linux_dsm_epyc7002/drivers/thermal/armada_thermal.c

984 lines
26 KiB
C
Raw Normal View History

/*
* Marvell EBU Armada SoCs thermal sensor driver
*
* Copyright (C) 2013 Marvell
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/thermal.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>
#include "thermal_core.h"
#define TO_MCELSIUS(c) ((c) * 1000)
/* Thermal Manager Control and Status Register */
#define PMU_TDC0_SW_RST_MASK (0x1 << 1)
#define PMU_TM_DISABLE_OFFS 0
#define PMU_TM_DISABLE_MASK (0x1 << PMU_TM_DISABLE_OFFS)
#define PMU_TDC0_REF_CAL_CNT_OFFS 11
#define PMU_TDC0_REF_CAL_CNT_MASK (0x1ff << PMU_TDC0_REF_CAL_CNT_OFFS)
#define PMU_TDC0_OTF_CAL_MASK (0x1 << 30)
#define PMU_TDC0_START_CAL_MASK (0x1 << 25)
#define A375_UNIT_CONTROL_SHIFT 27
#define A375_UNIT_CONTROL_MASK 0x7
#define A375_READOUT_INVERT BIT(15)
#define A375_HW_RESETn BIT(8)
/* Errata fields */
#define CONTROL0_TSEN_TC_TRIM_MASK 0x7
#define CONTROL0_TSEN_TC_TRIM_VAL 0x3
#define CONTROL0_TSEN_START BIT(0)
#define CONTROL0_TSEN_RESET BIT(1)
#define CONTROL0_TSEN_ENABLE BIT(2)
#define CONTROL0_TSEN_AVG_BYPASS BIT(6)
#define CONTROL0_TSEN_CHAN_SHIFT 13
#define CONTROL0_TSEN_CHAN_MASK 0xF
#define CONTROL0_TSEN_OSR_SHIFT 24
#define CONTROL0_TSEN_OSR_MAX 0x3
#define CONTROL0_TSEN_MODE_SHIFT 30
#define CONTROL0_TSEN_MODE_EXTERNAL 0x2
#define CONTROL0_TSEN_MODE_MASK 0x3
#define CONTROL1_TSEN_AVG_SHIFT 0
#define CONTROL1_TSEN_AVG_MASK 0x7
#define CONTROL1_EXT_TSEN_SW_RESET BIT(7)
#define CONTROL1_EXT_TSEN_HW_RESETn BIT(8)
#define CONTROL1_TSEN_INT_EN BIT(25)
#define CONTROL1_TSEN_SELECT_OFF 21
#define CONTROL1_TSEN_SELECT_MASK 0x3
#define STATUS_POLL_PERIOD_US 1000
#define STATUS_POLL_TIMEOUT_US 100000
#define OVERHEAT_INT_POLL_DELAY_MS 1000
struct armada_thermal_data;
/* Marvell EBU Thermal Sensor Dev Structure */
struct armada_thermal_priv {
struct device *dev;
struct regmap *syscon;
char zone_name[THERMAL_NAME_LENGTH];
/* serialize temperature reads/updates */
struct mutex update_lock;
struct armada_thermal_data *data;
struct thermal_zone_device *overheat_sensor;
int interrupt_source;
int current_channel;
long current_threshold;
long current_hysteresis;
};
struct armada_thermal_data {
/* Initialize the thermal IC */
void (*init)(struct platform_device *pdev,
struct armada_thermal_priv *priv);
/* Formula coeficients: temp = (b - m * reg) / div */
s64 coef_b;
s64 coef_m;
u32 coef_div;
bool inverted;
bool signed_sample;
/* Register shift and mask to access the sensor temperature */
unsigned int temp_shift;
unsigned int temp_mask;
unsigned int thresh_shift;
unsigned int hyst_shift;
unsigned int hyst_mask;
u32 is_valid_bit;
/* Syscon access */
unsigned int syscon_control0_off;
unsigned int syscon_control1_off;
unsigned int syscon_status_off;
unsigned int dfx_irq_cause_off;
unsigned int dfx_irq_mask_off;
unsigned int dfx_overheat_irq;
unsigned int dfx_server_irq_mask_off;
unsigned int dfx_server_irq_en;
/* One sensor is in the thermal IC, the others are in the CPUs if any */
