mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 02:35:09 +07:00
544 lines
14 KiB
C
544 lines
14 KiB
C
|
/*
|
||
|
* transition.c - Kernel Live Patching transition functions
|
||
|
*
|
||
|
* Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation; either version 2
|
||
|
* of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/stacktrace.h>
|
||
|
#include "patch.h"
|
||
|
#include "transition.h"
|
||
|
#include "../sched/sched.h"
|
||
|
|
||
|
#define MAX_STACK_ENTRIES 100
|
||
|
#define STACK_ERR_BUF_SIZE 128
|
||
|
|
||
|
extern struct mutex klp_mutex;
|
||
|
|
||
|
struct klp_patch *klp_transition_patch;
|
||
|
|
||
|
static int klp_target_state = KLP_UNDEFINED;
|
||
|
|
||
|
/*
|
||
|
* This work can be performed periodically to finish patching or unpatching any
|
||
|
* "straggler" tasks which failed to transition in the first attempt.
|
||
|
*/
|
||
|
static void klp_transition_work_fn(struct work_struct *work)
|
||
|
{
|
||
|
mutex_lock(&klp_mutex);
|
||
|
|
||
|
if (klp_transition_patch)
|
||
|
klp_try_complete_transition();
|
||
|
|
||
|
mutex_unlock(&klp_mutex);
|
||
|
}
|
||
|
static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
|
||
|
|
||
|
/*
|
||
|
* The transition to the target patch state is complete. Clean up the data
|
||
|
* structures.
|
||
|
*/
|
||
|
static void klp_complete_transition(void)
|
||
|
{
|
||
|
struct klp_object *obj;
|
||
|
struct klp_func *func;
|
||
|
struct task_struct *g, *task;
|
||
|
unsigned int cpu;
|
||
|
|
||
|
if (klp_target_state == KLP_UNPATCHED) {
|
||
|
/*
|
||
|
* All tasks have transitioned to KLP_UNPATCHED so we can now
|
||
|
* remove the new functions from the func_stack.
|
||
|
*/
|
||
|
klp_unpatch_objects(klp_transition_patch);
|
||
|
|
||
|
/*
|
||
|
* Make sure klp_ftrace_handler() can no longer see functions
|
||
|
* from this patch on the ops->func_stack. Otherwise, after
|
||
|
* func->transition gets cleared, the handler may choose a
|
||
|
* removed function.
|
||
|
*/
|
||
|
synchronize_rcu();
|
||
|
}
|
||
|
|
||
|
if (klp_transition_patch->immediate)
|
||
|
goto done;
|
||
|
|
||
|
klp_for_each_object(klp_transition_patch, obj)
|
||
|
klp_for_each_func(obj, func)
|
||
|
func->transition = false;
|
||
|
|
||
|
/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
|
||
|
if (klp_target_state == KLP_PATCHED)
|
||
|
synchronize_rcu();
|
||
|
|
||
|
read_lock(&tasklist_lock);
|
||
|
for_each_process_thread(g, task) {
|
||
|
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
|
||
|
task->patch_state = KLP_UNDEFINED;
|
||
|
}
|
||
|
read_unlock(&tasklist_lock);
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
task = idle_task(cpu);
|
||
|
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
|
||
|
task->patch_state = KLP_UNDEFINED;
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
klp_target_state = KLP_UNDEFINED;
|
||
|
klp_transition_patch = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is called in the error path, to cancel a transition before it has
|
||
|
* started, i.e. klp_init_transition() has been called but
|
||
|
* klp_start_transition() hasn't. If the transition *has* been started,
|
||
|
* klp_reverse_transition() should be used instead.
|
||
|
*/
|
||
|
void klp_cancel_transition(void)
|
||
|
{
|
||
|
klp_target_state = !klp_target_state;
|
||
|
klp_complete_transition();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Switch the patched state of the task to the set of functions in the target
|
||
|
* patch state.
|
||
|
*
|
||
|
* NOTE: If task is not 'current', the caller must ensure the task is inactive.
|
||
|
* Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
|
||
|
*/
|
||
|
void klp_update_patch_state(struct task_struct *task)
|
||
|
{
|
||
|
rcu_read_lock();
|
||
|
|
||
|
/*
|
||
|
* This test_and_clear_tsk_thread_flag() call also serves as a read
|
||
|
* barrier (smp_rmb) for two cases:
|
||
|
*
|
||
|
* 1) Enforce the order of the TIF_PATCH_PENDING read and the
|
||
|
* klp_target_state read. The corresponding write barrier is in
|
||
|
* klp_init_transition().
|
||
|
*
|
||
|
* 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
|
||
|
* of func->transition, if klp_ftrace_handler() is called later on
|
||
|
* the same CPU. See __klp_disable_patch().
