linux_dsm_epyc7002/arch/x86/kernel/cpu/amd.c

1158 lines
29 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/export.h>
#include <linux/bitops.h>
#include <linux/elf.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
x86/mm: Improve AMD Bulldozer ASLR workaround The ASLR implementation needs to special-case AMD F15h processors by clearing out bits [14:12] of the virtual address in order to avoid I$ cross invalidations and thus performance penalty for certain workloads. For details, see: dfb09f9b7ab0 ("x86, amd: Avoid cache aliasing penalties on AMD family 15h") This special case reduces the mmapped file's entropy by 3 bits. The following output is the run on an AMD Opteron 62xx class CPU processor under x86_64 Linux 4.0.0: $ for i in `seq 1 10`; do cat /proc/self/maps | grep "r-xp.*libc" ; done b7588000-b7736000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b7570000-b771e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b75d0000-b777e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b75b0000-b775e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b7578000-b7726000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 ... Bits [12:14] are always 0, i.e. the address always ends in 0x8000 or 0x0000. 32-bit systems, as in the example above, are especially sensitive to this issue because 32-bit randomness for VA space is 8 bits (see mmap_rnd()). With the Bulldozer special case, this diminishes to only 32 different slots of mmap virtual addresses. This patch randomizes per boot the three affected bits rather than setting them to zero. Since all the shared pages have the same value at bits [12..14], there is no cache aliasing problems. This value gets generated during system boot and it is thus not known to a potential remote attacker. Therefore, the impact from the Bulldozer workaround gets diminished and ASLR randomness increased. More details at: http://hmarco.org/bugs/AMD-Bulldozer-linux-ASLR-weakness-reducing-mmaped-files-by-eight.html Original white paper by AMD dealing with the issue: http://developer.amd.com/wordpress/media/2012/10/SharedL1InstructionCacheonAMD15hCPU.pdf Mentored-by: Ismael Ripoll <iripoll@disca.upv.es> Signed-off-by: Hector Marco-Gisbert <hecmargi@upv.es> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan-Simon <dl9pf@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1427456301-3764-1-git-send-email-hecmargi@upv.es Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 18:38:21 +07:00
#include <linux/random.h>
sched/topology: Improve load balancing on AMD EPYC systems SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init() for any sched domains with a NUMA distance greater than 2 hops (RECLAIM_DISTANCE). The idea being that it's expensive to balance across domains that far apart. However, as is rather unfortunately explained in: commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30") the value for RECLAIM_DISTANCE is based on node distance tables from 2011-era hardware. Current AMD EPYC machines have the following NUMA node distances: node distances: node 0 1 2 3 4 5 6 7 0: 10 16 16 16 32 32 32 32 1: 16 10 16 16 32 32 32 32 2: 16 16 10 16 32 32 32 32 3: 16 16 16 10 32 32 32 32 4: 32 32 32 32 10 16 16 16 5: 32 32 32 32 16 10 16 16 6: 32 32 32 32 16 16 10 16 7: 32 32 32 32 16 16 16 10 where 2 hops is 32. The result is that the scheduler fails to load balance properly across NUMA nodes on different sockets -- 2 hops apart. For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4 (CPUs 32-39) like so, $ numactl -C 0-7,32-39 ./spinner 16 causes all threads to fork and remain on node 0 until the active balancer kicks in after a few seconds and forcibly moves some threads to node 4. Override node_reclaim_distance for AMD Zen. Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suravee.Suthikulpanit@amd.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas.Lendacky@amd.com Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-08-09 02:53:01 +07:00
#include <linux/topology.h>
#include <asm/processor.h>
#include <asm/apic.h>
#include <asm/cacheinfo.h>
#include <asm/cpu.h>
#include <asm/spec-ctrl.h>
#include <asm/smp.h>
#include <asm/pci-direct.h>
x86/asm/delay: Introduce an MWAITX-based delay with a configurable timer MWAITX can enable a timer and a corresponding timer value specified in SW P0 clocks. The SW P0 frequency is the same as TSC. The timer provides an upper bound on how long the instruction waits before exiting. This way, a delay function in the kernel can leverage that MWAITX timer of MWAITX. When a CPU core executes MWAITX, it will be quiesced in a waiting phase, diminishing its power consumption. This way, we can save power in comparison to our default TSC-based delays. A simple test shows that: $ cat /sys/bus/pci/devices/0000\:00\:18.4/hwmon/hwmon0/power1_acc $ sleep 10000s $ cat /sys/bus/pci/devices/0000\:00\:18.4/hwmon/hwmon0/power1_acc Results: * TSC-based default delay: 485115 uWatts average power * MWAITX-based delay: 252738 uWatts average power Thus, that's about 240 milliWatts less power consumption. The test method relies on the support of AMD CPU accumulated power algorithm in fam15h_power for which patches are forthcoming. Suggested-by: Andy Lutomirski <luto@amacapital.net> Suggested-by: Borislav Petkov <bp@suse.de> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Huang Rui <ray.huang@amd.com> [ Fix delay truncation. ] Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Andreas Herrmann <herrmann.der.user@gmail.com> Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hector Marco-Gisbert <hecmargi@upv.es> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Li <tony.li@amd.com> Link: http://lkml.kernel.org/r/1438744732-1459-3-git-send-email-ray.huang@amd.com Link: http://lkml.kernel.org/r/1439201994-28067-4-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-10 17:19:54 +07:00
#include <asm/delay.h>
#include <asm/debugreg.h>
#ifdef CONFIG_X86_64
# include <asm/mmconfig.h>
# include <asm/set_memory.h>
#endif
#include "cpu.h"
x86/bugs: Separate AMD E400 erratum and C1E bug The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E state) is a two step process: - Selection of the E400 aware idle routine - Detection whether the platform is affected The idle routine selection happens for possibly affected CPUs depending on family/model/stepping information. These range of CPUs is not necessarily affected as the decision whether to enable the C1E feature is made by the firmware. Unfortunately there is no way to query this at early boot. The current implementation polls a MSR in the E400 aware idle routine to detect whether the CPU is affected. This is inefficient on non affected CPUs because every idle entry has to do the MSR read. There is a better way to detect this before going idle for the first time which requires to seperate the bug flags: X86_BUG_AMD_E400 - Selects the E400 aware idle routine and enables the detection X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400 Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400 bug bit to select the idle routine which currently does an unconditional detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches to remove the MSR polling and simplify the handling of this misfeature. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/20161209182912.2726-3-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-10 01:29:09 +07:00
static const int amd_erratum_383[];
static const int amd_erratum_400[];
static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum);
/*
* nodes_per_socket: Stores the number of nodes per socket.
* Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
* Node Identifiers[10:8]
*/
static u32 nodes_per_socket = 1;
static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
{
u32 gprs[8] = { 0 };
int err;
WARN_ONCE((boot_cpu_data.x86 != 0xf),
"%s should only be used on K8!\n", __func__);
gprs[1] = msr;
gprs[7] = 0x9c5a203a;
err = rdmsr_safe_regs(gprs);
*p = gprs[0] | ((u64)gprs[2] << 32);
return err;
}
static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
{
u32 gprs[8] = { 0 };
WARN_ONCE((boot_cpu_data.x86 != 0xf),
"%s should only be used on K8!\n", __func__);
gprs[0] = (u32)val;
gprs[1] = msr;
gprs[2] = val >> 32;
gprs[7] = 0x9c5a203a;
return wrmsr_safe_regs(gprs);
}
/*
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
* misexecution of code under Linux. Owners of such processors should
* contact AMD for precise details and a CPU swap.
*
* See http://www.multimania.com/poulot/k6bug.html
* and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
* (Publication # 21266 Issue Date: August 1998)
*
* The following test is erm.. interesting. AMD neglected to up
* the chip setting when fixing the bug but they also tweaked some
* performance at the same time..