unsigned int cpu_nr;
};
struct armada_drvdata {
enum drvtype {
LEGACY,
SYSCON
} type;
union {
struct armada_thermal_priv *priv;
struct thermal_zone_device *tz;
} data;
};
/*
* struct armada_thermal_sensor - hold the information of one thermal sensor
* @thermal: pointer to the local private structure
* @tzd: pointer to the thermal zone device
* @id: identifier of the thermal sensor
*/
struct armada_thermal_sensor {
struct armada_thermal_priv *priv;
int id;
};
static void armadaxp_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= PMU_TDC0_OTF_CAL_MASK;
/* Reference calibration value */
reg &= ~PMU_TDC0_REF_CAL_CNT_MASK;
reg |= (0xf1 << PMU_TDC0_REF_CAL_CNT_OFFS);
/* Reset the sensor */
reg |= PMU_TDC0_SW_RST_MASK;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
/* Enable the sensor */
regmap_read(priv->syscon, data->syscon_status_off, &reg);
reg &= ~PMU_TM_DISABLE_MASK;
regmap_write(priv->syscon, data->syscon_status_off, reg);
}
static void armada370_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= PMU_TDC0_OTF_CAL_MASK;
/* Reference calibration value */
reg &= ~PMU_TDC0_REF_CAL_CNT_MASK;
reg |= (0xf1 << PMU_TDC0_REF_CAL_CNT_OFFS);
/* Reset the sensor */
reg &= ~PMU_TDC0_START_CAL_MASK;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
msleep(10);
}
static void armada375_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg &= ~(A375_UNIT_CONTROL_MASK << A375_UNIT_CONTROL_SHIFT);
reg &= ~A375_READOUT_INVERT;
reg &= ~A375_HW_RESETn;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
msleep(20);
reg |= A375_HW_RESETn;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
msleep(50);
}
static int armada_wait_sensor_validity(struct armada_thermal_priv *priv)
{
u32 reg;
return regmap_read_poll_timeout(priv->syscon,
priv->data->syscon_status_off, reg,
reg & priv->data->is_valid_bit,
STATUS_POLL_PERIOD_US,
STATUS_POLL_TIMEOUT_US);
}
static void armada380_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
/* Disable the HW/SW reset */
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= CONTROL1_EXT_TSEN_HW_RESETn;
reg &= ~CONTROL1_EXT_TSEN_SW_RESET;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
/* Set Tsen Tc Trim to correct default value (errata #132698) */
regmap_read(priv->syscon, data->syscon_control0_off, &reg);
reg &= ~CONTROL0_TSEN_TC_TRIM_MASK;
reg |= CONTROL0_TSEN_TC_TRIM_VAL;
regmap_write(priv->syscon, data->syscon_control0_off, reg);
}
static void armada_ap806_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control0_off, &reg);
reg &= ~CONTROL0_TSEN_RESET;
reg |= CONTROL0_TSEN_START | CONTROL0_TSEN_ENABLE;
/* Sample every ~2ms */
reg |= CONTROL0_TSEN_OSR_MAX << CONTROL0_TSEN_OSR_SHIFT;
/* Enable average (2 samples by default) */
reg &= ~CONTROL0_TSEN_AVG_BYPASS;
regmap_write(priv->syscon, data->syscon_control0_off, reg);
}
static void armada_cp110_init(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
armada380_init(pdev, priv);
/* Sample every ~2ms */
regmap_read(priv->syscon, data->syscon_control0_off, &reg);
