License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
2005-04-17 05:20:36 +07:00
|
|
|
config MMU
|
2007-05-10 20:46:00 +07:00
|
|
|
def_bool y
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2007-02-10 16:43:09 +07:00
|
|
|
config ZONE_DMA
|
2011-05-26 14:48:31 +07:00
|
|
|
def_bool y
|
2007-02-10 16:43:09 +07:00
|
|
|
|
2016-04-14 14:00:27 +07:00
|
|
|
config CPU_BIG_ENDIAN
|
|
|
|
def_bool y
|
|
|
|
|
2006-07-03 14:25:02 +07:00
|
|
|
config LOCKDEP_SUPPORT
|
2007-05-10 20:46:00 +07:00
|
|
|
def_bool y
|
2006-07-03 14:25:02 +07:00
|
|
|
|
2006-07-03 14:24:41 +07:00
|
|
|
config STACKTRACE_SUPPORT
|
2007-05-10 20:46:00 +07:00
|
|
|
def_bool y
|
2006-07-03 14:24:41 +07:00
|
|
|
|
2006-12-08 17:37:49 +07:00
|
|
|
config ARCH_HAS_ILOG2_U32
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool n
|
2006-12-08 17:37:49 +07:00
|
|
|
|
|
|
|
config ARCH_HAS_ILOG2_U64
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool n
|
2006-12-08 17:37:49 +07:00
|
|
|
|
2006-03-26 16:39:34 +07:00
|
|
|
config GENERIC_HWEIGHT
|
2007-05-10 20:46:00 +07:00
|
|
|
def_bool y
|
2006-03-26 16:39:34 +07:00
|
|
|
|
2007-04-27 21:01:42 +07:00
|
|
|
config GENERIC_BUG
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y if BUG
|
2007-04-27 21:01:42 +07:00
|
|
|
|
2010-02-27 04:37:44 +07:00
|
|
|
config GENERIC_BUG_RELATIVE_POINTERS
|
|
|
|
def_bool y
|
|
|
|
|
2008-02-05 22:50:42 +07:00
|
|
|
config GENERIC_LOCKBREAK
|
2019-10-16 02:18:04 +07:00
|
|
|
def_bool y if PREEMPTTION
|
2008-02-05 22:50:42 +07:00
|
|
|
|
2008-03-26 00:47:10 +07:00
|
|
|
config PGSTE
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y if KVM
|
2008-03-26 00:47:10 +07:00
|
|
|
|
2009-04-01 05:23:17 +07:00
|
|
|
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
|
|
|
|
def_bool y
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config AUDIT_ARCH
|
|
|
|
def_bool y
|
|
|
|
|
2014-04-08 05:39:19 +07:00
|
|
|
config NO_IOPORT_MAP
|
2012-11-29 20:38:46 +07:00
|
|
|
def_bool y
|
|
|
|
|
|
|
|
config PCI_QUIRKS
|
|
|
|
def_bool n
|
|
|
|
|
2014-09-22 21:39:06 +07:00
|
|
|
config ARCH_SUPPORTS_UPROBES
|
2015-02-12 19:08:27 +07:00
|
|
|
def_bool y
|
2014-09-22 21:39:06 +07:00
|
|
|
|
2017-11-19 17:39:39 +07:00
|
|
|
config KASAN_SHADOW_OFFSET
|
|
|
|
hex
|
|
|
|
depends on KASAN
|
2017-11-19 17:54:14 +07:00
|
|
|
default 0x18000000000000 if KASAN_S390_4_LEVEL_PAGING
|
2017-11-19 17:39:39 +07:00
|
|
|
default 0x30000000000
|
|
|
|
|
2006-01-06 15:19:28 +07:00
|
|
|
config S390
|
2007-05-10 20:46:00 +07:00
|
|
|
def_bool y
|
2017-06-07 19:10:24 +07:00
|
|
|
select ARCH_BINFMT_ELF_STATE
|
2015-11-20 09:19:29 +07:00
|
|
|
select ARCH_HAS_DEVMEM_IS_ALLOWED
|
2015-04-15 05:48:00 +07:00
|
|
|
select ARCH_HAS_ELF_RANDOMIZE
|
2017-09-12 18:49:57 +07:00
|
|
|
select ARCH_HAS_FORTIFY_SOURCE
|
2014-12-13 07:57:44 +07:00
|
|
|
select ARCH_HAS_GCOV_PROFILE_ALL
|
2019-05-14 07:19:04 +07:00
|
|
|
select ARCH_HAS_GIGANTIC_PAGE
|
2016-06-20 19:08:32 +07:00
|
|
|
select ARCH_HAS_KCOV
|
2019-08-06 11:49:14 +07:00
|
|
|
select ARCH_HAS_MEM_ENCRYPT
|
2018-06-08 07:06:08 +07:00
|
|
|
select ARCH_HAS_PTE_SPECIAL
|
2017-02-21 22:09:33 +07:00
|
|
|
select ARCH_HAS_SET_MEMORY
|
2017-02-07 07:31:57 +07:00
|
|
|
select ARCH_HAS_STRICT_KERNEL_RWX
|
|
|
|
select ARCH_HAS_STRICT_MODULE_RWX
|
s390: autogenerate compat syscall wrappers
Any system call that takes a pointer argument on s390 requires
a wrapper function to do a 31-to-64 zero-extension, these are
currently generated in arch/s390/kernel/compat_wrapper.c.
On arm64 and x86, we already generate similar wrappers for all
system calls in the place of their definition, just for a different
purpose (they load the arguments from pt_regs).
We can do the same thing here, by adding an asm/syscall_wrapper.h
file with a copy of all the relevant macros to override the generic
version. Besides the addition of the compat entry point, these also
rename the entry points with a __s390_ or __s390x_ prefix, similar
to what we do on arm64 and x86. This in turn requires renaming
a few things, and adding a proper ni_syscall() entry point.
In order to still compile system call definitions that pass an
loff_t argument, the __SC_COMPAT_CAST() macro checks for that
and forces an -ENOSYS error, which was the best I could come up
with. Those functions must obviously not get called from user
space, but instead require hand-written compat_sys_*() handlers,
which fortunately already exist.
Link: https://lore.kernel.org/lkml/20190116131527.2071570-5-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
[heiko.carstens@de.ibm.com: compile fix for !CONFIG_COMPAT]
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2019-01-16 20:15:22 +07:00
|
|
|
select ARCH_HAS_SYSCALL_WRAPPER
|
2016-09-12 19:37:20 +07:00
|
|
|
select ARCH_HAS_UBSAN_SANITIZE_ALL
|
2013-02-06 16:15:55 +07:00
|
|
|
select ARCH_HAVE_NMI_SAFE_CMPXCHG
|
2009-11-09 22:21:34 +07:00
|
|
|
select ARCH_INLINE_READ_LOCK
|
|
|
|
select ARCH_INLINE_READ_LOCK_BH
|
|
|
|
select ARCH_INLINE_READ_LOCK_IRQ
|
|
|
|
select ARCH_INLINE_READ_LOCK_IRQSAVE
|
2013-02-06 16:15:55 +07:00
|
|
|
select ARCH_INLINE_READ_TRYLOCK
|
2009-11-09 22:21:34 +07:00
|
|
|
select ARCH_INLINE_READ_UNLOCK
|
|
|
|
select ARCH_INLINE_READ_UNLOCK_BH
|
|
|
|
select ARCH_INLINE_READ_UNLOCK_IRQ
|
|
|
|
select ARCH_INLINE_READ_UNLOCK_IRQRESTORE
|
2013-02-06 16:15:55 +07:00
|
|
|
select ARCH_INLINE_SPIN_LOCK
|
|
|
|
select ARCH_INLINE_SPIN_LOCK_BH
|
|
|
|
select ARCH_INLINE_SPIN_LOCK_IRQ
|
|
|
|
select ARCH_INLINE_SPIN_LOCK_IRQSAVE
|
|
|
|
select ARCH_INLINE_SPIN_TRYLOCK
|
|
|
|
select ARCH_INLINE_SPIN_TRYLOCK_BH
|
|
|
|
select ARCH_INLINE_SPIN_UNLOCK
|
|
|
|
select ARCH_INLINE_SPIN_UNLOCK_BH
|
|
|
|
select ARCH_INLINE_SPIN_UNLOCK_IRQ
|
|
|
|
select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE
|
2009-11-09 22:21:34 +07:00
|
|
|
select ARCH_INLINE_WRITE_LOCK
|
|
|
|
select ARCH_INLINE_WRITE_LOCK_BH
|
|
|
|
select ARCH_INLINE_WRITE_LOCK_IRQ
|
|
|
|
select ARCH_INLINE_WRITE_LOCK_IRQSAVE
|
2013-02-06 16:15:55 +07:00
|
|
|
select ARCH_INLINE_WRITE_TRYLOCK
|
2009-11-09 22:21:34 +07:00
|
|
|
select ARCH_INLINE_WRITE_UNLOCK
|
|
|
|
select ARCH_INLINE_WRITE_UNLOCK_BH
|
|
|
|
select ARCH_INLINE_WRITE_UNLOCK_IRQ
|
|
|
|
select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE
|
2019-05-14 07:22:59 +07:00
|
|
|
select ARCH_KEEP_MEMBLOCK
|
2019-08-14 19:27:44 +07:00
|
|
|
select ARCH_STACKWALK
|
2014-08-05 14:57:51 +07:00
|
|
|
select ARCH_SUPPORTS_ATOMIC_RMW
|
2015-05-08 22:40:44 +07:00
|
|
|
select ARCH_SUPPORTS_NUMA_BALANCING
|
2015-10-29 07:16:04 +07:00
|
|
|
select ARCH_USE_BUILTIN_BSWAP
|
2013-09-05 18:26:17 +07:00