*/
#ifdef CONFIG_X86_32
extern __visible void vide(void);
__asm__(".text\n"
".globl vide\n"
".type vide, @function\n"
".align 4\n"
"vide: ret\n");
#endif
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void init_amd_k5(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
/*
* General Systems BIOSen alias the cpu frequency registers
* of the Elan at 0x000df000. Unfortunately, one of the Linux
* drivers subsequently pokes it, and changes the CPU speed.
* Workaround : Remove the unneeded alias.
*/
#define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
#define CBAR_ENB (0x80000000)
#define CBAR_KEY (0X000000CB)
if (c->x86_model == 9 || c->x86_model == 10) {
if (inl(CBAR) & CBAR_ENB)
outl(0 | CBAR_KEY, CBAR);
}
#endif
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void init_amd_k6(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
u32 l, h;
int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
if (c->x86_model < 6) {
/* Based on AMD doc 20734R - June 2000 */
if (c->x86_model == 0) {
clear_cpu_cap(c, X86_FEATURE_APIC);
set_cpu_cap(c, X86_FEATURE_PGE);
}
return;
}
if (c->x86_model == 6 && c->x86_stepping == 1) {
const int K6_BUG_LOOP = 1000000;
int n;
void (*f_vide)(void);
u64 d, d2;
pr_info("AMD K6 stepping B detected - ");
/*
* It looks like AMD fixed the 2.6.2 bug and improved indirect
* calls at the same time.
*/
n = K6_BUG_LOOP;
f_vide = vide;
OPTIMIZER_HIDE_VAR(f_vide);
d = rdtsc();
while (n--)
f_vide();
d2 = rdtsc();
d = d2-d;
if (d > 20*K6_BUG_LOOP)
pr_cont("system stability may be impaired when more than 32 MB are used.\n");
else
pr_cont("probably OK (after B9730xxxx).\n");
}
/* K6 with old style WHCR */
if (c->x86_model < 8 ||
(c->x86_model == 8 && c->x86_stepping < 8)) {
/* We can only write allocate on the low 508Mb */
if (mbytes > 508)
mbytes = 508;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0x0000FFFF) == 0) {
unsigned long flags;
l = (1<<0)|((mbytes/4)<<1);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
pr_info("Enabling old style K6 write allocation for %d Mb\n",
mbytes);
}
return;
}
if ((c->x86_model == 8 && c->x86_stepping > 7) ||
c->x86_model == 9 || c->x86_model == 13) {
/* The more serious chips .. */
if (mbytes > 4092)
mbytes = 4092;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0xFFFF0000) == 0) {
unsigned long flags;
l = ((mbytes>>2)<<22)|(1<<16);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
pr_info("Enabling new style K6 write allocation for %d Mb\n",
mbytes);
}
return;
}
if (c->x86_model == 10) {
/* AMD Geode LX is model 10 */
/* placeholder for any needed mods */
return;
}
#endif
}
static void init_amd_k7(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_32
u32 l, h;
/*
* Bit 15 of Athlon specific MSR 15, needs to be 0
* to enable SSE on Palomino/Morgan/Barton CPU's.
* If the BIOS didn't enable it already, enable it here.
*/
if (c->x86_model >= 6 && c->x86_model <= 10) {
if (!cpu_has(c, X86_FEATURE_XMM)) {
pr_info("Enabling disabled K7/SSE Support.\n");
msr_clear_bit(MSR_K7_HWCR, 15);
set_cpu_cap(c, X86_FEATURE_XMM);
}
}
/*
* It's been determined by AMD that Athlons since model 8 stepping 1
* are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
* As per AMD technical note 27212 0.2
*/
if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
rdmsr(MSR_K7_CLK_CTL, l, h);
if ((l & 0xfff00000) != 0x20000000) {
pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
l, ((l & 0x000fffff)|0x20000000));
wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
}
}
/* calling is from identify_secondary_cpu() ? */
if (!c->cpu_index)
return;
/*
* Certain Athlons might work (for various values of 'work') in SMP
* but they are not certified as MP capable.
*/
/* Athlon 660/661 is valid. */
if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
(c->x86_stepping == 1)))
return;
/* Duron 670 is valid */
if ((c->x86_model == 7) && (c->x86_stepping == 0))
return;
/*
* Athlon 662, Duron 671, and Athlon >model 7 have capability
* bit. It's worth noting that the A5 stepping (662) of some
* Athlon XP's have the MP bit set.
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
* more.
*/
if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
(c->x86_model > 7))
if (cpu_has(c, X86_FEATURE_MP))
return;
/* If we get here, not a certified SMP capable AMD system. */
/*
* Don't taint if we are running SMP kernel on a single non-MP
* approved Athlon
*/
WARN_ONCE(1, "WARNING: This combination of AMD"
" processors is not suitable for SMP.\n");
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
#endif
}
#ifdef CONFIG_NUMA
/*
* To workaround broken NUMA config. Read the comment in
* srat_detect_node().
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static int nearby_node(int apicid)
{
int i, node;
for (i = apicid - 1; i >= 0; i--) {
node = __apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
node = __apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
return first_node(node_online_map); /* Shouldn't happen */
}
#endif
x86/cpu/amd: Limit cpu_core_id fixup to families older than F17h Current cpu_core_id fixup causes downcored F17h configurations to be incorrect: NODE: 0 processor 0 core id : 0 processor 1 core id : 1 processor 2 core id : 2 processor 3 core id : 4 processor 4 core id : 5 processor 5 core id : 0 NODE: 1 processor 6 core id : 2 processor 7 core id : 3 processor 8 core id : 4 processor 9 core id : 0 processor 10 core id : 1 processor 11 core id : 2 Code that relies on the cpu_core_id, like match_smt(), for example, which builds the thread siblings masks used by the scheduler, is mislead. So, limit the fixup to pre-F17h machines. The new value for cpu_core_id for F17h and later will represent the CPUID_Fn8000001E_EBX[CoreId], which is guaranteed to be unique for each core within a socket. This way we have: NODE: 0 processor 0 core id : 0 processor 1 core id : 1 processor 2 core id : 2 processor 3 core id : 4 processor 4 core id : 5 processor 5 core id : 6 NODE: 1 processor 6 core id : 8 processor 7 core id : 9 processor 8 core id : 10 processor 9 core id : 12 processor 10 core id : 13 processor 11 core id : 14 Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> [ Heavily massaged. ] Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yazen Ghannam <Yazen.Ghannam@amd.com> Link: http://lkml.kernel.org/r/20170731085159.9455-2-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-31 15:51:58 +07:00
/*
* Fix up cpu_core_id for pre-F17h systems to be in the
* [0 .. cores_per_node - 1] range. Not really needed but
* kept so as not to break existing setups.
*/
static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
{
u32 cus_per_node;
if (c->x86 >= 0x17)
return;
cus_per_node = c->x86_max_cores / nodes_per_socket;
c->cpu_core_id %= cus_per_node;
}
static void amd_get_topology_early(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_TOPOEXT))
smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1;
}
/*
* Fixup core topology information for
* (1) AMD multi-node processors
* Assumption: Number of cores in each internal node is the same.