|
||
|
*/
|
||
|
if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
|
||
|
task->patch_state = READ_ONCE(klp_target_state);
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determine whether the given stack trace includes any references to a
|
||
|
* to-be-patched or to-be-unpatched function.
|
||
|
*/
|
||
|
static int klp_check_stack_func(struct klp_func *func,
|
||
|
struct stack_trace *trace)
|
||
|
{
|
||
|
unsigned long func_addr, func_size, address;
|
||
|
struct klp_ops *ops;
|
||
|
int i;
|
||
|
|
||
|
if (func->immediate)
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; i < trace->nr_entries; i++) {
|
||
|
address = trace->entries[i];
|
||
|
|
||
|
if (klp_target_state == KLP_UNPATCHED) {
|
||
|
/*
|
||
|
* Check for the to-be-unpatched function
|
||
|
* (the func itself).
|
||
|
*/
|
||
|
func_addr = (unsigned long)func->new_func;
|
||
|
func_size = func->new_size;
|
||
|
} else {
|
||
|
/*
|
||
|
* Check for the to-be-patched function
|
||
|
* (the previous func).
|
||
|
*/
|
||
|
ops = klp_find_ops(func->old_addr);
|
||
|
|
||
|
if (list_is_singular(&ops->func_stack)) {
|
||
|
/* original function */
|
||
|
func_addr = func->old_addr;
|
||
|
func_size = func->old_size;
|
||
|
} else {
|
||
|
/* previously patched function */
|
||
|
struct klp_func *prev;
|
||
|
|
||
|
prev = list_next_entry(func, stack_node);
|
||
|
func_addr = (unsigned long)prev->new_func;
|
||
|
func_size = prev->new_size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (address >= func_addr && address < func_addr + func_size)
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determine whether it's safe to transition the task to the target patch state
|
||
|
* by looking for any to-be-patched or to-be-unpatched functions on its stack.
|
||
|
*/
|
||
|
static int klp_check_stack(struct task_struct *task, char *err_buf)
|
||
|
{
|
||
|
static unsigned long entries[MAX_STACK_ENTRIES];
|
||
|
struct stack_trace trace;
|
||
|
struct klp_object *obj;
|
||
|
struct klp_func *func;
|
||
|
int ret;
|
||
|
|
||
|
trace.skip = 0;
|
||
|
trace.nr_entries = 0;
|
||
|
trace.max_entries = MAX_STACK_ENTRIES;
|
||
|
trace.entries = entries;
|
||
|
ret = save_stack_trace_tsk_reliable(task, &trace);
|
||
|
WARN_ON_ONCE(ret == -ENOSYS);
|
||
|
if (ret) {
|
||
|
snprintf(err_buf, STACK_ERR_BUF_SIZE,
|
||
|
"%s: %s:%d has an unreliable stack\n",
|
||
|
__func__, task->comm, task->pid);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
klp_for_each_object(klp_transition_patch, obj) {
|
||
|
if (!obj->patched)
|
||
|
continue;
|
||
|
klp_for_each_func(obj, func) {
|
||
|
ret = klp_check_stack_func(func, &trace);
|
||
|
if (ret) {
|
||
|
snprintf(err_buf, STACK_ERR_BUF_SIZE,
|
||
|
"%s: %s:%d is sleeping on function %s\n",
|
||
|
__func__, task->comm, task->pid,
|
||
|
func->old_name);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to safely switch a task to the target patch state. If it's currently
|
||
|
* running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
|
||
|
* if the stack is unreliable, return false.
|
||
|
*/
|
||
|
static bool klp_try_switch_task(struct task_struct *task)
|
||
|
{
|
||
|
struct rq *rq;
|
||
|
struct rq_flags flags;
|
||
|
int ret;
|
||
|
bool success = false;
|
||
|
char err_buf[STACK_ERR_BUF_SIZE];
|
||
|
|
||
|
err_buf[0] = '\0';
|
||
|
|
||
|
/* check if this task has already switched over */
|
||
|
if (task->patch_state == klp_target_state)
|
||
|
return true;
|
||
|
|
||
|
/*
|
||
|
* For arches which don't have reliable stack traces, we have to rely
|
||
|
* on other methods (e.g., switching tasks at kernel exit).
|
||
|
*/
|
||
|
if (!klp_have_reliable_stack())
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* Now try to check the stack for any to-be-patched or to-be-unpatched
|
||
|
* functions. If all goes well, switch the task to the target patch
|
||
|
* state.