reg |= CONTROL0_TSEN_OSR_MAX << CONTROL0_TSEN_OSR_SHIFT;
regmap_write(priv->syscon, data->syscon_control0_off, reg);
/* Average the output value over 2^1 = 2 samples */
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg &= ~CONTROL1_TSEN_AVG_MASK << CONTROL1_TSEN_AVG_SHIFT;
reg |= 1 << CONTROL1_TSEN_AVG_SHIFT;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
}
static bool armada_is_valid(struct armada_thermal_priv *priv)
{
u32 reg;
if (!priv->data->is_valid_bit)
return true;
regmap_read(priv->syscon, priv->data->syscon_status_off, &reg);
return reg & priv->data->is_valid_bit;
}
static void armada_enable_overheat_interrupt(struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
/* Clear DFX temperature IRQ cause */
regmap_read(priv->syscon, data->dfx_irq_cause_off, &reg);
/* Enable DFX Temperature IRQ */
regmap_read(priv->syscon, data->dfx_irq_mask_off, &reg);
reg |= data->dfx_overheat_irq;
regmap_write(priv->syscon, data->dfx_irq_mask_off, reg);
/* Enable DFX server IRQ */
regmap_read(priv->syscon, data->dfx_server_irq_mask_off, &reg);
reg |= data->dfx_server_irq_en;
regmap_write(priv->syscon, data->dfx_server_irq_mask_off, reg);
/* Enable overheat interrupt */
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg |= CONTROL1_TSEN_INT_EN;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
}
static void __maybe_unused
armada_disable_overheat_interrupt(struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
u32 reg;
regmap_read(priv->syscon, data->syscon_control1_off, &reg);
reg &= ~CONTROL1_TSEN_INT_EN;
regmap_write(priv->syscon, data->syscon_control1_off, reg);
}
/* There is currently no board with more than one sensor per channel */
static int armada_select_channel(struct armada_thermal_priv *priv, int channel)
{
struct armada_thermal_data *data = priv->data;
u32 ctrl0;
if (channel < 0 || channel > priv->data->cpu_nr)
return -EINVAL;
if (priv->current_channel == channel)
return 0;
/* Stop the measurements */
regmap_read(priv->syscon, data->syscon_control0_off, &ctrl0);
ctrl0 &= ~CONTROL0_TSEN_START;
regmap_write(priv->syscon, data->syscon_control0_off, ctrl0);
/* Reset the mode, internal sensor will be automatically selected */
ctrl0 &= ~(CONTROL0_TSEN_MODE_MASK << CONTROL0_TSEN_MODE_SHIFT);
/* Other channels are external and should be selected accordingly */
if (channel) {
/* Change the mode to external */
ctrl0 |= CONTROL0_TSEN_MODE_EXTERNAL <<
CONTROL0_TSEN_MODE_SHIFT;
/* Select the sensor */
ctrl0 &= ~(CONTROL0_TSEN_CHAN_MASK << CONTROL0_TSEN_CHAN_SHIFT);
ctrl0 |= (channel - 1) << CONTROL0_TSEN_CHAN_SHIFT;
}
/* Actually set the mode/channel */
regmap_write(priv->syscon, data->syscon_control0_off, ctrl0);
priv->current_channel = channel;
/* Re-start the measurements */
ctrl0 |= CONTROL0_TSEN_START;
regmap_write(priv->syscon, data->syscon_control0_off, ctrl0);
/*
* The IP has a latency of ~15ms, so after updating the selected source,
* we must absolutely wait for the sensor validity bit to ensure we read
* actual data.