* (2) AMD processors supporting compute units
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void amd_get_topology(struct cpuinfo_x86 *c)
{
u8 node_id;
int cpu = smp_processor_id();
/* get information required for multi-node processors */
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
int err;
u32 eax, ebx, ecx, edx;
cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
node_id = ecx & 0xff;
if (c->x86 == 0x15)
c->cu_id = ebx & 0xff;
x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature These changes do not affect current hw - just a cleanup: Currently, we assume that a system has a single Last Level Cache (LLC) per node, and that the cpu_llc_id is thus equal to the node_id. This no longer applies since Fam17h can have multiple last level caches within a node. So group the cpu_llc_id assignment by topology feature and family in order to make the computation of cpu_llc_id on the different families more clear. Here is how the LLC ID is being computed on the different families: The NODEID_MSR feature only applies to Fam10h in which case the LLC is at the node level. The TOPOEXT feature is used on families 15h, 16h and 17h. So far we only see multiple last level caches if L3 caches are available. Otherwise, the cpu_llc_id will default to be the phys_proc_id. We have L3 caches only on families 15h and 17h: - on Fam15h, the LLC is at the node level. - on Fam17h, the LLC is at the core complex level and can be found by right shifting the APIC ID. Also, keep the family checks explicit so that new families will fall back to the default, which will be node_id for TOPOEXT systems. Single node systems in families 10h and 15h will have a Node ID of 0 which will be the same as the phys_proc_id, so we don't need to check for multiple nodes before using the node_id. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com> [ Rewrote the commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20161108153054.bs3sajbyevq6a6uu@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-08 22:30:54 +07:00
if (c->x86 >= 0x17) {
c->cpu_core_id = ebx & 0xff;
if (smp_num_siblings > 1)
c->x86_max_cores /= smp_num_siblings;
}
x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature These changes do not affect current hw - just a cleanup: Currently, we assume that a system has a single Last Level Cache (LLC) per node, and that the cpu_llc_id is thus equal to the node_id. This no longer applies since Fam17h can have multiple last level caches within a node. So group the cpu_llc_id assignment by topology feature and family in order to make the computation of cpu_llc_id on the different families more clear. Here is how the LLC ID is being computed on the different families: The NODEID_MSR feature only applies to Fam10h in which case the LLC is at the node level. The TOPOEXT feature is used on families 15h, 16h and 17h. So far we only see multiple last level caches if L3 caches are available. Otherwise, the cpu_llc_id will default to be the phys_proc_id. We have L3 caches only on families 15h and 17h: - on Fam15h, the LLC is at the node level. - on Fam17h, the LLC is at the core complex level and can be found by right shifting the APIC ID. Also, keep the family checks explicit so that new families will fall back to the default, which will be node_id for TOPOEXT systems. Single node systems in families 10h and 15h will have a Node ID of 0 which will be the same as the phys_proc_id, so we don't need to check for multiple nodes before using the node_id. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com> [ Rewrote the commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20161108153054.bs3sajbyevq6a6uu@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-08 22:30:54 +07:00
/*
* In case leaf B is available, use it to derive
* topology information.
x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature These changes do not affect current hw - just a cleanup: Currently, we assume that a system has a single Last Level Cache (LLC) per node, and that the cpu_llc_id is thus equal to the node_id. This no longer applies since Fam17h can have multiple last level caches within a node. So group the cpu_llc_id assignment by topology feature and family in order to make the computation of cpu_llc_id on the different families more clear. Here is how the LLC ID is being computed on the different families: The NODEID_MSR feature only applies to Fam10h in which case the LLC is at the node level. The TOPOEXT feature is used on families 15h, 16h and 17h. So far we only see multiple last level caches if L3 caches are available. Otherwise, the cpu_llc_id will default to be the phys_proc_id. We have L3 caches only on families 15h and 17h: - on Fam15h, the LLC is at the node level. - on Fam17h, the LLC is at the core complex level and can be found by right shifting the APIC ID. Also, keep the family checks explicit so that new families will fall back to the default, which will be node_id for TOPOEXT systems. Single node systems in families 10h and 15h will have a Node ID of 0 which will be the same as the phys_proc_id, so we don't need to check for multiple nodes before using the node_id. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com> [ Rewrote the commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20161108153054.bs3sajbyevq6a6uu@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-08 22:30:54 +07:00
*/
err = detect_extended_topology(c);
if (!err)
c->x86_coreid_bits = get_count_order(c->x86_max_cores);
cacheinfo_amd_init_llc_id(c, cpu, node_id);
} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
u64 value;
rdmsrl(MSR_FAM10H_NODE_ID, value);
node_id = value & 7;
x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature These changes do not affect current hw - just a cleanup: Currently, we assume that a system has a single Last Level Cache (LLC) per node, and that the cpu_llc_id is thus equal to the node_id. This no longer applies since Fam17h can have multiple last level caches within a node. So group the cpu_llc_id assignment by topology feature and family in order to make the computation of cpu_llc_id on the different families more clear. Here is how the LLC ID is being computed on the different families: The NODEID_MSR feature only applies to Fam10h in which case the LLC is at the node level. The TOPOEXT feature is used on families 15h, 16h and 17h. So far we only see multiple last level caches if L3 caches are available. Otherwise, the cpu_llc_id will default to be the phys_proc_id. We have L3 caches only on families 15h and 17h: - on Fam15h, the LLC is at the node level. - on Fam17h, the LLC is at the core complex level and can be found by right shifting the APIC ID. Also, keep the family checks explicit so that new families will fall back to the default, which will be node_id for TOPOEXT systems. Single node systems in families 10h and 15h will have a Node ID of 0 which will be the same as the phys_proc_id, so we don't need to check for multiple nodes before using the node_id. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com> [ Rewrote the commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20161108153054.bs3sajbyevq6a6uu@pd.tnic Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-08 22:30:54 +07:00
per_cpu(cpu_llc_id, cpu) = node_id;
} else
return;
if (nodes_per_socket > 1) {
set_cpu_cap(c, X86_FEATURE_AMD_DCM);
x86/cpu/amd: Limit cpu_core_id fixup to families older than F17h Current cpu_core_id fixup causes downcored F17h configurations to be incorrect: NODE: 0 processor 0 core id : 0 processor 1 core id : 1 processor 2 core id : 2 processor 3 core id : 4 processor 4 core id : 5 processor 5 core id : 0 NODE: 1 processor 6 core id : 2 processor 7 core id : 3 processor 8 core id : 4 processor 9 core id : 0 processor 10 core id : 1 processor 11 core id : 2 Code that relies on the cpu_core_id, like match_smt(), for example, which builds the thread siblings masks used by the scheduler, is mislead. So, limit the fixup to pre-F17h machines. The new value for cpu_core_id for F17h and later will represent the CPUID_Fn8000001E_EBX[CoreId], which is guaranteed to be unique for each core within a socket. This way we have: NODE: 0 processor 0 core id : 0 processor 1 core id : 1 processor 2 core id : 2 processor 3 core id : 4 processor 4 core id : 5 processor 5 core id : 6 NODE: 1 processor 6 core id : 8 processor 7 core id : 9 processor 8 core id : 10 processor 9 core id : 12 processor 10 core id : 13 processor 11 core id : 14 Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> [ Heavily massaged. ] Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yazen Ghannam <Yazen.Ghannam@amd.com> Link: http://lkml.kernel.org/r/20170731085159.9455-2-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-31 15:51:58 +07:00
legacy_fixup_core_id(c);
}
}
/*
* On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
* Assumes number of cores is a power of two.
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void amd_detect_cmp(struct cpuinfo_x86 *c)
{
unsigned bits;
int cpu = smp_processor_id();
bits = c->x86_coreid_bits;
/* Low order bits define the core id (index of core in socket) */
c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
/* Convert the initial APIC ID into the socket ID */
c->phys_proc_id = c->initial_apicid >> bits;
/* use socket ID also for last level cache */
per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
}
u16 amd_get_nb_id(int cpu)
{
return per_cpu(cpu_llc_id, cpu);
}
EXPORT_SYMBOL_GPL(amd_get_nb_id);
u32 amd_get_nodes_per_socket(void)
{
return nodes_per_socket;
}
EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void srat_detect_node(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_NUMA
int cpu = smp_processor_id();
int node;
unsigned apicid = c->apicid;
node = numa_cpu_node(cpu);
if (node == NUMA_NO_NODE)
node = per_cpu(cpu_llc_id, cpu);
/*
* On multi-fabric platform (e.g. Numascale NumaChip) a
* platform-specific handler needs to be called to fixup some
* IDs of the CPU.