|
|
|
select ARCH_USE_CMPXCHG_LOCKREF
|
2016-04-01 20:42:15 +07:00
|
|
|
select ARCH_WANTS_DYNAMIC_TASK_STRUCT
|
2020-03-05 21:01:21 +07:00
|
|
|
select ARCH_WANT_DEFAULT_BPF_JIT
|
2012-07-31 04:42:46 +07:00
|
|
|
select ARCH_WANT_IPC_PARSE_VERSION
|
2019-12-04 07:46:31 +07:00
|
|
|
select BUILDTIME_TABLE_SORT
|
2013-02-06 16:15:55 +07:00
|
|
|
select CLONE_BACKWARDS2
|
2014-08-15 18:16:09 +07:00
|
|
|
select DYNAMIC_FTRACE if FUNCTION_TRACER
|
2013-02-06 16:15:55 +07:00
|
|
|
select GENERIC_CLOCKEVENTS
|
2015-02-19 18:22:02 +07:00
|
|
|
select GENERIC_CPU_AUTOPROBE
|
2018-03-21 15:38:21 +07:00
|
|
|
select GENERIC_CPU_VULNERABILITIES
|
2013-09-18 16:45:36 +07:00
|
|
|
select GENERIC_FIND_FIRST_BIT
|
2012-04-20 20:05:52 +07:00
|
|
|
select GENERIC_SMP_IDLE_THREAD
|
2013-11-22 16:04:53 +07:00
|
|
|
select GENERIC_TIME_VSYSCALL
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_ALIGNED_STRUCT_PAGE if SLUB
|
2014-02-25 16:16:24 +07:00
|
|
|
select HAVE_ARCH_AUDITSYSCALL
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_ARCH_JUMP_LABEL
|
2018-09-19 13:51:44 +07:00
|
|
|
select HAVE_ARCH_JUMP_LABEL_RELATIVE
|
2017-11-17 20:29:13 +07:00
|
|
|
select HAVE_ARCH_KASAN
|
2019-08-02 17:42:59 +07:00
|
|
|
select HAVE_ARCH_KASAN_VMALLOC
|
lib/GCD.c: use binary GCD algorithm instead of Euclidean
The binary GCD algorithm is based on the following facts:
1. If a and b are all evens, then gcd(a,b) = 2 * gcd(a/2, b/2)
2. If a is even and b is odd, then gcd(a,b) = gcd(a/2, b)
3. If a and b are all odds, then gcd(a,b) = gcd((a-b)/2, b) = gcd((a+b)/2, b)
Even on x86 machines with reasonable division hardware, the binary
algorithm runs about 25% faster (80% the execution time) than the
division-based Euclidian algorithm.
On platforms like Alpha and ARMv6 where division is a function call to
emulation code, it's even more significant.
There are two variants of the code here, depending on whether a fast
__ffs (find least significant set bit) instruction is available. This
allows the unpredictable branches in the bit-at-a-time shifting loop to
be eliminated.
If fast __ffs is not available, the "even/odd" GCD variant is used.
I use the following code to benchmark:
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#define swap(a, b) \
do { \
a ^= b; \
b ^= a; \
a ^= b; \
} while (0)
unsigned long gcd0(unsigned long a, unsigned long b)
{
unsigned long r;
if (a < b) {
swap(a, b);
}
if (b == 0)
return a;
while ((r = a % b) != 0) {
a = b;
b = r;
}
return b;
}
unsigned long gcd1(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
for (;;) {
a >>= __builtin_ctzl(a);
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd2(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
unsigned long gcd3(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
b >>= __builtin_ctzl(b);
if (b == 1)
return r & -r;
for (;;) {
a >>= __builtin_ctzl(a);
if (a == 1)
return r & -r;
if (a == b)
return a << __builtin_ctzl(r);
if (a < b)
swap(a, b);
a -= b;
}
}
unsigned long gcd4(unsigned long a, unsigned long b)
{
unsigned long r = a | b;
if (!a || !b)
return r;
r &= -r;
while (!(b & r))
b >>= 1;
if (b == r)
return r;
for (;;) {
while (!(a & r))
a >>= 1;
if (a == r)
return r;
if (a == b)
return a;
if (a < b)
swap(a, b);
a -= b;
a >>= 1;
if (a & r)
a += b;
a >>= 1;
}
}
static unsigned long (*gcd_func[])(unsigned long a, unsigned long b) = {
gcd0, gcd1, gcd2, gcd3, gcd4,
};
#define TEST_ENTRIES (sizeof(gcd_func) / sizeof(gcd_func[0]))
#if defined(__x86_64__)
#define rdtscll(val) do { \
unsigned long __a,__d; \
__asm__ __volatile__("rdtsc" : "=a" (__a), "=d" (__d)); \
(val) = ((unsigned long long)__a) | (((unsigned long long)__d)<<32); \
} while(0)
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
unsigned long long start, end;
unsigned long long ret;
unsigned long gcd_res;
rdtscll(start);
gcd_res = gcd(a, b);
rdtscll(end);
if (end >= start)
ret = end - start;
else
ret = ~0ULL - start + 1 + end;
*res = gcd_res;
return ret;
}
#else
static inline struct timespec read_time(void)
{
struct timespec time;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time);
return time;
}
static inline unsigned long long diff_time(struct timespec start, struct timespec end)
{
struct timespec temp;
if ((end.tv_nsec - start.tv_nsec) < 0) {
temp.tv_sec = end.tv_sec - start.tv_sec - 1;
temp.tv_nsec = 1000000000ULL + end.tv_nsec - start.tv_nsec;
} else {
temp.tv_sec = end.tv_sec - start.tv_sec;
temp.tv_nsec = end.tv_nsec - start.tv_nsec;
}
return temp.tv_sec * 1000000000ULL + temp.tv_nsec;
}
static unsigned long long benchmark_gcd_func(unsigned long (*gcd)(unsigned long, unsigned long),
unsigned long a, unsigned long b, unsigned long *res)
{
struct timespec start, end;
unsigned long gcd_res;
start = read_time();
gcd_res = gcd(a, b);
end = read_time();
*res = gcd_res;
return diff_time(start, end);
}
#endif
static inline unsigned long get_rand()
{
if (sizeof(long) == 8)
return (unsigned long)rand() << 32 | rand();
else
return rand();
}
int main(int argc, char **argv)
{
unsigned int seed = time(0);
int loops = 100;
int repeats = 1000;
unsigned long (*res)[TEST_ENTRIES];
unsigned long long elapsed[TEST_ENTRIES];
int i, j, k;
for (;;) {
int opt = getopt(argc, argv, "n:r:s:");
/* End condition always first */
if (opt == -1)
break;
switch (opt) {
case 'n':
loops = atoi(optarg);
break;
case 'r':
repeats = atoi(optarg);
break;
case 's':
seed = strtoul(optarg, NULL, 10);
break;
default:
/* You won't actually get here. */
break;
}
}
res = malloc(sizeof(unsigned long) * TEST_ENTRIES * loops);
memset(elapsed, 0, sizeof(elapsed));
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
/* Do we have args? */
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
unsigned long long min_elapsed[TEST_ENTRIES];
for (k = 0; k < repeats; k++) {
for (i = 0; i < TEST_ENTRIES; i++) {
unsigned long long tmp = benchmark_gcd_func(gcd_func[i], a, b, &res[j][i]);
if (k == 0 || min_elapsed[i] > tmp)
min_elapsed[i] = tmp;
}
}
for (i = 0; i < TEST_ENTRIES; i++)
elapsed[i] += min_elapsed[i];
}
for (i = 0; i < TEST_ENTRIES; i++)
printf("gcd%d: elapsed %llu\n", i, elapsed[i]);
k = 0;
srand(seed);
for (j = 0; j < loops; j++) {
unsigned long a = get_rand();
unsigned long b = argc > optind ? strtoul(argv[optind], NULL, 10) : get_rand();
for (i = 1; i < TEST_ENTRIES; i++) {
if (res[j][i] != res[j][0])
break;
}
if (i < TEST_ENTRIES) {
if (k == 0) {
k = 1;
fprintf(stderr, "Error:\n");
}
fprintf(stderr, "gcd(%lu, %lu): ", a, b);
for (i = 0; i < TEST_ENTRIES; i++)
fprintf(stderr, "%ld%s", res[j][i], i < TEST_ENTRIES - 1 ? ", " : "\n");
}
}
if (k == 0)
fprintf(stderr, "PASS\n");