*/
if (armada_wait_sensor_validity(priv)) {
dev_err(priv->dev,
"Temperature sensor reading not valid\n");
return -EIO;
}
return 0;
}
static int armada_read_sensor(struct armada_thermal_priv *priv, int *temp)
{
u32 reg, div;
s64 sample, b, m;
regmap_read(priv->syscon, priv->data->syscon_status_off, &reg);
reg = (reg >> priv->data->temp_shift) & priv->data->temp_mask;
if (priv->data->signed_sample)
/* The most significant bit is the sign bit */
sample = sign_extend32(reg, fls(priv->data->temp_mask) - 1);
else
sample = reg;
/* Get formula coeficients */
b = priv->data->coef_b;
m = priv->data->coef_m;
div = priv->data->coef_div;
if (priv->data->inverted)
*temp = div_s64((m * sample) - b, div);
else
*temp = div_s64(b - (m * sample), div);
return 0;
}
static int armada_get_temp_legacy(struct thermal_zone_device *thermal,
int *temp)
{
struct armada_thermal_priv *priv = thermal->devdata;
int ret;
/* Valid check */
if (!armada_is_valid(priv)) {
dev_err(priv->dev,
"Temperature sensor reading not valid\n");
return -EIO;
}
/* Do the actual reading */
ret = armada_read_sensor(priv, temp);
return ret;
}
static struct thermal_zone_device_ops legacy_ops = {
.get_temp = armada_get_temp_legacy,
};
static int armada_get_temp(void *_sensor, int *temp)
{
struct armada_thermal_sensor *sensor = _sensor;
struct armada_thermal_priv *priv = sensor->priv;
int ret;
mutex_lock(&priv->update_lock);
/* Select the desired channel */
ret = armada_select_channel(priv, sensor->id);
if (ret)
goto unlock_mutex;
/* Do the actual reading */
ret = armada_read_sensor(priv, temp);
if (ret)
goto unlock_mutex;
/*
* Select back the interrupt source channel from which a potential
* critical trip point has been set.
*/
ret = armada_select_channel(priv, priv->interrupt_source);
unlock_mutex:
mutex_unlock(&priv->update_lock);
return ret;
}
static const struct thermal_zone_of_device_ops of_ops = {
.get_temp = armada_get_temp,
};
static unsigned int armada_mc_to_reg_temp(struct armada_thermal_data *data,
unsigned int temp_mc)
{
s64 b = data->coef_b;
s64 m = data->coef_m;
s64 div = data->coef_div;
unsigned int sample;
if (data->inverted)
sample = div_s64(((temp_mc * div) + b), m);
else
sample = div_s64((b - (temp_mc * div)), m);
return sample & data->temp_mask;
}
/*
* The documentation states:
* high/low watermark = threshold +/- 0.4761 * 2^(hysteresis + 2)
* which is the mathematical derivation for:
* 0x0 <=> 1.9°C, 0x1 <=> 3.8°C, 0x2 <=> 7.6°C, 0x3 <=> 15.2°C
*/
static unsigned int hyst_levels_mc[] = {1900, 3800, 7600, 15200};
static unsigned int armada_mc_to_reg_hyst(struct armada_thermal_data *data,
unsigned int hyst_mc)
{
int i;
/*
* We will always take the smallest possible hysteresis to avoid risking
* the hardware integrity by enlarging the threshold by +8°C in the
* worst case.
*/
for (i = ARRAY_SIZE(hyst_levels_mc) - 1; i > 0; i--)
if (hyst_mc >= hyst_levels_mc[i])
break;
return i & data->hyst_mask;
}
static void armada_set_overheat_thresholds(struct armada_thermal_priv *priv,
int thresh_mc, int hyst_mc)
{
struct armada_thermal_data *data = priv->data;
unsigned int threshold = armada_mc_to_reg_temp(data, thresh_mc);
unsigned int hysteresis = armada_mc_to_reg_hyst(data, hyst_mc);
u32 ctrl1;
regmap_read(priv->syscon, data->syscon_control1_off, &ctrl1);
/* Set Threshold */
if (thresh_mc >= 0) {
ctrl1 &= ~(data->temp_mask << data->thresh_shift);
ctrl1 |= threshold << data->thresh_shift;
priv->current_threshold = thresh_mc;
}
/* Set Hysteresis */
if (hyst_mc >= 0) {
ctrl1 &= ~(data->hyst_mask << data->hyst_shift);
ctrl1 |= hysteresis << data->hyst_shift;
priv->current_hysteresis = hyst_mc;
}
regmap_write(priv->syscon, data->syscon_control1_off, ctrl1);
}
static irqreturn_t armada_overheat_isr(int irq, void *blob)
{
/*
* Disable the IRQ and continue in thread context (thermal core
* notification and temperature monitoring).
