state to the unpatched state.
An interrupt handler inherits the patched state of the task it
interrupts. The same is true for forked tasks: the child inherits the
patched state of the parent.
Livepatch uses several complementary approaches to determine when it's
safe to patch tasks:
1. The first and most effective approach is stack checking of sleeping
tasks. If no affected functions are on the stack of a given task,
the task is patched. In most cases this will patch most or all of
the tasks on the first try. Otherwise it'll keep trying
periodically. This option is only available if the architecture has
reliable stacks (HAVE_RELIABLE_STACKTRACE).
2. The second approach, if needed, is kernel exit switching. A
task is switched when it returns to user space from a system call, a
user space IRQ, or a signal. It's useful in the following cases:
a) Patching I/O-bound user tasks which are sleeping on an affected
function. In this case you have to send SIGSTOP and SIGCONT to
force it to exit the kernel and be patched.
b) Patching CPU-bound user tasks. If the task is highly CPU-bound
then it will get patched the next time it gets interrupted by an
IRQ.
c) In the future it could be useful for applying patches for
architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
this case you would have to signal most of the tasks on the
system. However this isn't supported yet because there's
currently no way to patch kthreads without
HAVE_RELIABLE_STACKTRACE.
3. For idle "swapper" tasks, since they don't ever exit the kernel, they
instead have a klp_update_patch_state() call in the idle loop which
allows them to be patched before the CPU enters the idle state.
(Note there's not yet such an approach for kthreads.)
All the above approaches may be skipped by setting the 'immediate' flag
in the 'klp_patch' struct, which will disable per-task consistency and
patch all tasks immediately. This can be useful if the patch doesn't
change any function or data semantics. Note that, even with this flag
set, it's possible that some tasks may still be running with an old
version of the function, until that function returns.
There's also an 'immediate' flag in the 'klp_func' struct which allows
you to specify that certain functions in the patch can be applied
without per-task consistency. This might be useful if you want to patch
a common function like schedule(), and the function change doesn't need
consistency but the rest of the patch does.
For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
must set patch->immediate which causes all tasks to be patched
immediately. This option should be used with care, only when the patch
doesn't change any function or data semantics.
In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
may be allowed to use per-task consistency if we can come up with
another way to patch kthreads.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack)
can be in transition at a given time. A patch can remain in transition
indefinitely, if any of the tasks are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
the transition is in progress. Then all the tasks will attempt to
converge back to the original patch state.
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-02-14 08:42:40 +07:00
|
|
|
|
|
|
|
klp_start_transition();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Called from copy_process() during fork */
|
|
|
|
void klp_copy_process(struct task_struct *child)
|
|
|
|
{
|
|
|
|
child->patch_state = current->patch_state;
|
|
|
|
|
|
|
|
/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
|
|
|
|
}
|
livepatch: send a fake signal to all blocking tasks
Live patching consistency model is of LEAVE_PATCHED_SET and
SWITCH_THREAD. This means that all tasks in the system have to be marked
one by one as safe to call a new patched function. Safe means when a
task is not (sleeping) in a set of patched functions. That is, no
patched function is on the task's stack. Another clearly safe place is
the boundary between kernel and userspace. The patching waits for all
tasks to get outside of the patched set or to cross the boundary. The
transition is completed afterwards.
The problem is that a task can block the transition for quite a long
time, if not forever. It could sleep in a set of patched functions, for
example. Luckily we can force the task to leave the set by sending it a
fake signal, that is a signal with no data in signal pending structures
(no handler, no sign of proper signal delivered). Suspend/freezer use
this to freeze the tasks as well. The task gets TIF_SIGPENDING set and
is woken up (if it has been sleeping in the kernel before) or kicked by
rescheduling IPI (if it was running on other CPU). This causes the task
to go to kernel/userspace boundary where the signal would be handled and
the task would be marked as safe in terms of live patching.
There are tasks which are not affected by this technique though. The
fake signal is not sent to kthreads. They should be handled differently.
They can be woken up so they leave the patched set and their
TIF_PATCH_PENDING can be cleared thanks to stack checking.
For the sake of completeness, if the task is in TASK_RUNNING state but
not currently running on some CPU it doesn't get the IPI, but it would
eventually handle the signal anyway. Second, if the task runs in the
kernel (in TASK_RUNNING state) it gets the IPI, but the signal is not
handled on return from the interrupt. It would be handled on return to
the userspace in the future when the fake signal is sent again. Stack
checking deals with these cases in a better way.
If the task was sleeping in a syscall it would be woken by our fake
signal, it would check if TIF_SIGPENDING is set (by calling
signal_pending() predicate) and return ERESTART* or EINTR. Syscalls with
ERESTART* return values are restarted in case of the fake signal (see
do_signal()). EINTR is propagated back to the userspace program. This
could disturb the program, but...
* each process dealing with signals should react accordingly to EINTR
return values.
* syscalls returning EINTR happen to be quite common situation in the
system even if no fake signal is sent.
* freezer sends the fake signal and does not deal with EINTR anyhow.
Thus EINTR values are returned when the system is resumed.
The very safe marking is done in architectures' "entry" on syscall and
interrupt/exception exit paths, and in a stack checking functions of
livepatch. TIF_PATCH_PENDING is cleared and the next
recalc_sigpending() drops TIF_SIGPENDING. In connection with this, also
call klp_update_patch_state() before do_signal(), so that
recalc_sigpending() in dequeue_signal() can clear TIF_PATCH_PENDING
immediately and thus prevent a double call of do_signal().
Note that the fake signal is not sent to stopped/traced tasks. Such task
prevents the patching to finish till it continues again (is not traced
anymore).
Last, sending the fake signal is not automatic. It is done only when
admin requests it by writing 1 to signal sysfs attribute in livepatch
sysfs directory.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: x86@kernel.org
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-11-15 20:50:13 +07:00
|
|
|
|
2017-11-22 17:29:21 +07:00
|
|
|
/*
|
|
|
|
* Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
|
|
|
|
* existing transition to finish.
|
|
|
|
*
|
|
|
|
* NOTE: klp_update_patch_state(task) requires the task to be inactive or
|
|
|
|
* 'current'. This is not the case here and the consistency model could be
|
|
|
|
* broken. Administrator, who is the only one to execute the
|
|
|
|
* klp_force_transitions(), has to be aware of this.
|
|
|
|
*/
|
|
|
|
void klp_force_transition(void)
|
|
|
|
{
|
2019-01-09 19:43:22 +07:00
|
|
|
struct klp_patch *patch;
|
2017-11-22 17:29:21 +07:00
|
|
|
struct task_struct *g, *task;
|
|
|
|
unsigned int cpu;
|
|
|
|
|
|
|
|
pr_warn("forcing remaining tasks to the patched state\n");
|
|
|
|
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
for_each_process_thread(g, task)
|
|
|
|
klp_update_patch_state(task);
|
|
|
|
read_unlock(&tasklist_lock);
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu)
|
|
|
|
klp_update_patch_state(idle_task(cpu));
|
|
|
|
|
2019-02-04 20:56:50 +07:00
|
|
|
klp_for_each_patch(patch)
|
2019-01-09 19:43:22 +07:00
|
|
|
patch->forced = true;
|
2017-11-22 17:29:21 +07:00
|
|
|
}
|