free(res);
return 0;
}
Compiled with "-O2", on "VirtualBox 4.4.0-22-generic #38-Ubuntu x86_64" got:
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 10174
gcd1: elapsed 2120
gcd2: elapsed 2902
gcd3: elapsed 2039
gcd4: elapsed 2812
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9309
gcd1: elapsed 2280
gcd2: elapsed 2822
gcd3: elapsed 2217
gcd4: elapsed 2710
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9589
gcd1: elapsed 2098
gcd2: elapsed 2815
gcd3: elapsed 2030
gcd4: elapsed 2718
PASS
zhaoxiuzeng@zhaoxiuzeng-VirtualBox:~/develop$ ./gcd -r 500000 -n 10
gcd0: elapsed 9914
gcd1: elapsed 2309
gcd2: elapsed 2779
gcd3: elapsed 2228
gcd4: elapsed 2709
PASS
[akpm@linux-foundation.org: avoid #defining a CONFIG_ variable]
Signed-off-by: Zhaoxiu Zeng <zhaoxiu.zeng@gmail.com>
Signed-off-by: George Spelvin <linux@horizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 07:03:57 +07:00
|
|
|
select CPU_NO_EFFICIENT_FFS if !HAVE_MARCH_Z9_109_FEATURES
|
2012-07-31 20:37:13 +07:00
|
|
|
select HAVE_ARCH_SECCOMP_FILTER
|
2015-04-22 19:47:42 +07:00
|
|
|
select HAVE_ARCH_SOFT_DIRTY
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_ARCH_TRACEHOOK
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_ARCH_TRANSPARENT_HUGEPAGE
|
2017-09-12 21:37:33 +07:00
|
|
|
select HAVE_ARCH_VMAP_STACK
|
2019-08-19 12:54:20 +07:00
|
|
|
select HAVE_ASM_MODVERSIONS
|
2016-05-14 00:08:28 +07:00
|
|
|
select HAVE_EBPF_JIT if PACK_STACK && HAVE_MARCH_Z196_FEATURES
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_CMPXCHG_DOUBLE
|
|
|
|
select HAVE_CMPXCHG_LOCAL
|
2017-02-20 15:38:42 +07:00
|
|
|
select HAVE_COPY_THREAD_TLS
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_DEBUG_KMEMLEAK
|
2016-11-14 19:57:03 +07:00
|
|
|
select HAVE_DMA_CONTIGUOUS
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_DYNAMIC_FTRACE
|
|
|
|
select HAVE_DYNAMIC_FTRACE_WITH_REGS
|
2019-07-12 10:57:14 +07:00
|
|
|
select HAVE_FAST_GUP
|
2016-09-12 18:13:38 +07:00
|
|
|
select HAVE_EFFICIENT_UNALIGNED_ACCESS
|
2018-08-06 20:17:47 +07:00
|
|
|
select HAVE_FENTRY
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_FTRACE_MCOUNT_RECORD
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_FUNCTION_GRAPH_TRACER
|
|
|
|
select HAVE_FUNCTION_TRACER
|
2014-03-02 19:09:47 +07:00
|
|
|
select HAVE_FUTEX_CMPXCHG if FUTEX
|
2018-08-14 18:29:11 +07:00
|
|
|
select HAVE_GCC_PLUGINS
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_KERNEL_BZIP2
|
|
|
|
select HAVE_KERNEL_GZIP
|
2013-07-18 20:18:24 +07:00
|
|
|
select HAVE_KERNEL_LZ4
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_KERNEL_LZMA
|
|
|
|
select HAVE_KERNEL_LZO
|
2018-06-13 05:00:25 +07:00
|
|
|
select HAVE_KERNEL_UNCOMPRESSED
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_KERNEL_XZ
|
|
|
|
select HAVE_KPROBES
|
2020-01-21 18:31:47 +07:00
|
|
|
select HAVE_KPROBES_ON_FTRACE
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_KRETPROBES
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_KVM
|
2015-03-26 16:10:17 +07:00
|
|
|
select HAVE_LIVEPATCH
|
2015-06-06 17:44:25 +07:00
|
|
|
select HAVE_PERF_REGS
|
|
|
|
select HAVE_PERF_USER_STACK_DUMP
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_MEMBLOCK_NODE_MAP
|
2014-01-30 00:16:01 +07:00
|
|
|
select HAVE_MEMBLOCK_PHYS_MAP
|
2020-02-04 08:37:08 +07:00
|
|
|
select MMU_GATHER_NO_GATHER
|
2012-09-28 12:01:03 +07:00
|
|
|
select HAVE_MOD_ARCH_SPECIFIC
|
2018-08-06 20:17:47 +07:00
|
|
|
select HAVE_NOP_MCOUNT
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_OPROFILE
|
2018-11-16 02:05:32 +07:00
|
|
|
select HAVE_PCI
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_PERF_EVENTS
|
2020-02-04 08:37:02 +07:00
|
|
|
select MMU_GATHER_RCU_TABLE_FREE
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_REGS_AND_STACK_ACCESS_API
|
s390/livepatch: Implement reliable stack tracing for the consistency model
The livepatch consistency model requires reliable stack tracing
architecture support in order to work properly. In order to achieve
this, two main issues have to be solved. First, reliable and consistent
call chain backtracing has to be ensured. Second, the unwinder needs to
be able to detect stack corruptions and return errors.
The "zSeries ELF Application Binary Interface Supplement" says:
"The stack pointer points to the first word of the lowest allocated
stack frame. If the "back chain" is implemented this word will point to
the previously allocated stack frame (towards higher addresses), except
for the first stack frame, which shall have a back chain of zero (NULL).
The stack shall grow downwards, in other words towards lower addresses."
"back chain" is optional. GCC option -mbackchain enables it. Quoting
Martin Schwidefsky [1]:
"The compiler is called with the -mbackchain option, all normal C
function will store the backchain in the function prologue. All
functions written in assembler code should do the same, if you find one
that does not we should fix that. The end result is that a task that
*voluntarily* called schedule() should have a proper backchain at all
times.
Dependent on the use case this may or may not be enough. Asynchronous
interrupts may stop the CPU at the beginning of a function, if kernel
preemption is enabled we can end up with a broken backchain. The
production kernels for IBM Z are all compiled *without* kernel
preemption. So yes, we might get away without the objtool support.
On a side-note, we do have a line item to implement the ORC unwinder for
the kernel, that includes the objtool support. Once we have that we can
drop the -mbackchain option for the kernel build. That gives us a nice
little performance benefit. I hope that the change from backchain to the
ORC unwinder will not be too hard to implement in the livepatch tools."
Since -mbackchain is enabled by default when the kernel is compiled, the
call chain backtracing should be currently ensured and objtool should
not be necessary for livepatch purposes.
Regarding the second issue, stack corruptions and non-reliable states
have to be recognized by the unwinder. Mainly it means to detect
preemption or page faults, the end of the task stack must be reached,
return addresses must be valid text addresses and hacks like function
graph tracing and kretprobes must be properly detected.
Unwinding a running task's stack is not a problem, because there is a
livepatch requirement that every checked task is blocked, except for the
current task. Due to that, the implementation can be much simpler
compared to the existing non-reliable infrastructure. We can consider a
task's kernel/thread stack only and skip the other stacks.