*/
disable_irq_nosync(irq);
return IRQ_WAKE_THREAD;
}
static irqreturn_t armada_overheat_isr_thread(int irq, void *blob)
{
struct armada_thermal_priv *priv = blob;
int low_threshold = priv->current_threshold - priv->current_hysteresis;
int temperature;
u32 dummy;
int ret;
/* Notify the core in thread context */
thermal_zone_device_update(priv->overheat_sensor,
THERMAL_EVENT_UNSPECIFIED);
/*
* The overheat interrupt must be cleared by reading the DFX interrupt
* cause _after_ the temperature has fallen down to the low threshold.
* Otherwise future interrupts might not be served.
*/
do {
msleep(OVERHEAT_INT_POLL_DELAY_MS);
mutex_lock(&priv->update_lock);
ret = armada_read_sensor(priv, &temperature);
mutex_unlock(&priv->update_lock);
if (ret)
goto enable_irq;
} while (temperature >= low_threshold);
regmap_read(priv->syscon, priv->data->dfx_irq_cause_off, &dummy);
/* Notify the thermal core that the temperature is acceptable again */
thermal_zone_device_update(priv->overheat_sensor,
THERMAL_EVENT_UNSPECIFIED);
enable_irq:
enable_irq(irq);
return IRQ_HANDLED;
}
static const struct armada_thermal_data armadaxp_data = {
.init = armadaxp_init,
.temp_shift = 10,
.temp_mask = 0x1ff,
.coef_b = 3153000000ULL,
.coef_m = 10000000ULL,
.coef_div = 13825,
.syscon_status_off = 0xb0,
.syscon_control1_off = 0xd0,
};
static const struct armada_thermal_data armada370_data = {
.init = armada370_init,
.is_valid_bit = BIT(9),
.temp_shift = 10,
.temp_mask = 0x1ff,
.coef_b = 3153000000ULL,
.coef_m = 10000000ULL,
.coef_div = 13825,
.syscon_status_off = 0x0,
.syscon_control1_off = 0x4,
};
static const struct armada_thermal_data armada375_data = {
.init = armada375_init,
.is_valid_bit = BIT(10),
.temp_shift = 0,
.temp_mask = 0x1ff,
.coef_b = 3171900000ULL,
.coef_m = 10000000ULL,
.coef_div = 13616,
.syscon_status_off = 0x78,
.syscon_control0_off = 0x7c,
.syscon_control1_off = 0x80,
};
static const struct armada_thermal_data armada380_data = {
.init = armada380_init,
.is_valid_bit = BIT(10),
.temp_shift = 0,
.temp_mask = 0x3ff,
.coef_b = 1172499100ULL,
.coef_m = 2000096ULL,
.coef_div = 4201,
.inverted = true,
.syscon_control0_off = 0x70,
.syscon_control1_off = 0x74,
.syscon_status_off = 0x78,
};
static const struct armada_thermal_data armada_ap806_data = {
.init = armada_ap806_init,
.is_valid_bit = BIT(16),
.temp_shift = 0,
.temp_mask = 0x3ff,
.thresh_shift = 3,
.hyst_shift = 19,
.hyst_mask = 0x3,
.coef_b = -150000LL,
.coef_m = 423ULL,
.coef_div = 1,
.inverted = true,
.signed_sample = true,
.syscon_control0_off = 0x84,
.syscon_control1_off = 0x88,
.syscon_status_off = 0x8C,
.dfx_irq_cause_off = 0x108,
.dfx_irq_mask_off = 0x10C,
.dfx_overheat_irq = BIT(22),
.dfx_server_irq_mask_off = 0x104,
.dfx_server_irq_en = BIT(1),
.cpu_nr = 4,
};
static const struct armada_thermal_data armada_cp110_data = {
.init = armada_cp110_init,
.is_valid_bit = BIT(10),
.temp_shift = 0,
.temp_mask = 0x3ff,
.thresh_shift = 16,
.hyst_shift = 26,
.hyst_mask = 0x3,
.coef_b = 1172499100ULL,
.coef_m = 2000096ULL,
.coef_div = 4201,
.inverted = true,
.syscon_control0_off = 0x70,
.syscon_control1_off = 0x74,
.syscon_status_off = 0x78,
.dfx_irq_cause_off = 0x108,
.dfx_irq_mask_off = 0x10C,
.dfx_overheat_irq = BIT(20),
.dfx_server_irq_mask_off = 0x104,
.dfx_server_irq_en = BIT(1),
};
static const struct of_device_id armada_thermal_id_table[] = {
{
.compatible = "marvell,armadaxp-thermal",
.data = &armadaxp_data,
},
{
.compatible = "marvell,armada370-thermal",
.data = &armada370_data,
},
{
.compatible = "marvell,armada375-thermal",
.data = &armada375_data,
},
{
.compatible = "marvell,armada380-thermal",
.data = &armada380_data,
},
{
.compatible = "marvell,armada-ap806-thermal",
.data = &armada_ap806_data,
},
{
.compatible = "marvell,armada-cp110-thermal",