*/
if (x86_cpuinit.fixup_cpu_id)
x86_cpuinit.fixup_cpu_id(c, node);
if (!node_online(node)) {
/*
* Two possibilities here:
*
* - The CPU is missing memory and no node was created. In
* that case try picking one from a nearby CPU.
*
* - The APIC IDs differ from the HyperTransport node IDs
* which the K8 northbridge parsing fills in. Assume
* they are all increased by a constant offset, but in
* the same order as the HT nodeids. If that doesn't
* result in a usable node fall back to the path for the
* previous case.
*
* This workaround operates directly on the mapping between
* APIC ID and NUMA node, assuming certain relationship
* between APIC ID, HT node ID and NUMA topology. As going
* through CPU mapping may alter the outcome, directly
* access __apicid_to_node[].
*/
int ht_nodeid = c->initial_apicid;
if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
node = __apicid_to_node[ht_nodeid];
/* Pick a nearby node */
if (!node_online(node))
node = nearby_node(apicid);
}
numa_set_node(cpu, node);
#endif
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void early_init_amd_mc(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits, ecx;
/* Multi core CPU? */
if (c->extended_cpuid_level < 0x80000008)
return;
ecx = cpuid_ecx(0x80000008);
c->x86_max_cores = (ecx & 0xff) + 1;
/* CPU telling us the core id bits shift? */
bits = (ecx >> 12) & 0xF;
/* Otherwise recompute */
if (bits == 0) {
while ((1 << bits) < c->x86_max_cores)
bits++;
}
c->x86_coreid_bits = bits;
#endif
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void bsp_init_amd(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_64
if (c->x86 >= 0xf) {
unsigned long long tseg;
/*
* Split up direct mapping around the TSEG SMM area.
* Don't do it for gbpages because there seems very little
* benefit in doing so.
*/
if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
unsigned long pfn = tseg >> PAGE_SHIFT;
pr_debug("tseg: %010llx\n", tseg);
if (pfn_range_is_mapped(pfn, pfn + 1))
set_memory_4k((unsigned long)__va(tseg), 1);
}
}
#endif
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
if (c->x86 > 0x10 ||
(c->x86 == 0x10 && c->x86_model >= 0x2)) {
u64 val;
rdmsrl(MSR_K7_HWCR, val);
if (!(val & BIT(24)))
pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
}
}
if (c->x86 == 0x15) {
unsigned long upperbit;
u32 cpuid, assoc;
cpuid = cpuid_edx(0x80000005);
assoc = cpuid >> 16 & 0xff;
upperbit = ((cpuid >> 24) << 10) / assoc;
va_align.mask = (upperbit - 1) & PAGE_MASK;
va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
x86/mm: Improve AMD Bulldozer ASLR workaround The ASLR implementation needs to special-case AMD F15h processors by clearing out bits [14:12] of the virtual address in order to avoid I$ cross invalidations and thus performance penalty for certain workloads. For details, see: dfb09f9b7ab0 ("x86, amd: Avoid cache aliasing penalties on AMD family 15h") This special case reduces the mmapped file's entropy by 3 bits. The following output is the run on an AMD Opteron 62xx class CPU processor under x86_64 Linux 4.0.0: $ for i in `seq 1 10`; do cat /proc/self/maps | grep "r-xp.*libc" ; done b7588000-b7736000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b7570000-b771e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b75d0000-b777e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b75b0000-b775e000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 b7578000-b7726000 r-xp 00000000 00:01 4924 /lib/i386-linux-gnu/libc.so.6 ... Bits [12:14] are always 0, i.e. the address always ends in 0x8000 or 0x0000. 32-bit systems, as in the example above, are especially sensitive to this issue because 32-bit randomness for VA space is 8 bits (see mmap_rnd()). With the Bulldozer special case, this diminishes to only 32 different slots of mmap virtual addresses. This patch randomizes per boot the three affected bits rather than setting them to zero. Since all the shared pages have the same value at bits [12..14], there is no cache aliasing problems. This value gets generated during system boot and it is thus not known to a potential remote attacker. Therefore, the impact from the Bulldozer workaround gets diminished and ASLR randomness increased. More details at: http://hmarco.org/bugs/AMD-Bulldozer-linux-ASLR-weakness-reducing-mmaped-files-by-eight.html Original white paper by AMD dealing with the issue: http://developer.amd.com/wordpress/media/2012/10/SharedL1InstructionCacheonAMD15hCPU.pdf Mentored-by: Ismael Ripoll <iripoll@disca.upv.es> Signed-off-by: Hector Marco-Gisbert <hecmargi@upv.es> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan-Simon <dl9pf@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1427456301-3764-1-git-send-email-hecmargi@upv.es Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 18:38:21 +07:00
/* A random value per boot for bit slice [12:upper_bit) */
va_align.bits = get_random_int() & va_align.mask;
}
x86/asm/delay: Introduce an MWAITX-based delay with a configurable timer MWAITX can enable a timer and a corresponding timer value specified in SW P0 clocks. The SW P0 frequency is the same as TSC. The timer provides an upper bound on how long the instruction waits before exiting. This way, a delay function in the kernel can leverage that MWAITX timer of MWAITX. When a CPU core executes MWAITX, it will be quiesced in a waiting phase, diminishing its power consumption. This way, we can save power in comparison to our default TSC-based delays. A simple test shows that: $ cat /sys/bus/pci/devices/0000\:00\:18.4/hwmon/hwmon0/power1_acc $ sleep 10000s $ cat /sys/bus/pci/devices/0000\:00\:18.4/hwmon/hwmon0/power1_acc Results: * TSC-based default delay: 485115 uWatts average power * MWAITX-based delay: 252738 uWatts average power Thus, that's about 240 milliWatts less power consumption. The test method relies on the support of AMD CPU accumulated power algorithm in fam15h_power for which patches are forthcoming. Suggested-by: Andy Lutomirski <luto@amacapital.net> Suggested-by: Borislav Petkov <bp@suse.de> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Huang Rui <ray.huang@amd.com> [ Fix delay truncation. ] Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Andreas Herrmann <herrmann.der.user@gmail.com> Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hector Marco-Gisbert <hecmargi@upv.es> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Li <tony.li@amd.com> Link: http://lkml.kernel.org/r/1438744732-1459-3-git-send-email-ray.huang@amd.com Link: http://lkml.kernel.org/r/1439201994-28067-4-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-10 17:19:54 +07:00
if (cpu_has(c, X86_FEATURE_MWAITX))
use_mwaitx_delay();
perf/x86/amd: Move nodes_per_socket into bsp_init_amd() nodes_per_socket is static and it needn't be initialized many times during every CPU core init. So move its initialization into bsp_init_amd(). Signed-off-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andreas Herrmann <herrmann.der.user@googlemail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hector Marco-Gisbert <hecmargi@upv.es> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: spg_linux_kernel@amd.com Link: http://lkml.kernel.org/r/1452739808-11871-2-git-send-email-ray.huang@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-14 09:50:04 +07:00
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
u32 ecx;
ecx = cpuid_ecx(0x8000001e);
nodes_per_socket = ((ecx >> 8) & 7) + 1;
} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
u64 value;
rdmsrl(MSR_FAM10H_NODE_ID, value);
nodes_per_socket = ((value >> 3) & 7) + 1;
}
if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
!boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
c->x86 >= 0x15 && c->x86 <= 0x17) {
unsigned int bit;
switch (c->x86) {
case 0x15: bit = 54; break;
case 0x16: bit = 33; break;
case 0x17: bit = 10; break;
default: return;
}
/*
* Try to cache the base value so further operations can
* avoid RMW. If that faults, do not enable SSBD.