[1] 20180912121106.31ffa97c@mschwideX1 [not archived on lore.kernel.org]
Link: https://lkml.kernel.org/r/20191106095601.29986-5-mbenes@suse.cz
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2019-11-06 16:56:01 +07:00
|
|
|
select HAVE_RELIABLE_STACKTRACE
|
2018-06-30 15:54:15 +07:00
|
|
|
select HAVE_RSEQ
|
2013-02-06 16:15:55 +07:00
|
|
|
select HAVE_SYSCALL_TRACEPOINTS
|
|
|
|
select HAVE_VIRT_CPU_ACCOUNTING
|
2018-11-16 02:05:32 +07:00
|
|
|
select IOMMU_HELPER if PCI
|
|
|
|
select IOMMU_SUPPORT if PCI
|
2012-09-28 12:01:03 +07:00
|
|
|
select MODULES_USE_ELF_RELA
|
2018-11-16 02:05:32 +07:00
|
|
|
select NEED_DMA_MAP_STATE if PCI
|
|
|
|
select NEED_SG_DMA_LENGTH if PCI
|
2012-12-26 07:26:12 +07:00
|
|
|
select OLD_SIGACTION
|
2013-09-06 15:03:30 +07:00
|
|
|
select OLD_SIGSUSPEND3
|
2018-11-16 02:05:33 +07:00
|
|
|
select PCI_DOMAINS if PCI
|
2018-11-16 02:05:32 +07:00
|
|
|
select PCI_MSI if PCI
|
2016-06-02 19:57:17 +07:00
|
|
|
select SPARSE_IRQ
|
2013-02-06 16:15:55 +07:00
|
|
|
select SYSCTL_EXCEPTION_TRACE
|
2016-11-08 17:08:26 +07:00
|
|
|
select THREAD_INFO_IN_TASK
|
2014-02-27 09:13:06 +07:00
|
|
|
select TTY
|
2013-02-06 16:15:55 +07:00
|
|
|
select VIRT_CPU_ACCOUNTING
|
2016-11-15 09:06:51 +07:00
|
|
|
select ARCH_HAS_SCALED_CPUTIME
|
2016-05-21 07:00:33 +07:00
|
|
|
select HAVE_NMI
|
2019-07-11 02:01:19 +07:00
|
|
|
select ARCH_HAS_FORCE_DMA_UNENCRYPTED
|
2018-09-13 23:57:16 +07:00
|
|
|
select SWIOTLB
|
2019-04-02 23:47:29 +07:00
|
|
|
select GENERIC_ALLOCATOR
|
2020-03-09 07:57:51 +07:00
|
|
|
imply IMA_SECURE_AND_OR_TRUSTED_BOOT
|
2014-03-07 00:25:13 +07:00
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2009-07-07 21:37:10 +07:00
|
|
|
config SCHED_OMIT_FRAME_POINTER
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2009-07-07 21:37:10 +07:00
|
|
|
|
2015-04-15 05:46:00 +07:00
|
|
|
config PGTABLE_LEVELS
|
|
|
|
int
|
2017-04-24 23:19:10 +07:00
|
|
|
default 5
|
2015-04-15 05:46:00 +07:00
|
|
|
|
2015-03-26 16:10:17 +07:00
|
|
|
source "kernel/livepatch/Kconfig"
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
menu "Processor type and features"
|
|
|
|
|
|
|
|
config HAVE_MARCH_Z900_FEATURES
|
|
|
|
def_bool n
|
|
|
|
|
|
|
|
config HAVE_MARCH_Z990_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_Z900_FEATURES
|
|
|
|
|
|
|
|
config HAVE_MARCH_Z9_109_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_Z990_FEATURES
|
|
|
|
|
|
|
|
config HAVE_MARCH_Z10_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_Z9_109_FEATURES
|
|
|
|
|
|
|
|
config HAVE_MARCH_Z196_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_Z10_FEATURES
|
|
|
|
|
2012-11-13 15:26:37 +07:00
|
|
|
config HAVE_MARCH_ZEC12_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_Z196_FEATURES
|
|
|
|
|
2015-01-14 23:50:19 +07:00
|
|
|
config HAVE_MARCH_Z13_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_ZEC12_FEATURES
|
|
|
|
|
2017-04-12 19:17:25 +07:00
|
|
|
config HAVE_MARCH_Z14_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_Z13_FEATURES
|
|
|
|
|
2019-02-06 14:22:11 +07:00
|
|
|
config HAVE_MARCH_Z15_FEATURES
|
|
|
|
def_bool n
|
|
|
|
select HAVE_MARCH_Z14_FEATURES
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
choice
|
|
|
|
prompt "Processor type"
|
2016-04-18 22:10:16 +07:00
|
|
|
default MARCH_Z196
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config MARCH_Z900
|
|
|
|
bool "IBM zSeries model z800 and z900"
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_MARCH_Z900_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z900)
|
2012-08-27 15:55:18 +07:00
|
|
|
help
|
|
|
|
Select this to enable optimizations for model z800/z900 (2064 and
|
|
|
|
2066 series). This will enable some optimizations that are not
|
|
|
|
available on older ESA/390 (31 Bit) only CPUs.
|
|
|
|
|
|
|
|
config MARCH_Z990
|
|
|
|
bool "IBM zSeries model z890 and z990"
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_MARCH_Z990_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z990)
|
2012-08-27 15:55:18 +07:00
|
|
|
help
|
|
|
|
Select this to enable optimizations for model z890/z990 (2084 and
|
|
|
|
2086 series). The kernel will be slightly faster but will not work
|
|
|
|
on older machines.
|
|
|
|
|
|
|
|
config MARCH_Z9_109
|
|
|
|
bool "IBM System z9"
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_MARCH_Z9_109_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z9-109)
|
2012-08-27 15:55:18 +07:00
|
|
|
help
|
|
|
|
Select this to enable optimizations for IBM System z9 (2094 and
|
|
|
|
2096 series). The kernel will be slightly faster but will not work
|
|
|
|
on older machines.
|
|
|
|
|
|
|
|
config MARCH_Z10
|
|
|
|
bool "IBM System z10"
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_MARCH_Z10_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z10)
|
2012-08-27 15:55:18 +07:00
|
|
|
help
|
|
|
|
Select this to enable optimizations for IBM System z10 (2097 and
|
|
|
|
2098 series). The kernel will be slightly faster but will not work
|
|
|
|
on older machines.
|
|
|
|
|
|
|
|
config MARCH_Z196
|
|
|
|
bool "IBM zEnterprise 114 and 196"
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_MARCH_Z196_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z196)
|
2012-08-27 15:55:18 +07:00
|
|
|
help
|
|
|
|
Select this to enable optimizations for IBM zEnterprise 114 and 196
|
|
|
|
(2818 and 2817 series). The kernel will be slightly faster but will
|
|
|
|
not work on older machines.
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-11-13 15:26:37 +07:00
|
|
|
config MARCH_ZEC12
|
2013-07-24 15:35:33 +07:00
|
|
|
bool "IBM zBC12 and zEC12"
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_MARCH_ZEC12_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=zEC12)
|
2012-11-13 15:26:37 +07:00
|
|
|
help
|
2013-07-24 15:35:33 +07:00
|
|
|
Select this to enable optimizations for IBM zBC12 and zEC12 (2828 and
|
|
|
|
2827 series). The kernel will be slightly faster but will not work on
|
|
|
|
older machines.
|
2012-11-13 15:26:37 +07:00
|
|
|
|
2015-01-14 23:50:19 +07:00
|
|
|
config MARCH_Z13
|
2016-02-19 16:46:08 +07:00
|
|
|
bool "IBM z13s and z13"
|
2015-02-12 19:08:27 +07:00
|
|
|
select HAVE_MARCH_Z13_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z13)
|
2015-01-14 23:50:19 +07:00
|
|
|
help
|
2016-02-19 16:46:08 +07:00
|
|
|
Select this to enable optimizations for IBM z13s and z13 (2965 and
|
|
|
|
2964 series). The kernel will be slightly faster but will not work on
|
|
|
|
older machines.
|
2015-01-14 23:50:19 +07:00
|
|
|
|
2017-04-12 19:17:25 +07:00
|
|
|
config MARCH_Z14
|
2018-04-13 19:04:24 +07:00
|
|
|
bool "IBM z14 ZR1 and z14"
|
2017-04-12 19:17:25 +07:00
|
|
|
select HAVE_MARCH_Z14_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z14)
|
2017-04-12 19:17:25 +07:00
|
|
|
help
|
2018-04-13 19:04:24 +07:00
|
|
|
Select this to enable optimizations for IBM z14 ZR1 and z14 (3907
|
|
|
|
and 3906 series). The kernel will be slightly faster but will not
|
|
|
|
work on older machines.
|
2017-04-12 19:17:25 +07:00
|
|
|
|
2019-02-06 14:22:11 +07:00
|
|
|
config MARCH_Z15
|
|
|
|
bool "IBM z15"
|
|
|
|
select HAVE_MARCH_Z15_FEATURES
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-march=z15)
|
2019-02-06 14:22:11 +07:00
|
|
|
help
|
|
|
|
Select this to enable optimizations for IBM z15 (8562
|
|
|
|
and 8561 series). The kernel will be slightly faster but will not
|
|
|
|
work on older machines.