.data = &armada_cp110_data,
},
{
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, armada_thermal_id_table);
static const struct regmap_config armada_thermal_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.fast_io = true,
};
static int armada_thermal_probe_legacy(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
struct armada_thermal_data *data = priv->data;
struct resource *res;
void __iomem *base;
/* First memory region points towards the status register */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
thermal: armada: fix legacy resource fixup When the armada thermal module is inserted, removed and then reinserted, the system panics as per the messages below. The reason is that "edit" a live resource in the resource tree twice, and end up with it pointing to some other hardware. Editing live resources (resources that are part of the registered resource tree) is not permissible - the resource tree is an ordered set of resources, sorted by start address, and when a new resource is inserted, it is validated that it (a) fits within its parent resource and (b) does not overlap a neighbouring resource. Get rid of this resource editing. We can instead adjust the return value from ioremap() as ioremap() deals with the creation of page- based mappings - provided the adjustment does not cross a page boundary. SError Interrupt on CPU1, code 0xbf000000 -- SError CPU: 1 PID: 2749 Comm: modprobe Not tainted 4.19.0+ #175 Hardware name: Marvell 8040 MACCHIATOBin Double shot (DT) pstate: 20400085 (nzCv daIf +PAN -UAO) pc : regmap_mmio_read+0x3c/0x60 lr : regmap_mmio_read+0x3c/0x60 sp : ffffff800d453900 x29: ffffff800d453900 x28: ffffff800096a1d0 x27: 0000000000000100 x26: ffffff80009696d8 x25: ffffff8000969000 x24: ffffffc13a588918 x23: ffffffc13a9a28a8 x22: ffffff800d4539dc x21: 0000000000000084 x20: ffffff800d4539dc x19: ffffffc13a5d5480 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000030 x11: 0101010101010101 x10: 7f7f7f7f7f7f7f7f x9 : 0000000000000000 x8 : ffffffc13a5d5a80 x7 : 0000000000000000 x6 : 000000000000003f x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffffff800851be70 x2 : ffffff800851bd60 x1 : ffffff800d492ff8 x0 : 0000000000000000 Kernel panic - not syncing: Asynchronous SError Interrupt CPU: 1 PID: 2749 Comm: modprobe Not tainted 4.19.0+ #175 Hardware name: Marvell 8040 MACCHIATOBin Double shot (DT) Call trace: dump_backtrace+0x0/0x158 show_stack+0x14/0x1c dump_stack+0x90/0xb0 panic+0x128/0x298 print_tainted+0x0/0xa8 arm64_serror_panic+0x74/0x80 do_serror+0x5c/0xb8 el1_error+0xb4/0x144 regmap_mmio_read+0x3c/0x60 _regmap_bus_reg_read+0x18/0x20 _regmap_read+0x64/0x180 regmap_read+0x44/0x6c armada_ap806_init+0x24/0x5c [armada_thermal] armada_thermal_probe+0x2c8/0x37c [armada_thermal] platform_drv_probe+0x4c/0xb0 really_probe+0x21c/0x2b4 driver_probe_device+0x58/0xfc __driver_attach+0xd4/0xd8 bus_for_each_dev+0x50/0xa0 driver_attach+0x20/0x28 bus_add_driver+0x1c4/0x228 driver_register+0x6c/0x124 __platform_driver_register+0x4c/0x54 armada_thermal_driver_init+0x20/0x1000 [armada_thermal] do_one_initcall+0x30/0x204 do_init_module+0x5c/0x1d4 load_module+0x1a88/0x212c __se_sys_finit_module+0xa0/0xac __arm64_sys_finit_module+0x1c/0x24 el0_svc_common+0x94/0xf0 el0_svc_handler+0x24/0x80 el0_svc+0x8/0x3c0 SMP: stopping secondary CPUs Kernel Offset: disabled CPU features: 0x0,21806000 Memory Limit: none Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Tested-by: Miquel Raynal <miquel.raynal@bootlin.com> Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
2018-11-10 00:01:05 +07:00
/*
* Fix up from the old individual DT register specification to
* cover all the registers. We do this by adjusting the ioremap()
* result, which should be fine as ioremap() deals with pages.