|
||
|
*/
|
||
|
rq = task_rq_lock(task, &flags);
|
||
|
|
||
|
if (task_running(rq, task) && task != current) {
|
||
|
snprintf(err_buf, STACK_ERR_BUF_SIZE,
|
||
|
"%s: %s:%d is running\n", __func__, task->comm,
|
||
|
task->pid);
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
ret = klp_check_stack(task, err_buf);
|
||
|
if (ret)
|
||
|
goto done;
|
||
|
|
||
|
success = true;
|
||
|
|
||
|
clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
||
|
task->patch_state = klp_target_state;
|
||
|
|
||
|
done:
|
||
|
task_rq_unlock(rq, task, &flags);
|
||
|
|
||
|
/*
|
||
|
* Due to console deadlock issues, pr_debug() can't be used while
|
||
|
* holding the task rq lock. Instead we have to use a temporary buffer
|
||
|
* and print the debug message after releasing the lock.
|
||
|
*/
|
||
|
if (err_buf[0] != '\0')
|
||
|
pr_debug("%s", err_buf);
|
||
|
|
||
|
return success;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to switch all remaining tasks to the target patch state by walking the
|
||
|
* stacks of sleeping tasks and looking for any to-be-patched or
|
||
|
* to-be-unpatched functions. If such functions are found, the task can't be
|
||
|
* switched yet.
|
||
|
*
|
||
|
* If any tasks are still stuck in the initial patch state, schedule a retry.
|
||
|
*/
|
||
|
void klp_try_complete_transition(void)
|
||
|
{
|
||
|
unsigned int cpu;
|
||
|
struct task_struct *g, *task;
|
||
|
bool complete = true;
|
||
|
|
||
|
WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
|
||
|
|
||
|
/*
|
||
|
* If the patch can be applied or reverted immediately, skip the
|
||
|
* per-task transitions.
|
||
|
*/
|
||
|
if (klp_transition_patch->immediate)
|
||
|
goto success;
|
||
|
|
||
|
/*
|
||
|
* Try to switch the tasks to the target patch state by walking their
|
||
|
* stacks and looking for any to-be-patched or to-be-unpatched
|
||
|
* functions. If such functions are found on a stack, or if the stack
|
||
|
* is deemed unreliable, the task can't be switched yet.
|
||
|
*
|
||
|
* Usually this will transition most (or all) of the tasks on a system
|
||
|
* unless the patch includes changes to a very common function.
|
||
|
*/
|
||
|
read_lock(&tasklist_lock);
|
||
|
for_each_process_thread(g, task)
|
||
|
if (!klp_try_switch_task(task))
|
||
|
complete = false;
|
||
|
read_unlock(&tasklist_lock);
|
||
|
|
||
|
/*
|
||
|
* Ditto for the idle "swapper" tasks.
|
||
|
*/
|
||
|
get_online_cpus();
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
task = idle_task(cpu);
|
||
|
if (cpu_online(cpu)) {
|
||
|
if (!klp_try_switch_task(task))
|
||
|
complete = false;
|
||
|
} else if (task->patch_state != klp_target_state) {
|
||
|
/* offline idle tasks can be switched immediately */
|
||
|
clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
||
|
task->patch_state = klp_target_state;
|
||
|
}
|
||
|
}
|
||
|
put_online_cpus();
|
||
|
|
||
|
if (!complete) {
|
||
|
/*
|
||
|
* Some tasks weren't able to be switched over. Try again
|
||
|
* later and/or wait for other methods like kernel exit
|
||
|
* switching.
|
||
|
*/
|
||
|
schedule_delayed_work(&klp_transition_work,
|
||
|
round_jiffies_relative(HZ));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
success:
|
||
|
pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
|
||
|
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
||
|
|
||
|
/* we're done, now cleanup the data structures */
|
||
|
klp_complete_transition();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Start the transition to the specified target patch state so tasks can begin
|
||
|
* switching to it.
|
||
|
*/
|
||
|
void klp_start_transition(void)
|
||
|
{
|
||
|
struct task_struct *g, *task;
|
||
|
unsigned int cpu;
|
||
|
|
||
|
WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
|
||
|
|
||
|
pr_notice("'%s': %s...\n", klp_transition_patch->mod->name,
|
||
|
klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
|
||
|
|
||
|
/*
|
||
|
* If the patch can be applied or reverted immediately, skip the
|
||
|
* per-task transitions.
|
||
|
*/
|
||
|
if (klp_transition_patch->immediate)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Mark all normal tasks as needing a patch state update. They'll
|
||
|
* switch either in klp_try_complete_transition() or as they exit the
|
||
|
* kernel.
|
||
|
*/
|
||
|
read_lock(&tasklist_lock);
|
||
|
for_each_process_thread(g, task)
|
||
|
if (task->patch_state != klp_target_state)
|
||
|
set_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
||
|
read_unlock(&tasklist_lock);
|
||
|
|
||
|
/*
|
||
|
* Mark all idle tasks as needing a patch state update. They'll switch
|
||
|
* either in klp_try_complete_transition() or at the idle loop switch
|
||
|
* point.