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
endchoice
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2013-10-30 18:12:50 +07:00
|
|
|
config MARCH_Z900_TUNE
|
|
|
|
def_bool TUNE_Z900 || MARCH_Z900 && TUNE_DEFAULT
|
|
|
|
|
|
|
|
config MARCH_Z990_TUNE
|
|
|
|
def_bool TUNE_Z990 || MARCH_Z990 && TUNE_DEFAULT
|
|
|
|
|
|
|
|
config MARCH_Z9_109_TUNE
|
|
|
|
def_bool TUNE_Z9_109 || MARCH_Z9_109 && TUNE_DEFAULT
|
|
|
|
|
|
|
|
config MARCH_Z10_TUNE
|
|
|
|
def_bool TUNE_Z10 || MARCH_Z10 && TUNE_DEFAULT
|
|
|
|
|
|
|
|
config MARCH_Z196_TUNE
|
|
|
|
def_bool TUNE_Z196 || MARCH_Z196 && TUNE_DEFAULT
|
|
|
|
|
|
|
|
config MARCH_ZEC12_TUNE
|
|
|
|
def_bool TUNE_ZEC12 || MARCH_ZEC12 && TUNE_DEFAULT
|
|
|
|
|
2015-01-14 23:50:19 +07:00
|
|
|
config MARCH_Z13_TUNE
|
|
|
|
def_bool TUNE_Z13 || MARCH_Z13 && TUNE_DEFAULT
|
|
|
|
|
2017-04-12 19:17:25 +07:00
|
|
|
config MARCH_Z14_TUNE
|
|
|
|
def_bool TUNE_Z14 || MARCH_Z14 && TUNE_DEFAULT
|
|
|
|
|
2019-02-06 14:22:11 +07:00
|
|
|
config MARCH_Z15_TUNE
|
|
|
|
def_bool TUNE_Z15 || MARCH_Z15 && TUNE_DEFAULT
|
|
|
|
|
2013-10-30 18:12:50 +07:00
|
|
|
choice
|
|
|
|
prompt "Tune code generation"
|
|
|
|
default TUNE_DEFAULT
|
|
|
|
help
|
|
|
|
Cause the compiler to tune (-mtune) the generated code for a machine.
|
|
|
|
This will make the code run faster on the selected machine but
|
|
|
|
somewhat slower on other machines.
|
|
|
|
This option only changes how the compiler emits instructions, not the
|
|
|
|
selection of instructions itself, so the resulting kernel will run on
|
|
|
|
all other machines.
|
|
|
|
|
|
|
|
config TUNE_DEFAULT
|
|
|
|
bool "Default"
|
|
|
|
help
|
|
|
|
Tune the generated code for the target processor for which the kernel
|
|
|
|
will be compiled.
|
|
|
|
|
|
|
|
config TUNE_Z900
|
|
|
|
bool "IBM zSeries model z800 and z900"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z900)
|
2013-10-30 18:12:50 +07:00
|
|
|
|
|
|
|
config TUNE_Z990
|
|
|
|
bool "IBM zSeries model z890 and z990"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z990)
|
2013-10-30 18:12:50 +07:00
|
|
|
|
|
|
|
config TUNE_Z9_109
|
|
|
|
bool "IBM System z9"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z9-109)
|
2013-10-30 18:12:50 +07:00
|
|
|
|
|
|
|
config TUNE_Z10
|
|
|
|
bool "IBM System z10"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z10)
|
2013-10-30 18:12:50 +07:00
|
|
|
|
|
|
|
config TUNE_Z196
|
|
|
|
bool "IBM zEnterprise 114 and 196"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z196)
|
2013-10-30 18:12:50 +07:00
|
|
|
|
|
|
|
config TUNE_ZEC12
|
|
|
|
bool "IBM zBC12 and zEC12"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=zEC12)
|
2013-10-30 18:12:50 +07:00
|
|
|
|
2015-01-14 23:50:19 +07:00
|
|
|
config TUNE_Z13
|
2019-10-06 22:02:07 +07:00
|
|
|
bool "IBM z13s and z13"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z13)
|
2015-01-14 23:50:19 +07:00
|
|
|
|
2017-04-12 19:17:25 +07:00
|
|
|
config TUNE_Z14
|
2019-10-06 22:02:07 +07:00
|
|
|
bool "IBM z14 ZR1 and z14"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z14)
|
2017-04-12 19:17:25 +07:00
|
|
|
|
2019-02-06 14:22:11 +07:00
|
|
|
config TUNE_Z15
|
|
|
|
bool "IBM z15"
|
2019-10-06 21:55:53 +07:00
|
|
|
depends on $(cc-option,-mtune=z15)
|
2019-02-06 14:22:11 +07:00
|
|
|
|
2013-10-30 18:12:50 +07:00
|
|
|
endchoice
|
|
|
|
|
2006-01-06 15:19:28 +07:00
|
|
|
config 64BIT
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2006-09-28 21:55:39 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config COMPAT
|
|
|
|
def_bool y
|
|
|
|
prompt "Kernel support for 31 bit emulation"
|
|
|
|
select COMPAT_BINFMT_ELF if BINFMT_ELF
|
|
|
|
select ARCH_WANT_OLD_COMPAT_IPC
|
2012-12-26 07:26:12 +07:00
|
|
|
select COMPAT_OLD_SIGACTION
|
2019-01-16 20:15:21 +07:00
|
|
|
select HAVE_UID16
|
kernel: conditionally support non-root users, groups and capabilities
There are a lot of embedded systems that run most or all of their
functionality in init, running as root:root. For these systems,
supporting multiple users is not necessary.
This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for
non-root users, non-root groups, and capabilities optional. It is enabled
under CONFIG_EXPERT menu.
When this symbol is not defined, UID and GID are zero in any possible case
and processes always have all capabilities.
The following syscalls are compiled out: setuid, setregid, setgid,
setreuid, setresuid, getresuid, setresgid, getresgid, setgroups,
getgroups, setfsuid, setfsgid, capget, capset.
Also, groups.c is compiled out completely.
In kernel/capability.c, capable function was moved in order to avoid
adding two ifdef blocks.
This change saves about 25 KB on a defconfig build. The most minimal
kernels have total text sizes in the high hundreds of kB rather than
low MB. (The 25k goes down a bit with allnoconfig, but not that much.
The kernel was booted in Qemu. All the common functionalities work.
Adding users/groups is not possible, failing with -ENOSYS.
Bloat-o-meter output:
add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650)
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 06:16:41 +07:00
|
|
|
depends on MULTIUSER
|
2012-08-27 15:55:18 +07:00
|
|
|
help
|
|
|
|
Select this option if you want to enable your system kernel to
|
|
|
|
handle system-calls from ELF binaries for 31 bit ESA. This option
|
|
|
|
(and some other stuff like libraries and such) is needed for
|
|
|
|
executing 31 bit applications. It is safe to say "Y".
|
|
|
|
|
|
|
|
config SYSVIPC_COMPAT
|
|
|
|
def_bool y if COMPAT && SYSVIPC
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
config SMP
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
config NR_CPUS
|
2015-01-28 22:52:01 +07:00
|
|
|
int "Maximum number of CPUs (2-512)"
|
|
|
|
range 2 512
|
2015-02-12 19:08:27 +07:00
|
|
|
default "64"
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
This allows you to specify the maximum number of CPUs which this
|
2015-01-28 22:52:01 +07:00
|
|
|
kernel will support. The maximum supported value is 512 and the
|
2005-04-17 05:20:36 +07:00
|
|
|
minimum value which makes sense is 2.
|
|
|
|
|
|
|
|
This is purely to save memory - each supported CPU adds
|
|
|
|
approximately sixteen kilobytes to the kernel image.
|
|
|
|
|
|
|
|
config HOTPLUG_CPU
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2014-03-07 00:25:13 +07:00
|
|
|
config NUMA
|
|
|
|
bool "NUMA support"
|
2019-06-03 19:25:18 +07:00
|
|
|
depends on SCHED_TOPOLOGY
|
2014-03-07 00:25:13 +07:00
|
|
|
default n
|
|
|
|
help
|
|
|
|
Enable NUMA support
|
|
|
|
|
|
|
|
This option adds NUMA support to the kernel.