*/
if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
setup_force_cpu_cap(X86_FEATURE_SSBD);
x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
}
}
}
static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
{
u64 msr;
/*
* BIOS support is required for SME and SEV.
* For SME: If BIOS has enabled SME then adjust x86_phys_bits by
* the SME physical address space reduction value.
* If BIOS has not enabled SME then don't advertise the
* SME feature (set in scattered.c).
* For SEV: If BIOS has not enabled SEV then don't advertise the
* SEV feature (set in scattered.c).
*
* In all cases, since support for SME and SEV requires long mode,
* don't advertise the feature under CONFIG_X86_32.
*/
if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
/* Check if memory encryption is enabled */
rdmsrl(MSR_K8_SYSCFG, msr);
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
goto clear_all;
/*
* Always adjust physical address bits. Even though this
* will be a value above 32-bits this is still done for
* CONFIG_X86_32 so that accurate values are reported.
*/
c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
if (IS_ENABLED(CONFIG_X86_32))
goto clear_all;
rdmsrl(MSR_K7_HWCR, msr);
if (!(msr & MSR_K7_HWCR_SMMLOCK))
goto clear_sev;
return;
clear_all:
clear_cpu_cap(c, X86_FEATURE_SME);
clear_sev:
clear_cpu_cap(c, X86_FEATURE_SEV);
}
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void early_init_amd(struct cpuinfo_x86 *c)
{
u64 value;
x86/cpu/AMD: Make the microcode level available earlier in the boot Move the setting of the cpuinfo_x86.microcode field from amd_init() to early_amd_init() so that it is available earlier in the boot process. This avoids having to read MSR_AMD64_PATCH_LEVEL directly during early boot. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/7b7525fa12593dac5f4b01fcc25c95f97e93862f.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:23 +07:00
u32 dummy;
early_init_amd_mc(c);
x86/jump_label: Initialize static branching early Static branching is useful to runtime patch branches that are used in hot path, but are infrequently changed. The x86 clock framework is one example that uses static branches to setup the best clock during boot and never changes it again. It is desired to enable the TSC based sched clock early to allow fine grained boot time analysis early on. That requires the static branching functionality to be functional early as well. Static branching requires patching nop instructions, thus, arch_init_ideal_nops() must be called prior to jump_label_init(). Do all the necessary steps to call arch_init_ideal_nops() right after early_cpu_init(), which also allows to insert a call to jump_label_init() right after that. jump_label_init() will be called again from the generic init code, but the code is protected against reinitialization already. [ tglx: Massaged changelog ] Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: steven.sistare@oracle.com Cc: daniel.m.jordan@oracle.com Cc: linux@armlinux.org.uk Cc: schwidefsky@de.ibm.com Cc: heiko.carstens@de.ibm.com Cc: john.stultz@linaro.org Cc: sboyd@codeaurora.org Cc: hpa@zytor.com Cc: douly.fnst@cn.fujitsu.com Cc: prarit@redhat.com Cc: feng.tang@intel.com Cc: pmladek@suse.com Cc: gnomes@lxorguk.ukuu.org.uk Cc: linux-s390@vger.kernel.org Cc: boris.ostrovsky@oracle.com Cc: jgross@suse.com Cc: pbonzini@redhat.com Link: https://lkml.kernel.org/r/20180719205545.16512-10-pasha.tatashin@oracle.com
2018-07-20 03:55:28 +07:00
#ifdef CONFIG_X86_32
if (c->x86 == 6)
set_cpu_cap(c, X86_FEATURE_K7);
#endif
if (c->x86 >= 0xf)
set_cpu_cap(c, X86_FEATURE_K8);
x86/cpu/AMD: Make the microcode level available earlier in the boot Move the setting of the cpuinfo_x86.microcode field from amd_init() to early_amd_init() so that it is available earlier in the boot process. This avoids having to read MSR_AMD64_PATCH_LEVEL directly during early boot. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/7b7525fa12593dac5f4b01fcc25c95f97e93862f.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:23 +07:00
rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
/*
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
* with P/T states and does not stop in deep C-states
*/
if (c->x86_power & (1 << 8)) {
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
}
x86/cpufeature, perf/x86: Add AMD Accumulated Power Mechanism feature flag AMD CPU family 15h model 0x60 introduces a mechanism for measuring accumulated power. It is used to report the processor power consumption and support for it is indicated by CPUID Fn8000_0007_EDX[12]. Signed-off-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andreas Herrmann <herrmann.der.user@googlemail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hector Marco-Gisbert <hecmargi@upv.es> Cc: Jacob Shin <jacob.w.shin@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Kristen Carlson Accardi <kristen@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robert Richter <rric@kernel.org> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Wan Zongshun <Vincent.Wan@amd.com> Cc: spg_linux_kernel@amd.com Link: http://lkml.kernel.org/r/1452739808-11871-4-git-send-email-ray.huang@amd.com [ Resolved conflict and moved the synthetic CPUID slot to 19. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-14 09:50:06 +07:00
/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
if (c->x86_power & BIT(12))
set_cpu_cap(c, X86_FEATURE_ACC_POWER);
#ifdef CONFIG_X86_64
set_cpu_cap(c, X86_FEATURE_SYSCALL32);
#else
/* Set MTRR capability flag if appropriate */
if (c->x86 == 5)
if (c->x86_model == 13 || c->x86_model == 9 ||
(c->x86_model == 8 && c->x86_stepping >= 8))
set_cpu_cap(c, X86_FEATURE_K6_MTRR);
#endif
#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
/*
* ApicID can always be treated as an 8-bit value for AMD APIC versions
* >= 0x10, but even old K8s came out of reset with version 0x10. So, we
* can safely set X86_FEATURE_EXTD_APICID unconditionally for families
* after 16h.
*/
if (boot_cpu_has(X86_FEATURE_APIC)) {
if (c->x86 > 0x16)
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
else if (c->x86 >= 0xf) {
/* check CPU config space for extended APIC ID */
unsigned int val;
val = read_pci_config(0, 24, 0, 0x68);
if ((val >> 17 & 0x3) == 0x3)
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
}
}
#endif
/*
* This is only needed to tell the kernel whether to use VMCALL
* and VMMCALL. VMMCALL is never executed except under virt, so
* we can set it unconditionally.