|
||
|
*/
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
task = idle_task(cpu);
|
||
|
if (task->patch_state != klp_target_state)
|
||
|
set_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the global target patch state and all tasks to the initial patch
|
||
|
* state, and initialize all function transition states to true in preparation
|
||
|
* for patching or unpatching.
|
||
|
*/
|
||
|
void klp_init_transition(struct klp_patch *patch, int state)
|
||
|
{
|
||
|
struct task_struct *g, *task;
|
||
|
unsigned int cpu;
|
||
|
struct klp_object *obj;
|
||
|
struct klp_func *func;
|
||
|
int initial_state = !state;
|
||
|
|
||
|
WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
|
||
|
|
||
|
klp_transition_patch = patch;
|
||
|
|
||
|
/*
|
||
|
* Set the global target patch state which tasks will switch to. This
|
||
|
* has no effect until the TIF_PATCH_PENDING flags get set later.
|
||
|
*/
|
||
|
klp_target_state = state;
|
||
|
|
||
|
/*
|
||
|
* If the patch can be applied or reverted immediately, skip the
|
||
|
* per-task transitions.
|
||
|
*/
|
||
|
if (patch->immediate)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Initialize all tasks to the initial patch state to prepare them for
|
||
|
* switching to the target state.
|
||
|
*/
|
||
|
read_lock(&tasklist_lock);
|
||
|
for_each_process_thread(g, task) {
|
||
|
WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
|
||
|
task->patch_state = initial_state;
|
||
|
}
|
||
|
read_unlock(&tasklist_lock);
|
||
|
|
||
|
/*
|
||
|
* Ditto for the idle "swapper" tasks.
|
||
|
*/
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
task = idle_task(cpu);
|
||
|
WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
|
||
|
task->patch_state = initial_state;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enforce the order of the task->patch_state initializations and the
|
||
|
* func->transition updates to ensure that klp_ftrace_handler() doesn't
|
||
|
* see a func in transition with a task->patch_state of KLP_UNDEFINED.
|
||
|
*
|
||
|
* Also enforce the order of the klp_target_state write and future
|
||
|
* TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
|
||
|
* set a task->patch_state to KLP_UNDEFINED.
|
||
|
*/
|
||
|
smp_wmb();
|
||
|
|
||
|
/*
|
||
|
* Set the func transition states so klp_ftrace_handler() will know to
|
||
|
* switch to the transition logic.
|
||
|
*
|
||
|
* When patching, the funcs aren't yet in the func_stack and will be
|
||
|
* made visible to the ftrace handler shortly by the calls to
|
||
|
* klp_patch_object().
|
||
|
*
|
||
|
* When unpatching, the funcs are already in the func_stack and so are
|
||
|
* already visible to the ftrace handler.
|
||
|
*/
|
||
|
klp_for_each_object(patch, obj)
|
||
|
klp_for_each_func(obj, func)
|
||
|
func->transition = true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function can be called in the middle of an existing transition to
|
||
|
* reverse the direction of the target patch state. This can be done to
|
||
|
* effectively cancel an existing enable or disable operation if there are any
|
||
|
* tasks which are stuck in the initial patch state.
|
||
|
*/
|
||
|
void klp_reverse_transition(void)
|
||
|
{
|
||
|
unsigned int cpu;
|
||
|
struct task_struct *g, *task;
|
||
|
|
||
|
klp_transition_patch->enabled = !klp_transition_patch->enabled;
|
||
|
|
||
|
klp_target_state = !klp_target_state;
|
||
|
|
||
|
/*
|
||
|
* Clear all TIF_PATCH_PENDING flags to prevent races caused by
|
||
|
* klp_update_patch_state() running in parallel with
|
||
|
* klp_start_transition().
|
||
|
*/
|
||
|
read_lock(&tasklist_lock);
|
||
|
for_each_process_thread(g, task)
|
||
|
clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
|
||
|
read_unlock(&tasklist_lock);
|
||
|
|
||
|
for_each_possible_cpu(cpu)
|
||
|
clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
|
||
|
|
||
|
/* Let any remaining calls to klp_update_patch_state() complete */
|
||
|
synchronize_rcu();
|
||
|
|
||
|
klp_start_transition();
|
||
|
}
|
||
|
|
||
|
/* Called from copy_process() during fork */
|
||
|
void klp_copy_process(struct task_struct *child)
|
||
|
{
|
||
|
child->patch_state = current->patch_state;
|
||
|
|
||
|
/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
|
||
|
}
|