|
|
|
|
|
|
|
|
config NODES_SHIFT
|
2020-02-19 19:29:15 +07:00
|
|
|
int
|
|
|
|
default "1"
|
2015-12-28 19:20:43 +07:00
|
|
|
|
|
|
|
config SCHED_SMT
|
|
|
|
def_bool n
|
2014-03-07 00:47:21 +07:00
|
|
|
|
2010-10-29 21:50:37 +07:00
|
|
|
config SCHED_MC
|
2011-12-27 17:27:09 +07:00
|
|
|
def_bool n
|
2010-10-29 21:50:37 +07:00
|
|
|
|
2010-08-31 15:28:18 +07:00
|
|
|
config SCHED_BOOK
|
2015-01-14 23:52:10 +07:00
|
|
|
def_bool n
|
|
|
|
|
2016-05-25 15:25:50 +07:00
|
|
|
config SCHED_DRAWER
|
|
|
|
def_bool n
|
|
|
|
|
2015-01-14 23:52:10 +07:00
|
|
|
config SCHED_TOPOLOGY
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2015-01-14 23:52:10 +07:00
|
|
|
prompt "Topology scheduler support"
|
|
|
|
select SCHED_SMT
|
2011-12-27 17:27:09 +07:00
|
|
|
select SCHED_MC
|
2015-01-14 23:52:10 +07:00
|
|
|
select SCHED_BOOK
|
2016-05-25 15:25:50 +07:00
|
|
|
select SCHED_DRAWER
|
2010-08-31 15:28:18 +07:00
|
|
|
help
|
2015-01-14 23:52:10 +07:00
|
|
|
Topology scheduler support improves the CPU scheduler's decision
|
|
|
|
making when dealing with machines that have multi-threading,
|
|
|
|
multiple cores or multiple books.
|
2010-08-31 15:28:18 +07:00
|
|
|
|
2018-12-11 18:01:04 +07:00
|
|
|
source "kernel/Kconfig.hz"
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2018-03-27 18:14:12 +07:00
|
|
|
config KEXEC
|
|
|
|
def_bool y
|
|
|
|
select KEXEC_CORE
|
|
|
|
|
|
|
|
config KEXEC_FILE
|
|
|
|
bool "kexec file based system call"
|
|
|
|
select KEXEC_CORE
|
|
|
|
select BUILD_BIN2C
|
|
|
|
depends on CRYPTO
|
|
|
|
depends on CRYPTO_SHA256
|
|
|
|
depends on CRYPTO_SHA256_S390
|
|
|
|
help
|
|
|
|
Enable the kexec file based system call. In contrast to the normal
|
|
|
|
kexec system call this system call takes file descriptors for the
|
|
|
|
kernel and initramfs as arguments.
|
|
|
|
|
|
|
|
config ARCH_HAS_KEXEC_PURGATORY
|
|
|
|
def_bool y
|
|
|
|
depends on KEXEC_FILE
|
|
|
|
|
2019-08-20 07:17:44 +07:00
|
|
|
config KEXEC_SIG
|
2019-02-26 16:50:39 +07:00
|
|
|
bool "Verify kernel signature during kexec_file_load() syscall"
|
2019-07-05 01:57:34 +07:00
|
|
|
depends on KEXEC_FILE && MODULE_SIG_FORMAT
|
2019-02-26 16:50:39 +07:00
|
|
|
help
|
|
|
|
This option makes kernel signature verification mandatory for
|
|
|
|
the kexec_file_load() syscall.
|
|
|
|
|
|
|
|
In addition to that option, you need to enable signature
|
|
|
|
verification for the corresponding kernel image type being
|
|
|
|
loaded in order for this to work.
|
|
|
|
|
2017-03-17 16:46:31 +07:00
|
|
|
config ARCH_RANDOM
|
|
|
|
def_bool y
|
|
|
|
prompt "s390 architectural random number generation API"
|
|
|
|
help
|
|
|
|
Enable the s390 architectural random number generation API
|
|
|
|
to provide random data for all consumers within the Linux
|
|
|
|
kernel.
|
|
|
|
|
|
|
|
When enabled the arch_random_* functions declared in linux/random.h
|
|
|
|
are implemented. The implementation is based on the s390 CPACF
|
|
|
|
instruction subfunction TRNG which provides a real true random
|
|
|
|
number generator.
|
|
|
|
|
|
|
|
If unsure, say Y.
|
|
|
|
|
2018-01-16 13:11:45 +07:00
|
|
|
config KERNEL_NOBP
|
|
|
|
def_bool n
|
|
|
|
prompt "Enable modified branch prediction for the kernel by default"
|
|
|
|
help
|
|
|
|
If this option is selected the kernel will switch to a modified
|
|
|
|
branch prediction mode if the firmware interface is available.
|
|
|
|
The modified branch prediction mode improves the behaviour in
|
|
|
|
regard to speculative execution.
|
|
|
|
|
|
|
|
With the option enabled the kernel parameter "nobp=0" or "nospec"
|
|
|
|
can be used to run the kernel in the normal branch prediction mode.
|
|
|
|
|
|
|
|
With the option disabled the modified branch prediction mode is
|
|
|
|
enabled with the "nobp=1" kernel parameter.
|
|
|
|
|
|
|
|
If unsure, say N.
|
|
|
|
|
2018-01-26 18:46:47 +07:00
|
|
|
config EXPOLINE
|
|
|
|
def_bool n
|
|
|
|
prompt "Avoid speculative indirect branches in the kernel"
|
|
|
|
help
|
|
|
|
Compile the kernel with the expoline compiler options to guard
|
|
|
|
against kernel-to-user data leaks by avoiding speculative indirect
|
|
|
|
branches.
|
|
|
|
Requires a compiler with -mindirect-branch=thunk support for full
|
|
|
|
protection. The kernel may run slower.
|
|
|
|
|
|
|
|
If unsure, say N.
|
|
|
|
|
|
|
|
choice
|
|
|
|
prompt "Expoline default"
|
|
|
|
depends on EXPOLINE
|
|
|
|
default EXPOLINE_FULL
|
|
|
|
|
|
|
|
config EXPOLINE_OFF
|
|
|
|
bool "spectre_v2=off"
|
|
|
|
|
2018-03-23 19:04:49 +07:00
|
|
|
config EXPOLINE_AUTO
|
2018-01-26 18:46:47 +07:00
|
|
|
bool "spectre_v2=auto"
|
|
|
|
|
|
|
|
config EXPOLINE_FULL
|
|
|
|
bool "spectre_v2=on"
|
|
|
|
|
|
|
|
endchoice
|
|
|
|
|
2019-02-04 03:35:45 +07:00
|
|
|
config RELOCATABLE
|
|
|
|
bool "Build a relocatable kernel"
|
|
|
|
select MODULE_REL_CRCS if MODVERSIONS
|
|
|
|
default y
|
|
|
|
help
|
|
|
|
This builds a kernel image that retains relocation information
|
|
|
|
so it can be loaded at an arbitrary address.
|
|
|
|
The kernel is linked as a position-independent executable (PIE)
|
|
|
|
and contains dynamic relocations which are processed early in the
|
|
|
|
bootup process.
|
|
|
|
The relocations make the kernel image about 15% larger (compressed
|
|
|
|
10%), but are discarded at runtime.
|
|
|
|
|
2019-02-04 03:37:20 +07:00
|
|
|
config RANDOMIZE_BASE
|
|
|
|
bool "Randomize the address of the kernel image (KASLR)"
|
|
|
|
depends on RELOCATABLE
|
|
|
|
default y
|
|
|
|
help
|
|
|
|
In support of Kernel Address Space Layout Randomization (KASLR),
|
|
|
|
this randomizes the address at which the kernel image is loaded,
|
|
|
|
as a security feature that deters exploit attempts relying on
|
|
|
|
knowledge of the location of kernel internals.
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
endmenu
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
menu "Memory setup"
|
2012-02-25 00:01:27 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config ARCH_SPARSEMEM_ENABLE
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2012-08-27 15:55:18 +07:00
|
|
|
select SPARSEMEM_VMEMMAP_ENABLE
|
|
|
|
select SPARSEMEM_VMEMMAP
|
2006-09-12 14:04:40 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config ARCH_SPARSEMEM_DEFAULT
|
|
|
|
def_bool y
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config ARCH_ENABLE_MEMORY_HOTPLUG
|
|
|
|
def_bool y if SPARSEMEM
|
2006-09-28 21:55:46 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config ARCH_ENABLE_MEMORY_HOTREMOVE
|
|
|
|
def_bool y
|
2008-12-25 19:39:19 +07:00
|
|
|
|
2014-02-12 20:16:18 +07:00
|
|
|
config ARCH_ENABLE_SPLIT_PMD_PTLOCK
|
|
|
|
def_bool y
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
config FORCE_MAX_ZONEORDER
|
|
|
|
int
|
|
|
|
default "9"
|
2010-10-25 21:10:17 +07:00
|
|
|
|
2017-03-27 20:36:20 +07:00
|
|
|
config MAX_PHYSMEM_BITS
|
|
|
|
int "Maximum size of supported physical memory in bits (42-53)"
|
|
|
|
range 42 53
|
|
|
|
default "46"
|
|
|
|
help
|
|
|
|
This option specifies the maximum supported size of physical memory
|
|
|
|
in bits. Supported is any size between 2^42 (4TB) and 2^53 (8PB).
|
|
|
|
Increasing the number of bits also increases the kernel image size.
|
|
|
|
By default 46 bits (64TB) are supported.