*/
set_cpu_cap(c, X86_FEATURE_VMMCALL);
/* F16h erratum 793, CVE-2013-6885 */
if (c->x86 == 0x16 && c->x86_model <= 0xf)
msr_set_bit(MSR_AMD64_LS_CFG, 15);
x86/bugs: Separate AMD E400 erratum and C1E bug The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E state) is a two step process: - Selection of the E400 aware idle routine - Detection whether the platform is affected The idle routine selection happens for possibly affected CPUs depending on family/model/stepping information. These range of CPUs is not necessarily affected as the decision whether to enable the C1E feature is made by the firmware. Unfortunately there is no way to query this at early boot. The current implementation polls a MSR in the E400 aware idle routine to detect whether the CPU is affected. This is inefficient on non affected CPUs because every idle entry has to do the MSR read. There is a better way to detect this before going idle for the first time which requires to seperate the bug flags: X86_BUG_AMD_E400 - Selects the E400 aware idle routine and enables the detection X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400 Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400 bug bit to select the idle routine which currently does an unconditional detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches to remove the MSR polling and simplify the handling of this misfeature. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/20161209182912.2726-3-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-10 01:29:09 +07:00
/*
* Check whether the machine is affected by erratum 400. This is
* used to select the proper idle routine and to enable the check
* whether the machine is affected in arch_post_acpi_init(), which
* sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
*/
if (cpu_has_amd_erratum(c, amd_erratum_400))
set_cpu_bug(c, X86_BUG_AMD_E400);
x86/cpu/AMD: Add the Secure Memory Encryption CPU feature Update the CPU features to include identifying and reporting on the Secure Memory Encryption (SME) feature. SME is identified by CPUID 0x8000001f, but requires BIOS support to enable it (set bit 23 of MSR_K8_SYSCFG). Only show the SME feature as available if reported by CPUID, enabled by BIOS and not configured as CONFIG_X86_32=y. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/85c17ff450721abccddc95e611ae8df3f4d9718b.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 04:10:01 +07:00
early_detect_mem_encrypt(c);
/* Re-enable TopologyExtensions if switched off by BIOS */
if (c->x86 == 0x15 &&
(c->x86_model >= 0x10 && c->x86_model <= 0x6f) &&
!cpu_has(c, X86_FEATURE_TOPOEXT)) {
if (msr_set_bit(0xc0011005, 54) > 0) {
rdmsrl(0xc0011005, value);
if (value & BIT_64(54)) {
set_cpu_cap(c, X86_FEATURE_TOPOEXT);
pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
}
}
}
amd_get_topology_early(c);
x86/bugs: Separate AMD E400 erratum and C1E bug The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E state) is a two step process: - Selection of the E400 aware idle routine - Detection whether the platform is affected The idle routine selection happens for possibly affected CPUs depending on family/model/stepping information. These range of CPUs is not necessarily affected as the decision whether to enable the C1E feature is made by the firmware. Unfortunately there is no way to query this at early boot. The current implementation polls a MSR in the E400 aware idle routine to detect whether the CPU is affected. This is inefficient on non affected CPUs because every idle entry has to do the MSR read. There is a better way to detect this before going idle for the first time which requires to seperate the bug flags: X86_BUG_AMD_E400 - Selects the E400 aware idle routine and enables the detection X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400 Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400 bug bit to select the idle routine which currently does an unconditional detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches to remove the MSR polling and simplify the handling of this misfeature. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/r/20161209182912.2726-3-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-10 01:29:09 +07:00
}
static void init_amd_k8(struct cpuinfo_x86 *c)
{
u32 level;
u64 value;
/* On C+ stepping K8 rep microcode works well for copy/memset */
level = cpuid_eax(1);
if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
/*
* Some BIOSes incorrectly force this feature, but only K8 revision D
* (model = 0x14) and later actually support it.
* (AMD Erratum #110, docId: 25759).
*/
if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
if (!rdmsrl_amd_safe(0xc001100d, &value)) {
value &= ~BIT_64(32);
wrmsrl_amd_safe(0xc001100d, value);
}
}
if (!c->x86_model_id[0])
strcpy(c->x86_model_id, "Hammer");
#ifdef CONFIG_SMP
/*
* Disable TLB flush filter by setting HWCR.FFDIS on K8
* bit 6 of msr C001_0015
*
* Errata 63 for SH-B3 steppings
* Errata 122 for all steppings (F+ have it disabled by default)
*/
msr_set_bit(MSR_K7_HWCR, 6);
#endif
set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
}
static void init_amd_gh(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_MMCONF_FAM10H
/* do this for boot cpu */
if (c == &boot_cpu_data)
check_enable_amd_mmconf_dmi();
fam10h_check_enable_mmcfg();
#endif
/*
* Disable GART TLB Walk Errors on Fam10h. We do this here because this
* is always needed when GART is enabled, even in a kernel which has no
* MCE support built in. BIOS should disable GartTlbWlk Errors already.
* If it doesn't, we do it here as suggested by the BKDG.
*
* Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
*/
msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
/*
* On family 10h BIOS may not have properly enabled WC+ support, causing
* it to be converted to CD memtype. This may result in performance
* degradation for certain nested-paging guests. Prevent this conversion
* by clearing bit 24 in MSR_AMD64_BU_CFG2.
*
* NOTE: we want to use the _safe accessors so as not to #GP kvm
* guests on older kvm hosts.
*/
msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
if (cpu_has_amd_erratum(c, amd_erratum_383))
set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
}
#define MSR_AMD64_DE_CFG 0xC0011029
static void init_amd_ln(struct cpuinfo_x86 *c)
{
/*
* Apply erratum 665 fix unconditionally so machines without a BIOS
* fix work.
*/
msr_set_bit(MSR_AMD64_DE_CFG, 31);
}
x86/CPU/AMD: Clear RDRAND CPUID bit on AMD family 15h/16h There have been reports of RDRAND issues after resuming from suspend on some AMD family 15h and family 16h systems. This issue stems from a BIOS not performing the proper steps during resume to ensure RDRAND continues to function properly. RDRAND support is indicated by CPUID Fn00000001_ECX[30]. This bit can be reset by clearing MSR C001_1004[62]. Any software that checks for RDRAND support using CPUID, including the kernel, will believe that RDRAND is not supported. Update the CPU initialization to clear the RDRAND CPUID bit for any family 15h and 16h processor that supports RDRAND. If it is known that the family 15h or family 16h system does not have an RDRAND resume issue or that the system will not be placed in suspend, the "rdrand=force" kernel parameter can be used to stop the clearing of the RDRAND CPUID bit. Additionally, update the suspend and resume path to save and restore the MSR C001_1004 value to ensure that the RDRAND CPUID setting remains in place after resuming from suspend. Note, that clearing the RDRAND CPUID bit does not prevent a processor that normally supports the RDRAND instruction from executing it. So any code that determined the support based on family and model won't #UD. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chen Yu <yu.c.chen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: "linux-doc@vger.kernel.org" <linux-doc@vger.kernel.org> Cc: "linux-pm@vger.kernel.org" <linux-pm@vger.kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: <stable@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "x86@kernel.org" <x86@kernel.org> Link: https://lkml.kernel.org/r/7543af91666f491547bd86cebb1e17c66824ab9f.1566229943.git.thomas.lendacky@amd.com
2019-08-19 22:52:35 +07:00
static bool rdrand_force;
static int __init rdrand_cmdline(char *str)
{
if (!str)
return -EINVAL;
if (!strcmp(str, "force"))
rdrand_force = true;
else
return -EINVAL;
return 0;
}
early_param("rdrand", rdrand_cmdline);
static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
{
/*
* Saving of the MSR used to hide the RDRAND support during
* suspend/resume is done by arch/x86/power/cpu.c, which is
* dependent on CONFIG_PM_SLEEP.
*/
if (!IS_ENABLED(CONFIG_PM_SLEEP))
return;
/*
* The nordrand option can clear X86_FEATURE_RDRAND, so check for
* RDRAND support using the CPUID function directly.
*/
if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
return;
msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
/*
* Verify that the CPUID change has occurred in case the kernel is
* running virtualized and the hypervisor doesn't support the MSR.
*/
if (cpuid_ecx(1) & BIT(30)) {
pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
return;
}
clear_cpu_cap(c, X86_FEATURE_RDRAND);
pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
}
static void init_amd_jg(struct cpuinfo_x86 *c)
{
/*
* Some BIOS implementations do not restore proper RDRAND support
* across suspend and resume. Check on whether to hide the RDRAND
* instruction support via CPUID.
*/
clear_rdrand_cpuid_bit(c);
}
static void init_amd_bd(struct cpuinfo_x86 *c)
{
u64 value;
/*
* The way access filter has a performance penalty on some workloads.
* Disable it on the affected CPUs.