* However, validate that we do not cross a page boundary while
* making this adjustment.
*/
if (((unsigned long)base & ~PAGE_MASK) < data->syscon_status_off)
return -EINVAL;
base -= data->syscon_status_off;
priv->syscon = devm_regmap_init_mmio(&pdev->dev, base,
&armada_thermal_regmap_config);
return PTR_ERR_OR_ZERO(priv->syscon);
}
static int armada_thermal_probe_syscon(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
priv->syscon = syscon_node_to_regmap(pdev->dev.parent->of_node);
return PTR_ERR_OR_ZERO(priv->syscon);
}
static void armada_set_sane_name(struct platform_device *pdev,
struct armada_thermal_priv *priv)
{
const char *name = dev_name(&pdev->dev);
char *insane_char;
if (strlen(name) > THERMAL_NAME_LENGTH) {
/*
* When inside a system controller, the device name has the
* form: f06f8000.system-controller:ap-thermal so stripping
* after the ':' should give us a shorter but meaningful name.
*/
name = strrchr(name, ':');
if (!name)
name = "armada_thermal";
else
name++;
}
/* Save the name locally */
strncpy(priv->zone_name, name, THERMAL_NAME_LENGTH - 1);
priv->zone_name[THERMAL_NAME_LENGTH - 1] = '\0';
/* Then check there are no '-' or hwmon core will complain */
do {
insane_char = strpbrk(priv->zone_name, "-");
if (insane_char)
*insane_char = '_';
} while (insane_char);
}
/*
* The IP can manage to trigger interrupts on overheat situation from all the
* sensors. However, the interrupt source changes along with the last selected
* source (ie. the last read sensor), which is an inconsistent behavior. Avoid
* possible glitches by always selecting back only one channel (arbitrarily: the
* first in the DT which has a critical trip point). We also disable sensor
* switch during overheat situations.
*/
static int armada_configure_overheat_int(struct armada_thermal_priv *priv,
struct thermal_zone_device *tz,
int sensor_id)
{
/* Retrieve the critical trip point to enable the overheat interrupt */
const struct thermal_trip *trips = of_thermal_get_trip_points(tz);
int ret;
int i;
if (!trips)
return -EINVAL;
for (i = 0; i < of_thermal_get_ntrips(tz); i++)
if (trips[i].type == THERMAL_TRIP_CRITICAL)
break;
if (i == of_thermal_get_ntrips(tz))
return -EINVAL;
ret = armada_select_channel(priv, sensor_id);
if (ret)
return ret;
armada_set_overheat_thresholds(priv,
trips[i].temperature,
trips[i].hysteresis);
priv->overheat_sensor = tz;
priv->interrupt_source = sensor_id;
armada_enable_overheat_interrupt(priv);
return 0;
}
static int armada_thermal_probe(struct platform_device *pdev)
{
struct thermal_zone_device *tz;
struct armada_thermal_sensor *sensor;
struct armada_drvdata *drvdata;
const struct of_device_id *match;
struct armada_thermal_priv *priv;
int sensor_id, irq;
int ret;
match = of_match_device(armada_thermal_id_table, &pdev->dev);
if (!match)
return -ENODEV;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
drvdata = devm_kzalloc(&pdev->dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
priv->dev = &pdev->dev;
priv->data = (struct armada_thermal_data *)match->data;
mutex_init(&priv->update_lock);
/*
* Legacy DT bindings only described "control1" register (also referred
* as "control MSB" on old documentation). Then, bindings moved to cover
* "control0/control LSB" and "control1/control MSB" registers within
* the same resource, which was then of size 8 instead of 4.