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
config PACK_STACK
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
|
|
|
prompt "Pack kernel stack"
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
This option enables the compiler option -mkernel-backchain if it
|
|
|
|
is available. If the option is available the compiler supports
|
|
|
|
the new stack layout which dramatically reduces the minimum stack
|
|
|
|
frame size. With an old compiler a non-leaf function needs a
|
|
|
|
minimum of 96 bytes on 31 bit and 160 bytes on 64 bit. With
|
|
|
|
-mkernel-backchain the minimum size drops to 16 byte on 31 bit
|
|
|
|
and 24 byte on 64 bit.
|
|
|
|
|
|
|
|
Say Y if you are unsure.
|
|
|
|
|
|
|
|
config CHECK_STACK
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2017-09-12 21:37:33 +07:00
|
|
|
depends on !VMAP_STACK
|
2011-01-05 18:47:15 +07:00
|
|
|
prompt "Detect kernel stack overflow"
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
This option enables the compiler option -mstack-guard and
|
|
|
|
-mstack-size if they are available. If the compiler supports them
|
|
|
|
it will emit additional code to each function prolog to trigger
|
|
|
|
an illegal operation if the kernel stack is about to overflow.
|
|
|
|
|
|
|
|
Say N if you are unsure.
|
|
|
|
|
|
|
|
config STACK_GUARD
|
|
|
|
int "Size of the guard area (128-1024)"
|
|
|
|
range 128 1024
|
|
|
|
depends on CHECK_STACK
|
|
|
|
default "256"
|
|
|
|
help
|
|
|
|
This allows you to specify the size of the guard area at the lower
|
|
|
|
end of the kernel stack. If the kernel stack points into the guard
|
|
|
|
area on function entry an illegal operation is triggered. The size
|
|
|
|
needs to be a power of 2. Please keep in mind that the size of an
|
|
|
|
interrupt frame is 184 bytes for 31 bit and 328 bytes on 64 bit.
|
|
|
|
The minimum size for the stack guard should be 256 for 31 bit and
|
|
|
|
512 for 64 bit.
|
|
|
|
|
2011-03-15 23:08:19 +07:00
|
|
|
config WARN_DYNAMIC_STACK
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool n
|
2011-03-15 23:08:19 +07:00
|
|
|
prompt "Emit compiler warnings for function with dynamic stack usage"
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
2011-03-15 23:08:19 +07:00
|
|
|
This option enables the compiler option -mwarn-dynamicstack. If the
|
|
|
|
compiler supports this options generates warnings for functions
|
|
|
|
that dynamically allocate stack space using alloca.
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
Say N if you are unsure.
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
endmenu
|
2005-06-23 14:07:43 +07:00
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
menu "I/O subsystem"
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
config QDIO
|
2011-01-05 18:47:15 +07:00
|
|
|
def_tristate y
|
|
|
|
prompt "QDIO support"
|
2005-04-17 05:20:36 +07:00
|
|
|
---help---
|
2006-01-06 15:19:20 +07:00
|
|
|
This driver provides the Queued Direct I/O base support for
|
2008-04-17 12:46:19 +07:00
|
|
|
IBM System z.
|
2005-04-17 05:20:36 +07:00
|
|
|
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
|
|
module will be called qdio.
|
|
|
|
|
|
|
|
If unsure, say Y.
|
|
|
|
|
2012-11-29 20:38:46 +07:00
|
|
|
if PCI
|
|
|
|
|
|
|
|
config PCI_NR_FUNCTIONS
|
|
|
|
int "Maximum number of PCI functions (1-4096)"
|
|
|
|
range 1 4096
|
2017-03-28 00:09:15 +07:00
|
|
|
default "128"
|
2012-11-29 20:38:46 +07:00
|
|
|
help
|
|
|
|
This allows you to specify the maximum number of PCI functions which
|
|
|
|
this kernel will support.
|
|
|
|
|
2019-03-07 03:32:01 +07:00
|
|
|
endif # PCI
|
2012-11-29 20:38:46 +07:00
|
|
|
|
|
|
|
config HAS_IOMEM
|
|
|
|
def_bool PCI
|
|
|
|
|
2008-07-14 14:59:05 +07:00
|
|
|
config CHSC_SCH
|
2011-01-31 17:30:09 +07:00
|
|
|
def_tristate m
|
2011-01-05 18:47:15 +07:00
|
|
|
prompt "Support for CHSC subchannels"
|
2008-07-14 14:59:05 +07:00
|
|
|
help
|
|
|
|
This driver allows usage of CHSC subchannels. A CHSC subchannel
|
|
|
|
is usually present on LPAR only.
|
|
|
|
The driver creates a device /dev/chsc, which may be used to
|
|
|
|
obtain I/O configuration information about the machine and
|
|
|
|
to issue asynchronous chsc commands (DANGEROUS).
|
|
|
|
You will usually only want to use this interface on a special
|
|
|
|
LPAR designated for system management.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
|
|
module will be called chsc_sch.
|
|
|
|
|
|
|
|
If unsure, say N.
|
|
|
|
|
2012-08-28 21:46:26 +07:00
|
|
|
config SCM_BUS
|
|
|
|
def_bool y
|
|
|
|
prompt "SCM bus driver"
|
|
|
|
help
|
|
|
|
Bus driver for Storage Class Memory.
|
|
|
|
|
2012-08-28 21:48:16 +07:00
|
|
|
config EADM_SCH
|
|
|
|
def_tristate m
|
|
|
|
prompt "Support for EADM subchannels"
|
|
|
|
depends on SCM_BUS
|
|
|
|
help
|
|
|
|
This driver allows usage of EADM subchannels. EADM subchannels act
|
|
|
|
as a communication vehicle for SCM increments.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
|
|
module will be called eadm_sch.
|
|
|
|
|
2017-03-17 10:17:31 +07:00
|
|
|
config VFIO_CCW
|
|
|
|
def_tristate n
|
|
|
|
prompt "Support for VFIO-CCW subchannels"
|
2017-03-17 10:17:33 +07:00
|
|
|
depends on S390_CCW_IOMMU && VFIO_MDEV
|
2017-03-17 10:17:31 +07:00
|
|
|
help
|
|
|
|
This driver allows usage of I/O subchannels via VFIO-CCW.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here: the
|
|
|
|
module will be called vfio_ccw.
|
|
|
|
|
2018-09-26 06:16:19 +07:00
|
|
|
config VFIO_AP
|
|
|
|
def_tristate n
|
|
|
|
prompt "VFIO support for AP devices"
|
|
|
|
depends on S390_AP_IOMMU && VFIO_MDEV_DEVICE && KVM
|
|
|
|
help
|
|
|
|
This driver grants access to Adjunct Processor (AP) devices
|
|
|
|
via the VFIO mediated device interface.
|
|
|
|
|
|
|
|
To compile this driver as a module, choose M here: the module
|
|
|
|
will be called vfio_ap.
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
endmenu
|
|
|
|
|
|
|
|
menu "Dump support"
|
|
|
|
|
|
|
|
config CRASH_DUMP
|
|
|
|
bool "kernel crash dumps"
|
|
|
|
select KEXEC
|
|
|
|
help
|
|
|
|
Generate crash dump after being started by kexec.
|
|
|
|
Crash dump kernels are loaded in the main kernel with kexec-tools
|
|
|
|
into a specially reserved region and then later executed after
|
|
|
|
a crash by kdump/kexec.
|
2019-06-09 09:27:16 +07:00
|
|
|
Refer to <file:Documentation/s390/zfcpdump.rst> for more details on this.
|
2014-04-14 15:38:05 +07:00
|
|
|
This option also enables s390 zfcpdump.
|
2019-06-09 09:27:16 +07:00
|
|
|
See also <file:Documentation/s390/zfcpdump.rst>
|
2012-08-27 15:55:18 +07:00
|
|
|
|
|
|
|
endmenu
|
|
|
|
|
|
|
|
config SECCOMP
|
|
|
|
def_bool y
|
|
|
|
prompt "Enable seccomp to safely compute untrusted bytecode"
|
|
|
|
depends on PROC_FS
|
|
|
|
help
|
|
|
|
This kernel feature is useful for number crunching applications
|
|
|
|
that may need to compute untrusted bytecode during their
|
|
|
|
execution. By using pipes or other transports made available to
|
|
|
|
the process as file descriptors supporting the read/write
|
|
|
|
syscalls, it's possible to isolate those applications in
|
|
|
|
their own address space using seccomp. Once seccomp is
|
|
|
|
enabled via /proc/<pid>/seccomp, it cannot be disabled
|
|
|
|
and the task is only allowed to execute a few safe syscalls
|
|
|
|
defined by each seccomp mode.
|
|
|
|
|
|
|
|
If unsure, say Y.