*/
if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
value |= 0x1E;
wrmsrl_safe(MSR_F15H_IC_CFG, value);
}
}
x86/CPU/AMD: Clear RDRAND CPUID bit on AMD family 15h/16h There have been reports of RDRAND issues after resuming from suspend on some AMD family 15h and family 16h systems. This issue stems from a BIOS not performing the proper steps during resume to ensure RDRAND continues to function properly. RDRAND support is indicated by CPUID Fn00000001_ECX[30]. This bit can be reset by clearing MSR C001_1004[62]. Any software that checks for RDRAND support using CPUID, including the kernel, will believe that RDRAND is not supported. Update the CPU initialization to clear the RDRAND CPUID bit for any family 15h and 16h processor that supports RDRAND. If it is known that the family 15h or family 16h system does not have an RDRAND resume issue or that the system will not be placed in suspend, the "rdrand=force" kernel parameter can be used to stop the clearing of the RDRAND CPUID bit. Additionally, update the suspend and resume path to save and restore the MSR C001_1004 value to ensure that the RDRAND CPUID setting remains in place after resuming from suspend. Note, that clearing the RDRAND CPUID bit does not prevent a processor that normally supports the RDRAND instruction from executing it. So any code that determined the support based on family and model won't #UD. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chen Yu <yu.c.chen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: "linux-doc@vger.kernel.org" <linux-doc@vger.kernel.org> Cc: "linux-pm@vger.kernel.org" <linux-pm@vger.kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: <stable@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "x86@kernel.org" <x86@kernel.org> Link: https://lkml.kernel.org/r/7543af91666f491547bd86cebb1e17c66824ab9f.1566229943.git.thomas.lendacky@amd.com
2019-08-19 22:52:35 +07:00
/*
* Some BIOS implementations do not restore proper RDRAND support
* across suspend and resume. Check on whether to hide the RDRAND
* instruction support via CPUID.
*/
clear_rdrand_cpuid_bit(c);
}
static void init_amd_zn(struct cpuinfo_x86 *c)
{
set_cpu_cap(c, X86_FEATURE_ZEN);
sched/topology: Improve load balancing on AMD EPYC systems SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init() for any sched domains with a NUMA distance greater than 2 hops (RECLAIM_DISTANCE). The idea being that it's expensive to balance across domains that far apart. However, as is rather unfortunately explained in: commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30") the value for RECLAIM_DISTANCE is based on node distance tables from 2011-era hardware. Current AMD EPYC machines have the following NUMA node distances: node distances: node 0 1 2 3 4 5 6 7 0: 10 16 16 16 32 32 32 32 1: 16 10 16 16 32 32 32 32 2: 16 16 10 16 32 32 32 32 3: 16 16 16 10 32 32 32 32 4: 32 32 32 32 10 16 16 16 5: 32 32 32 32 16 10 16 16 6: 32 32 32 32 16 16 10 16 7: 32 32 32 32 16 16 16 10 where 2 hops is 32. The result is that the scheduler fails to load balance properly across NUMA nodes on different sockets -- 2 hops apart. For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4 (CPUs 32-39) like so, $ numactl -C 0-7,32-39 ./spinner 16 causes all threads to fork and remain on node 0 until the active balancer kicks in after a few seconds and forcibly moves some threads to node 4. Override node_reclaim_distance for AMD Zen. Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suravee.Suthikulpanit@amd.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas.Lendacky@amd.com Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-08-09 02:53:01 +07:00
#ifdef CONFIG_NUMA
node_reclaim_distance = 32;
#endif
x86/CPU/AMD: Don't force the CPB cap when running under a hypervisor For F17h AMD CPUs, the CPB capability ('Core Performance Boost') is forcibly set, because some versions of that chip incorrectly report that they do not have it. However, a hypervisor may filter out the CPB capability, for good reasons. For example, KVM currently does not emulate setting the CPB bit in MSR_K7_HWCR, and unchecked MSR access errors will be thrown when trying to set it as a guest: unchecked MSR access error: WRMSR to 0xc0010015 (tried to write 0x0000000001000011) at rIP: 0xffffffff890638f4 (native_write_msr+0x4/0x20) Call Trace: boost_set_msr+0x50/0x80 [acpi_cpufreq] cpuhp_invoke_callback+0x86/0x560 sort_range+0x20/0x20 cpuhp_thread_fun+0xb0/0x110 smpboot_thread_fn+0xef/0x160 kthread+0x113/0x130 kthread_create_worker_on_cpu+0x70/0x70 ret_from_fork+0x35/0x40 To avoid this issue, don't forcibly set the CPB capability for a CPU when running under a hypervisor. Signed-off-by: Frank van der Linden <fllinden@amazon.com> Acked-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: jiaxun.yang@flygoat.com Fixes: 0237199186e7 ("x86/CPU/AMD: Set the CPB bit unconditionally on F17h") Link: http://lkml.kernel.org/r/20190522221745.GA15789@dev-dsk-fllinden-2c-c1893d73.us-west-2.amazon.com [ Minor edits to the changelog. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-23 05:17:45 +07:00
/*
* Fix erratum 1076: CPB feature bit not being set in CPUID.
* Always set it, except when running under a hypervisor.
*/
if (!cpu_has(c, X86_FEATURE_HYPERVISOR) && !cpu_has(c, X86_FEATURE_CPB))
set_cpu_cap(c, X86_FEATURE_CPB);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void init_amd(struct cpuinfo_x86 *c)
{
early_init_amd(c);
/*
* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
* 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
*/
clear_cpu_cap(c, 0*32+31);
if (c->x86 >= 0x10)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
/* get apicid instead of initial apic id from cpuid */
c->apicid = hard_smp_processor_id();
/* K6s reports MCEs but don't actually have all the MSRs */
if (c->x86 < 6)
clear_cpu_cap(c, X86_FEATURE_MCE);
switch (c->x86) {
case 4: init_amd_k5(c); break;
case 5: init_amd_k6(c); break;
case 6: init_amd_k7(c); break;
case 0xf: init_amd_k8(c); break;
case 0x10: init_amd_gh(c); break;
case 0x12: init_amd_ln(c); break;
case 0x15: init_amd_bd(c); break;
x86/CPU/AMD: Clear RDRAND CPUID bit on AMD family 15h/16h There have been reports of RDRAND issues after resuming from suspend on some AMD family 15h and family 16h systems. This issue stems from a BIOS not performing the proper steps during resume to ensure RDRAND continues to function properly. RDRAND support is indicated by CPUID Fn00000001_ECX[30]. This bit can be reset by clearing MSR C001_1004[62]. Any software that checks for RDRAND support using CPUID, including the kernel, will believe that RDRAND is not supported. Update the CPU initialization to clear the RDRAND CPUID bit for any family 15h and 16h processor that supports RDRAND. If it is known that the family 15h or family 16h system does not have an RDRAND resume issue or that the system will not be placed in suspend, the "rdrand=force" kernel parameter can be used to stop the clearing of the RDRAND CPUID bit. Additionally, update the suspend and resume path to save and restore the MSR C001_1004 value to ensure that the RDRAND CPUID setting remains in place after resuming from suspend. Note, that clearing the RDRAND CPUID bit does not prevent a processor that normally supports the RDRAND instruction from executing it. So any code that determined the support based on family and model won't #UD. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chen Yu <yu.c.chen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: "linux-doc@vger.kernel.org" <linux-doc@vger.kernel.org> Cc: "linux-pm@vger.kernel.org" <linux-pm@vger.kernel.org> Cc: Nathan Chancellor <natechancellor@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: <stable@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "x86@kernel.org" <x86@kernel.org> Link: https://lkml.kernel.org/r/7543af91666f491547bd86cebb1e17c66824ab9f.1566229943.git.thomas.lendacky@amd.com
2019-08-19 22:52:35 +07:00
case 0x16: init_amd_jg(c); break;
case 0x17: init_amd_zn(c); break;
}
/*
* Enable workaround for FXSAVE leak on CPUs
* without a XSaveErPtr feature
*/
if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
cpu_detect_cache_sizes(c);
amd_detect_cmp(c);
amd_get_topology(c);
srat_detect_node(c);
init_amd_cacheinfo(c);
if (cpu_has(c, X86_FEATURE_XMM2)) {
/*
x86: Remove X86_FEATURE_MFENCE_RDTSC AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC). They've both had it for a long time, and AMD has had it enabled in Linux since Spectre v1 was announced. Back then, there was a proposal to remove the serializing mfence feature bit (X86_FEATURE_MFENCE_RDTSC), since both AMD and Intel have serializing lfence. At the time, it was (ahem) speculated that some hypervisors might not yet support its removal, so it remained for the time being. Now a year-and-a-half later, it should be safe to remove. I asked Andrew Cooper about whether it's still needed: So if you're virtualised, you've got no choice in the matter.  lfence is either dispatch-serialising or not on AMD, and you won't be able to change it. Furthermore, you can't accurately tell what state the bit is in, because the MSR might not be virtualised at all, or may not reflect the true state in hardware.  Worse still, attempting to set the bit may not be successful even if there isn't a fault for doing so. Xen sets the DE_CFG bit unconditionally, as does Linux by the looks of things (see MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT).  ISTR other hypervisor vendors saying the same, but I don't have any information to hand. If you are running under a hypervisor which has been updated, then lfence will almost certainly be dispatch-serialising in practice, and you'll almost certainly see the bit already set in DE_CFG.  If you're running under a hypervisor which hasn't been patched since Spectre, you've already lost in many more ways. I'd argue that X86_FEATURE_MFENCE_RDTSC is not worth keeping. So remove it. This will reduce some code rot, and also make it easier to hook barrier_nospec() up to a cmdline disable for performance raisins, without having to need an alternative_3() macro. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/d990aa51e40063acb9888e8c1b688e41355a9588.1562255067.git.jpoimboe@redhat.com
2019-07-04 22:46:37 +07:00
* Use LFENCE for execution serialization. On families which
* don't have that MSR, LFENCE is already serializing.