*
* The logic of defining sporadic registers is broken. For instance, it
* blocked the addition of the overheat interrupt feature that needed
* another resource somewhere else in the same memory area. One solution
* is to define an overall system controller and put the thermal node
* into it, which requires the use of regmaps across all the driver.
*/
if (IS_ERR(syscon_node_to_regmap(pdev->dev.parent->of_node))) {
/* Ensure device name is correct for the thermal core */
armada_set_sane_name(pdev, priv);
ret = armada_thermal_probe_legacy(pdev, priv);
if (ret)
return ret;
priv->data->init(pdev, priv);
/* Wait the sensors to be valid */
armada_wait_sensor_validity(priv);
tz = thermal_zone_device_register(priv->zone_name, 0, 0, priv,
&legacy_ops, NULL, 0, 0);
if (IS_ERR(tz)) {
dev_err(&pdev->dev,
"Failed to register thermal zone device\n");
return PTR_ERR(tz);
}
drvdata->type = LEGACY;
drvdata->data.tz = tz;
platform_set_drvdata(pdev, drvdata);
return 0;
}
ret = armada_thermal_probe_syscon(pdev, priv);
if (ret)
return ret;
priv->current_channel = -1;
priv->data->init(pdev, priv);
drvdata->type = SYSCON;
drvdata->data.priv = priv;
platform_set_drvdata(pdev, drvdata);
irq = platform_get_irq(pdev, 0);
if (irq == -EPROBE_DEFER)
return irq;
/* The overheat interrupt feature is not mandatory */
if (irq > 0) {
ret = devm_request_threaded_irq(&pdev->dev, irq,
armada_overheat_isr,
armada_overheat_isr_thread,
0, NULL, priv);
if (ret) {
dev_err(&pdev->dev, "Cannot request threaded IRQ %d\n",
irq);
return ret;
}
}
/*
* There is one channel for the IC and one per CPU (if any), each
* channel has one sensor.
*/
for (sensor_id = 0; sensor_id <= priv->data->cpu_nr; sensor_id++) {
sensor = devm_kzalloc(&pdev->dev,
sizeof(struct armada_thermal_sensor),
GFP_KERNEL);
if (!sensor)
return -ENOMEM;
/* Register the sensor */
sensor->priv = priv;
sensor->id = sensor_id;
tz = devm_thermal_zone_of_sensor_register(&pdev->dev,
sensor->id, sensor,
&of_ops);
if (IS_ERR(tz)) {
dev_info(&pdev->dev, "Thermal sensor %d unavailable\n",
sensor_id);
devm_kfree(&pdev->dev, sensor);
continue;
}
/*
* The first channel that has a critical trip point registered
* in the DT will serve as interrupt source. Others possible
* critical trip points will simply be ignored by the driver.
*/
if (irq > 0 && !priv->overheat_sensor)
armada_configure_overheat_int(priv, tz, sensor->id);
}
/* Just complain if no overheat interrupt was set up */
if (!priv->overheat_sensor)
dev_warn(&pdev->dev, "Overheat interrupt not available\n");
return 0;
}
static int armada_thermal_exit(struct platform_device *pdev)
{
struct armada_drvdata *drvdata = platform_get_drvdata(pdev);
if (drvdata->type == LEGACY)
thermal_zone_device_unregister(drvdata->data.tz);
return 0;
}
static struct platform_driver armada_thermal_driver = {
.probe = armada_thermal_probe,
.remove = armada_thermal_exit,
.driver = {
.name = "armada_thermal",
.of_match_table = armada_thermal_id_table,
},
};
module_platform_driver(armada_thermal_driver);
MODULE_AUTHOR("Ezequiel Garcia <ezequiel.garcia@free-electrons.com>");
MODULE_DESCRIPTION("Marvell EBU Armada SoCs thermal driver");
MODULE_LICENSE("GPL v2");