|
|
|
|
|
|
|
|
config CCW
|
|
|
|
def_bool y
|
|
|
|
|
2018-05-22 17:42:57 +07:00
|
|
|
config HAVE_PNETID
|
|
|
|
tristate
|
|
|
|
default (SMC || CCWGROUP)
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
menu "Virtualization"
|
2008-03-05 18:37:14 +07:00
|
|
|
|
2019-04-02 00:11:03 +07:00
|
|
|
config PROTECTED_VIRTUALIZATION_GUEST
|
|
|
|
def_bool n
|
|
|
|
prompt "Protected virtualization guest support"
|
|
|
|
help
|
|
|
|
Select this option, if you want to be able to run this
|
|
|
|
kernel as a protected virtualization KVM guest.
|
|
|
|
Protected virtualization capable machines have a mini hypervisor
|
|
|
|
located at machine level (an ultravisor). With help of the
|
|
|
|
Ultravisor, KVM will be able to run "protected" VMs, special
|
|
|
|
VMs whose memory and management data are unavailable to KVM.
|
|
|
|
|
2005-04-17 05:20:36 +07:00
|
|
|
config PFAULT
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
|
|
|
prompt "Pseudo page fault support"
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
Select this option, if you want to use PFAULT pseudo page fault
|
|
|
|
handling under VM. If running native or in LPAR, this option
|
|
|
|
has no effect. If your VM does not support PFAULT, PAGEEX
|
|
|
|
pseudo page fault handling will be used.
|
|
|
|
Note that VM 4.2 supports PFAULT but has a bug in its
|
|
|
|
implementation that causes some problems.
|
|
|
|
Everybody who wants to run Linux under VM != VM4.2 should select
|
|
|
|
this option.
|
|
|
|
|
|
|
|
config CMM
|
2011-01-05 18:47:15 +07:00
|
|
|
def_tristate n
|
|
|
|
prompt "Cooperative memory management"
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
Select this option, if you want to enable the kernel interface
|
|
|
|
to reduce the memory size of the system. This is accomplished
|
|
|
|
by allocating pages of memory and put them "on hold". This only
|
|
|
|
makes sense for a system running under VM where the unused pages
|
|
|
|
will be reused by VM for other guest systems. The interface
|
|
|
|
allows an external monitor to balance memory of many systems.
|
|
|
|
Everybody who wants to run Linux under VM should select this
|
|
|
|
option.
|
|
|
|
|
|
|
|
config CMM_IUCV
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
|
|
|
prompt "IUCV special message interface to cooperative memory management"
|
2005-04-17 05:20:36 +07:00
|
|
|
depends on CMM && (SMSGIUCV=y || CMM=SMSGIUCV)
|
|
|
|
help
|
|
|
|
Select this option to enable the special message interface to
|
|
|
|
the cooperative memory management.
|
|
|
|
|
|
|
|
config APPLDATA_BASE
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool n
|
|
|
|
prompt "Linux - VM Monitor Stream, base infrastructure"
|
2008-12-25 19:39:25 +07:00
|
|
|
depends on PROC_FS
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
This provides a kernel interface for creating and updating z/VM APPLDATA
|
|
|
|
monitor records. The monitor records are updated at certain time
|
|
|
|
intervals, once the timer is started.
|
|
|
|
Writing 1 or 0 to /proc/appldata/timer starts(1) or stops(0) the timer,
|
|
|
|
i.e. enables or disables monitoring on the Linux side.
|
|
|
|
A custom interval value (in seconds) can be written to
|
|
|
|
/proc/appldata/interval.
|
|
|
|
|
|
|
|
Defaults are 60 seconds interval and timer off.
|
|
|
|
The /proc entries can also be read from, showing the current settings.
|
|
|
|
|
|
|
|
config APPLDATA_MEM
|
2011-01-05 18:47:15 +07:00
|
|
|
def_tristate m
|
|
|
|
prompt "Monitor memory management statistics"
|
2006-12-13 15:34:59 +07:00
|
|
|
depends on APPLDATA_BASE && VM_EVENT_COUNTERS
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
This provides memory management related data to the Linux - VM Monitor
|
|
|
|
Stream, like paging/swapping rate, memory utilisation, etc.
|
|
|
|
Writing 1 or 0 to /proc/appldata/memory creates(1) or removes(0) a z/VM
|
|
|
|
APPLDATA monitor record, i.e. enables or disables monitoring this record
|
|
|
|
on the z/VM side.
|
|
|
|
|
|
|
|
Default is disabled.
|
|
|
|
The /proc entry can also be read from, showing the current settings.
|
|
|
|
|
|
|
|
This can also be compiled as a module, which will be called
|
|
|
|
appldata_mem.o.
|
|
|
|
|
|
|
|
config APPLDATA_OS
|
2011-01-05 18:47:15 +07:00
|
|
|
def_tristate m
|
|
|
|
prompt "Monitor OS statistics"
|
2005-04-17 05:20:36 +07:00
|
|
|
depends on APPLDATA_BASE
|
|
|
|
help
|
|
|
|
This provides OS related data to the Linux - VM Monitor Stream, like
|
|
|
|
CPU utilisation, etc.
|
|
|
|
Writing 1 or 0 to /proc/appldata/os creates(1) or removes(0) a z/VM
|
|
|
|
APPLDATA monitor record, i.e. enables or disables monitoring this record
|
|
|
|
on the z/VM side.
|
|
|
|
|
|
|
|
Default is disabled.
|
|
|
|
This can also be compiled as a module, which will be called
|
|
|
|
appldata_os.o.
|
|
|
|
|
|
|
|
config APPLDATA_NET_SUM
|
2011-01-05 18:47:15 +07:00
|
|
|
def_tristate m
|
|
|
|
prompt "Monitor overall network statistics"
|
2009-03-26 21:24:00 +07:00
|
|
|
depends on APPLDATA_BASE && NET
|
2005-04-17 05:20:36 +07:00
|
|
|
help
|
|
|
|
This provides network related data to the Linux - VM Monitor Stream,
|
|
|
|
currently there is only a total sum of network I/O statistics, no
|
|
|
|
per-interface data.
|
|
|
|
Writing 1 or 0 to /proc/appldata/net_sum creates(1) or removes(0) a z/VM
|
|
|
|
APPLDATA monitor record, i.e. enables or disables monitoring this record
|
|
|
|
on the z/VM side.
|
|
|
|
|
|
|
|
Default is disabled.
|
|
|
|
This can also be compiled as a module, which will be called
|
|
|
|
appldata_net_sum.o.
|
|
|
|
|
2006-06-23 16:05:06 +07:00
|
|
|
config S390_HYPFS_FS
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
|
|
|
prompt "s390 hypervisor file system support"
|
2006-06-23 16:05:06 +07:00
|
|
|
select SYS_HYPERVISOR
|
|
|
|
help
|
|
|
|
This is a virtual file system intended to provide accounting
|
|
|
|
information in an s390 hypervisor environment.
|
|
|
|
|
2012-08-27 15:55:18 +07:00
|
|
|
source "arch/s390/kvm/Kconfig"
|
2007-04-27 21:01:49 +07:00
|
|
|
|
2008-03-26 00:47:44 +07:00
|
|
|
config S390_GUEST
|
2011-01-05 18:47:15 +07:00
|
|
|
def_bool y
|
2012-10-03 01:16:42 +07:00
|
|
|
prompt "s390 support for virtio devices"
|
2013-07-23 15:26:08 +07:00
|
|
|
select TTY
|
2011-06-22 21:24:07 +07:00
|
|
|
select VIRTUALIZATION
|
2008-03-26 00:47:44 +07:00
|
|
|
select VIRTIO
|
|
|
|
help
|
2012-08-27 17:56:48 +07:00
|
|
|
Enabling this option adds support for virtio based paravirtual device
|
|
|
|
drivers on s390.
|
2005-04-17 05:20:36 +07:00
|
|
|
|
2008-08-29 18:30:56 +07:00
|
|
|
Select this option if you want to run the kernel as a guest under
|
2012-08-27 17:56:48 +07:00
|
|
|
the KVM hypervisor.
|
2009-06-16 15:30:52 +07:00
|
|
|
|
|
|
|
endmenu
|
2019-10-17 20:09:08 +07:00
|
|
|
|
|
|
|
menu "Selftests"
|
|
|
|
|
|
|
|
config S390_UNWIND_SELFTEST
|
|
|
|
def_tristate n
|
|
|
|
prompt "Test unwind functions"
|
|
|
|
help
|
|
|
|
This option enables s390 specific stack unwinder testing kernel
|
|
|
|
module. This option is not useful for distributions or general
|
|
|
|
kernels, but only for kernel developers working on architecture code.
|
|
|
|
|
|
|
|
Say N if you are unsure.
|
|
|
|
|
|
|
|
endmenu
|