* msr_set_bit() uses the safe accessors, too, even if the MSR
* is not present.
*/
msr_set_bit(MSR_F10H_DECFG,
MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT);
x86: Remove X86_FEATURE_MFENCE_RDTSC AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC). They've both had it for a long time, and AMD has had it enabled in Linux since Spectre v1 was announced. Back then, there was a proposal to remove the serializing mfence feature bit (X86_FEATURE_MFENCE_RDTSC), since both AMD and Intel have serializing lfence. At the time, it was (ahem) speculated that some hypervisors might not yet support its removal, so it remained for the time being. Now a year-and-a-half later, it should be safe to remove. I asked Andrew Cooper about whether it's still needed: So if you're virtualised, you've got no choice in the matter.  lfence is either dispatch-serialising or not on AMD, and you won't be able to change it. Furthermore, you can't accurately tell what state the bit is in, because the MSR might not be virtualised at all, or may not reflect the true state in hardware.  Worse still, attempting to set the bit may not be successful even if there isn't a fault for doing so. Xen sets the DE_CFG bit unconditionally, as does Linux by the looks of things (see MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT).  ISTR other hypervisor vendors saying the same, but I don't have any information to hand. If you are running under a hypervisor which has been updated, then lfence will almost certainly be dispatch-serialising in practice, and you'll almost certainly see the bit already set in DE_CFG.  If you're running under a hypervisor which hasn't been patched since Spectre, you've already lost in many more ways. I'd argue that X86_FEATURE_MFENCE_RDTSC is not worth keeping. So remove it. This will reduce some code rot, and also make it easier to hook barrier_nospec() up to a cmdline disable for performance raisins, without having to need an alternative_3() macro. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/d990aa51e40063acb9888e8c1b688e41355a9588.1562255067.git.jpoimboe@redhat.com
2019-07-04 22:46:37 +07:00
/* A serializing LFENCE stops RDTSC speculation */
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
}
/*
* Family 0x12 and above processors have APIC timer
* running in deep C states.
*/
if (c->x86 > 0x11)
set_cpu_cap(c, X86_FEATURE_ARAT);
/* 3DNow or LM implies PREFETCHW */
if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
if (!cpu_has(c, X86_FEATURE_XENPV))
set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
}
#ifdef CONFIG_X86_32
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
{
/* AMD errata T13 (order #21922) */
if (c->x86 == 6) {
/* Duron Rev A0 */
if (c->x86_model == 3 && c->x86_stepping == 0)
size = 64;
/* Tbird rev A1/A2 */
if (c->x86_model == 4 &&
(c->x86_stepping == 0 || c->x86_stepping == 1))
size = 256;
}
return size;
}
#endif
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
{
u32 ebx, eax, ecx, edx;
u16 mask = 0xfff;
if (c->x86 < 0xf)
return;
if (c->extended_cpuid_level < 0x80000006)
return;
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
tlb_lli_4k[ENTRIES] = ebx & mask;
/*
* K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
* characteristics from the CPUID function 0x80000005 instead.
*/
if (c->x86 == 0xf) {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
mask = 0xff;
}
/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
if (!((eax >> 16) & mask))
tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
else
tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
/* a 4M entry uses two 2M entries */
tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
if (!(eax & mask)) {
/* Erratum 658 */
if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
tlb_lli_2m[ENTRIES] = 1024;
} else {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
tlb_lli_2m[ENTRIES] = eax & 0xff;
}
} else
tlb_lli_2m[ENTRIES] = eax & mask;
tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static const struct cpu_dev amd_cpu_dev = {
.c_vendor = "AMD",
.c_ident = { "AuthenticAMD" },
#ifdef CONFIG_X86_32
.legacy_models = {
{ .family = 4, .model_names =
{
[3] = "486 DX/2",
[7] = "486 DX/2-WB",
[8] = "486 DX/4",
[9] = "486 DX/4-WB",
[14] = "Am5x86-WT",
[15] = "Am5x86-WB"
}
},
},
.legacy_cache_size = amd_size_cache,
#endif
.c_early_init = early_init_amd,
.c_detect_tlb = cpu_detect_tlb_amd,
.c_bsp_init = bsp_init_amd,
.c_init = init_amd,
.c_x86_vendor = X86_VENDOR_AMD,
};
cpu_dev_register(amd_cpu_dev);
/*
* AMD errata checking
*
* Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
* AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
* have an OSVW id assigned, which it takes as first argument. Both take a
* variable number of family-specific model-stepping ranges created by
* AMD_MODEL_RANGE().
*
* Example:
*
* const int amd_erratum_319[] =
* AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
* AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
* AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
*/
#define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 }
#define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 }
#define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
#define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff)
#define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff)
#define AMD_MODEL_RANGE_END(range) ((range) & 0xfff)
static const int amd_erratum_400[] =
AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
static const int amd_erratum_383[] =
AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
{
int osvw_id = *erratum++;
u32 range;
u32 ms;
if (osvw_id >= 0 && osvw_id < 65536 &&
cpu_has(cpu, X86_FEATURE_OSVW)) {
u64 osvw_len;
rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
if (osvw_id < osvw_len) {
u64 osvw_bits;
rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
osvw_bits);
return osvw_bits & (1ULL << (osvw_id & 0x3f));
}
}
/* OSVW unavailable or ID unknown, match family-model-stepping range */
ms = (cpu->x86_model << 4) | cpu->x86_stepping;
while ((range = *erratum++))
if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
(ms >= AMD_MODEL_RANGE_START(range)) &&
(ms <= AMD_MODEL_RANGE_END(range)))
return true;
return false;
}
void set_dr_addr_mask(unsigned long mask, int dr)
{
if (!boot_cpu_has(X86_FEATURE_BPEXT))
return;
switch (dr) {
case 0:
wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0);
break;
case 1:
case 2:
case 3:
wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0);
break;
default:
break;
}
}